1
|
Yang B, Yang L, Kang L, You L, Chen H, Xiao H, Qian L, Rao Y, Liu Z. Integrated analysis of BSA-seq and RNA-seq identified the candidate genes for seed weight in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2024; 15:1458294. [PMID: 39698460 PMCID: PMC11654836 DOI: 10.3389/fpls.2024.1458294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Introduction Brassica juncea is a major oilseed crop of Brassica. The seed weight is one of yield components in oilseed Brassica crops. Research on the genetic mechanism of seed weight is not only directly related to the yield and economic value of Brassica juncea but also can provide a theory foundation for studying other Brassica crops. Methods To map the genes for seed weight, the parental and F2 extreme bulks derived were constructed from the cross between the heavy-seeded accession 7981 and the light-seeded one Sichuan yellow (SY) of B. juncea, and used in bulk segregant sequencing (BSA-seq). Meanwhile, RNA-sequencing (RNA-seq) was performed for both parents at six seed development stages. Results Our results showed that a total of thirty five SNPs were identified in thirty two genes located on chromosomes A02 and A10, while fifty eight InDels in fifty one genes located on A01, A03, A05, A07, A09, A10, B01, B02 and B04. The 7,679 differentially expressed genes were identified in developing seeds between the parents. Furthermore, integrated analysis of BSA-seq and RNA-seq data revealed a cluster of nine genes on chromosome A10 and one gene on chromosome A05 that are putative candidate genes controlling seed weight in B. juncea. Discussion This study provides a new reference for research on Brassica seed weight and lays a solid foundation for the examination of seed in other Brassica crops.
Collapse
Affiliation(s)
- Bin Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Liu Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Lei Kang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Liang You
- Hunan University of Humanities, Science and Technology, College of Agriculture and Biotechnology, Loudi, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Huagui Xiao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lunwen Qian
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Yong Rao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Zhang Y, Zhang J, Huang G, Tan Y, Ning L, Li M, Mo Y. Over Expression of Mango MiGA2ox12 in Tobacco Reduced Plant Height by Reducing GA 1 and GA 4 Content. Int J Mol Sci 2024; 25:12109. [PMID: 39596175 PMCID: PMC11594832 DOI: 10.3390/ijms252212109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The regulation of gibberellic acid 2-oxidase (GA2ox) gene expression represents a critical mechanism in the modulation of endogenous gibberellic acids (GAs) levels, thereby exerting an influence on plant height. In this context, we conducted a comprehensive genome-wide analysis of the GA2ox gene family in mango (Mangifera indica L.), a species of significant economic importance, with the aim of identifying potential candidate genes for mango dwarf breeding. Our findings delineated the presence of at least 14 members within the MiGA2ox gene family in the mango genome, which were further categorized into three subfamilies: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Notably, MiGA2ox12, a member of the C19-GA2ox-II subfamily, exhibited substantial expression across various tissues, including roots, bark, leaves, and flowers. Through overexpression of the MiGA2ox12 gene in tobacco, a distinct dwarf phenotype was observed alongside reduced levels of GA1 and GA4, while the knockout line exhibited contrasting traits. This provides evidence suggesting that MiGA2ox12 may exert control over plant height by modulating GA content. Consequently, the MiGA2ox12 gene emerges as a promising candidate for facilitating advancements in mango dwarfing techniques.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Ji Zhang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Guodi Huang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Yiwei Tan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Lei Ning
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Mu Li
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Yonglong Mo
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| |
Collapse
|
3
|
Abd-Hamid NA, Ismail I. An F-box Kelch repeat protein, PmFBK2, from Persicaria minor interacts with GID1b to modulate gibberellin signalling. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154299. [PMID: 38936241 DOI: 10.1016/j.jplph.2024.154299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Li X, Zhang J, Guo X, Qiu L, Chen K, Wang J, Cheng T, Zhang Q, Zheng T. Genome-Wide Analysis of the Gibberellin-Oxidases Family Members in Four Prunus Species and a Functional Analysis of PmGA2ox8 in Plant Height. Int J Mol Sci 2024; 25:8697. [PMID: 39201381 PMCID: PMC11354515 DOI: 10.3390/ijms25168697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.L.); (J.Z.); (X.G.); (L.Q.); (K.C.); (J.W.); (T.C.); (Q.Z.)
| |
Collapse
|
5
|
Wei H, Chen J, Lu Z, Zhang X, Liu G, Lian B, Chen Y, Zhong F, Yu C, Zhang J. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108738. [PMID: 38761544 DOI: 10.1016/j.plaphy.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
6
|
Wang H, Fang T, Li X, Xie Y, Wang W, Hu T, Kudrna D, Amombo E, Yin Y, Fan S, Gong Z, Huang Y, Xia C, Zhang J, Wu Y, Fu J. Whole-genome sequencing of allotetraploid bermudagrass reveals the origin of Cynodon and candidate genes for salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2068-2084. [PMID: 38531629 DOI: 10.1111/tpj.16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.
Collapse
Affiliation(s)
- Huan Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao City, Shandong Province, 266109, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Tilin Fang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Yan Xie
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, 430074, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Tao Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou City, Gansu Province, 730020, China
| | - David Kudrna
- School of Plant Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Zhiyun Gong
- Agricultural Department, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yicheng Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Jinmin Fu
- College of Grassland Science, Qingdao Agricultural University, Qingdao City, Shandong Province, 266109, China
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| |
Collapse
|
7
|
Castric V, Batista RA, Carré A, Mousavi S, Mazoyer C, Godé C, Gallina S, Ponitzki C, Theron A, Bellec A, Marande W, Santoni S, Mariotti R, Rubini A, Legrand S, Billiard S, Vekemans X, Vernet P, Saumitou-Laprade P. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene. Curr Biol 2024; 34:1967-1976.e6. [PMID: 38626763 DOI: 10.1016/j.cub.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.
Collapse
Affiliation(s)
- Vincent Castric
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Rita A Batista
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Amélie Carré
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Soraya Mousavi
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Clément Mazoyer
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Chloé Ponitzki
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Anthony Theron
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Sylvain Santoni
- UMR DIAPC Diversité et adaptation des plantes cultivées, F-34398 Montpellier, France
| | - Roberto Mariotti
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Andrea Rubini
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Philippe Vernet
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
8
|
Wei H, Chen J, Zhang X, Lu Z, Liu G, Lian B, Yu C, Chen Y, Zhong F, Zhang J. Characterization, expression pattern, and function analysis of gibberellin oxidases in Salix matsudana. Int J Biol Macromol 2024; 266:131095. [PMID: 38537859 DOI: 10.1016/j.ijbiomac.2024.131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Gibberellin oxidases (GAoxs) identified from many species play indispensable roles in GA biosynthesis and GA signal transduction. However, there has been limited research conducted on the GAox family of Salix matsudana, a tetraploid ornamental tree species. Here, 54 GAox genes were identified from S. matsudana and renamed as SmGA20ox1-22, SmGA2ox1-24, SmGA3ox1-6, and SmGAox-like1/2. Gene structure and conserved motif analysis showed that SmGA3ox members possess the 1 intron and other SmGAoxs contain 2-3 introns, and motif 1/2/7 universally present in all SmGAoxs. A total of 69 gene pairs were identified from SmGAox family members, and the Ka/Ks values indicated the SmGAoxs experience the purifying selection. The intra species collinearity analysis implied S. matsudana, S. purpurea, and Populus trichocarpa have the close genetic relationship. The GO analysis suggested SmGAoxs are dominantly involved in GA metabolic process, ion binding, and oxidoreductase activity. RNA-sequencing demonstrated that some SmGAoxs may play an essential role in salt and submergence stresses. In addition, the SmGA20ox13/21 displayed the dominant vitality of GA20 oxidase, but the SmGA20ox13/21 still possessed low activities of GA2 and GA3 oxidases. This study can contribute to reveal the regulatory mechanism of salt and submergence tolerance in willow.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| |
Collapse
|
9
|
Sun J, Zhang X, Fu C, Ahmad N, Zhao C, Hou L, Naeem M, Pan J, Wang X, Zhao S. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut. PeerJ 2023; 11:e16279. [PMID: 37908413 PMCID: PMC10615029 DOI: 10.7717/peerj.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Background Gibberellins (GAs) play important roles in regulating peanut growth and development. GA20ox and GA3ox are key enzymes involved in GA biosynthesis. These enzymes encoded by a multigene family belong to the 2OG-Fe (II) oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox and AhGA3ox-encoding genes has been performed, and the roles of these genes in peanut pod development are not clear. Methods A whole-genome analysis of AhGA20ox and AhGA3ox gene families in peanut was carried out using bioinformatic tools. The expression of these genes at different stage of pod development was analyzed using qRT-PCR. Results In this study, a total of 15 AhGA20ox and five AhGA3ox genes were identified in peanut genome, which were distributed on 14 chromosomes. Phylogenetic analysis divided the GA20oxs and GA3oxs into three groups, but AhGA20oxs and AhGA3oxs in two groups. The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their evolutionary relationship in peanut. AhGA20ox and AhGA3ox genes were differential expressed at different stages of pod development. The strong expression of AhGA20ox1/AhGA20ox4, AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that these genes could have a key role in controlling peg elongation. Furthermore, AhGA20ox and AhGA3ox also showed diverse expression patterns in different peanut tissues including leaves, main stems, flowers and inflorescences. Noticeably, AhGA20ox9/AhGA20ox11 and AhGA3o4/AhGA3ox5 were highly expressed in the main stem, whereas the AhGA3ox1 and AhGA20ox10 were strongly expressed in the inflorescence. The expression levels of AhGA20ox2/AhGA20ox3, AhGA20ox5/AhGA20ox6, AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/AhGA3ox3 were high in the flowers, suggesting their involvement in flower development. These results provide a basis for deciphering the roles of AhGA20ox and AhGA3ox in peanut growth and development, especially in pod development.
