1
|
Podemska E, Borowczak J, Łukasik D, Grzanka D, Durślewicz J. High Expression of MRPL23 Is Associated with Poor Survival in Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2024; 16:3909. [PMID: 39682098 DOI: 10.3390/cancers16233909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to investigate the expression and prognostic significance of the MRPL23 protein and mRNA in clear-cell renal cell carcinoma (ccRCC) and adjacent non-tumorous tissues. The goal was to assess the impact of MRPL23 expression on tumor behavior, progression, and patient outcomes. METHODS Using immunohistochemistry (IHC), MRPL23 protein expression was analyzed in 99 cases of ccRCC and 30 adjacent non-tumorous tissues. mRNA levels were assessed using data from The Cancer Genome Atlas (TCGA). Correlations between MRPL23 expression and clinicopathological features were examined, and survival outcomes were evaluated using Kaplan-Meier survival curves and Cox regression analyses. RESULTS MRPL23 protein expression was significantly lower in ccRCC tissues compared to normal tissues. In contrast, mRNA levels of MRPL23 were significantly elevated in ccRCC tissues. Expression levels were correlated with clinicopathological features, including gender, tumor grade, pT status, and disease stage, underlining their impact on tumor progression. Elevated MRPL23 protein expression was associated with poorer overall survival (OS) in ccRCC patients and remained an independent prognostic marker for adverse outcomes after adjustment for confounding variables. While high MRPL23 mRNA expression was also linked to worse OS, it did not retain its status as an independent prognostic factor after adjustments. CONCLUSION MRPL23 protein expression is a potential independent prognostic biomarker in ccRCC, emphasizing its utility in predicting patient outcomes and potentially guiding therapeutic decisions. These findings highlight the importance of further research into the role of MRPL23 in ccRCC pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Edyta Podemska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Oncology and Brachytherapy, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-796 Bydgoszcz, Poland
- Clinical Department of Oncology, Franciszek Łukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland
- Department of Tumor Pathology, Franciszek Łukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Damian Łukasik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
- Department of Tumor Pathology, Franciszek Łukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| |
Collapse
|
2
|
Liu F, Tian L, Zhang Y, Deng W, Xu X, Zou Y, An R. DIA proteomic and PRM validation through human granulose cells profiles screen suitable biomarkers for polycystic ovary syndrome patients. J Proteomics 2024; 309:105332. [PMID: 39424224 DOI: 10.1016/j.jprot.2024.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The aim of this study is to identify differentially expressed proteins (DEPs) in granulose cells (GCs) from women with or withoutpolycystic ovary syndrome (PCOS) via data independent acquisition (DIA) proteomic analysis.A total of 63 women were recruited for this study, 34 PCOS patients as experimental group (P), and 29 women without PCOS as Normal group (NP). DIA-based proteomic analysis was performed to identify DEPs in GCs between the P and NP samples. Certain typical DEPs were further validated by Parallel reaction monitoring (PRM), and correlation analysis was performed between these DEPs and the clinical characteristics.Cell vitality was measured by CCK-8 assay. DIA analysis revealed 174 significantly DEPs, of which 7 were upregulated and 167 downregulated. Bioinformatics analysis was performed to analysis the significantly DEPs. The PRM experiment confirmed TOP2A and SPHKAP were upregulated significantly in P by comparing to NP, while GM2A, MRPS16, APOA2 and FGF2 were downregulated significantly. Most notably, Correlation analysis revealed that TOP2A, SPHKAP, MRPS16 and FGF2were positively correlated with TG, AMH and Age, but negatively correlated with Menarche age, DBIL, FT3, Basal serum FSH and LH.Meanwhile, CCK-8 assay has shown that downregulation of FGF2 could weaken cell viability. Finally, a panel of DEPs were identified in the GCs of patients with PCOS, of which certain significant DEPs might play essential roles in the pathogenesis of PCOS, could be regarded as candidate biomarkers for PCOS.
Collapse
Affiliation(s)
- Faying Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Lifeng Tian
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Ying Zhang
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Wei Deng
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321099, China
| | - Xiaoyun Xu
- Department of Quality Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Yang Zou
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Ruifang An
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Wu B, Gao A, He B, Chen Y, Kong X, Wen F, Gao H. RNA-seq analysis of mitochondria-related genes regulated by AMPK in the human trophoblast cell line BeWo. Animal Model Exp Med 2024. [PMID: 39445545 DOI: 10.1002/ame2.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND How AMP activated protein kinase (AMPK) signaling regulates mitochondrial functions and mitophagy in human trophoblast cells remains unclear. This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq. METHODS We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2 (PRKAA1/2) knockdown (AKD) and control BeWo cells using the Seahorse real-time ATP rate test, then analyzed gene expression profiling by RNA-seq. Differentially expressed genes (DEG) were examined by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Then protein-protein interactions (PPI) among mitochondria related genes were further analyzed using Metascape and Ingenuity Pathway Analysis (IPA) software. RESULTS Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells (CT), with a greater reduction of mitochondrial ATP production. A total of 1092 DEGs were identified, with 405 upregulated and 687 downregulated. GO analysis identified 60 genes associated with the term 'mitochondrion' in the cellular component domain. PPI analysis identified three clusters of mitochondria related genes, including aldo-keto reductase family 1 member B10 and B15 (AKR1B10, AKR1B15), alanyl-tRNA synthetase 1 (AARS1), mitochondrial ribosomal protein S6 (MRPS6), mitochondrial calcium uniporter dominant negative subunit beta (MCUB) and dihydrolipoamide branched chain transacylase E2 (DBT). CONCLUSIONS In summary, this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells, and among them, three clusters of genes may potentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.
Collapse
Affiliation(s)
- Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Albert Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, P.R. China
| | - Yun Chen
- Landmark Bio, Watertown, Massachusetts, USA
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Fayuan Wen
- Department of Biology, College of Arts and Sciences, Howard University, Washington, District of Columbia, USA
| | - Haijun Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Thomas HB, Demain LAM, Cabrera-Orefice A, Schrauwen I, Shamseldin HE, Rea A, Bharadwaj T, Smith TB, Oláhová M, Thompson K, He L, Kaur N, Shukla A, Abukhalid M, Ansar M, Rehman S, Riazuddin S, Abdulwahab F, Smith JM, Stark Z, Carrera S, Yue WW, Munro KJ, Alkuraya FS, Jamieson P, Ahmed ZM, Leal SM, Taylor RW, Wittig I, O'Keefe RT, Newman WG. Biallelic variants in MRPL49 cause variable clinical presentations, including sensorineural hearing loss, leukodystrophy, and ovarian insufficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315152. [PMID: 39417135 PMCID: PMC11483032 DOI: 10.1101/2024.10.10.24315152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Combined oxidative phosphorylation deficiency (COXPD) is a rare multisystem disorder which is clinically and genetically heterogeneous. Genome sequencing identified biallelic MRPL49 variants in individuals from five unrelated families with presentations ranging from Perrault syndrome (primary ovarian insufficiency and sensorineural hearing loss) to severe childhood onset of leukodystrophy, learning disability, microcephaly and retinal dystrophy. Complexome profiling of fibroblasts from affected individuals revealed reduced levels of the small and, a more pronounced reduction of, the large mitochondrial ribosomal subunits. There was no evidence of altered mitoribosomal assembly. The reductions in levels of OXPHOS enzyme complexes I and IV are consistent with a form of COXPD associated with biallelic MRPL49 variants, expanding the understanding of how disruption of the mitochondrial ribosomal large subunit results in multi-system phenotypes.
Collapse
Affiliation(s)
- Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Alfredo Cabrera-Orefice
- Centre for Functional Proteomics, Institute for Cardiovascular Physiology, Medical Faculty, Goethe University, 60596 Frankfurt am Main, Germany
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Monika Oláhová
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Musaad Abukhalid
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sakina Rehman
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Janine M Smith
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2000, Australia
- Western Sydney Genetics Program, Department of Clinical Genetics, Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Carrera
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Peter Jamieson
- Department of Radiology, Manchester University Hospital NHS Foundation Trust, Manchester, M13 9PW, UK
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Ilka Wittig
- Centre for Functional Proteomics, Institute for Cardiovascular Physiology, Medical Faculty, Goethe University, 60596 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60596 Frankfurt am Main, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| |
Collapse
|
5
|
Li L, Kan W, Zhang Y, Wang T, Yang F, Ji T, Wang G, Du J. Quantitative proteomics combined independent PRM analysis reveals the mitochondrial and synaptic mechanism underlying norisoboldine's antidepressant effects. Transl Psychiatry 2024; 14:400. [PMID: 39358323 PMCID: PMC11447221 DOI: 10.1038/s41398-024-03127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Major depressive disorder (MDD) is a common disease affecting 300 million people worldwide. The existing drugs are ineffective for approximately 30% of patients, so it is urgent to develop new antidepressant drugs with novel mechanisms. Here, we found that norisoboldine (NOR) showed an antidepressant efficacy in the chronic social defeat stress (CSDS) depression model in the tail suspension, forced swimming, and sucrose consumption tests. We then utilized the drug-treated CSDS mice paradigm to segregate and gain differential protein groups of CSDS versus CON (CSDSCON), imipramine (IMI)-treated versus CSDS (IMICSDS), and NOR-treated versus CSDS (NORCSDS) from the prefrontal cortex. These protein expression alterations were first analyzed by ANOVA with p < 0.05. The protein cluster 1 and cluster 3, in which the pattern of protein levels similar to the mood pattern, showed enrichment in functions and localizations related to mitochondrion, ribosome and synapses. Further GO analysis of the common proteins for NORCSDS groups and NORIMI groups supported the findings from ANOVA analysis. We employed Protein-Protein interaction (PPI) analysis to examine the proteins of NORCSDS and NORIMI, revealing an enrichment of the proteins associated with the mitochondrial ribosomal and synaptic functions. Further independent analysis using parallel reaction monitoring (PRM) revealed that Cox7c, Mrp142, Naa30, Ighm, Apoa4, Ssu72, Mrps30, Apoh, Acbd5, and Cdv3, exhibited regulation in the NOR-treated group to support the homeostasis of mitochondrial functions. Additionally, Dcx, Arid1b, Rnf112, and Fam3c, were also observed to undergo modulation in the NOR-treated groups to support the synaptic formation and functions. These findings suggest that the proteins involved in depression treatment exert effects in strengthen the mitochondrial and synaptic functions in the mice PFC. Western blot analysis supported the data that the levels of Mrpl42, Cox7c, Naa30, Rnf112, Dcx Apoa4, Apoh and Fam3c were altered in the CSDS mice, and rescued by NOR treatment, supporting the PRM data. NOR treatment also rescued the NLRP3 inflammasome activation in CSDS mice. In summary, the current proteomic research conducted on the prefrontal cortex has provided valuable insights into the specific and shared molecular mechanisms underlying pathophysiology and treatment to CSDS-induced depression, shedding light on the therapeutic effects of Norisoboldine.
