1
|
Bano S, Khan N, Fatima M, Khalique A, Arslan M, Nazir S, Asghar M, Khizar A, Davies SJ, Wan AHL. Enhancing farmed striped catfish (Pangasianodon hypophthalmus) robustness through dietary β-glucan. PLoS One 2024; 19:e0298414. [PMID: 38483918 PMCID: PMC10939287 DOI: 10.1371/journal.pone.0298414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
β-glucan is a well-documented feed additive for its potent immunostimulatory properties in many farmed fish species. This study examined how it can also be a promising growth promoter, modulate antioxidant enzyme activities, and act as an anti-stress agent in striped catfish (Pangasianodon hypophthalmus). A 12-week feeding experiment was untaken to determine the effects of dietary β-glucan supplementation at graded levels (0, 0.5, 1.0, and 1.5 g kg-1). Measured indicators suggest that a dietary inclusion level of 1.5 g kg-1 β-glucan gave the highest positive responses: weight gain (120.10 g fish-1), survival (98.30%), and lower FCR (1.70) (P<0.05). Whole body proximate analysis had only revealed that crude protein was significantly affected by the dietary inclusion of β-glucan (P<0.05), with the highest protein content (19.70%) being in fish that were fed with 1.5 g kg-1 β-glucan. Although other inclusion levels (i.e., 0.5 and 1 g kg-1) of β-glucan did not enhance body protein content (P>0.05). The assessment of fatty acid composition in muscle, liver, and adipose tissues showed modifications with the inclusion of β-glucan. Antioxidative-related enzyme activities (inc. catalase, glutathione peroxidase, and superoxide dismutase) that were measured in the liver had higher levels when fed with β-glucan inclusion diets (P<0.05). Following the feed trial, fish were subjected to crowding stress treatment. It was subsequently found that catfish fed with β-glucan-based diet groups had lower levels of blood stress-related indicators compared to the control group with no dietary β-glucan. The use of 1.5 g kg-1 of dietary β-glucan resulted in the lowest measured levels of cortisol (43.13 ng mL-1) and glucose (50.16 mg dL-1). This study has demonstrated that the dietary inclusion of β-glucan can have functional benefits beyond the immunological enhancements in striped catfish. Furthermore, its use can increase production levels and mitigate the stress associated with intensive farming practices.
Collapse
Affiliation(s)
- Sheeza Bano
- Department of Fisheries & Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Khan
- Department of Fisheries & Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mahroze Fatima
- Department of Fisheries & Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Anjum Khalique
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Murat Arslan
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Sadia Nazir
- Department of Fisheries & Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Asghar
- Department of Fisheries & Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ayesha Khizar
- Department of Fisheries & Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Simon John Davies
- Aquaculture and Nutrition Research Unit (ANRU), Carna Research Station, Ryan Institute and School of Natural Sciences, University of Galway, Carna, Connemara, Co. Galway, Ireland
| | - Alex H. L. Wan
- Aquaculture and Nutrition Research Unit (ANRU), Carna Research Station, Ryan Institute and School of Natural Sciences, University of Galway, Carna, Connemara, Co. Galway, Ireland
| |
Collapse
|
2
|
Nutritional feed additives reduce the adverse effects of transport stress in the immune system of Tambaqui (Colossoma macropomum). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100051. [DOI: 10.1016/j.fsirep.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
|
3
|
Jiang H, Sun M, Zhao Y, Liu G, Zhong L, Xue H, Chen X, Zheng Y, Wang M. The early function of cortisol in liver during Aeromonas hydrophila infection: Dynamics of the transcriptome and accessible chromatin landscapes. Front Immunol 2022; 13:989075. [PMID: 36532002 PMCID: PMC9751032 DOI: 10.3389/fimmu.2022.989075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
In China, channel catfish (Ictalurus punctatus) is an important aquaculture species; however, haemorrhagic disease (Aeromonas hydrophila induced disease) in these fish has caused tremendous economic loss due to high morbidity and mass mortality in the breeding industry. The role of cortisol in bacterial diseases, particularly in the acute phase, remains unclear. In this study, liver transcriptome (RNA-seq) and chromatin accessibility (ATAC-seq) analyses were employed to investigate the early functional role of cortisol in Aeromonas hydrophila-stimulated responses. Our experiments confirmed that A. hydrophila infection can initially significantly increase serum cortisol levels at 1 h after infection. At this time point, the increased serum cortisol levels can significantly regulate A. hydrophila-regulated genes by affecting both transcriptome and chromatin accessibility. Cross-analysis of RNA-seq and ATAC-seq revealed that a certain gene group (92 target_DEGs) was regulated at an early time point by cortisol. KEGG enrichment analysis revealed that the top three pathways according to target_DEGs were cancer, glutathione metabolism, and the Notch signalling pathway. The protein-protein interaction analysis of target_DEGs revealed that they may be primarily involved in cell proliferation, CD8+ T cell function, glutathione synthesis, and activation of the NF-κB signalling pathway. This suggests that after the emergence of immune stress, the early regulation of cortisol is positive against the immune response. It is possible that in this situation, the animal is attempting to avoid dangerous situations and risks and then cope with the imbalance produced by the stressor to ultimately restore homeostasis. Our results will contribute to future research on fish and provide valuable insight regarding the mechanism of immune regulation by cortisol and the study of bacterial haemorrhagic disease in channel catfish.