Collapse
Affiliation(s)
- Jie Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoqian Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chun Fu
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Lei Hou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Wang T, Li J, Jiang Y, Zhang J, Ni Y, Zhang P, Yao Z, Jiao Z, Li H, Li L, Niu Y, Li Q, Yin G, Niu J. Wheat gibberellin oxidase genes and their functions in regulating tillering. PeerJ 2023; 11:e15924. [PMID: 37671358 PMCID: PMC10476609 DOI: 10.7717/peerj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.
Collapse
Affiliation(s)
- Ting Wang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Henan Engineering Research Center of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China, Shangqiu, China
| | - Peipei Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yufan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guihong Yin
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Bai Y, Xie Y, Cai M, Jiang J, Wu C, Zheng H, Gao J. GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2842. [PMID: 37570996 PMCID: PMC10421110 DOI: 10.3390/plants12152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (Y.B.); (Y.X.); (M.C.); (J.J.); (C.W.); (H.Z.)
| |
Collapse
|
12
|
Zhao L, Zou M, Jiang S, Dong X, Deng K, Na T, Wang J, Xia Z, Wang F. Insights into the Genetic Determination of the Autotetraploid Potato Plant Height. Genes (Basel) 2023; 14:507. [PMID: 36833433 PMCID: PMC9957462 DOI: 10.3390/genes14020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant height is an important characteristic, the modification of which can improve the ability of stress adaptation as well as the yield. In this study, genome-wide association analysis was performed for plant height traits in 370 potato cultivars using the tetraploid potato genome as a reference. A total of 92 significant single nucleotide polymorphism (SNP) loci for plant height were obtained, which were particularly significant in haplotypes A3 and A4 on chromosome 1 and A1, A2, and A4 on chromosome 5. Thirty-five candidate genes were identified that were mainly involved in the gibberellin and brassinolide signal transduction pathways, including the FAR1 gene, methyltransferase, ethylene response factor, and ubiquitin protein ligase. Among them, PIF3 and GID1a were only present on chromosome 1, with PIF3 in all four haplotypes and GID1a in haplotype A3. This could lead to more effective genetic loci for molecular marker-assisted selection breeding as well as more precise localization and cloning of genes for plant height traits in potatoes.
Collapse
Affiliation(s)
- Long Zhao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Meiling Zou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Sirong Jiang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Xiaorui Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Ke Deng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Tiancang Na
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Zhiqiang Xia
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
13
|
Qin L, Li C, Guo C, Wei L, Tian D, Li B, Wei D, Zhou W, Long S, He Z, Huang S, Wei S. Integrated metabolomic and transcriptomic analyses of regulatory mechanisms associated with uniconazole-induced dwarfism in banana. BMC PLANT BIOLOGY 2022; 22:614. [PMID: 36575388 PMCID: PMC9795754 DOI: 10.1186/s12870-022-04005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Uniconazole is an effective plant growth regulator that can be used in banana cultivation to promote dwarfing and enhance lodging resistance. However, the mechanisms underlying banana dwarfing induced by uniconazole are unknown. In uniconazole-treated bananas, gibberellin (GA) was downregulated compared to the control groups. An integrative analysis of transcriptomes and metabolomes was performed on dwarf bananas induced by uniconazole and control groups. The key pathways involved in uniconazole-induced dwarfism in banana were determined according to the overlap of KEGG annotation of differentially expressed genes and (DEGs) differential abundant metabolites (DAMs). RESULTS Compared with the control groups, the levels of some flavonoids, tannins, and alkaloids increased, and those of most lipids, amino acids and derivatives, organic acids, nucleotides and derivatives, and terpenoids decreased in uniconazole-treated bananas. Metabolome analysis revealed the significant changes of flavonoids in uniconazole-treated bananas compared to control samples at both 15 days and 25 days post treatment. Transcriptome analysis shows that the DEGs between the treatment and control groups were related to a series of metabolic pathways, including lignin biosynthesis, phenylpropanoid metabolism, and peroxidase activity. Comprehensive analysis of the key pathways of co-enrichment of DEGs and DAMs from 15 d to 25 d after uniconazole treatment shows that flavonoid biosynthesis was upregulated. CONCLUSIONS In addition to the decrease in GA, the increase in tannin procyanidin B1 may contribute to dwarfing of banana plants by inhibiting the activity of GA. The increased of flavonoid biosynthesis and the change of lignin biosynthesis may lead to dwarfing phenotype of banana plants. This study expands our understanding of the mechanisms underlying uniconazole-induced banana dwarfing.
Collapse
Affiliation(s)
- Liuyan Qin
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Chaosheng Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China.
| | - Chenglin Guo
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Liping Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Dandan Tian
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Baoshen Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Wei Zhou
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Shengfeng Long
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Zhangfei He
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Sumei Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China
| | - Shaolong Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences/National Local Joint Engineering Research Center for Genetic Improvement and Cultivation Techniques of Banana Varieties/National Tropical Fruit Variety improvement Center Guangxi Banana Branch Center, Nanning, 530007, China.
| |
Collapse
|
14
|
Manipulating GA-Related Genes for Cereal Crop Improvement. Int J Mol Sci 2022; 23:ijms232214046. [PMID: 36430524 PMCID: PMC9696284 DOI: 10.3390/ijms232214046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global population is projected to experience a rapid increase in the future, which poses a challenge to global food sustainability. The "Green Revolution" beginning in the 1960s allowed grain yield to reach two billion tons in 2000 due to the introduction of semi-dwarfing genes in cereal crops. Semi-dwarfing genes reduce the gibberellin (GA) signal, leading to short plant stature, which improves the lodging resistance and harvest index under modern fertilization practices. Here, we reviewed the literature on the function of GA in plant growth and development, and the role of GA-related genes in controlling key agronomic traits that contribute to grain yield in cereal crops. We showed that: (1) GA is a significant phytohormone in regulating plant development and reproduction; (2) GA metabolism and GA signalling pathways are two key components in GA-regulated plant growth; (3) GA interacts with other phytohormones manipulating plant development and reproduction; and (4) targeting GA signalling pathways is an effective genetic solution to improve agronomic traits in cereal crops. We suggest that the modification of GA-related genes and the identification of novel alleles without a negative impact on yield and adaptation are significant in cereal crop breeding for plant architecture improvement. We observed that an increasing number of GA-related genes and their mutants have been functionally validated, but only a limited number of GA-related genes have been genetically modified through conventional breeding tools and are widely used in crop breeding successfully. New genome editing technologies, such as the CRISPR/Cas9 system, hold the promise of validating the effectiveness of GA-related genes in crop development and opening a new venue for efficient and accelerated crop breeding.