Collapse
Affiliation(s)
- Lei Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Yi Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Tianyi Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China.
| |
Collapse
|
6
|
Ji X, Zhang T, Sun J, Song X, Ma G, Xu L, Cao X, Jing Y, Xue F, Zhang W, Sun S, Wan Q, Liu Y. UBASH3B-mediated MRPL12 Y60 dephosphorylation inhibits LUAD development by driving mitochondrial metabolism reprogramming. J Exp Clin Cancer Res 2024; 43:268. [PMID: 39343960 PMCID: PMC11441236 DOI: 10.1186/s13046-024-03181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Metabolic reprogramming plays a pivotal role in tumorigenesis and development of lung adenocarcinoma (LUAD). However, the precise mechanisms and potential targets for metabolic reprogramming in LUAD remain elusive. Our prior investigations revealed that the mitochondrial ribosomal protein MRPL12, identified as a novel mitochondrial transcriptional regulatory gene, exerts a critical influence on mitochondrial metabolism. Despite this, the role and regulatory mechanisms underlying MRPL12's transcriptional activity in cancers remain unexplored. METHODS Human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD mouse models, LUAD patient-derived organoids (PDO), and LUAD cell lines were used to explored the expression and function of MRPL12. The posttranslational modification of MRPL12 was analyzed by mass spectrometry, and the oncogenic role of key phosphorylation sites of MRPL12 in LUAD development was verified in vivo and in vitro. RESULTS MRPL12 was upregulated in human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD tissues in mice, LUAD PDO, and LUAD cell lines, correlating with poor patient survival. Overexpression of MRPL12 significantly promoted LUAD tumorigenesis, metastasis, and PDO formation, while MRPL12 knockdown elicited the opposite phenotype. Additionally, MRPL12 deletion in a Tp53fl/fl;KrasG12D-driven mouse LUAD model conferred a notable survival advantage, delaying tumor onset and reducing malignant progression. Mechanistically, we discovered that MRPL12 promotes tumor progression by upregulating mitochondrial oxidative phosphorylation. Furthermore, we identified UBASH3B as a specific binder of MRPL12, dephosphorylating tyrosine 60 in MRPL12 (MRPL12 Y60) and inhibiting its oncogenic functions. The decrease in MRPL12 Y60 phosphorylation impeded the binding of MRPL12 to POLRMT, downregulating mitochondrial metabolism in LUAD cells. In-depth in vivo, in vitro, and organoid models validated the inhibitory effect of MRPL12 Y60 mutation on LUAD. CONCLUSION This study establishes MRPL12 as a novel oncogene in LUAD, contributing to LUAD pathogenesis by orchestrating mitochondrial metabolism reprogramming towards oxidative phosphorylation (OXPHOS). Furthermore, it confirms Y60 as a specific phosphorylation modification site regulating MRPL12's oncogenic functions, offering insights for the development of LUAD-specific targeted drugs and clinical interventions.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tianyi Zhang
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojia Song
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guoyuan Ma
- Department of Thoracic Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Li Xu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueru Cao
- Department of Pulmonary and Critical Care Medicine, Heze Municipal Hospital, Heze, Shandong, 274000, China
| | - Yongjian Jing
- Department of Pulmonary and Critical Care Medicine, the First People's Hospital of Pingyuan, Dezhou, Shandong, 253000, China
| | - Fuyuan Xue
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Weiying Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Sun
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qiang Wan
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
7
|
Wang X, Zhang XY, Liao NQ, He ZH, Chen QF. Identification of ribosome biogenesis genes and subgroups in ischaemic stroke. Front Immunol 2024; 15:1449158. [PMID: 39290696 PMCID: PMC11406505 DOI: 10.3389/fimmu.2024.1449158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ischaemic stroke is a leading cause of death and severe disability worldwide. Given the importance of protein synthesis in the inflammatory response and neuronal repair and regeneration after stroke, and that proteins are acquired by ribosomal translation of mRNA, it has been theorised that ribosome biogenesis may have an impact on promoting and facilitating recovery after stroke. However, the relationship between stroke and ribosome biogenesis has not been investigated. Methods In the present study, a ribosome biogenesis gene signature (RSG) was developed using Cox and least absolute shrinkage and selection operator (LASSO) analysis. We classified ischaemic stroke patients into high-risk and low-risk groups using the obtained relevant genes, and further elucidated the immune infiltration of the disease using ssGSEA, which clarified the close relationship between ischaemic stroke and immune subgroups. The concentration of related proteins in the serum of stroke patients was determined by ELISA, and the patients were divided into groups to evaluate the effect of the ribosome biogenesis gene on patients. Through bioinformatics analysis, we identified potential IS-RSGs and explored future therapeutic targets, thereby facilitating the development of more effective therapeutic strategies and novel drugs against potential therapeutic targets in ischaemic stroke. Results We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3), which play a key role in assessing the prognostic risk of ischaemic stroke. Importantly, risk grouping using ribosome biogenesis-related genes was also closely associated with important signaling pathways in stroke. ELISA detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke patients, and the proportion of neutrophils was significantly increased in the high-risk group. Conclusions The present study demonstrates the involvement of ribosomal biogenesis genes in the pathogenesis of ischaemic stroke, providing novel insights into the underlying pathogenic mechanisms and potential therapeutic strategies for ischaemic stroke.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Xiao-Yu Zhang
- The College of Life Sciences, Northwest University, Xian, China
| | - Nan-Qing Liao
- School of Medicine, Guangxi University, Nanning, China
| | - Ze-Hua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qing-Feng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Cotter JA, Plaza-Florido A, Adams GR, Haddad F, Scott JM, Everett M, Ploutz-Snyder L, Radom-Aizik S. Exercise Training Attenuates the Muscle Mitochondria Genomic Response to Bed Rest. Med Sci Sports Exerc 2024; 56:1615-1622. [PMID: 38650118 PMCID: PMC11326991 DOI: 10.1249/mss.0000000000003457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE Exercise training during the National Aeronautics and Space Administration 70-d bed rest study effectively counteracted the decline in aerobic capacity, muscle mass, strength, and endurance. We aimed to characterize the genomic response of the participants' vastus lateralis on day 64 of bed rest with and without exercise countermeasures. METHODS Twenty-two healthy young males were randomized into three groups: 1) bed rest only ( n = 7), 2) bed rest + aerobic (6 d·wk -1 ) and resistance training (3 d·wk -1 ) on standard equipment ( n = 7), and 3) bed rest + aerobic and resistance training using a flywheel device ( n = 8). The vastus lateralis gene and microRNA microarrays were analyzed using GeneSpring GX 14.9.1 (Agilent Technologies, Palo Alto, CA). RESULTS Bed rest significantly altered the expression of 2113 annotated genes in at least one out of the three study groups (fold change (FC) > 1.2; P < 0.05). Interaction analysis revealed that exercise attenuated the bed rest effect of 511 annotated genes (FC = 1.2, P < 0.05). In the bed rest only group, a predominant downregulation of genes was observed, whereas in the two exercise groups, there was a notable attenuation or reversal of this effect, with no significant differences between the two exercise modalities. Enrichment analysis identified functional categories and gene pathways, many of them related to the mitochondria. In addition, bed rest significantly altered the expression of 35 microRNAs (FC > 1.2, P < 0.05) with no difference between the three groups. Twelve are known to regulate some of the mitochondrial-related genes that were altered following bed rest. CONCLUSIONS Mitochondrial gene expression was a significant component of the molecular response to long-term bed rest. Although exercise attenuated the FC in the downregulation of many genes, it did not completely counteract all the molecular consequences.
Collapse
Affiliation(s)
- Joshua A. Cotter
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
- Physiology of EXercise and Sport (PEXS) Laboratory, Department of Kinesiology, California State University, Long Beach, CA
| | - Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| | - Gregory R. Adams
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| | - Jessica M. Scott
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Meghan Everett
- National Aeronautics and Space Administration (NASA), Houston, TX
| | | | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| |
Collapse
|
9
|
Hilander T, Awadhpersad R, Monteuuis G, Broda KL, Pohjanpelto M, Pyman E, Singh SK, Nyman TA, Crevel I, Taylor RW, Saada A, Balboa D, Battersby BJ, Jackson CB, Carroll CJ. Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation. iScience 2024; 27:110185. [PMID: 39015150 PMCID: PMC11251090 DOI: 10.1016/j.isci.2024.110185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 07/18/2024] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) have undergone substantial evolutionary structural remodeling accompanied by loss of ribosomal RNA, while acquiring unique protein subunits located on the periphery. We generated CRISPR-mediated knockouts of all 14 unique (mitochondria-specific/supernumerary) human mitoribosomal proteins (snMRPs) in the small subunit to study the effect on mitoribosome assembly and protein synthesis, each leading to a unique mitoribosome assembly defect with variable impact on mitochondrial protein synthesis. Surprisingly, the stability of mS37 was reduced in all our snMRP knockouts of the small and large ribosomal subunits and patient-derived lines with mitoribosome assembly defects. A redox-regulated CX9C motif in mS37 was essential for protein stability, suggesting a potential mechanism to regulate mitochondrial protein synthesis. Together, our findings support a modular assembly of the human mitochondrial small ribosomal subunit mediated by essential supernumerary subunits and identify a redox regulatory role involving mS37 in mitochondrial protein synthesis in health and disease.