Collapse
|
4
|
Machuca C, Méndez-Martínez Y, Reyes-Becerril M, Angulo C. Yeast β-Glucans as Fish Immunomodulators: A Review. Animals (Basel) 2022; 12:ani12162154. [PMID: 36009745 PMCID: PMC9405025 DOI: 10.3390/ani12162154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The β-glucan obtained from yeast—a very important molecule for fish production—activates the immune system of fish by different mechanisms and induces protection against pathogens. However, most previous related studies have focused on the use of commercial β-glucan from the yeast Saccharomyces cerevisiae to understand the activation pathways. Experimental β-glucans extracted from other yeasts show other interesting biological activities even at lower doses. This review article analyzes the current information and suggests perspectives on yeast β-glucans. Abstract Administration of immunostimulants in fish is a preventive method to combat infections. A wide variety of these biological molecules exist, among which one of the yeast wall compounds stands out for its different biological activities. The β-glucan that forms the structural part of yeast is capable of generating immune activity in fish by cell receptor recognition. The most frequently used β-glucans for the study of mechanisms of action are those of commercial origin, with doses recommended by the manufacturer. Nevertheless, their immune activity is inefficient in some fish species, and increasing the dose may show adverse effects, including immunosuppression. Conversely, experimental β-glucans from other yeast species show different activities, such as antibacterial, antioxidant, healing, and stress tolerance properties. Therefore, this review analyses the most recent scientific reports on the use of yeast β-glucans in freshwater and marine fish.
Collapse
Affiliation(s)
- Cristian Machuca
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Yuniel Méndez-Martínez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo 120301, Ecuador
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: ; Tel.: +52-612-123-8484; Fax: +52-612-125-3625
| |
Collapse
|
5
|
Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 2021; 341:1-20. [PMID: 34534593 DOI: 10.1016/j.jbiotec.2021.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023]
Abstract
An increase in fish consumption, combined with a decrease in wild fish harvest, is driving the aquaculture industry at rapid pace. Today, farmed seafood accounts for about half of all global seafood demand for human consumption. As the aquaculture industry continues to grow, so does the market for aquafeed. Currently, some of the feed ingredients are coming from low-value forage fishes (fish meal) and terrestrial plants. The production of fish meal can't be increased as it would affect the sustainability and ecosystem of the ocean. Similarly, increasing the production of terrestrial plant-based feed leads to deforestation and increased freshwater use. Hence, alternative and environmentally sustainable sources of feed ingredients need to be developed. Microalgae biomasses represent potential feed source ingredients as the cell metabolites of these microorganisms contain a blend of essential amino acids, healthy triglycerides as fat, vitamins, and pigments. In addition to serving as bulk ingredient in aquafeed, their unique array of bioactive compounds can increase the survivability of farmed species, improve coloration and quality of fillet. Microalgae has the highest areal biomass productivities among photosynthetic organisms, including fodder crops, and thus has a high commercial potential. Also, microalgal production has a low water and arable-land footprint, making microalgal-based feed environmentally sustainable. This review paper will explore the potential of producing microalgae biomass as an ingredient of aquaculture feed.