Collapse
|
15
|
Liu X, Wang J, Sabir IA, Sun W, Wang L, Xu Y, Zhang N, Liu H, Jiu S, Liu L, Zhang C. PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:299-309. [PMID: 35932654 DOI: 10.1016/j.plaphy.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dwarf dense planting is helpful to improve the yield and quality of sweet cherry, which has enormous market demand. GA2oxs (GA oxidases) affect plant height, dormancy release, flower development, and seed germination by participating in the metabolic regulation and signal transduction of GA (Gibberellin). However, the research on GA2ox in sweet cherry is little and worthy of further investigation. Therefore, we identified the PavGA2ox-2L gene from sweet cherry, close to PynGA2ox-2 from Prunus yedoensis var. Nudiflora. The phylogenetic analysis indicated conserved functions with these evolutionarily closer GA2ox subfamily genes. Subcellular localization forecast analysis indicated that PavGA2ox-2L was localized in the nucleus or cytoplasm. The expression levels of PavGA2ox-2L were higher in winter, indicating that PavGA2ox-2L promoted maintained flower bud dormancy. The expression levels of PavGA2ox-2L were significantly increased after GA4+7 treatment while decreased after GR24 (a synthetic analog of SLs (Strigolactones)) or TIS108 (a triazole-type SL-biosynthesis inhibitor) treatments. Over-expression of PavGA2ox-2L resulted in decreased plant height, delayed flowering time, and low seed germination rate in Arabidopsis thaliana. Furthermore, the interaction between PavGA2ox-2L and PavDWARF was verified by Y2H and BiFC assays. In the current investigation, PavGA2ox-2L functions as a GA metabolic gene that promotes dwarf dense planting, delays flowering time, and inhibits seed germination. In addition, it also participates in regulating plant growth and development through the interaction with the critical negative regulator PavDWARF of Gibberellin. These results will help us better explore the molecular mechanism of GA2ox-mediated dwarf and late-maturing varieties for fruit trees.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Niangong Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Haobo Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Lu Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| |
Collapse
|
16
|
Nett RS, Bender KS, Peters RJ. Production of the plant hormone gibberellin by rhizobia increases host legume nodule size. THE ISME JOURNAL 2022; 16:1809-1817. [PMID: 35414717 PMCID: PMC9213532 DOI: 10.1038/s41396-022-01236-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Plant-associated microbes have evolved the ability to independently produce gibberellin (GA) phytohormones as a mechanism to influence their host. Indeed, GA was first discovered as a metabolite from the fungal rice pathogen Gibberella fujikuroi, which uses it as a virulence factor. Though some bacterial plant pathogens similarly use GA to promote infection, symbiotic nitrogen-fixing bacteria (rhizobia), which inhabit the root nodules of legumes, also can produce GA, suggesting a role in symbiosis. The bacterial GA biosynthetic operon has been identified, but in rhizobia this typically no longer encodes the final metabolic gene (cyp115), so that these symbionts can only produce the penultimate intermediate GA9. Here, we demonstrate that soybean (Glycine max) expresses functional GA 3-oxidases (GA3ox) within its nodules, which have the capability to convert GA9 produced by the enclosed rhizobial symbiont Bradyrhizobium diazoefficiens to bioactive GA4. This rhizobia-derived GA is demonstrated to cause an increase in nodule size and decrease in the number of nodules. The increase in individual nodule size correlates to greater numbers of bacterial progeny within a nodule, thereby providing a selective advantage to rhizobia that produce GA during the rhizobia-legume symbiosis. The expression of GA3ox in nodules and resultant nodulation effects of the GA product suggests that soybean has co-opted control of bioactive GA production, and thus nodule size, for its own benefit. Thus, our results suggest rhizobial GA biosynthesis has coevolved with host plant metabolism for cooperative production of a phytohormone that influences nodulation in a mutually beneficial manner.
Collapse
Affiliation(s)
- Ryan S Nett
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kelly S Bender
- Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
17
|
Ptošková K, Szecówka M, Jaworek P, Tarkowská D, Petřík I, Pavlović I, Novák O, Thomas SG, Phillips AL, Hedden P. Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC PLANT BIOLOGY 2022; 22:284. [PMID: 35676624 PMCID: PMC9178827 DOI: 10.1186/s12870-022-03667-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
Collapse
Affiliation(s)
- Klára Ptošková
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Marek Szecówka
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Jaworek
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Stephen G Thomas
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Andrew L Phillips
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
18
|
Teramoto S, Yamasaki M, Uga Y. Identification of a unique allele in the quantitative trait locus for crown root number in japonica rice from Japan using genome-wide association studies. BREEDING SCIENCE 2022; 72:222-231. [PMID: 36408322 PMCID: PMC9653191 DOI: 10.1270/jsbbs.22010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
To explore the genetic resources that could be utilized to help improve root system architecture phenotypes in rice (Oryza sativa), we have conducted genome-wide association studies to investigate maximum root length and crown root number in 135 10-day-old Japanese rice accessions grown hydroponically. We identified a quantitative trait locus for crown root number at approximately 32.7 Mbp on chromosome 4 and designated it qNCR1 (quantitative trait locus for Number of Crown Root 1). A linkage disequilibrium map around qNCR1 suggested that three candidate genes are involved in crown root number: a cullin (LOC_Os04g55030), a gibberellin 20 oxidase 8 (LOC_Os04g55070), and a cyclic nucleotide-gated ion channel (LOC_Os04g55080). The combination of haplotypes for each gene was designated as a haploblock, and haploblocks 1, 2, and 3 were defined. Compared to haploblock 1, the accessions with haploblocks 2 and 3 had fewer crown roots; approximately 5% and 10% reductions in 10-day-old plants and 15% and 25% reductions in 42-day-old plants, respectively. A Japanese leading variety Koshihikari and its progenies harbored haploblock 3. Their crown root number could potentially be improved using haploblocks 1 and 2.
Collapse
Affiliation(s)
- Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo 675-2103, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
19
|
Zhang C, Nie X, Kong W, Deng X, Sun T, Liu X, Li Y. Genome-Wide Identification and Evolution Analysis of the Gibberellin Oxidase Gene Family in Six Gramineae Crops. Genes (Basel) 2022; 13:863. [PMID: 35627248 PMCID: PMC9141362 DOI: 10.3390/genes13050863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
The plant hormones gibberellins (GAs) regulate plant growth and development and are closely related to the yield of cash crops. The GA oxidases (GAoxs), including the GA2ox, GA3ox, and GA20ox subfamilies, play pivotal roles in GAs' biosynthesis and metabolism, but their classification and evolutionary pattern in Gramineae crops remain unclear. We thus conducted a comparative genomic study of GAox genes in six Gramineae representative crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa (Os). A total of 105 GAox genes were identified in these six crop genomes, belonging to the C19-GA2ox, C20-GA2ox, GA3ox, and GA20ox subfamilies. Based on orthogroup (OG) analysis, GAox genes were divided into nine OGs and the number of GAox genes in each of the OGs was similar among all tested crops, which indicated that GAox genes may have completed their family differentiations before the species differentiations of the tested species. The motif composition of GAox proteins showed that motifs 1, 2, 4, and 5, forming the 2OG-FeII_Oxy domain, were conserved in all identified GAox protein sequences, while motifs 11, 14, and 15 existed specifically in the GA20ox, C19-GA2ox, and C20-GA2ox protein sequences. Subsequently, the results of gene duplication events suggested that GAox genes mainly expanded in the form of WGD/SD and underwent purification selection and that maize had more GAox genes than other species due to its recent duplication events. The cis-acting elements analysis indicated that GAox genes may respond to growth and development, stress, hormones, and light signals. Moreover, the expression profiles of rice and maize showed that GAox genes were predominantly expressed in the panicles of the above two plants and the expression of several GAox genes was significantly induced by salt or cold stresses. In conclusion, our results provided further insight into GAox genes' evolutionary differences among six representative Gramineae and highlighted GAox genes that may play a role in abiotic stress.
Collapse
Affiliation(s)
- Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Xin Nie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| |
Collapse
|
20
|
Wu T, Zhang H, Yuan B, Liu H, Kong L, Chu Z, Ding X. Tal2b targets and activates the expression of OsF3H 03g to hijack OsUGT74H4 and synergistically interfere with rice immunity. THE NEW PHYTOLOGIST 2022; 233:1864-1880. [PMID: 34812496 DOI: 10.1111/nph.17877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator-like (TAL) effectors are major virulence factors secreted by the type III secretion systems of Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo), causing bacterial leaf streak and bacterial blight, respectively, in rice. However, the knowledge of Xoc TAL effector function in promoting bacterial virulence remains limited. Here, we isolated the highly virulent Xoc strain HGA4 from the outbreak region of Huanggang (Hubei, China), which contains four TAL effectors not found in the Chinese model strain RS105. Among these, Tal2b was selected for introduction into RS105, which resulted in a longer lesion length than that in the control. Tal2b directly binds to the promoter region of the gene and activates the expression of OsF3H03g , which encodes 2-oxoglutarate-dependent dioxygenase in rice. OsF3H03g negatively regulates salicylic acid (SA)-related defense by directly reducing SA, and it plays a positive role in susceptibility to both Xoc and Xoo in rice. OsF3H03g interacts with a uridine diphosphate-glycosyltransferase protein (OsUGT74H4), which positively regulates bacterial leaf streak susceptibility and may inactivate SA via glycosylation modification.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan University, Wuhan, Hubei, 430070, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
21
|
Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan MA, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b
, an ancient variation of
TaGA2ox‐A9
, reduces plant height without yield penalty in wheat. NEW PHYTOLOGIST 2022; 233:738-750. [PMID: 0 DOI: 10.1111/nph.17808] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 05/22/2023]
Affiliation(s)
- Xiuling Tian
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Xianchun Xia
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Dengan Xu
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design Chinese Academy of Sciences 1 West Beichen Road Beijing 100101 China
| | - Li Xie
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Jie Song
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Faji Li
- Crop Research Institute Shandong Academy of Agricultural Sciences 202 Industry North Road Jinan 250100 China
| | - Desen Wang
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yong Zhang
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yuanfeng Hao
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Genying Li
- Crop Research Institute Shandong Academy of Agricultural Sciences 202 Industry North Road Jinan 250100 China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design Chinese Academy of Sciences 1 West Beichen Road Beijing 100101 China
| | - Zhonghu He
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
- International Maize and Wheat Improvement Center (CIMMYT) China Office c/o CAAS 12 Zhongguancun South Street Beijing 100081 China
| | - Shuanghe Cao
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| |
Collapse
|
22
|
Kumar S, Huang X, Li G, Ji Q, Zhou K, Zhu G, Ke W, Hou H, Zhu H, Yang J. Comparative Transcriptomic Analysis Provides Novel Insights into the Blanched Stem of Oenanthe javanica. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112484. [PMID: 34834849 PMCID: PMC8625949 DOI: 10.3390/plants10112484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In the agricultural field, blanching is a technique used to obtain tender, sweet, and delicious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of blanched water dropwort have been previously investigated. However, the molecular mechanism of blanching remains unclear. In the present study, we investigated transcriptomic variations for different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control). The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and phytohormone signal transduction as well as transcription factors (TFs) were significantly dysregulated. Blanched stems of water dropwort showed the higher number of downregulated genes in pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort. The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY were overexpressed in blanched samples in comparison with the control. These genes and pathways participate in inducing the length, developmental processes, pale color, and stress tolerance of the blanched stem. Overall, the genes responsive to blanching, which were identified in this study, provide an effective foundation for further studies on the molecular mechanisms of blanching and photosynthesis regulations in water dropwort and other species.