Collapse
Affiliation(s)
- Taru Hilander
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Ryan Awadhpersad
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krystyna L. Broda
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Max Pohjanpelto
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Elizabeth Pyman
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Sachin Kumar Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Isabelle Crevel
- Core Facilities, St George’s, University of London, London, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center & Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher J. Carroll
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| |
Collapse
|
10
|
Sölzer N, Brügemann K, Yin T, König S. Genetic evaluations and genome-wide association studies for specific digital dermatitis diagnoses in dairy cows considering genotype × housing system interactions. J Dairy Sci 2024; 107:3724-3737. [PMID: 38216046 DOI: 10.3168/jds.2023-24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The present study aimed to use detailed phenotyping for the claw disorder digital dermatitis (DD) considering specific DD stages in 2 housing systems (conventional cubicle barns [CON] and compost-bedded pack barns [CBPB]) to infer possible genotype × housing system interactions. The DD stages included 2,980 observations for the 3 traits DD-sick, DD-acute, and DD-chronic from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows. Selection of the 5 CBPB and 5 CON herds was based on a specific protocol to achieve a high level of herd similarity with regard to climate, feeding, milking system, and location, but with pronounced housing-system differences. Five other farms had a "mixed system" with 2 subherds, one representing CBPB and the other one CON. The CBPB system was represented by 899 cows (1,530 observations), and 811 cows (1,450 observations) represented the CON system. The average disease prevalence was 20.47% for DD-sick, 13.88% for DD-acute, and 5.34% for DD-chronic, with a higher prevalence in CON than in CBPB. After quality control of 50K genotypes, 38,495 SNPs from 926 cows remained for the ongoing genomic analyses. Genetic parameters for DD-sick, DD-acute, and DD-chronic were estimated by applying single-step approaches for single-trait repeatability animal models considering the whole dataset, and separately for the CON and CBPB subsets. Genetic correlations between same DD traits from different housing systems, and between DD-sick, DD-chronic, and DD-acute, were estimated via bivariate animal models. Heritabilities based on the whole dataset were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic. A slight increase of heritabilities and genetic variances was observed in CON compared with the "well-being" CBPB system, indicating a stronger genetic differentiation of diseases in a more challenging environment. Genetic correlations between same DD traits recorded in CON or CBPB were close to 0.80, disproving obvious genotype × housing system interactions. Genetic correlations among DD-sick, DD-acute and DD-chronic ranged from 0.58 to 0.81. SNP main effects and SNP × housing system interaction effects were estimated simultaneously via GWAS, considering only the phenotypes from genotyped cows. Ongoing annotations of potential candidate genes focused on chromosomal segments 100 kb upstream and downstream from the significantly associated candidate SNP. GWAS for main effects indicated heterogeneous Manhattan plots especially for DD-acute and DD-chronic, indicating particularities in disease pathogenesis. Nevertheless, a few shared annotated potential candidate genes, that is, METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute, were identified. These genes have direct or indirect effects on disease resistance or immunology. For the SNP × housing system interaction, the annotated genes ASXL1 and NOL4L on BTA 13 were relevant for DD-sick and DD-acute. Overall, the very similar genetic parameters for the same traits in different environments and negligible genotype × housing system interactions indicate only minor effects on genetic evaluations for DD due to housing-system particularities.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
11
|
Zhao F, Xie R, Fang L, Xiang R, Yuan Z, Liu Y, Wang L. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep. Evol Appl 2024; 17:e13697. [PMID: 38911262 PMCID: PMC11192971 DOI: 10.1111/eva.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/02/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
As an invaluable Chinese sheep germplasm resource, Hu sheep are renowned for their high fertility and beautiful wavy lambskins. Their distinctive characteristics have evolved over time through a combination of artificial and natural selection. Identifying selection signatures in Hu sheep can provide a straightforward insight into the mechanism of selection and further uncover the candidate genes associated with breed-specific traits subject to selection. Here, we conducted whole-genome resequencing on 206 Hu sheep individuals, each with an approximate 6-fold depth of coverage. And then we employed three complementary approaches, including composite likelihood ratio, integrated haplotype homozygosity score and the detection of runs of homozygosity, to detect selection signatures. In total, 10 candidate genomic regions displaying selection signatures were simultaneously identified by multiple methods, spanning 88.54 Mb. After annotating, these genomic regions harbored collectively 92 unique genes. Interestingly, 32 candidate genes associated with reproduction were distributed in nine genomic regions detected. Out of them, two stood out as star candidates: BMPR1B and GNRH2, both of which have documented associations with fertility, and a HOXA gene cluster (HOXA1-5, HOXA9, HOXA10, HOXA11 and HOXA13) had also been linked to fertility. Additionally, we identified other genes that are related to hair follicle development (LAMTOR3, EEF1A2), ear size (HOXA1, KCNQ2), fat tail formation (HOXA10, HOXA11), growth and development (FAF1, CCNDBP1, GJB2, GJA3), fat deposition (ACOXL, JAZF1, HOXA3, HOXA4, HOXA5, EBF4), immune (UBR1, FASTKD5) and feed intake (DAPP1, RNF17, NPBWR2). Our results offer novel insights into the genetic mechanisms underlying the selection of breed-specific traits in Hu sheep and provide a reference for sheep genetic improvement programs.
Collapse
Affiliation(s)
- Fuping Zhao
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Rui Xie
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhusDenmark
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lixian Wang
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
14
|
Dong Z, Liao N, Luo Y, Zhang Y, Huang L, Chen P, Lu C, Pan M. BmATAD3A mediates mitochondrial ribosomal protein expression to maintain the mitochondrial energy metabolism of the silkworm, Bombyx mori. INSECT SCIENCE 2024. [PMID: 38616538 DOI: 10.1111/1744-7917.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
ATAD3A is a mitochondrial membrane protein belonging to the ATPase family that contains the AAA+ domain. It is widely involved in mitochondrial metabolism, protein transport, cell growth, development and other important life processes. It has previously been reported that the deletion of ATAD3A causes growth and development defects in humans, mice and Caenorhabditis elegans. To delve into the mechanism underlying ATAD3A defects and their impact on development, we constructed a Bombyx mori ATAD3A (BmATAD3A) defect model in silkworm larvae. We aim to offer a reference for understanding ATAD3A genetic defects and elucidating the molecular regulatory mechanisms. The results showed that knockout of the BmATAD3A gene significantly affected the weight, survival rate, ATPase production and mitochondrial metabolism of individuals after 24 h of incubation. Combined metabolomics and transcriptomics analysis further demonstrated that BmATAD3A knockout inhibits amino acid biosynthesis through the regulation of mitochondrial ribosomal protein expression. Simultaneously, our findings indicate that BmATAD3A knockout impeded mitochondrial activity and ATPase synthesis and suppressed the mitochondrial oxidative phosphorylation pathway through B. mori mitochondrial ribosomal protein L11 (BmmRpL11). These results provide novel insights into the molecular mechanisms involved in the inhibition of development caused by ATAD3A deficiency, offering a potential direction for targeted therapy in diseases associated with abnormal ATAD3A expression.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Nachuan Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yan Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ya Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Cheng Z, Xue K, Xiong C, Zheng Z, Li J, Qiao X. MRPS16 promotes lung adenocarcinoma growth via the PI3K/AKT/Frataxin signalling axis. J Cell Mol Med 2024; 28:e18166. [PMID: 38506080 PMCID: PMC10951875 DOI: 10.1111/jcmm.18166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/26/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024] Open
Abstract
Although MRPS16 is involved in cancer development, its mechanisms in developing LAUD remain unclear. Herein, qRT-PCR, WB and IHC were utilized for evaluating MRPS16 expression levels, while functional assays besides animal experiments were performed to measure MRPS16 effect on LAUD progression. Using WB, the MRPS16 effect on PI3K/AKT/Frataxin signalling pathway was tested. According to our study, MRPS16 was upregulated in LAUD and was correlated to the advanced TNM stage as well as poor clinical outcomes, which represent an independent prognostic factor. Based on functional assays, MRPS16 is involved in promoting LAUD growth, migration and invasion, which was validated further in subsequent analyses through PI3K/AKT/Frataxin pathway activation. Moreover, MRPS16-knockdown-mediated Frataxin overexpression was shown to restore the reduction in tumour cells proliferation, migration and invasion. Our results revealed that MRPS16 caused an aggressive phenotype to LAUD and was a poor prognosticator; thus, targeting MRPS16 may be effectual in LAUD treatment.