Collapse
|
6
|
Mohammadian T, Ghanei-Motlagh R, Molayemraftar T, Mesbah M, Zarea M, Mohtashamipour H, Jangaran Nejad A. Modulation of growth performance, gut microflora, non-specific immunity and gene expression of proinflammatory cytokines in shabout (Tor grypus) upon dietary prebiotic supplementation. FISH & SHELLFISH IMMUNOLOGY 2021; 112:38-45. [PMID: 33609700 DOI: 10.1016/j.fsi.2021.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effect of dietary supplementation of mannan oligosaccharide (MOS) + β-glucan (Immunogen®) was investigated on growth performance, body composition, gut microflora, innate immune responses and gene expression of some proinflammatory cytokines in shabout (Tor grypus). Shabout fingerlings (35 ± 1.2 g) were fed with basal diet (control) or basal diet supplemented with Immunogen® at 0.5, 1 and 1.5% of feed for 90 days. According to the results, growth parameters were significantly improved in fish fed with prebiotic (1 and 1.5%) for 90 days (p < 0.05). The carcass protein content was significantly higher in fish nourished by prebiotic at 1.5% of feed for 90 days compared to fish received the basal diet (p < 0.05). Feeding with various levels of Immunogen® resulted in the significant promotion of the population of intestinal Lactobacillus spp. in the prebiotic-treated groups relative to the control group (p < 0.05). Serum total globulin was significantly higher in all prebiotic groups relative to the control group at day 60. Serum bactericidal and lysozyme activities were significantly (p < 0.05) elevated after feeding with dietary prebiotic at all intervals (days 30, 60 and 90). However, the highest serum bactericidal activities were recorded in fish fed with Immunogen® at 1.5% of diet (p < 0.05). The transcription levels of interleukin 1 beta (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) were significantly increased in the head kidney of fish treated with dietary prebiotic at all intervals. The results show that dietary supplementation with Immunogen®, particularly at the level of 1.5%, can positively alter growth parameters, carcass protein, intestinal microflora and immune responses of shabout.
Collapse
Affiliation(s)
- Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran; Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Reza Ghanei-Motlagh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran.
| | - Taravat Molayemraftar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran.
| | - Mehrzad Mesbah
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran; Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Zarea
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran
| | - Hamzeh Mohtashamipour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran
| | | |
Collapse
|
7
|
Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020; 25:molecules25225378. [PMID: 33213001 PMCID: PMC7698520 DOI: 10.3390/molecules25225378] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.
Collapse
|
8
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Sabioni RE, Zanuzzo FS, Gimbo RY, Urbinati EC. β-Glucan enhances respiratory activity of leukocytes suppressed by stress and modulates blood glucose levels in pacu (Piaractus mesopotamicus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:629-640. [PMID: 31840217 DOI: 10.1007/s10695-019-00739-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the immune response of pacu fed with a β-glucan diet (0.5%) for 10 days. After the feeding period, fish were subjected to handling and 3 h after, inoculated with Aeromonas hydrophila. Fish were sampled before handling (baseline condition), 3, 6, and 24 h and 1 week after inoculation. A higher level of blood glucose was found in fish treated with β-glucan in baseline conditions. Handling and bacterial inoculation increased the circulating levels of cortisol and glucose and promoted the acute inflammatory response (lymphopenia and neutrophilia). β-Glucan prevented the decrease in the respiratory activity of leukocytes observed in the control group at 3 h sampling. β-Glucan did not affect the complement and lysozyme, which were activated 24 h after the bacterial challenge in control fish. A reduction in the number of leukocytes was found in fish treated with β-glucan 1 week after the challenge. We suggest two plausible hypotheses for this event: (1) it could be attributed to a depletion of the immune responses or (2) it could be due to a mobilization of the leukocytes to the spleen for antigen presenting/processing. In general, β-glucan avoided the reduction of the activity of leukocytes after stress and the bacterial challenge and increased the baseline glucose levels. Our findings confirm the immunomodulatory action of glucan and add evidence showing that glucan can have a role in stress response.