Collapse
Affiliation(s)
- Sunjeet Kumar
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Xinfang Huang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Ji
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Kai Zhou
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Weidong Ke
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglian Zhu
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Li Y, Shan X, Jiang Z, Zhao L, Jin F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:621-633. [PMID: 34192648 DOI: 10.1016/j.plaphy.2021.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
GA 2-oxidases (GA2oxs) are a class of enzymes that inhibit the biosynthesis of bioactive GAs in plants. Although GA2oxs have clear roles in the development and defence responses in Arabidopsis, rice, and wheat, their potential effects on maize remain unclear. This study identified thirteen ZmGA2ox genes in maize and further characterized them using phylogenetic, gene structure, genomic locus, expression pattern analyses and GA content determination. Phylogenetic relationship analysis clearly divided the ZmGA2ox family into three groups-seven in C19-GA2ox class I, three in C19-GA2ox class II, and three in C20-GA2ox class. Evolutionary analysis suggested that ZmGA2ox1;1 and ZmGA2ox1;2, ZmGA2ox3;1 and ZmGA2ox3;2, and ZmGA2ox7;1 and ZmGA2ox7;2 are three pairs of segmental duplicated genes. Prediction of cis-regulatory elements in promoters suggested that ZmGA2ox genes were mainly associated with growth, development, hormones, and biotic/abiotic stress. Therefore, their spatial and temporal expression patterns and responses to various stress treatments were analysed on the basis of published RNA-seq data. Moreover, the changes of ZmGA2ox expression in leaves and roots of maize seedlings was detected under salt, alkali, dehydration, and cold stresses by qRT-PCR. The ZmGA2oxs exhibited obvious expression tendencies or characteristics in various organs under different abiotic stresses. The variations in the expression of three ZmGA2ox genes in the C20-GA2ox class in maize seedling roots showed significant regularity and a clear negative correlation with bioactive GA contents under cold and drought conditions, indicating that these three genes might exert key effects on the regulation of GA synthesis and the response to drought and cold stress. Taken together, this study is useful for further dissection of the effect of ZmGA2oxs on abiotic stress responses and might provide potential targets for the genetic improvement of maize.
Collapse
Affiliation(s)
- Yidan Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Zhilei Jiang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Fengxue Jin
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| |
Collapse
|
24
|
Wang Y, Du F, Wang J, Li Y, Zhang Y, Zhao X, Zheng T, Li Z, Xu J, Wang W, Fu B. Molecular Dissection of the Gene OsGA2ox8 Conferring Osmotic Stress Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22179107. [PMID: 34502018 PMCID: PMC8430958 DOI: 10.3390/ijms22179107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Gibberellin 2-oxidase (GA2ox) plays an important role in the GA catabolic pathway and the molecular function of the OsGA2ox genes in plant abiotic stress tolerance remains largely unknown. In this study, we functionally characterized the rice gibberellin 2-oxidase 8 (OsGA2ox8) gene. The OsGA2ox8 protein was localized in the nucleus, cell membrane, and cytoplasm, and was induced in response to various abiotic stresses and phytohormones. The overexpression of OsGA2ox8 significantly enhanced the osmotic stress tolerance of transgenic rice plants by increasing the number of osmotic regulators and antioxidants. OsGA2ox8 was differentially expressed in the shoots and roots to cope with osmotic stress. The plants overexpressing OsGA2ox8 showed reduced lengths of shoots and roots at the seedling stage, but no difference in plant height at the heading stage was observed, which may be due to the interaction of OsGA2ox8 and OsGA20ox1, implying a complex feedback regulation between GA biosynthesis and metabolism in rice. Importantly, OsGA2ox8 was able to indirectly regulate several genes associated with the anthocyanin and flavonoid biosynthetic pathway and the jasmonic acid (JA) and abscisic acid (ABA) biosynthetic pathway, and overexpression of OsGA2ox8 activated JA signal transduction by inhibiting the expression of jasmonate ZIM domain-containing proteins. These results provide a basis for a future understanding of the networks and respective phenotypic effects associated with OsGA2ox8.
Collapse
Affiliation(s)
- Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Yingbo Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Yue Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (W.W.); (B.F.); Tel.: +86-10-82106698 (W.W. & B.F.); Fax: +86-10-68918559 (W.W. & B.F.)
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- Correspondence: (W.W.); (B.F.); Tel.: +86-10-82106698 (W.W. & B.F.); Fax: +86-10-68918559 (W.W. & B.F.)
| |
Collapse
|
25
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
26
|
Hu L, Wang P, Hao Z, Lu Y, Xue G, Cao Z, Qu H, Cheng T, Shi J, Chen J. Gibberellin Oxidase Gene Family in L. chinense: Genome-Wide Identification and Gene Expression Analysis. Int J Mol Sci 2021; 22:ijms22137167. [PMID: 34281216 PMCID: PMC8268368 DOI: 10.3390/ijms22137167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
GAox is a key enzyme for the transformation of gibberellins, and belongs to the 2-ketoglutarate dependent dioxygenase gene family (2ODD). However, a systematic analysis of GAox in the angiosperm L. chinense has not yet been reported. Here, we identified all LcGAox gene family members in L. chinense, which were classified into the three subgroups of GA20ox, C19GA2ox, and C20GA2ox. Comparison of the gene structure, conserve motifs, phylogenetic relationships, and syntenic relationships of gibberellin oxidase gene families in different species indicated that the gene functional differences may be due to the partial deletion of their domains during evolution. Furthermore, evidence for purifying selection was detected between orthologous GAox genes in rice, grape, Arabidopsis, and L. chinense. Analysis of the codon usage patterns showed that mutation pressure and natural selection might have induced codon usage bias in angiosperms; however, the LcGAox genes in mosses, lycophytes, and ambarella plants exhibited no obvious codon usage preference. These results suggested that the gibberellin oxidase genes were more primitive. The gene expression pattern was analyzed in different organs subjected to multiple abiotic stresses, including GA, abscisic acid (ABA), and chlormequat (CCC) treatment, by RNA-seq and qRT-PCR, and the stress- and phytohormone-responsive cis-elements were counted. The results showed that the synthesis and decomposition of GA were regulated by different LcGAox genes in the vegetative and reproductive organs of L. chinense, and only LcGA2ox1,4, and 7 responded to the NaCl, polyethylene glycol, 4 °C, GA, ABA, and CCC treatment in the roots, stems, and leaves of seedlings at different time periods, revealing the potential role of LcGAox in stress resistance.
Collapse
Affiliation(s)
- Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Pengkai Wang
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China;
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Guoxia Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Zijian Cao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Haoxian Qu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (L.H.); (Z.H.); (Y.L.); (G.X.); (Z.C.); (H.Q.); (T.C.); (J.S.)
- Correspondence: ; Tel.: +86-025-85428817-83
| |
Collapse
|
27
|
Ci J, Wang X, Wang Q, Zhao F, Yang W, Cui X, Jiang L, Ren X, Yang W. Genome-wide analysis of gibberellin-dioxygenases gene family and their responses to GA applications in maize. PLoS One 2021; 16:e0250349. [PMID: 33961636 PMCID: PMC8104384 DOI: 10.1371/journal.pone.0250349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Gibberellin-dioxygenases genes plays important roles in the regulating plant development. However, Gibberellin-dioxygenases genes are rarely reported in maize, especially response to gibberellin (GA). In present study, 27 Gibberellin-dioxygenases genes were identified in the maize and they were classified into seven subfamilies (I-VII) based on phylogenetic analysis. This result was also further confirmed by their gene structure and conserved motif characteristics. And gibberellin-dioxygenases genes only occurred segmental duplication that occurs most frequently in plants. Furthermore, the gibberellin-dioxygenases genes showed different tissue expression pattern in different tissues and most of the gibberellin-dioxygenases genes showed tissue specific expression. Moreover, almost all the gibberellin-dioxygenases genes were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10 of 15 gibberellin-dioxygenases genes normally expressed in leaves while 10 and 11 gibberellin-dioxygenases genes showed up and down regulated under GA treatment than that under normal condition in leaf sheath. In addition, we found that ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 might be potential genes for regulating balance of GAs which play essential roles in plant development. These findings will increase our understanding of Gibberellin-dioxygenases gene family in response to GA and will provide a solid base for further functional characterization of Gibberellin-dioxygenases genes in maize.