Collapse
Affiliation(s)
- Zaixing Cheng
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Kaming Xue
- Department of Traditional Chinese MedicineUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Cui Xiong
- Department of EndocrinologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhikun Zheng
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinsong Li
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xinwei Qiao
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
16
|
Ji X, Yang Z, Li C, Zhu S, Zhang Y, Xue F, Sun S, Fu T, Ding C, Liu Y, Wan Q. Mitochondrial ribosomal protein L12 potentiates hepatocellular carcinoma by regulating mitochondrial biogenesis and metabolic reprogramming. Metabolism 2024; 152:155761. [PMID: 38104924 DOI: 10.1016/j.metabol.2023.155761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming are key features of hepatocellular carcinoma (HCC). Despite its significance, the precise underlying mechanism behind these processes has not been fully elucidated. The latest investigations, along with our previous discoveries, have substantiated the significant role of mitochondrial ribosomal protein L12 (MRPL12), a newly identified gene involved in mitochondrial transcription regulation, in the modulation of mitochondrial metabolism. Nevertheless, the role of MRPL12 in tumorigenesis has yet to be investigated. METHODS The expression of MRPL12 in HCC was assessed using an online database. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) were employed to determine the expression of MRPL12 in HCC tissues, patient-derived organoid (PDO), and cell lines. The correlation between MRPL12 expression and clinicopathological features, as well as prognosis, was examined using tissue microarray analysis. An in vivo subcutaneous tumor xenograft model, gene knockdown or overexpression assay, chromatin immunoprecipitation (ChIP) assay, Seahorse XF96 assay, and cell function assay were employed to investigate the biological function and potential molecular mechanism of MRPL12 in HCC. RESULTS A significant upregulation of MRPL12 was observed in HCC cells, PDO and patient tissues, which correlated with advanced tumor stage, higher grade and poor prognosis. MRPL12 overexpression promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenicity in vivo, whereas MRPL12 knockdown showed the opposite effect. MRPL12 knockdown also inhibited the capacity of organoids proliferation capacity. Furthermore, MRPL12 was found to be crucial for maintaining mitochondrial homeostasis. Both gain and loss-of-function experiments targeting MRPL12 in HCC cells altered oxidative phosphorylation (OXPHOS) and mitochondrial DNA content. Notably, suppression of OXPHOS effectively mitigates the tumor-promoting effect attributed to MRPL12 overexpression, implying the involvement of MRPL12 in HCC through the modulation of mitochondrial metabolism. Besides, Yin Yang 1 (YY1) was identified as a transcription factor responsible for regulating MRPL12, while the PI3K/mTOR pathway was found to act as an upstream regulator of YY1. MRPL12 knockdown attenuated the YY1 overexpression or PI3K/mTOR activation-induced malignant phenotype in HCC cells. CONCLUSION Our findings provide compelling evidence that MRPL12 is implicated in driving the malignant phenotype of HCC via regulating mitochondrial metabolism. Moreover, the aberrant expression of MRPL12 in HCC is mediated by the upstream PI3K/mTOR/YY1 pathway. These results highlight the potential of targeting MRPL12 as a promising therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Chensheng Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fuyuan Xue
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tingting Fu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Can Ding
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
17
|
Jiang J, Qi T, Li L, Pan Y, Huang L, Zhu L, Zhang D, Ma X, Qin Y. MRPS9-Mediated Regulation of the PI3K/Akt/mTOR Pathway Inhibits Neuron Apoptosis and Protects Ischemic Stroke. J Mol Neurosci 2024; 74:23. [PMID: 38381220 DOI: 10.1007/s12031-024-02197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Neuronal apoptosis is crucial in the pathophysiology of ischemic stroke (IS), albeit its underly24ing mechanism remaining elusive. Investigating the mechanism of neuronal apoptosis in the context of IS holds substantial clinical value for enhancing the prognosis of IS patients. Notably, the MRPS9 gene plays a pivotal role in regulating mitochondrial function and maintaining structural integrity. Utilizing bioinformatic tactics and the extant gene expression data related to IS, we conducted differential analysis and weighted correlation network analysis (WGCNA) to select important modules. Subsequent gene interaction analysis via the STRING website facilitated the identification of the key gene-mitochondrial ribosomal protein S9 (MRPS9)-that affects the progression of IS. Moreover, possible downstream signaling pathways, namely PI3K/Akt/mTOR, were elucidated via Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) pathway analysis. Experimental models were established utilizing oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) in mice. Changes in gene and protein expression, as well as cell proliferation and apoptosis, were monitored through qPCR, WB, CCK8, and flow cytometry. An OGD/R cell model was further employed to investigate the role of MRPS9 in IS post transfusion of MRPS9 overexpression plasmids into cells. Further studies were conducted by transfecting overexpressed cells with PI3K/Akt/mTOR signaling pathway inhibitor LY294002 to unveil the mechanism of MRPS9 in IS. Bioinformatic analysis revealed a significant underexpression of MRPS9 in ischemic stroke patients. Correspondingly, in vitro experiments with HN cells subjected to OGD/R treatment demonstrated a marked reduction in MRPS9 expression, accompanied by a decline in cell viability, and an increase cell apoptosis. Notably, the overexpression of MRPS9 mitigated the OGD/R-induced decrease in cell viability and augmentation of apoptosis. In animal models, MRPS9 expression was significantly lower in the MCAO/R group compared to the sham surgery group. Further, the KEGG pathway analysis associated MRPS9 expression with the PI3K/Akt/mTOR signaling pathway. In cells treated with the specific PI3K/Akt/mTOR inhibitor LY294002, phosphorylation levels of Akt and mTOR were decreased, cell viability decreased, and apoptosis increased compared to the MRPS9 overexpression group. These findings collectively indicate that MRPS9 overexpression inhibits PI3K/Akt/mTOR pathway activation, thereby protecting neurons from apoptosis and impeding IS progression. However, the PI3K/Akt/mTOR inhibitor LY294002 is capable of counteracting the protective effect of MRPS9 overexpression on neuronal apoptosis and IS. Our observations underscore the potential protective role of MRPS9 in modulating neuronal apoptosis and in attenuating the pathophysiological developments associated with IS. This is achieved through the regulation of the PI3K/Akt/mTOR pathway. These insights forge new perspectives and propose novel targets for the strategic diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Jina Jiang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Tingting Qi
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Li Li
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Yunzhi Pan
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Lijuan Huang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Lijuan Zhu
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Dongyang Zhang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Xiaoqing Ma
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Yinghui Qin
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China.
| |
Collapse
|
18
|
Ma T, Huang YB, Chen J, Zhang L, Liu YH, Lu CH. MRPL21 promotes HCC proliferation through TP53 mutation-induced apoptotic resistance. Tissue Cell 2024; 86:102298. [PMID: 38181584 DOI: 10.1016/j.tice.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND AIMS The specific mechanisms underlying the inhibition of hepatocellular carcinoma (HCC) proliferation and metastasis by mitochondrial apoptosis are not yet fully understood. However, it plays a vital role in suppressing HCC's ability to proliferate and spread. The involvement of MRPL21, a member within the family of mitochondrial ribosomal proteins (MRPs), is well-documented in both cellular apoptosis and energy metabolism. This study aims to explore and unravel the underlying mechanisms through which MRPL21 contributes to mitochondrial apoptosis and resistance against apoptosis in HCC. METHODS To evaluate the level of MRPL21 expression at the gene and protein expression levels, analysis was performed on human liver samples and blood using techniques for quantification. A knockdown plasmid targeting MRPL21 was constructed to investigate its impact on the growth and apoptosis of hepatocellular carcinoma (HCC). To evaluate the impact of MRPL21 knockdown on hepatocellular carcinoma (HCC) cell proliferation and apoptosis, various assays were performed including CCK-8 assays, flow cytometry analysis, detection of reactive oxygen species (ROS), and assessment of mitochondrial membrane potential (MMP). Furthermore, the role of MRPL21 in TP53 mutation was examined using Nutlin-3. RESULTS In HCC tissues and blood samples, an upregulation of MRPL21 expression was observed when compared to samples obtained from healthy individuals, and it is correlated with a poor prognosis for HCC. Silencing MRPL21 can effectively suppress Hep3B and HCCLM3 cells proliferation by modulating the mitochondrial membrane potential, it triggers the generation of reactive oxygen species (ROS), thereby leading to G0/G1 cell cycle arrest and initiation of early apoptosis. Furthermore, by inhibiting P53 activity, Nutlin-3 treatment can enhance MRPL21-deficiency-mediated apoptosis in Hep3B and HCCLM3 cells. CONCLUSION Through its influence on TP53 mutation, MRPL21 promotes HCC proliferation and progression while conferring resistance to apoptosis. These findings suggest that MRPL21 holds promise as a valuable biomarker for the treatment of HCC.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Ya-Bin Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Lu Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan-Hua Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Lei Q, Xiang K, Cheng L, Xiang M. Human retinal organoids with an OPA1 mutation are defective in retinal ganglion cell differentiation and function. Stem Cell Reports 2024; 19:68-83. [PMID: 38101398 PMCID: PMC10828684 DOI: 10.1016/j.stemcr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Autosomal dominant optic atrophy (ADOA), mostly caused by heterozygous OPA1 mutations and characterized by retinal ganglion cell (RGC) loss and optic nerve degeneration, is one of the most common types of inherited optic neuropathies. Previous work using a two-dimensional (2D) differentiation model of induced pluripotent stem cells (iPSCs) has investigated ADOA pathogenesis but failed to agree on the effect of OPA1 mutations on RGC differentiation. Here, we use 3D retinal organoids capable of mimicking in vivo retinal development to resolve the issue. We generated isogenic iPSCs carrying the hotspot OPA1 c.2708_2711delTTAG mutation and found that the mutant variant caused defective initial and terminal differentiation and abnormal electrophysiological properties of organoid-derived RGCs. Moreover, this variant inhibits progenitor proliferation and results in mitochondrial dysfunction. These data demonstrate that retinal organoids coupled with gene editing serve as a powerful tool to definitively identify disease-related phenotypes and provide valuable resources to further investigate ADOA pathogenesis and screen for ADOA therapeutics.
Collapse
Affiliation(s)
- Qiannan Lei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication. Nat Commun 2023; 14:6559. [PMID: 37880248 PMCID: PMC10600150 DOI: 10.1038/s41467-023-42276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. However, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, is not fully understood. Here, we report that in mice, adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in a model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings suggest the microglial Cnr1 may contribute to adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gianluca Ursini
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Miyahara
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feiyi Xiong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samskruthi Madireddy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA.
