1
|
Guzzoni V, Emerich de Abreu ICM, Bertagnolli M, Mendes RH, Belló-Klein A, Casarini DE, Flues K, Cândido GO, Paulini J, De Angelis K, Marcondes FK, Irigoyen MC, Sousa Cunha T. Aerobic training increases renal antioxidant defence and reduces angiotensin II levels, mitigating the high mortality in SHR-STZ model. Arch Physiol Biochem 2024; 130:992-1004. [PMID: 39016681 DOI: 10.1080/13813455.2024.2377381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
OBJECTVE The purpose of the research was to investigate the effects of aerobic training on renal function, oxidative stress, intrarenal renin-angiotensin system, and mortality of hypertensive and diabetic (SHR-STZ) rats. MATERIALS AND METHODS Blood pressure, creatinine, urea levels, urinary glucose, urine volume, and protein excretion were reduced in trained SHR-STZ rats. RESULTS Aerobic training not only attenuated oxidative stress but also elevated the activity of antioxidant enzymes in the kid'ney of SHR-STZ rats. Training increased intrarenal levels of angiotensin-converting enzymes (ACE and ACE2) as well as the neprilysin (NEP) activity, along with decreased intrarenal angiotensin II (Ang II) levels. Aerobic training significantly improved the survival of STZ-SHR rats. CONCLUSION The protective role of aerobic training was associated with improvements in the renal antioxidative capacity, reduced urinary protein excretion along with reduced intrarenal Ang II and increased NEP activity. These findings might reflect a better survival under the combined pathological conditions, hypertension, and diabetes.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Roberta Hack Mendes
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karin Flues
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Geórgia Orsi Cândido
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Janaína Paulini
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Kátia De Angelis
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP - UNICAMP), Piracicaba, Brazil
| | - Maria Cláudia Irigoyen
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
2
|
Fan R, Kong J, Zhang J, Zhu L. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne) 2024; 11:1471642. [PMID: 39526249 PMCID: PMC11543430 DOI: 10.3389/fmed.2024.1471642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is a global and severe complication that imposes a significant burden on individual health, families, and society. Currently, the main treatment approaches for DKD include medication, blood glucose control, protein-restricted diet, and blood pressure management, all of which have certain limitations. Exercise, as a non-pharmacological intervention, has attracted increasing attention. This review introduces the mechanisms and clinical evidence of exercise on DKD, and proposes potential exercise prescriptions. Exercise can improve blood glucose stability related to DKD and the renin-angiotensin-aldosterone system (RAAS), reduce renal oxidative stress and inflammation, enhance the crosstalk between muscle and kidneys, and improve endothelial cell function. These mechanisms contribute to the comprehensive improvement of DKD. Compared to traditional treatment methods, exercise has several advantages, including safety, effectiveness, and no significant side effects. It can be used as an adjunct therapy to medication, blood glucose control, protein-restricted diet, and blood pressure management. Despite the evident benefits of exercise in DKD management, there is still a lack of large-scale, long-term randomized controlled trials to provide more evidence and develop exercise guidelines for DKD. Healthcare professionals should actively encourage exercise in DKD patients and develop personalized exercise plans based on individual circumstances.
Collapse
Affiliation(s)
| | | | | | - Lei Zhu
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
3
|
Delevatti RS, Leonel LDS, Rodrigues JGDS, Kanitz AC, Alberton CL, Lovatel GA, Siqueira IR, Kruel LFM. Aerobic Exercise in the Aquatic Environment Suppresses the Plasma Renin Activity in Individuals with Type 2 Diabetes: A Secondary Analysis of a Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:938. [PMID: 39063514 PMCID: PMC11277236 DOI: 10.3390/ijerph21070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
To compare the acute effects of aquatic walking/running versus dry-land walking/running on blood glucose and plasma renin activity (PRA) in individuals with type 2 diabetes, participants with type 2 diabetes performed deep-water or dry-land walking and/or running sessions in a swimming pool or on an athletics track, respectively. Both sessions comprised seven blocks of 3 min at 85-90% of the heart rate deflection point (HRDP), interspersed with 2 min at <85% HRDP, totaling 35 min, with a 48 h interval between sessions. PRA and blood glucose were assessed before and immediately after the sessions. Generalized estimation equations were used to verify the session effects, with the Bonferroni post hoc test, considering the significance level as 0.05. Twelve individuals (53.2 ± 8.9 years) diagnosed with type 2 diabetes for 6.3 ± 6.34 years participated in the study. A reduction in PRA was found only after the aquatic session (-7.75 ng/mL/h; -69%; p: 0.034), while both aquatic and dry-land sessions similarly reduced the blood glucose levels (aquatic: -38 mg/dL, -21%; dry-land: -26 mg/dL, -14%; time effect, p = 0.007). Despite yielding similar glycemic reductions as dry-land walking/running, aquatic walking/running led to an expressive decrease in PRA among individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Rodrigo Sudatti Delevatti
- Department of Physical Education, Sports Center, Federal University of Santa Catarina, University Campus Trindade, Florianópolis 88040-900, SC, Brazil; (L.d.S.L.); (G.A.L.)