Collapse
Affiliation(s)
- Jiabin Ci
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xingyang Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qi Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Fuxing Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wei Yang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xueyu Cui
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning, China
| | - Liangyu Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xuejiao Ren
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Weiguang Yang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
28
|
Wang P, Yan Z, Zong X, Yan Q, Zhang J. Genome-Wide Analysis and Expression Profiles of the Dof Family in Cleistogenes songorica under Temperature, Salt and ABA Treatment. PLANTS 2021; 10:plants10050850. [PMID: 33922432 PMCID: PMC8146245 DOI: 10.3390/plants10050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022]
Abstract
The DNA-binding with one zinc finger (Dof) family of plant-specific transcription factors has a variety of important functions in gene transcriptional regulation, development, and stress responses. However, the structure and expression patterns of Dof family have not been identified in Cleistogenes songorica, which is an important xerophytic and perennial gramineous grass in desert grassland. In this study, 50 Dof genes were identified in C. songorica and could be classified into four groups. According to genome-wide analysis, 46 of 50 Dof genes were located on 20 chromosomes, and the gene structure and conserved protein motif of these proteins were analyzed. In addition, phylogenetic analysis of Dof genes in C. songorica, Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon estimated the evolutionary relationships, and these genes were grouped into seven clusters. Moreover, the expression profiles of these Dof genes in C. songorica were analyzed in response to high/low temperature, salinity, and ABA treatments. These results will provide valuable information for future studies on gene classification, cloning, and functional characterization of this family in C. songorica.
Collapse
Affiliation(s)
| | | | | | | | - Jiyu Zhang
- Correspondence: ; Tel.: +86-138-9332-9958
| |
Collapse
|
29
|
Ren H, Wu Y, Ahmed T, Qi X, Li B. Response of Resistant and Susceptible Bayberry Cultivars to Infection of Twig Blight Pathogen by Histological Observation and Gibberellin Related Genes Expression. Pathogens 2021; 10:402. [PMID: 33805451 PMCID: PMC8066835 DOI: 10.3390/pathogens10040402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Bayberry is an important fruit tree native to the subtropical regions of China. However, a systematic twig blight disease caused by Pestalotiopsis versicolor and P. microspora, resulted in the death of the whole tree of bayberry. The main variety Dongkui is highly sensitive to the twig blight disease, but the variety Zaojia is very highly resistant to the disease. Therefore, it is very necessary to clear the difference between resistant and susceptible varieties in response to the fungal infection. In this paper, we investigated the response of resistant and susceptible bayberry cultivars to infection of twig blight pathogen by histological observation and gibberellin signaling pathway-related genes expression. Microscopic observation revealed the difference in the infection process between resistant and susceptible varieties. The results of frozen scanning electron microscopy showed that the Pestalotiopsis conidia were shrunk, the mycelium was shriveled and did not extend into the cells of resistant cultivars, while the conidia were full and the top was extended, the mycelia was normal and continued to extend to the cells of a susceptible cultivar. Indeed, the medulla cells were almost intact in resistant cultivar, but obviously damaged in susceptible cultivar after inoculation of the main fungal pathogen P. versicolor conidia, which is earlier germinated on sterile glass slide than that of a hard plastic slide. The quantitative real-time PCR results showed a significant difference between resistant and susceptible cultivars in the expression of gibberellin signaling pathway-related genes in leaves and stems of bayberry, which is closely related to infection time, the type of genes and varieties. Overall, this study provides a clue for our understanding of the resistance mechanism of bayberry against the twig blight disease.
Collapse
Affiliation(s)
- Haiying Ren
- The Institute of Horticulture Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (X.Q.)
| | - Yangchun Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xingjiang Qi
- The Institute of Horticulture Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (X.Q.)
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
30
|
Zhang J, Wu F, Yan Q, John UP, Cao M, Xu P, Zhang Z, Ma T, Zong X, Li J, Liu R, Zhang Y, Zhao Y, Kanzana G, Lv Y, Nan Z, Spangenberg G, Wang Y. The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:532-547. [PMID: 32964579 PMCID: PMC7955882 DOI: 10.1111/pbi.13483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/13/2020] [Indexed: 05/24/2023]
Abstract
Cleistogenes songorica (2n = 4x = 40) is a desert grass with a unique dimorphic flowering mechanism and an ability to survive extreme drought. Little is known about the genetics underlying drought tolerance and its reproductive adaptability. Here, we sequenced and assembled a high-quality chromosome-level C. songorica genome (contig N50 = 21.28 Mb). Complete assemblies of all telomeres, and of ten chromosomes were derived. C. songorica underwent a recent tetraploidization (~19 million years ago) and four major chromosomal rearrangements. Expanded genes were significantly enriched in fatty acid elongation, phenylpropanoid biosynthesis, starch and sucrose metabolism, and circadian rhythm pathways. By comparative transcriptomic analysis we found that conserved drought tolerance related genes were expanded. Transcription of CsMYB genes was associated with differential development of chasmogamous and cleistogamous flowers, as well as drought tolerance. Furthermore, we found that regulation modules encompassing miRNA, transcription factors and target genes are involved in dimorphic flower development, validated by overexpression of CsAP2_9 and its targeted miR172 in rice. Our findings enable further understanding of the mechanisms of drought tolerance and flowering in C. songorica, and provide new insights into the adaptability of native grass species in evolution, along with potential resources for trait improvement in agronomically important species.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Fan Wu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi Yan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Ulrik P John
- Agriculture Victoria Research, Department of Jobs, Precincts and RegionsAgriBio, Centre for AgriBioscience, La Trobe UniversityVictoriaAustralia
| | - Mingshu Cao
- AgResearch Limited, Grasslands Research CentrePalmerston NorthNew Zealand
| | - Pan Xu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Tiantian Ma
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Xifang Zong
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Jie Li
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Ruijuan Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Yufei Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Gisele Kanzana
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yanyan Lv
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - German Spangenberg
- Agriculture Victoria Research, Department of Jobs, Precincts and RegionsAgriBio, Centre for AgriBioscience, La Trobe UniversityVictoriaAustralia
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
31
|
Devi TR, Dasgupta M, Sahoo MR, Kole PC, Prakash N. High efficient de novo root-to-shoot organogenesis in Citrus jambhiri Lush.: Gene expression, genetic stability and virus indexing. PLoS One 2021; 16:e0246971. [PMID: 33606806 PMCID: PMC7894961 DOI: 10.1371/journal.pone.0246971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
A protocol for high-frequency direct organogenesis from root explants of Kachai lemon (Citrus jambhiri Lush.) was developed. Full-length roots (~3 cm) were isolated from the in vitro grown seedlings and cultured on Murashige and Skoog basal medium supplemented with Nitsch vitamin (MSN) with different concentrations of cytokinin [6-benzylaminopurine, (BAP)] and gibberellic acid (GA3). The frequency of multiple shoot proliferation was very high, with an average of 34.3 shoots per root explant when inoculated on the MSN medium supplemented with BAP (1.0 mg L–1) and GA3 (1.0 mg L–1). Optimal rooting was induced in the plantlets under half strength MSN medium supplemented with indole-3-acetic acid (IAA, 0.5–1.0 mg L–1). IAA induced better root structure than 1-naphthaleneacetic acid (NAA), which was evident from the scanning electron microscopy (SEM). The expressions of growth regulating factor genes (GRF1 and GRF5) and GA3 signaling genes (GA2OX1 and KO1) were elevated in the regenerants obtained from MSN+BAP (1.0 mg L-1)+GA3 (1.0 mg L-1). The expressions of auxin regulating genes were high in roots obtained in ½ MSN+IAA 1.0 mg L-1. Furthermore, indexing of the regenerants confirmed that there was no amplicons detected for Huanglongbing bacterium and Citrus tristeza virus. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers detected no polymorphic bands amongst the regenerated plants. This is the first report that describes direct organogenesis from the root explant of Citrus jambhiri Lush. The high-frequency direct regeneration protocol in the present study provides an enormous significance in Citrus organogenesis, its commercial cultivation and genetic conservation.