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Ozawa S, Ojiro R, Tang Q, Zou X, Woo GH, Yoshida T, Shibutani M. Identification of genes showing altered DNA methylation and gene expression in the renal proximal tubular cells of rats treated with ochratoxin A for 13 weeks. J Appl Toxicol 2023; 43:1533-1548. [PMID: 37162024 DOI: 10.1002/jat.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
22
|
Calderari S, Archilla C, Jouneau L, Daniel N, Peynot N, Dahirel M, Richard C, Mourier E, Schmaltz-Panneau B, Vitorino Carvalho A, Rousseau-Ralliard D, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Couturier-Tarrade A, Duranthon V, Chavatte-Palmer P. Alteration of the embryonic microenvironment and sex-specific responses of the preimplantation embryo related to a maternal high-fat diet in the rabbit model. J Dev Orig Health Dis 2023; 14:602-613. [PMID: 37822211 DOI: 10.1017/s2040174423000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment. In oocytes from females on HH diet, transcriptomic analysis revealed a weak modification in the content of transcripts mainly involved in meiosis and translational control. The effect of maternal HH diet on the embryonic microenvironment was investigated by identifying the metabolite composition of uterine and embryonic fluids collected in vivo by biomicroscopy. Metabolomic analysis revealed differences in the HH uterine fluid surrounding the embryo, with increased pyruvate concentration. Within the blastocoelic fluid, metabolomic profiles showed decreased glucose and alanine concentrations. In addition, the blastocyst transcriptome showed under-expression of genes and pathways involved in lipid, glucose and amino acid transport and metabolism, most pronounced in female embryos. This work demonstrates that the maternal HH diet disrupts the in vivo composition of the embryonic microenvironment, where the presence of nutrients is increased. In contrast to this nutrient-rich environment, the embryo presents a decrease in nutrient sensing and metabolism suggesting a potential protective process. In addition, this work identifies a very early sex-specific response to the maternal HH diet, from the blastocyst stage.
Collapse
Affiliation(s)
- Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Michele Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Eve Mourier
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Barbara Schmaltz-Panneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Anaïs Vitorino Carvalho
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Franck Lager
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Carmen Marchiol
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Gilles Renault
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Julie Gatien
- Research and Development Department, Eliance, Nouzilly, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
- PST-ASB, University of Tours, Tours, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| |
Collapse
|
23
|
Lin S, Liu C, Sun J, Guan Y. RNA-Sequencing and Bioinformatics Analysis of Exosomal Long Noncoding RNAs Revealed a Novel ceRNA Network in Stable COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1995-2007. [PMID: 37720876 PMCID: PMC10503524 DOI: 10.2147/copd.s414901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Exosomes are able to exchange their bioactive RNA cargo to recipient cells. In COPD, exosomes can be controlled and engineered for its use as targeted diagnostic and therapeutic tool. Our study explored novel lncRNAs and mRNAs in plasma exosomes that could be involved in the pathogenesis of COPD. Methods High-throughput sequencing was conducted to detect the alterations in the expression of exosomal lncRNAs and mRNAs. Gene ontology (GO) functional analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to determine the significant functions and pathways associated with differentially expressed (DE) lncRNAs. The mRNA expression profile dataset, GSE76925, and microRNA expression profile dataset, GSE70080, were obtained from the GEO database. Venn diagrams were used to find common DE mRNAs between my mRNAs dataset and GSE76925. These common DEGs were subjected to PPI analyses to identify Hub genes. Subsequently, Venn diagrams were used to identify common genes between the target genes of DE-miRNAs and Hub genes as well as DE-miRNAs and my lncRNAs dataset. Finally, a lncRNA-miRNA-mRNA co-expression network was constructed by prediction using proprietary software. The lncRNA and mRNA expressions were then validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results We identified 1578 differentially regulated lncRNAs and 3071 differentially regulated mRNAs. GO and KEGG pathway analyses suggested that the DE lncRNAs are involved in the pathogenesis of COPD. A lncRNA-miRNA-mRNA meshwork was established to predict the potential interactions among these RNAs. RP3-329A5.8 and MRPS11 expression was then subjected to qRT-PCR for validation. Correlations between MRPS11 and clinic-pathological features were explored. Conclusion Our study provided a set of lncRNAs and mRNAs that may be involved in the pathogenesis of COPD, thereby highlighting the need for further research on both diagnostic biomarkers and molecular mechanisms.
Collapse
Affiliation(s)
- Shan Lin
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Caihong Liu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Jingting Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yinghui Guan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
24
|
Tao J, Xie X, Luo M, Sun Q. Identification of key biomarkers in ischemic stroke: single-cell sequencing and weighted co-expression network analysis. Aging (Albany NY) 2023; 15:6346-6360. [PMID: 37418282 PMCID: PMC10373980 DOI: 10.18632/aging.204855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE At present, there is a lack of accurate early diagnostic markers for ischemic stroke. METHODS By using dimensionality reduction cluster analysis, differential expression analysis, weighted co-expression network analysis, protein-protein interaction network analysis, cell heterogeneity and key pathogenic genes were identified in ischemic stroke. Immunomicroenvironment analysis was used to explore the immune landscape and immune associations of key genes in ischemic stroke. The analysis platform we use is R software (version 4.0.5). PCR experiments were used to verify the expression of key genes. RESULTS Single cell sequencing data in ischemic stroke can be annotated as fibroblast cells, pre-B cell CD34, neutrophils cells, bone marrow (BM), keratinocytes, macrophage, neurons and mesenchymal stem cells (MSC). By the intersection of differential expression analysis and WGCNA analysis, 385 genes were obtained. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these genes were highly correlated with multiple functions and pathways. Protein-protein interaction network analysis revealed that MRPS11 and MRPS12 were key genes, both of which were down-regulated in ischemic stroke. The Pseudo-time series analysis found that the expression of MRPS12 decreased gradually with the differentiation of pre-B cell CD34 cells in ischemic stroke, suggesting that the downregulation of MRPS12 expression may play an important role in ischemic stroke. At last, PCR showed that MRPS11 and MRPS12 were significantly down-regulated in peripheral blood of patients with ischemic stroke. CONCLUSIONS Our study provides a reference for the study of pathogenesis and key targets of ischemic stroke.
Collapse
Affiliation(s)
- Jiali Tao
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, People’s Republic of China
| | - Xiaochen Xie
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, People’s Republic of China
| | - Man Luo
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, People’s Republic of China
| | - Qingsong Sun
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, People’s Republic of China
| |
Collapse
|
25
|
Liu L, Zhao D, Wang G, He Q, Song Y, Jiang Y, Xia Q, Zhao P. Adaptive Changes in Detoxification Metabolism and Transmembrane Transport of Bombyx mori Malpighian Tubules to Artificial Diet. Int J Mol Sci 2023; 24:9949. [PMID: 37373097 DOI: 10.3390/ijms24129949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The high adaptability of insects to food sources has contributed to their ranking among the most abundant and diverse species on Earth. However, the molecular mechanisms underlying the rapid adaptation of insects to different foods remain unclear. We explored the changes in gene expression and metabolic composition of the Malpighian tubules as an important metabolic excretion and detoxification organ in silkworms (Bombyx mori) fed mulberry leaf and artificial diets. A total of 2436 differentially expressed genes (DEGs) and 245 differential metabolites were identified between groups, with the majority of DEGs associated with metabolic detoxification, transmembrane transport, and mitochondrial function. Detoxification enzymes, such as cytochrome P450 (CYP), glutathione-S-transferase (GST), and UDP-glycosyltransferase, and ABC and SLC transporters of endogenous and exogenous solutes were more abundant in the artificial diet group. Enzyme activity assays confirmed increased CYP and GST activity in the Malpighian tubules of the artificial diet-fed group. Metabolome analysis showed increased contents of secondary metabolites, terpenoids, flavonoids, alkaloids, organic acids, lipids, and food additives in the artificial diet group. Our findings highlight the important role of the Malpighian tubules in adaptation to different foods and provide guidance for further optimization of artificial diets to improve silkworm breeding.
Collapse
Affiliation(s)
- Lijing Liu
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Genhong Wang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Qingxiu He
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Yuwei Song
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Yulu Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| |
Collapse
|
26
|
Reid K, Daniels EG, Vasam G, Kamble R, Janssens GE, Hu IM, Green AE, Houtkooper RH, Menzies KJ. Reducing mitochondrial ribosomal gene expression does not alter metabolic health or lifespan in mice. Sci Rep 2023; 13:8391. [PMID: 37225705 PMCID: PMC10209074 DOI: 10.1038/s41598-023-35196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
Maintaining mitochondrial function is critical to an improved healthspan and lifespan. Introducing mild stress by inhibiting mitochondrial translation invokes the mitochondrial unfolded protein response (UPRmt) and increases lifespan in several animal models. Notably, lower mitochondrial ribosomal protein (MRP) expression also correlates with increased lifespan in a reference population of mice. In this study, we tested whether partially reducing the gene expression of a critical MRP, Mrpl54, reduced mitochondrial DNA-encoded protein content, induced the UPRmt, and affected lifespan or metabolic health using germline heterozygous Mrpl54 mice. Despite reduced Mrpl54 expression in multiple organs and a reduction in mitochondrial-encoded protein expression in myoblasts, we identified few significant differences between male or female Mrpl54+/- and wild type mice in initial body composition, respiratory parameters, energy intake and expenditure, or ambulatory motion. We also observed no differences in glucose or insulin tolerance, treadmill endurance, cold tolerance, heart rate, or blood pressure. There were no differences in median life expectancy or maximum lifespan. Overall, we demonstrate that genetic manipulation of Mrpl54 expression reduces mitochondrial-encoded protein content but is not sufficient to improve healthspan in otherwise healthy and unstressed mice.
Collapse
Affiliation(s)
- Kim Reid
- Department of Biology and Ottawa Institute of Systems Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Iman M Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Gao F, Liang T, Lu YW, Fu X, Dong X, Pu L, Hong T, Zhou Y, Zhang Y, Liu N, Zhang F, Liu J, Malizia AP, Yu H, Zhu W, Cowan DB, Chen H, Hu X, Mably JD, Wang J, Wang DZ, Chen J. A defect in mitochondrial protein translation influences mitonuclear communication in the heart. Nat Commun 2023; 14:1595. [PMID: 36949106 PMCID: PMC10033703 DOI: 10.1038/s41467-023-37291-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
The regulation of the informational flow from the mitochondria to the nucleus (mitonuclear communication) is not fully characterized in the heart. We have determined that mitochondrial ribosomal protein S5 (MRPS5/uS5m) can regulate cardiac function and key pathways to coordinate this process during cardiac stress. We demonstrate that loss of Mrps5 in the developing heart leads to cardiac defects and embryonic lethality while postnatal loss induces cardiac hypertrophy and heart failure. The structure and function of mitochondria is disrupted in Mrps5 mutant cardiomyocytes, impairing mitochondrial protein translation and OXPHOS. We identify Klf15 as a Mrps5 downstream target and demonstrate that exogenous Klf15 is able to rescue the overt defects and re-balance the cardiac metabolome. We further show that Mrps5 represses Klf15 expression through c-myc, together with the metabolite L-phenylalanine. This critical role for Mrps5 in cardiac metabolism and mitonuclear communication highlights its potential as a target for heart failure therapies.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuxia Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yu Zhang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vertex pharmaceuticals, VCGT, 316-318 Northern Ave, Boston, MA, 02210, USA
| | - Andrea P Malizia
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hong Yu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wei Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xinyang Hu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - John D Mably
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Jian'an Wang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, 33602, USA.