Collapse
Affiliation(s)
- Rafael Estevan Sabioni
- Centro de Aquicultura da UNESP (CAUNESP), Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil.
| | - Fábio Sabbadin Zanuzzo
- Centro de Aquicultura da UNESP (CAUNESP), Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Rodrigo Yukihiro Gimbo
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Elisabeth Criscuolo Urbinati
- Centro de Aquicultura da UNESP (CAUNESP), Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
| |
Collapse
|
10
|
Martorell Ribera J, Nipkow M, Viergutz T, Brunner RM, Bochert R, Koll R, Goldammer T, Gimsa U, Rebl A. Early response of salmonid head-kidney cells to stress hormones and toll-like receptor ligands. FISH & SHELLFISH IMMUNOLOGY 2020; 98:950-961. [PMID: 31770645 DOI: 10.1016/j.fsi.2019.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/25/2023]
Abstract
The functional spectrum of the teleostean head kidney covers haematopoietic, immune and endocrine signalling pathways with physiological effects that are likely to conflict if activated at the same time. An in vivo experiment on the salmonid fish maraena whitefish (Coregonus maraena) revealed that the head kidney shows a remarkably strong response after injection of Aeromonas salmonicida within 48 h. In order to investigate the potential influence of endocrine signalling on the initiation of immune responses, we established a primary culture of head-kidney cells of maraena whitefish. For the characterisation of this model system, we used flow cytometry complemented with an extensive panel of immunological/haematological and stress-physiological/neuroendocrinological qPCR assays. More than one third of the cells expressed the characteristic signature of myeloid cells, while more than half of the cells expressed those genes typical for lymphocytes and monocytes. In parallel, we quantified the expression of genes encoding endocrine receptors and identified ADRA2D as by far the most highly expressed adrenergic-receptor gene in head-kidney cells. The stimulation of the head-kidney cells with toll-like receptor ligands induced the expression of typical immune genes (IL1B, CXCL8, TNF, SAA) after only 1 h. The incubation with the stress hormones cortisol, adrenaline and noradrenaline also had an immune-activating effect, though less pronounced. However, cortisol had the strongest suppressive effect on the stimulation-induced immune response, while adrenaline exerted a comparably weaker effect and noradrenaline was almost ineffective. Moreover, we found that cortisol reduced the expression of genes coding for adrenergic and some glucocorticoid receptors, while noradrenaline increased it. In conclusion, the primary head-kidney cells of maraena whitefish reflect the immunological and neuroendocrinological diversity of the entire organ. This in vitro system allowed thus identifying the correlative changes between the activities of hormones and immune factors in salmonid fish in order to contribute to a better understanding of the regulation circuit between stress and immune defence.
Collapse
Affiliation(s)
- Joan Martorell Ribera
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; FBN, Institute of Behavioural Physiology, Psychophysiology Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mareen Nipkow
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Torsten Viergutz
- FBN, Institute of Reproductive Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Research Station Aquaculture Born, Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Südstraße 8, 18375, Born/Darss, Germany
| | - Raphael Koll
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ulrike Gimsa
- FBN, Institute of Behavioural Physiology, Psychophysiology Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
11
|
Marinho de Mello MM, de Fátima Pereira de Faria C, Zanuzzo FS, Urbinati EC. β-glucan modulates cortisol levels in stressed pacu (Piaractus mesopotamicus) inoculated with heat-killed Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1076-1083. [PMID: 31352115 DOI: 10.1016/j.fsi.2019.07.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, we show that β-glucan can modulate cortisol release in fish. We simulated a common situation in aquaculture: the transport of fish followed by contact with an opportunistic pathogen and observed what effect glucan had on the immune and stress response in these conditions. Pacu (Piaractus mesopotamicus) were fed with a diet containing β-glucan (0.1%) for 15 days prior to transport followed by an injection with heat-killed Aeromonas hydrophila. We sampled fish before transport, at arrival and at 3 and 24 h after bacterial injection. β-Glucans are used in aquaculture and have a known immunostimulatory effect, which was observed in this study. The results showed that β-glucan modulated the plasma cortisol levels differently by increasing these levels up to 24 h after transport and preventing the increase caused by bacterial inoculum injection. In addition, β-glucan enhanced the activity of the complement system at 24 h and reduced the monocytes and lymphocytes number in peripheral blood at 3 and 24 h after bacterial inoculation. Our results suggest that β-glucan modulated a bidirectional interaction between the stress and the immune responses. The modulation of cortisol levels and the immunostimulation by β-glucan at different moments in our study suggest the compound has a protective effect by avoiding higher levels of the hormone and improving resistance against bacterial infection in pacu. These results add evidence to support the use of β-glucan as an immunomodulator in the aquaculture industry.