Collapse
Affiliation(s)
| | - Madhumita Dasgupta
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
- * E-mail:
| | | | - Narendra Prakash
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| |
Collapse
|
32
|
Cheng J, Ma J, Zheng X, Lv H, Zhang M, Tan B, Ye X, Wang W, Zhang L, Li Z, Li J, Feng J. Functional Analysis of the Gibberellin 2-oxidase Gene Family in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:619158. [PMID: 33679834 PMCID: PMC7928363 DOI: 10.3389/fpls.2021.619158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/28/2023]
Abstract
Peach (Prunus persica L. Batsch) trees grow vigorously and are subject to intense pruning during orchard cultivation. Reducing the levels of endogenous gibberellins (GAs) represents an effective method for controlling branch growth. Gibberellin 2-oxidases (GA2oxs) deactivate bioactive GAs, but little is known about the GA2ox gene family in peach. In this study, we identified seven PpGA2ox genes in the peach genome, which were clustered into three subgroups: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Overexpressing representative genes from the three subgroups, PpGA2ox-1, PpGA2ox-5, and PpGA2ox-2, in tobacco resulted in dwarf plants with shorter stems and smaller leaves than the wild type. An analysis of the GA metabolic profiles of the transgenic plants showed that PpGA2ox-5 (a member of subgroup C19-GA2ox-II) is simultaneously active against both C19-GAs and C20-GAs,which implied that C19-GA2ox-II enzymes represent intermediates of C19-GA2oxs and C20-GA2oxs. Exogenous GA3 treatment of shoot tips activated the expression of all seven PpGA2ox genes, with different response times: the C 19-GA2ox genes were transcriptionally activated more rapidly than the C20-GA2ox genes. GA metabolic profile analysis suggested that C20-GA2ox depletes GA levels more broadly than C19-GA2ox. These results suggest that the PpGA2ox gene family is responsible for fine-tuning endogenous GA levels in peach. Our findings provide a theoretical basis for appropriately controlling the vigorous growth of peach trees.
Collapse
|
33
|
Teshome S, Kebede M. Analysis of regulatory elements in GA2ox, GA3ox and GA20ox gene families in Arabidopsis thaliana: an important trait. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Shiferaw Teshome
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biotechnology, College of Natural and Computational Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Mulugeta Kebede
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
34
|
Hedden P. The Current Status of Research on Gibberellin Biosynthesis. PLANT & CELL PHYSIOLOGY 2020; 61:1832-1849. [PMID: 32652020 PMCID: PMC7758035 DOI: 10.1093/pcp/pcaa092] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 05/23/2023]
Abstract
Gibberellins are produced by all vascular plants and several fungal and bacterial species that associate with plants as pathogens or symbionts. In the 60 years since the first experiments on the biosynthesis of gibberellic acid in the fungus Fusarium fujikuroi, research on gibberellin biosynthesis has advanced to provide detailed information on the pathways, biosynthetic enzymes and their genes in all three kingdoms, in which the production of the hormones evolved independently. Gibberellins function as hormones in plants, affecting growth and differentiation in organs in which their concentration is very tightly regulated. Current research in plants is focused particularly on the regulation of gibberellin biosynthesis and inactivation by developmental and environmental cues, and there is now considerable information on the molecular mechanisms involved in these processes. There have also been recent advances in understanding gibberellin transport and distribution and their relevance to plant development. This review describes our current understanding of gibberellin metabolism and its regulation, highlighting the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- Laboratory of Growth Regulators, Palack� University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
35
|
Yu S, Wang JW. The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1880-1890. [PMID: 32845336 DOI: 10.1093/pcp/pcaa079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 05/14/2023]
Abstract
Gibberellin (GA) is an integral phytohormone that plays prominent roles in controlling seed germination, stem elongation, leaf development and floral induction. It has been shown that GA regulates these diverse biological processes mainly through overcoming the suppressive effects of the DELLA proteins, a family of nuclear repressors of GA response. MicroRNAs (miRNAs), which have been identified as master regulators of gene expression in eukaryotes, are also involved in a wide range of plant developmental events through the repression of their target genes. The pathways of GA biosynthesis and signaling, as well as the pathways of miRNA biogenesis and regulation, have been profoundly delineated in the past several decades. Growing evidence has shown that miRNAs and GAs are coordinated in regulating plant development, as several components in GA pathways are targeted by miRNAs, and GAs also regulate the expression of miRNAs or their target genes vice versa. Here, we review the recent advances in our understanding of the molecular connections between miRNAs and GA, with an emphasis on the two miRNAs, miR156 and miR159.
Collapse
Affiliation(s)
- Sha Yu
- Center for RNA research, Institute for Basic Science, Seoul 00826, South Korea
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
36
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
37
|
Wang B, Zhang Y, Dong N, Chen Y, Zhang Y, Hao Y, Qi J. Comparative transcriptome analyses provide novel insights into etiolated shoot development of walnut (Juglans regia L.). PLANTA 2020; 252:74. [PMID: 33025156 DOI: 10.1007/s00425-020-03455-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In general, genes promoting IAA, CTK GA and ethylene biosynthesis were upregulated, while genes participating in ABA, chlorophyll and starch biosynthesis pathways performed opposite tendency during etiolation. Etiolation as a method for rejuvenation plays an important role in the vegetative propagation of woody plants. However, the molecular mechanism of etiolated shoot development remains unclear. In this study, we investigated changes at different etiolation stages of Juglans regia. The histology and transcriptome of J. regia were analysed using etiolated stems, which were treated in darkness for 30, 60, 90 days. The results showed that the ratios of pith (Pi) diameter/stem diameter (D), cortex (Co) width/D, and phloem (Ph) width/D increased, while the ratio of xylem (Xy) width/D decreased after etiolation, and the difference in these ratios between etiolated stems and the control was more significant at 60 days than 90 days. Differentially expressed genes (DEGs) were significantly enriched in pathways such as plant hormone biosynthesis and signal transduction, chlorophyll biosynthesis and degradation, and starch and sucrose metabolism. The difference in the contents of indole-3-acetic acid (IAA), abscisic acid (ABA), sugar and chlorophyll between etiolated stems and the control increased with increasing treatment duration; in contrast, the concentrations of gibberellin (GA), zeatin (ZT), and starch, as well as the difference between the etiolated stems and control were lowest at 60 days among the three stages. On the whole, the positive effect of etiolation on the rejuvenation of walnut stems changed as the treatment period increased. The present investigation lays a foundation for future studies on the effect of etiolation on rejuvenation and for promoting the efficiency of vegetative propagation.
Collapse
Affiliation(s)
- Beibei Wang
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yan Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Ningguang Dong
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yonghao Chen
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yunqi Zhang
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yanbin Hao
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
| | - Jianxun Qi
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
| |
Collapse
|
38
|
Honi U, Amin MR, Kabir SMT, Bashar KK, Moniruzzaman M, Jahan R, Jahan S, Haque MS, Islam S. Genome-wide identification, characterization and expression profiling of gibberellin metabolism genes in jute. BMC PLANT BIOLOGY 2020; 20:306. [PMID: 32611317 PMCID: PMC7329397 DOI: 10.1186/s12870-020-02512-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Gibberellin (GA) is one of the most essential phytohormones that modulate plant growth and development. Jute (Corchorus sp.) is the second most important source of bast fiber. Our result has shown that exogenous GA can positively regulate jute height and related characteristics which mean increasing endogenous GA production will help to get a jute variety with improved characteristics. However, genes involved in jute GA biosynthesis have not been analyzed precisely. RESULTS Genome-wide analysis identified twenty-two candidate genes involved in jute GA biosynthesis pathway. Among them, four genes- CoCPS, CoKS, CoKO and CoKAO work in early steps. Seven CoGA20oxs, three CoGA3oxs, and eight GA2oxs genes work in the later steps. These genes were characterized through phylogenetic, motif, gene structure, and promoter region analysis along with chromosomal localization. Spatial gene expression analysis revealed that 11 GA oxidases were actively related to jute GA production and four of them were marked as key regulators based on their expression level. All the biosynthesis genes both early and later steps showed tissue specificity. GA oxidase genes were under feedback regulation whereas early steps genes were not subject to such regulation. CONCLUSION Enriched knowledge about jute GA biosynthesis pathway and genes will help to increase endogenous GA production in jute by changing the expression level of key regulator genes. CoGA20ox7, CoGA3ox2, CoGA2ox3, and CoGA2ox5 may be the most important genes for GA production.
Collapse
Affiliation(s)
- Ummay Honi
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Ruhul Amin
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Moniruzzaman
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Sharmin Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Md Samiul Haque
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| |
Collapse
|
39
|
Liu X, Cai WJ, Yin X, Yang D, Dong T, Feng YQ, Wu Y. Two SLENDER AND CRINKLY LEAF dioxygenases play an essential role in rice shoot development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1387-1401. [PMID: 31701152 PMCID: PMC7031069 DOI: 10.1093/jxb/erz501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
It is clear that 2-oxoglutarate-dependent dioxygenases have critical functions in salicylic acid (SA) metabolism in plants, yet their role in SA biosynthesis is poorly understood. Here, we report that two dioxygenase-encoding genes, SLENDER AND CRINKLY LEAF1 (SLC1) and SLC2, play essential roles in shoot development and SA production in rice. Overexpression of SLC1 (SLC1-OE) or SLC2 (SLC2-OE) in rice produced infertile plants with slender and crinkly leaves. Disruption of SLC1 or SLC2 led to dwarf plants, while simultaneous down-regulation of SLC1 and SLC2 resulted in a severe defect in early leaf development. Enhanced SA levels in SLC1-OE plants and decreased SA levels in slc1 and slc2 mutants were observed. Accordingly, these lines all showed altered expression of a set of SA-related genes. We demonstrated that SLC1 interacts with homeobox1 (OSH1), and that either the knotted1-like homeobox (KNOX1) or glutamate, leucine, and lysine (ELK) domain of OSH1 is sufficient for accomplishing this interaction. Collectively, our data reveal the importance of SLC1 and SLC2 in rice shoot development.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape ( Vitis Vinifera L.). Genes (Basel) 2019; 10:genes10090680. [PMID: 31492001 PMCID: PMC6771001 DOI: 10.3390/genes10090680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023] Open
Abstract
Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.