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
28
|
Chen W, Lv X, Cao X, Yuan Z, Wang S, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Sun W. Integration of the Microbiome, Metabolome and Transcriptome Reveals Escherichia coli F17 Susceptibility of Sheep. Animals (Basel) 2023; 13:ani13061050. [PMID: 36978593 PMCID: PMC10044122 DOI: 10.3390/ani13061050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Escherichia coli (E. coli) F17 is one of the most common pathogens causing diarrhea in farm livestock. In the previous study, we accessed the transcriptomic and microbiomic profile of E. coli F17-antagonism (AN) and -sensitive (SE) lambs; however, the biological mechanism underlying E. coli F17 infection has not been fully elucidated. Therefore, the present study first analyzed the metabolite data obtained with UHPLC-MS/MS. A total of 1957 metabolites were profiled in the present study, and 11 differential metabolites were identified between E. coli F17 AN and SE lambs (i.e., FAHFAs and propionylcarnitine). Functional enrichment analyses showed that most of the identified metabolites were related to the lipid metabolism. Then, we presented a machine-learning approach (Random Forest) to integrate the microbiome, metabolome and transcriptome data, which identified subsets of potential biomarkers for E. coli F17 infection (i.e., GlcADG 18:0-18:2, ethylmalonic acid and FBLIM1); furthermore, the PCCs were calculated and the interaction network was constructed to gain insight into the crosstalk between the genes, metabolites and bacteria in E. coli F17 AN/SE lambs. By combing classic statistical approaches and a machine-learning approach, our results revealed subsets of metabolites, genes and bacteria that could be potentially developed as candidate biomarkers for E. coli F17 infection in lambs.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou 450046, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-13952750912
| |
Collapse
|
29
|
Hu Y, Liu Y, Ma C, Ai K. MRPL12 Acts as A Novel Prognostic Biomarker Involved in Immune Cell Infiltration and Tumor Progression of Lung Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24032762. [PMID: 36769082 PMCID: PMC9917664 DOI: 10.3390/ijms24032762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial ribosomal protein L7/L12 (MRPL12) is a member of the mitochondrial ribosomal proteins (MRPs). However, the biological function of MRPL12 in lung adenocarcinoma (LUAD) remains unclear. The expression and prognostic value of MRPL12 in LUAD were systematically analyzed using UALCAN, TIMER, HPA, Kaplan-Meier plotter, and GEPIA databases. The relationship between MRPL12 and immune infiltrates was investigated using TIMER and TISIDB databases. The clinical significance of MRPL12 in LUAD patients was validated using a tissue microarray (TMA). Cellular functional experiments were carried out to examine the influences of MRPL12 knockdown on cell proliferation, migration, and invasion. MRPL12 was significantly upregulated in LUAD samples, and high MRPL12 expression was correlated with worse prognosis. MRPL12 expression was markedly associated with immunomodulators, chemokines, and infiltration levels of multiple immune cells. Furthermore, TMA results confirm the upregulation of MRPL12 expression in LUAD, and MRPL12 was identified as an independent prognostic factor in LUAD patients. MRPL12 knockdown inhibited proliferation, migration, and invasion of LUAD cells. These data indicate that MRPL12 is a prognostic biomarker and correlated with immune infiltrates in LUAD. Therefore, MRPL12 shows potential as a therapeutic target for LUAD.
Collapse
|
30
|
Shu Y, Hao Y, Feng J, Liu H, Li S, Feng J, Jiang Z, Ye L, Zhou Y, Sun Y, Zhou Z, Wei H, Gao P, Zhang H, Sun L. Non-canonical phosphoglycerate dehydrogenase activity promotes liver cancer growth via mitochondrial translation and respiratory metabolism. EMBO J 2022; 41:e111550. [PMID: 36314841 PMCID: PMC9713714 DOI: 10.15252/embj.2022111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) is a key serine biosynthesis enzyme whose aberrant expression promotes various types of tumors. Recently, PHGDH has been found to have some non-canonical functions beyond serine biosynthesis, but its specific mechanisms in tumorigenesis remain unclear. Here, we show that PHGDH localizes to the inner mitochondrial membrane and promotes the translation of mitochondrial DNA (mtDNA)-encoded proteins in liver cancer cells. Mechanistically, we demonstrate that mitochondrial PHGDH directly interacts with adenine nucleotide translocase 2 (ANT2) and then recruits mitochondrial elongation factor G2 (mtEFG2) to promote mitochondrial ribosome recycling efficiency, thereby promoting mtDNA-encoded protein expression and subsequent mitochondrial respiration. Moreover, we show that treatment with a mitochondrial translation inhibitor or depletion of mtEFG2 diminishes PHGDH-mediated tumor growth. Collectively, our findings uncover a previously unappreciated function of PHGDH in tumorigenesis acting via promotion of mitochondrial translation and bioenergetics.
Collapse
Affiliation(s)
- Ying Shu
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, Anhui Province Key Laboratory of Biomedical Aging ResearchUniversity of Science and Technology of ChinaHefeiChina
| | - Yijie Hao
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Junru Feng
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Haiying Liu
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Shi‐ting Li
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Jiaqian Feng
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Zetan Jiang
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Ling Ye
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Yingli Zhou
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Yuchen Sun
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Zilong Zhou
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Haoran Wei
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Gao
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Huafeng Zhang
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, Anhui Province Key Laboratory of Biomedical Aging ResearchUniversity of Science and Technology of ChinaHefeiChina
| | - Linchong Sun
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
31
|
Fu Q, Hong R, Zhou H, Li Y, Liu X, Gong J, Wang X, Chen J, Ran H, Wang L, Li F, Yuan J. Proteomics reveals MRPL4 as a high-risk factor and a potential diagnostic biomarker for prostate cancer. Proteomics 2022; 22:e2200081. [PMID: 36059095 DOI: 10.1002/pmic.202200081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022]
Abstract
Through digital rectal examinations (DRE) and routine prostate-specific antigen (PSA) screening, early prostate cancer (PC) treatment has become possible. However, PC is a complex and heterogeneous disease. In vivo, cancer cells can invade adjacent tissues and metastasize to other tissues resulting in hard cures. Therefore, the key to improving PC patients' survival time is preventing cancer cells' metastasis. We used mass spectrometry to profile primary PC in patients with versus without metastatic PC. We named these two groups of PC patients as high-risk primary PC (n = 11) and low-risk primary PC (n = 7), respectively. At the same time, patients with benign prostatic hyperplasia (BPH, n = 6) were used as controls to explore the possible factors driving PC metastasis. Based on comprehensive mass spectrometry analysis and biological validation, we found significant upregulation of MRPL4 expression in high-risk primary PC relative to low-risk primary PC and BPH. Further, through research of the extensive clinical cohort data in the database, we discovered that MRPL4 could be a high-risk factor for PC and serve as a potential diagnostic biomarker. The MRPL4 might be used as an auxiliary indicator for clinical status/stage of primary PC to predict patient survival time.
Collapse
Affiliation(s)
- Qihuan Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ruixia Hong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Hang Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiu Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiaqi Gong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fang Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| |
Collapse
|
32
|
Zhao L, Han L, Wei X, Zhou Y, Zhang Y, Si N, Wang H, Yang J, Bian B, Zhao H. Toxicokinetics of Arenobufagin and its Cardiotoxicity Mechanism Exploration Based on Lipidomics and Proteomics Approaches in Rats. Front Pharmacol 2022; 12:780016. [PMID: 35002716 PMCID: PMC8727535 DOI: 10.3389/fphar.2021.780016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Arenobufagin (ArBu), one of the main active bufadienolides of toad venom with cardiotonic effect, analgesic effect, and outstanding anti-tumor potentiality, is also a potential cardiotoxic component. In the present study, the cardiac effect of ArBu and its underlying mechanism were explored by integrating data such as heart rates, toxicokinetics, myocardial enzyme and brain natriuretic peptide (BNP) activity, pathological sections, lipidomics and proteomics. Under different doses, the cardiac effects turned out to be different. The oral dose of 60 mg/kg of ArBu sped up the heart rate. However, 120 mg/kg ArBu mainly reduced the heart rate. Over time, they all returned to normal, consisting of the trend of ArBu concentration-time curve. High concentrations of myocardial enzymes and BNP indicated that ArBu inhibited or impaired the cardiac function of rats. Pathological sections of hearts also showed that ArBu caused myocardial fiber disorder and rupture, in which the high-dose group was more serious. At the same time, serum and heart tissue lipidomics were used to explore the changes in body lipid metabolism under different doses. The data indicated a larger difference in the high-dose ArBu group. There were likewise many significant differences in the proteomics of the heart. Furthermore, a multi-layered network was used to integrate the above information to explore the potential mechanism. Finally, 4 proteins that were shown to be significantly and differentially expressed were validated by targeted proteomics using parallel reaction monitoring (PRM) analysis. Our findings indicated that ArBu behaved as a bidirectional regulation of the heart. The potential mechanism of cardiac action was revealed with the increased dose, which provided a useful reference for the safety of clinical application of ArBu.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Shaanxi Chinese Medicine Institute (Shaanxi Pharmaceutical Information Center), Xianyang, China
| | - Lingyu Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaolu Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Identification of key biomarkers and signaling pathways and analysis of their association with immune cells in immunoglobulin A nephropathy. Cent Eur J Immunol 2022; 47:189-205. [PMID: 36817268 PMCID: PMC9896983 DOI: 10.5114/ceji.2022.119867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Immunoglobulin A nephropathy (IgAN) is the most common glomerular disease worldwide, with a poor prognosis. The aim of our study was to identify key biomarkers and their associations with immune cells to aid in the study of IgAN pathology and immunotherapy. Material and methods The data of IgAN were downloaded from a public database. The metaMA package and limma package were used to identify differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs), respectively. Biological functions of the DEmRNAs were analyzed. Machine learning was used to screen the mRNA biomarkers of IgAN. Pearson's correlation coefficient was used to analyze the correlation between mRNA biomarkers, immune cells and signaling pathways. Moreover, we constructed a miRNAs-mRNAs targeted regulatory network. Finally, we performed in vitro validation of the identified miRNAs and mRNAs. Results 1205 DEmRNAs and 125 DEmiRNAs were identified. In gene set enrichment analysis (GSEA), tumor necrosis factor α (TNF-α) signaling via nuclear factor κB (NF-κB), apoptosis and MTORC-1 signaling were inhibited in IgAN. 8 mRNA biomarkers were screened by machine learning. In addition, the distribution of 8 immune cell types was found to be significantly different between normal controls and IgAN by difference analysis. Pearson correlation coefficient analysis demonstrated that AKAP8L was significantly negatively correlated with CD4+ memory T-cells. AKAP8L was also significantly negatively correlated with TNF-α signaling via NF-κB, apoptosis, and MTORC-1 signaling. Subsequently, 5 mRNA biomarkers predicted corresponding negative regulatory miRNAs. Conclusions The identification of 8 important biomarkers and their correlation with immune cells and biological signaling pathways provides new ideas for further study of IgAN.