Collapse
Affiliation(s)
- Mariana Maluli Marinho de Mello
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Camila de Fátima Pereira de Faria
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Fábio Sabbadin Zanuzzo
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil; Universidade Estadual Paulista UNESP - Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
12
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar Drugs 2019; 17:E312. [PMID: 31141887 PMCID: PMC6628611 DOI: 10.3390/md17060312] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022] Open
Abstract
Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides-hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Collapse
Affiliation(s)
- Franciele Camacho
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Angela Macedo
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- UNICES-ISMAI-University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal.
| | - Francisco Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Franco Montoya LN, Favero GC, Zanuzzo FS, Urbinati EC. Distinct β-glucan molecules modulates differently the circulating cortisol levels and innate immune responses in matrinxã (Brycon amazonicus). FISH & SHELLFISH IMMUNOLOGY 2018; 83:314-320. [PMID: 30219388 DOI: 10.1016/j.fsi.2018.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/29/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the effects of two β-glucan molecules with different purities and isolated by different biotechnological processes on the immune response of matrinxã (Brycon amazonicus) prior and after challenge with Aeromonas hydrophila. In this sense, we evaluated serum cortisol and plasma glucose levels, the number of leukocytes (lymphocytes, neutrophils and monocytes), as well as the respiratory activity of leukocytes prior to, 6 and 24 h post infection (hpi). During 15 days, fish were fed with diets containing 0.1% of two β-glucans (β-G 1 and β-G 2, with 71 and 62% of purity, respectively) and then submitted to challenge. Results were compared with a positive control group fed with a β-glucan-free diet. A negative control group, also fed with β-glucan-free diet but inoculated with PBS, was established to evaluate the effect of handling during injection. Our results showed that different β-glucans affected differently the biological responses of matrinxã. The βG 2 modulated the cortisol profile prior to and after the acute infection with A. hydrophila, and increased the mobilization and activity of leukocytes. The infection promoted lymphopenia at 6 hpi and both β-glucans increased the circulating lymphocyte population 24 hpi. Moreover, the β-G 2 prevented the infection-induced neutrophilia at 6 and 24 hpi. Finally, the β-G 2 caused a marked increase in the circulating monocytes prior to infection, and a reduction at 6 hpi that was reversed at 24 hpi. In summary, our study demonstrates that β-G 2 was more efficient on the induction of the cell-mediate immunity in matrinxã.
Collapse
Affiliation(s)
- Luz Natalia Franco Montoya
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil.
| | - Gisele Cristina Favero
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil.
| | - Fabio Sabbadin Zanuzzo
- Universidade Estadual Paulista (Unesp), Centro de Aquicultura da Unesp, Jaboticabal, São Paulo, Brazil.
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil; Universidade Estadual Paulista (Unesp), Centro de Aquicultura da Unesp, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
15
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
16
|
Pilarski F, Ferreira de Oliveira CA, Darpossolo de Souza FPB, Zanuzzo FS. Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2017; 70:25-29. [PMID: 28666865 DOI: 10.1016/j.fsi.2017.06.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The role of glucan as a biologically active immunomodulator has been well documented for more than 40 years. However, the wide diversity of β-glucan forms and the extraction process has implications for the benefits of these compounds. Biorigin developed two samples of β-glucans using different biotechnological processes. Thus, in the present study, we fed Nile tilapia (Oreochromis niloticus) diets containing these two β-glucan molecules (BG01 and BG02) for 30 days prior to bacterial infection with Streptococcus agalactiae. The results showed that the different β-glucan samples exhibited biologically differently behaviors, but both increased the resistance against bacterial infection. Specifically, BG01 increased immunostimulation, while BG02 improved growth performance. In summary, these findings confirm the benefits of β-glucans in aquaculture and also provide further evidence of the growth promotion of these compounds.
Collapse
Affiliation(s)
- Fabiana Pilarski
- São Paulo State University, Aquaculture Center of Unesp, Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, 14.884-900, Jaboticabal, São Paulo, Brazil.
| | | | | | - Fábio Sabbadin Zanuzzo
- São Paulo State University, Aquaculture Center of Unesp, Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, 14.884-900, Jaboticabal, São Paulo, Brazil
| |
Collapse
|