Collapse
Affiliation(s)
- Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Pingping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaomei Sun
- College of Resource and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
41
|
Shen Y, Zhuang W, Tu X, Gao Z, Xiong A, Yu X, Li X, Li F, Qu S. Transcriptomic analysis of interstock-induced dwarfism in Sweet Persimmon ( Diospyros kaki Thunb.). HORTICULTURE RESEARCH 2019; 6:51. [PMID: 31069082 PMCID: PMC6491603 DOI: 10.1038/s41438-019-0133-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Growth monitoring indicated that the height of 'Kanshu' plants with 'Nantong-xiaofangshi' as an interstock was significantly shorter than that of 'Kanshu' plants with no interstock. A transcriptome analysis of the two graft combinations ('Kanshu'/Diospyros lotus and 'Kanshu'/'Nantong-xiaofangshi'/Diospyros lotus) was conducted to explore the dwarfing genes related to the use of the 'Nantong-xiaofangshi' interstock. Hormone levels and water conductance were also measured in these two graft combinations. The results indicated that the levels of both IAA and GA were lower in 'Kanshu' that had been grafted onto the 'Nantong-xiaofangshi' interstock than in 'Kanshu' with no interstock; additionally, the water conductance was lower in grafts with interstocks than in grafts without interstocks. The expression of AUX/IAA and auxin-responsive GH3 genes was enhanced in scions grafted on the interstock and was negatively correlated with the IAA content and growth of scions. The expression of GA2ox, DELLA, and SPINDLY genes were also upregulated and associated with a decrease in the level of GA in scions grafted on the interstock. Since one of the GA2ox unigenes was annotated as DkGA2ox1 in Diospyros kaki, but was not functionally validated, a functional analysis was conducted in transgenic tobacco. Overexpression of DkGA2ox1 in transgenic plants resulted in a dwarf phenotype that could be recovered by the exogenous application of GA3. We conclude that the 'Nantong-xiaofangshi' interstock affects the water conductance and expression of genes related to the metabolism and transduction of IAA and GA in the grafted scion and thus regulates phytohormone levels, producing dwarfing.
Collapse
Affiliation(s)
- Yanying Shen
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014 Nanjing, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, 210014 Nanjing, China
| | - Xutong Tu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Xuehan Li
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Feihong Li
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014 Nanjing, China
| |
Collapse
|
42
|
Wei C, Zhu C, Yang L, Zhao W, Ma R, Li H, Zhang Y, Ma J, Yang J, Zhang X. A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. HORTICULTURE RESEARCH 2019; 6:132. [PMID: 31814985 PMCID: PMC6885051 DOI: 10.1038/s41438-019-0213-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 05/08/2023]
Abstract
The dwarf architecture is an important and valuable agronomic trait in watermelon breeding and has the potential to increase fruit yield and reduce labor cost in crop cultivation. However, the molecular basis for dwarfism in watermelon remains largely unknown. In this study, a recessive dwarf allele (designated as Cldf (Citrullus lanatus dwarfism)) was fine mapped in a 32.88 kb region on chromosome 09 using F2 segregation populations derived from reciprocal crossing of a normal line M08 and a dwarf line N21. Gene annotation of the corresponding region revealed that the Cla015407 gene encoding a gibberellin 3β-hydroxylase functions as the best possible candidate gene for Cldf. Sequence analysis showed that the fourth polymorphism site (a G to A point mutation) at the 3' AG splice receptor site of the intron leads to a 13 bp deletion in the coding sequence of Cldf in dwarf line N21 and thus results in a truncated protein lacking the conserved domain for binding 2-oxoglutarate. In addition, the dwarf phenotype of Cldf could be rescued by exogenous GA3 application. Phylogenetic analysis suggested that the small multigene family GA3ox (GA3 oxidase) in cucurbit species may originate from three ancient lineages in Cucurbitaceae. All these data support the conclusion that Cldf is a GA-deficient mutant, which together with the cosegregated marker can be used for breeding new dwarf cultivars.
Collapse
Affiliation(s)
- Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chunyu Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Liping Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Wei Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Rongxue Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
43
|
Comprehensive Analysis of Cucumber Gibberellin Oxidase Family Genes and Functional Characterization of CsGA20ox1 in Root Development in Arabidopsis. Int J Mol Sci 2018; 19:ijms19103135. [PMID: 30322023 PMCID: PMC6213227 DOI: 10.3390/ijms19103135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide and gibberellins (GAs) play important roles in the regulation of cucumber developmental and growth processes. GA oxidases (GAoxs), which are encoded by different gene subfamilies, are particularly important in regulating bioactive GA levels by catalyzing the later steps in the biosynthetic pathway. Although GAoxs are critical enzymes in GA synthesis pathway, little is known about GAox genes in cucumber, in particular about their evolutionary relationships, expression profiles and biological function. In this study, we identified 17 GAox genes in cucumber genome and classified them into five subfamilies based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that the tandem duplication or segmental duplication events played a minor role in the expansion of cucumber GA2ox, GA3ox and GA7ox gene families. Comparative syntenic analysis combined with phylogenetic analysis provided deep insight into the phylogenetic relationships of CsGAox genes and suggested that protein homology CsGAox are closer to AtGAox than OsGAox. In addition, candidate transcription factors BBR/BPC (BARLEY B RECOMBINANT/BASIC PENTACYSTEINE) and GRAS (GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW) which may directly bind promoters of CsGAox genes were predicted. Expression profiles derived from transcriptome data indicated that some CsGAox genes, especially CsGA20ox1, are highly expressed in seedling roots and were down-regulated under GA3 treatment. Ectopic over-expression of CsGA20ox1 in Arabidopsis significantly increased primary root length and lateral root number. Taken together, comprehensive analysis of CsGAoxs would provide a basis for understanding the evolution and function of the CsGAox family.
Collapse
|
44
|
Zhang Y, Li W, Lin Y, Zhang L, Wang C, Xu R. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing. BMC Genomics 2018; 19:641. [PMID: 30157757 PMCID: PMC6116504 DOI: 10.1186/s12864-018-5035-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soybean is not only an important oil crop, but also an important source of edible protein and industrial raw material. Yield-traits and quality-traits are increasingly attracting the attention of breeders. Therefore, fine mapping the QTLs associated with yield-traits and quality-traits of soybean would be helpful for soybean breeders. In the present study, a high-density linkage map was constructed to identify the QTLs for the yield-traits and quality-traits, using specific length amplified fragment sequencing (SLAF-seq). RESULTS SLAF-seq was performed to screen SLAF markers with 149 F8:11 individuals from a cross between a semi wild soybean, 'Huapidou', and a cultivated soybean, 'Qihuang26', which generated 400.91 M paired-end reads. In total, 53,132 polymorphic SLAF markers were obtained. The genetic linkage map was constructed by 5111 SLAF markers with segregation type of aa×bb. The final map, containing 20 linkage groups (LGs), was 2909.46 cM in length with an average distance of 0.57 cM between adjacent markers. The average coverage for each SLAF marker on the map was 81.26-fold in the male parent, 45.79-fold in the female parent, and 19.84-fold average in each F8:11 individual. According to the high-density map, 35 QTLs for plant height (PH), 100-seeds weight (SW), oil content in seeds (Oil) and protein content in seeds (Protein) were found to be distributed on 17 chromosomes, and 14 novel QTLs were identified for the first time. The physical distance of 11 QTLs was shorter than 100 Kb, suggesting a direct opportunity to find candidate genes. Furthermore, three pairs of epistatic QTLs associated with Protein involving 6 loci on 5 chromosomes were identified. Moreover, 13, 14, 7 and 9 genes, which showed tissue-specific expression patterns, might be associated with PH, SW, Oil and Protein, respectively. CONCLUSIONS With SLAF-sequencing, some novel QTLs and important QTLs for both yield-related and quality traits were identified based on a new, high-density linkage map. Moreover, 43 genes with tissue-specific expression patterns were regarded as potential genes in further study. Our findings might be beneficial to molecular marker-assisted breeding, and could provide detailed information for accurate QTL localization.