Collapse
|
34
|
Liu C, Zhang X, Chai H, Xu S, Liu Q, Luo Y, Li S. Identification of Immune Cells and Key Genes associated with Alzheimer's Disease. Int J Med Sci 2022; 19:112-125. [PMID: 34975305 PMCID: PMC8692117 DOI: 10.7150/ijms.66422] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive impairment and memory loss, for which there is no effective cure to date. In the past several years, numerous studies have shown that increased inflammation in AD is a major cause of cognitive impairment. This study aimed to reveal 22 kinds of peripheral immune cell types and key genes associated with AD. The prefrontal cortex transcriptomic data from Gene Expression Omnibus (GEO) database were collected, and CIBERSORT was used to assess the composition of 22 kinds of immune cells in all samples. Weighted gene co-expression network analysis (WGCNA) was used to construct gene co-expression networks and identified candidate module genes associated with AD. The least absolute shrinkage and selection operator (LASSO) and random forest (RF) models were constructed to analyze candidate module genes, which were selected from the result of WGCNA. The results showed that the immune infiltration in the prefrontal cortex of AD patients was different from healthy samples. Of all 22 kinds of immune cells, M1 macrophages were the most relevant cell type to AD. We revealed 10 key genes associated with AD and M1 macrophages by LASSO and RF analysis, including ARMCX5, EDN3, GPR174, MRPL23, RAET1E, ROD1, TRAF1, WNT7B, OR4K2 and ZNF543. We verified these 10 genes by logistic regression and k-fold cross-validation. We also validated the key genes in an independent dataset, and found GPR174, TRAF1, ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and EDN3 were significantly different between the AD and healthy controls. Moreover, in the 5XFAD transgenic mice, the differential expression trends of Wnt7b, Gpr174, Ptbp3, Mrpl23, Armcx5 and Raet1e are consistent with them in independent dataset. Our results provided potential therapeutic targets for AD patients.
Collapse
Affiliation(s)
- Chenming Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sutong Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Häfliger IM, Seefried FR, Spengeler M, Drögemüller C. Mining massive genomic data of two Swiss Braunvieh cattle populations reveals six novel candidate variants that impair reproductive success. Genet Sel Evol 2021; 53:95. [PMID: 34915862 PMCID: PMC8675516 DOI: 10.1186/s12711-021-00686-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background This study was carried out on the two Braunvieh populations reared in Switzerland, the dairy Brown Swiss (BS) and the dual-purpose Original Braunvieh (OB). We performed a genome-wide analysis of array data of trios (sire, dam, and offspring) from the routine genomic selection to identify candidate regions showing missing homozygosity and phenotypic associations with five fertility, ten birth, and nine growth-related traits. In addition, genome-wide single SNP regression studies based on 114,890 single nucleotide polymorphisms (SNPs) for each of the two populations were performed. Furthermore, whole-genome sequencing data of 430 cattle including 70 putative haplotype carriers were mined to identify potential candidate variants that were validated by genotyping the current population using a custom array. Results Using a trio-based approach, we identified 38 haplotype regions for BS and five for OB that segregated at low to moderate frequencies. For the BS population, we confirmed two known haplotypes, BH1 and BH2. Twenty-four variants that potentially explained the missing homozygosity and associated traits were detected, in addition to the previously reported TUBD1:p.His210Arg variant associated with BH2. For example, for BS we identified a stop-gain variant (p.Arg57*) in the MRPL55 gene in the haplotype region on chromosome 7. This region is associated with the ‘interval between first and last insemination’ trait in our data, and the MRPL55 gene is known to be associated with early pregnancy loss in mice. In addition, we discuss candidate missense variants in the CPT1C, MARS2, and ACSL5 genes for haplotypes mapped in BS. In OB, we highlight a haplotype region on chromosome 19, which is potentially caused by a frameshift variant (p.Lys828fs) in the LIG3 gene, which is reported to be associated with early embryonic lethality in mice. Furthermore, we propose another potential causal missense variant in the TUBGCP5 gene for a haplotype mapped in OB. Conclusions We describe, for the first time, several haplotype regions that segregate at low to moderate frequencies and provide evidence of causality by trait associations in the two populations of Swiss Braunvieh. We propose a list of six protein-changing variants as potentially causing missing homozygosity. These variants need to be functionally validated and incorporated in the breeding program. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00686-3.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
36
|
MiR 208a Regulates Mitochondrial Biogenesis in Metabolically Challenged Cardiomyocytes. Cells 2021; 10:cells10113152. [PMID: 34831374 PMCID: PMC8622724 DOI: 10.3390/cells10113152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome increases the risk for cardiovascular disease including metabolic cardiomyopathy that may progress to heart failure. The decline in mitochondrial metabolism is considered a critical pathogenic mechanism that drives this progression. Considering its cardiac specificity, we hypothesized that miR 208a regulates the bioenergetic metabolism in human cardiomyocytes exposed to metabolic challenges. We screened in silico for potential miR 208a targets focusing on mitochondrial outcomes, and we found that mRNA species for mediator complex subunit 7, mitochondrial ribosomal protein 28, stanniocalcin 1, and Sortin nexin 10 are rescued by the CRISPR deletion of miR 208a in human SV40 cardiomyocytes exposed to metabolic challenges (high glucose and high albumin-bound palmitate). These mRNAs translate into proteins that are involved in nuclear transcription, mitochondrial translation, mitochondrial integrity, and protein trafficking. MiR 208a suppression prevented the decrease in myosin heavy chain α isoform induced by the metabolic stress suggesting protection against a decrease in cardiac contractility. MiR 208a deficiency opposed the decrease in the mitochondrial biogenesis signaling pathway, mtDNA, mitochondrial markers, and respiratory properties induced by metabolic challenges. The benefit of miR 208a suppression on mitochondrial function was canceled by the reinsertion of miR 208a. In summary, miR 208a regulates mitochondrial biogenesis and function in cardiomyocytes exposed to diabetic conditions. MiR 208a may be a therapeutic target to promote mitochondrial biogenesis in chronic diseases associated with mitochondrial defects.
Collapse
|
37
|
Thomas T, Khalaf S, Grigorenko EL. A systematic review and meta-analysis of imaging genetics studies of specific reading disorder. Cogn Neuropsychol 2021; 38:179-204. [PMID: 34529546 DOI: 10.1080/02643294.2021.1969900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The imaging genetics of specific reading disabilities (SRD) is an emerging field that aims to characterize the disabilities' neurobiological causes, including atypical brain structure and function and distinct genetic architecture. The present review aimed to summarize current imaging genetics studies of SRD, characterize the effect sizes of reported results by calculating Cohen's d, complete a Fisher's Combined Probability Test for genes featured in multiple studies, and determine areas for future research. Results demonstrate associations between SRD risk genes and reading network brain phenotypes. The Fisher's test revealed promising results for the genes DCDC2, KIAA0319, FOXP2, SLC2A3, and ROBO1. Future research should focus on exploratory approaches to identify previously undiscovered genes. Using comprehensive neuroimaging (e.g., functional and effective connectivity) and genetic (e.g., sequencing and epigenetic) techniques, and using larger samples, diverse stages of development, and longitudinal investigations, would help researchers understand the neurobiological correlates of SRD to improve early identification.
Collapse
Affiliation(s)
- Tina Thomas
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Shiva Khalaf
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA.,Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Friederich MW, Geddes GC, Wortmann SB, Punnoose A, Wartchow E, Knight KM, Prokisch H, Creadon-Swindell G, Mayr JA, Van Hove JLK. Pathogenic variants in MRPL44 cause infantile cardiomyopathy due to a mitochondrial translation defect. Mol Genet Metab 2021; 133:362-371. [PMID: 34140213 PMCID: PMC8289749 DOI: 10.1016/j.ymgme.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Cardiac dysfunction is a common phenotypic manifestation of primary mitochondrial disease with multiple nuclear and mitochondrial DNA pathogenic variants as a cause, including disorders of mitochondrial translation. To date, five patients have been described with pathogenic variants in MRPL44, encoding the ml44 protein which is part of the large subunit of the mitochondrial ribosome (mitoribosome). Three presented as infants with hypertrophic cardiomyopathy, mild lactic acidosis, and easy fatigue and muscle weakness, whereas two presented in adolescence with myopathy and neurological symptoms. We describe two infants who presented with cardiomyopathy from the neonatal period, failure to thrive, hypoglycemia and in one infant lactic acidosis. A decompensation of the cardiac function in the first year resulted in demise. Exome sequencing identified compound heterozygous variants in the MRPL44 gene including the known pathogenic variant c.467 T > G and two novel pathogenic variants. We document a combined respiratory chain enzyme deficiency with emphasis on complex I and IV, affecting heart muscle tissue more than skeletal muscle or fibroblasts. We show this to be caused by reduced mitochondrial DNA encoded protein synthesis affecting all subunits, and resulting in dysfunction of complex I and IV assembly. The degree of oxidative phosphorylation dysfunction correlated with the impairment of mitochondrial protein synthesis due to different pathogenic variants. These functional studies allow for improved understanding of the pathogenesis of MRPL44-associated mitochondrial disorder.