Collapse
Affiliation(s)
- Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| |
Collapse
|
45
|
Kaur G, Pati PK. In silico insights on diverse interacting partners and phosphorylation sites of respiratory burst oxidase homolog (Rbohs) gene families from Arabidopsis and rice. BMC PLANT BIOLOGY 2018; 18:161. [PMID: 30097007 PMCID: PMC6086027 DOI: 10.1186/s12870-018-1378-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/30/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND NADPH oxidase (Nox) is a critical enzyme involved in the generation of apoplastic superoxide (O2-), a type of reactive oxygen species (ROS) and hence regulate a wide range of biological functions in many organisms. Plant Noxes are the homologs of the catalytic subunit from mammalian NADPH oxidases and are known as respiratory burst oxidase homologs (Rbohs). Previous studies have highlighted their versatile roles in tackling different kind of stresses and in plant growth and development. In the current study, potential interacting partners and phosphorylation sites were predicted for Rboh proteins from two model species (10 Rbohs from Arabidopsis thaliana and 9 from Oryza sativa japonica). The present work is the first step towards in silico prediction of interacting partners and phosphorylation sites for Rboh proteins from two plant species. RESULTS In this work, an extensive range of potential partners (unique and common), leading to diverse functions were revealed from interaction networks and gene ontology classifications, where majority of AtRbohs and OsRbohs play role in stress-related activities, followed by cellular development. Further, 68 and 38 potential phosphorylation sites were identified in AtRbohs and OsRbohs, respectively. Their distribution, location and kinase specificities were also predicted and correlated with experimental data as well as verified with the other EF-hand containing proteins within both genomes. CONCLUSIONS Analysis of regulatory mechanisms including interaction with diverse partners and post-translational modifications like phosphorylation have provided insights regarding functional multiplicity of Rbohs. The bioinformatics-based workflow in the current study can be used to get insights for interacting partners and phosphorylation sites from Rbohs of other plant species.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
- Present Address: Quantitative Biology Center (QBiC), University of Tuebingen, 72076, Tuebingen, Germany
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
46
|
Agliassa C, Narayana R, Bertea CM, Rodgers CT, Maffei ME. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018; 39:361-374. [PMID: 29709075 PMCID: PMC6032911 DOI: 10.1002/bem.22123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col‐0, near‐null magnetic field (NNMF, i.e., <100 nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time‐course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F1‐ and F2‐NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361–374, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Cinzia M Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Christopher T Rodgers
- The Wolfson Brain Imaging Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened Basal Internodes Encodes a Gibberellin 2-Oxidase and Contributes to Lodging Resistance in Rice. MOLECULAR PLANT 2018; 11:288-299. [PMID: 29253619 DOI: 10.1016/j.molp.2017.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/05/2023]
Abstract
Breeding semi-dwarf varieties to improve lodging resistance has been proven to be enormously successful in increasing grain yield since the advent of the "green revolution." However, the breeding of the majority of semi-dwarf rice varieties in Asia has been dependent mainly on genetic introduction of the mutant alleles of SD1, which encodes a gibberellin (GA) 20-oxidase, OsGA20ox2, for catalyzing GA biosynthesis. Here, we report a new rice lodging-resistance gene, Shortened Basal Internodes (SBI), which encodes a gibberellin 2-oxidase and specifically controls the elongation of culm basal internodes through deactivating GA activity. SBI is predominantly expressed in culm basal internodes. Genetic analyses indicate that SBI is a semi-dominant gene affecting rice height and lodging resistance. SBI allelic variants display different activities and are associated with the height of rice varieties. Breeding with higher activity of the SBI allele generates new rice varieties with improved lodging resistance and increased yield. The discovery of the SBI provides a desirable gene resource for producing semi-dwarf rice phenotypes and offers an effective strategy for breeding rice varieties with enhanced lodging resistance and high yield.
Collapse
Affiliation(s)
- Chang Liu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zheng
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenjian Fu
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China
| | - Hasi Yu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Song
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Qin
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China
| | | | - Bin Han
- National Center of Plant Gene Research and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yuanzhu Yang
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China; Hunan Ava Seed Research Institute, Hunan 410119, China; Hunan Engineering Laboratory for Disease and Insect-Resistant Rice Breeding, Hunan 410119, China.
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
48
|
Igielski R, Kępczyńska E. Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicago truncatula Gaertn. PLoS One 2017; 12:e0182055. [PMID: 28750086 PMCID: PMC5531487 DOI: 10.1371/journal.pone.0182055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023] Open
Abstract
Gibberellins (GAs) are involved in the regulation of numerous developmental processes in plants including zygotic embryogenesis, but their biosynthesis and role during somatic embryogenesis (SE) is mostly unknown. In this study we show that during three week- long induction phase, when cells of leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, all the bioactive gibberellins from non-13-hydroxylation (GA4, GA7) and 13-hydroxylation (GA1, GA5, GA3, GA6) pathways were present, but the contents of only a few of them differed between the tested lines. The GA53 and GA19 substrates synthesized by the 13-hydroxylation pathway accumulated specifically in the M9-10a line after the first week of induction; subsequently, among the bioactive gibberellins detected, only the content of GA3 increased and appeared to be connected with acquisition of embryogenic competence. We fully annotated 20 Medicago truncatula orthologous genes coding the enzymes which catalyze all the known reactions of gibberellin biosynthesis. Our results indicate that, within all the genes tested, expression of only three: MtCPS, MtGA3ox1 and MtGA3ox2, was specific to embryogenic explants and reflected the changes observed in GA53, GA19 and GA3 contents. Moreover, by analyzing expression of MtBBM, SE marker gene, we confirmed the inhibitory effect of manipulation in GAs metabolism, applying exogenous GA3, which not only impaired the production of somatic embryos, but also significantly decreased expression of this gene.
Collapse
Affiliation(s)
- Rafał Igielski
- Department of Plant Biotechnology, University of Szczecin, Szczecin, Poland
| | - Ewa Kępczyńska
- Department of Plant Biotechnology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
49
|
Xu Z, Song J. The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2299-2308. [PMID: 28398557 PMCID: PMC5447875 DOI: 10.1093/jxb/erx113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Highly oxidized tanshinones are pharmacological ingredients extracted from the medicinal model plant Salvia miltiorrhiza and are mainly used to treat cardiovascular diseases. Previous studies have confirmed that cytochrome P450 mono-oxygenases (CYP450s) have a key function in the biosynthesis of tanshinones; however, no solid evidence links oxidation to the 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily. Here, we identified 132 members of the DOXB and DOXC subfamilies of 2OGD by scanning the 2OG-FeII Oxy domain using a genome-wide strategy in S. miltiorrhiza. The DOXC class was phylogenetically divided into twelve clades. Combining phylogenetic relationships, differential expression and co-expression from various organs and tissues revealed that two 2OGDs were directly related to flavonoid metabolism, and that 13 2OGDs from different clades were predicted to be involved in tanshinone biosynthesis. Based on this insight into tanshinone production, we experimentally detected significant decreases in miltirone, cryptotanshinone, and tanshinone IIA (0.16-, 0.56-, and 0.56-fold, respectively) in 2OGD5 RNAi transgenic lines relative to the control lines using a metabonomics analysis. 2OGD5 was found to play a crucial role in the downstream biosynthesis of tanshinones following the hydroxylation of CYPs. Our results highlight the evolution and diversification of 2OGD superfamily members and suggest that they contribute to the complexity of tanshinone metabolites.
Collapse
Affiliation(s)
- Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
50
|
Liu XY, Li J, Liu MM, Yao Q, Chen JZ. Transcriptome Profiling to Understand the Effect of Citrus Rootstocks on the Growth of 'Shatangju' Mandarin. PLoS One 2017; 12:e0169897. [PMID: 28081213 PMCID: PMC5231354 DOI: 10.1371/journal.pone.0169897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/24/2016] [Indexed: 01/01/2023] Open
Abstract
To obtain insight into potential mechanisms underlying the influence of rootstock on scion growth, we performed a comparative analysis of 'Shatangju' mandarin grafted onto 5 rootstocks: Fragrant orange (Citrus junons Sieb. ex. Tanaka), Red tangerine (Citrus reticulata Blanco), 'Shatangju' mandarin (Citrus reticulata Blanco), Rough lemon (Citrus jambhiri Lush) and Canton lemon (Citrus limonia Osbeck). The tree size of 'Shatangju' mandarin grafted onto Canton lemon and Rough lemon were the largest, followed by self-rooted rootstock trees, and the lowest tree sizes correspond to ones grafted on Red tangerine and Fragrant orange rootstocks. The levels of indoleacetic acid (IAA) and gibberellin (GA) were significantly and positively related to growth vigor. The differences of gene expression in leaves of trees grafted onto Red tangerine, Canton lemon and 'Shatangju' mandarin were analyzed by RNA-Seq. Results showed that more differentially expressed genes involved in oxidoreductase function, hormonal signal transduction and the glycolytic pathway were enriched in 'Red tangerine vs Canton lemon'. qRT-PCR analysis showed that expression levels of ARF1, ARF8, GH3 and IAA4 were negatively correlated with the growth vigor and IAA content. The metabolism of GA was influenced by the differential expression of KO1 and GA2OX1 in grafted trees. In addition, most of antioxidant enzyme genes were up-regulated in leaves of trees grafted onto Red tangerine, resulting in a higher peroxidase activity. We concluded that different rootstocks significantly affected the expression of genes involved in auxin signal transduction pathway and GA biosynthesis pathway in the grafted plants, and then regulated the hormone levels and their signal pathways.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Li
- Department of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Meng-Meng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie-Zhong Chen
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|