Collapse
Affiliation(s)
- Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA
| | - Gabrielle C Geddes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Molecular and Medical Genetics, Indiana University, Indianapolis, IN, USA
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, RadboudUMC, Nijmegen, the Netherlands
| | - Ann Punnoose
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Eric Wartchow
- Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA
| | - Kaz M Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
39
|
Liu Y, Sun H, Li X, Liu Q, Zhao Y, Li L, Xu B, Hou Y, Jin W. Identification of a Three-RNA Binding Proteins (RBPs) Signature Predicting Prognosis for Breast Cancer. Front Oncol 2021; 11:663556. [PMID: 34322380 PMCID: PMC8311660 DOI: 10.3389/fonc.2021.663556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To date, breast cancer remains the primary cause of tumor-related death among women, even though some leap-type developments of oncology have been done to slash the mortality. Considering the tumor heterogeneity and individual variation, the more reliable biomarkers are required to be identified for supporting the development of precision medicine in breast cancer. METHODS Based on the TCGA-BRCA and METABRIC databases, the differently expressed RNA binding proteins (RBPs) between tumor and normal tissues were investigated. In this study, we focused on the communal differently expressed RBPs in four subtypes of breast cancer. Lasso-penalized Cox analysis, Stepwise-multivariate Cox analysis and Kaplan-Meier survival curve were performed to identify the hub RBP-coding genes in predicting prognosis of breast cancer, and a prognostic model was established. The efficiency of this model was further validated in other independent GSE20685, GSE4922 and FUSCC-TNBC cohorts by calculating the risk score and performing survival analysis, ROC and nomogram. Moreover, pathologic functions of the candidate RBPs in breast cancer were explored using some routine experiments in vitro, and the potential compounds targeting these RBPs were predicted by reviewing the Comparative Toxicogenomics Database. RESULTS Here, we identified 62 RBPs which were differently expressed between the tumor and normal tissues. Thereinto, three RBPs (MRPL12, MRPL13 and POP1) acted as independent risk factors, and their expression pattern also correlated with poor prognosis of patients. A prognostic model, built with these 3-RBPs, possessed statistical significance to predict the survival probability of patients with breast cancer. Furthermore, experimental validations showed that down-regulating the expression of endogenous MRPL12, MRPL13 or POP1 could dramatically suppress the cellular viability and migration of breast cancer cells in vitro. Besides, some compounds (such as the Acetaminophen, Urethane and Tunicamycin) were predicted for curing breast cancer via targeting MRPL12, MRPL13 and POP1 simultaneously. CONCLUSION This study identified and established a 3-RBPs-based signature and nomogram for predicting the survival probability of patients with breast cancer. MRPL12, MRPL13 and POP1 might act as oncogenes in maintaining cellular viability and accelerating metastasis of breast cancer cells, implying the possibility of which to be designed as biomarkers and/or therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baojin Xu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Zhou W, Ouyang J, Li J, Liu F, An T, Cheng L, Kuo ZC, Zhang C, He Y. MRPS17 promotes invasion and metastasis through PI3K/AKT signal pathway and could be potential prognostic marker for gastric cancer. J Cancer 2021; 12:4849-4861. [PMID: 34234855 PMCID: PMC8247386 DOI: 10.7150/jca.55719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/29/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, the molecular mechanisms through which Mitochondrial Ribosomal Protein S17 (MRPS17) contributes to gastric cancer (GC) and its prognostic significance in GC have been explored. As a protein encoding gene, MRPS17 encodes a 28s proteins belonging the ribosomal protein S17P family. The specific roles and molecular mechanisms of MRPS17 in cancers remain ambiguous. It was revealed by analyzing data from TCGA and GEO that elevated expression of MRPS17 was significantly associated with invasion of GC and poor survival of GC patients. Then through univariate and multivariate Cox regression analyses it was demonstrated that MRPS17 an independent prognostic factor for GC patients (P<0.001). It was demonstrated by differentially expressed gene analysis and functional enrichment analysis that MPRS17 is related to PI3K/AKT pathway and Cell adhesion molecules (CAMs), while its function is mediated by collagen-containing extracellular matrix and receptor ligand/regulator activity. Then it was proven by in-vitro experiments that knocking down of MRPS17 gene in AGS and SGC7901 cells would significantly inhibit proliferation and invasion capability of these cells. Furthermore, it was revealed by cell immunofluorescence assay that as a ribosomalprotein, MRPS17 was mainly distributed in the cytoplasmic surface of cell membrane. Additionally, activation of PI3K/AKT pathway is responsible for malignant progression of glioma that was promoted by MRPS17. In conclusion, it was revealed in the present study that MRPS17 promoted invasion and metastasis of GC and potential molecular mechanisms through which it exerted its influences on GC were explored, suggesting its potential as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Wenjie Zhou
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road 58, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Jun Ouyang
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road 58, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Junqing Li
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road 58, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Fangjie Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road 58, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Tailai An
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China
| | - Lvjia Cheng
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road 58, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Zi Chong Kuo
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China
| | - Changhua Zhang
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China
| | - Yulong He
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen 518000, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road 58, Yuexiu District, Guangzhou 510080, Guangdong, China
| |
Collapse
|
41
|
Zeng Y, Shi Y, Xu L, Zeng Y, Cui X, Wang Y, Yang N, Zhou F, Zhou Y. Prognostic Value and Related Regulatory Networks of MRPL15 in Non-Small-Cell Lung Cancer. Front Oncol 2021; 11:656172. [PMID: 34026630 PMCID: PMC8138120 DOI: 10.3389/fonc.2021.656172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondrial ribosomal protein L15 (MRPL15), a member of mitochondrial ribosomal proteins whose abnormal expression is related to tumorigenesis. However, the prognostic value and regulatory mechanisms of MRPL15 in non-small-cell lung cancer (NSCLC) remain unclear. Methods GEPIA, ONCOMINE, Gene Expression Omnibus (GEO), UALCAN, Kaplan–Meier plotter, PrognoScan, LinkedOmics and GeneMANIA database were utilized to explore the expression and prognostic value of MRPL15 in NSCLC. Additionally, immune infiltration patterns were evaluated via ESTIMATE algorithm and TISIDB database. Furthermore, the expression and prognostic value of MRPL15 in lung cancer were validated via immunohistochemistry (IHC) assays. Results In NSCLC, multiple cohorts including GEPIA, ONCOMINE and 8 GEO series (GSE8569, GSE101929, GSE33532, GSE27262, GSE21933, GSE19804, GSE19188, GSE18842) described that MRPL15 was up-regulated. Moreover, MRPL15 was notably linked to gender, clinical stage, lymph node status and the TP53 mutation status. And patients with high MRPL15 expression showed poor overall survival (OS), progression-free survival (PFS), disease-free survival (DFS) and relapse-free survival (RFS) in NSCLC. Then, functional network analysis suggested that MRPL15 participated in metabolism-related pathways, DNA replication and cell cycle signaling via pathways involving several kinases, miRNAs and transcription factors. Additionally, it was found that MRPL15 expression was negatively related to immune infiltration, including immune scores, stromal scores and several tumor-infiltrating lymphocytes (TILs). Furthermore, IHC results further confirmed the high MRPL15 expression and its prognostic potential in lung cancer. Conclusions These findings demonstrate that high MRPL15 expression indicates poor prognosis in NSCLC and reveal potential regulatory networks as well as the negative relationship with immune infiltration. Thus, MRPL15 may be an attractive predictor and therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yangyang Zeng
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingying Shi
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Xu
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Cui
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Wang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ningning Yang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Yuan J, Li Z, Li F, Lin Z, Yao S, Zhou H, Liu W, Yu H, Liu Y, Liu F, Li F, Ran H, Zhang J, Huang Y, Fu Q, Wang L, Liu J. Proteomics reveals the potential mechanism of Mrps35 controlling Listeria monocytogenes intracellular proliferation in macrophages. Proteomics 2021; 21:e2000262. [PMID: 33763969 DOI: 10.1002/pmic.202000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022]
Abstract
Macrophages are sentinels in the organism which can resist and destroy various bacteria through direct phagocytosis. Here, we reported that expression level of mitochondrial ribosomal protein S35 (Mrps35) continued to decrease over infection time after Listeria monocytogenes (L. monocytogenes) infected macrophages. Our results indicated that knockdown Mrps35 increased the load of L. monocytogenes in macrophages. This result supported that Mrps35 played the crucial roles in L. monocytogenes infection. Moreover, we performed the comprehensive proteomics to analyze the differentially expressed protein of wild type and Mrps35 Knockdown Raw264.7 cells by L. monocytogenes infection over 6 h. Based on the results of mass spectrometry, we presented a wide variety of hypotheses about the mechanism of Mrps35 controlling the L. monocytogenes intracellular proliferation. Among them, experiments confirmed that Mrps35 and 60S ribosomal protein L22-like 1 (Rpl22l1) were a functional correlation or potentially a compensatory mechanism during L. monocytogenes infection. This study provided new insights into understanding that L. monocytogenes infection changed the basic synthesis or metabolism-related proteins of host cells.
Collapse
Affiliation(s)
- Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Zhangfu Li
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Fang Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Zewei Lin
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Siyu Yao
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Qihuan Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jikui Liu
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|