| | - Larissa dos Santos Leonel
- Department of Physical Education, Sports Center, Federal University of Santa Catarina, University Campus Trindade, Florianópolis 88040-900, SC, Brazil; (L.d.S.L.); (G.A.L.)
| | - João Gabriel da Silveira Rodrigues
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, University Campus, Pampulha, Belo Horizonte 31310-25, MG, Brazil;
| | - Ana Carolina Kanitz
- Department of Physical Education, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil; (A.C.K.); (L.F.M.K.)
| | - Cristine Lima Alberton
- Department of Physical Education, Federal University of Pelotas, Pelotas 96020-220, RS, Brazil;
| | - Gisele Agustini Lovatel
- Department of Physical Education, Sports Center, Federal University of Santa Catarina, University Campus Trindade, Florianópolis 88040-900, SC, Brazil; (L.d.S.L.); (G.A.L.)
| | - Ionara Rodrigues Siqueira
- Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil;
| | - Luiz Fernando Martins Kruel
- Department of Physical Education, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil; (A.C.K.); (L.F.M.K.)
| |
Collapse
|
4
|
Proença AB, Alexandre‐Santos B, Giori IG, Alex‐Marques JSF, Machado‐Santos C, Machado M, Magliano DC, da Nobrega ACL, Frantz EDC. Obesity-induced skeletal muscle remodeling: A comparative analysis of exercise training and ACE-inhibitory drug in male mice. Physiol Rep 2024; 12:e16025. [PMID: 38684378 PMCID: PMC11058004 DOI: 10.14814/phy2.16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity over-activates the classical arm of the renin-angiotensin system (RAS), impairing skeletal muscle remodeling. We aimed to compare the effect of exercise training and enalapril, an angiotensin-converting enzyme inhibitor, on RAS modulation in the skeletal muscle of obese animals. Thus, we divided C57BL/6 mice into two groups: standard chow (SC) and high-fat (HF) diet for 16 weeks. At the eighth week, the HF-fed animals were divided into four subgroups-sedentary (HF), treated with enalapril (HF-E), exercise training protocol (HF-T), and combined interventions (HF-ET). After 8 weeks of treatment, we evaluated body mass and index (BMI), body composition, exercise capacity, muscle morphology, and skeletal muscle molecular markers. All interventions resulted in lower BMI and attenuation of overactivation in the classical arm, while favoring the B2R in the bradykinin receptors profile. This was associated with reduced apoptosis markers in obese skeletal muscles. The HF-T group showed an increase in muscle mass and expression of biosynthesis markers and a reduction in expression of degradation markers and muscle fiber atrophy due to obesity. These findings suggest that the combination intervention did not have a synergistic effect against obesity-induced muscle remodeling. Additionally, the use of enalapril impaired muscle's physiological adaptations to exercise training.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Beatriz Alexandre‐Santos
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Isabele Gomes Giori
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Jaime Silva Filho Alex‐Marques
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Clarice Machado‐Santos
- Laboratory of Teaching and Research in Histology and Compared EmbryologyFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Marcus Machado
- Biomedical Science DepartmentRoss University School of Veterinary MedicineBasseterreSt. Kitts & Nevis
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Antonio Claudio Lucas da Nobrega
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- National Institute for Science & Technology—INCT Physical (in)Activity & Exercise, CNPqNiteroiRio de JaneiroBrazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- National Institute for Science & Technology—INCT Physical (in)Activity & Exercise, CNPqNiteroiRio de JaneiroBrazil
| |
Collapse
|
5
|
Baffour-Awuah B, Man M, Goessler KF, Cornelissen VA, Dieberg G, Smart NA, Pearson MJ. Effect of exercise training on the renin-angiotensin-aldosterone system: a meta-analysis. J Hum Hypertens 2024; 38:89-101. [PMID: 38017087 PMCID: PMC10844078 DOI: 10.1038/s41371-023-00872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
Blood pressure (BP) management reduces the risk of cardiovascular disease (CVD). The renin-angiotensin-aldosterone system (RAAS) plays an important role in regulating and maintaining blood volume and pressure. This analysis aimed to investigate the effect of exercise training on plasma renin, angiotensin-II and aldosterone, epinephrine, norepinephrine, urinary sodium and potassium, BP and heart rate (HR). We systematically searched PubMed, Web of Science, and the Cochrane Library of Controlled Trials until 30 November 2022. The search strategy included RAAS key words in combination with exercise training terms and medical subject headings. Manual searching of reference lists from systematic reviews and eligible studies completed the search. A random effects meta-analysis model was used. Eighteen trials with a total of 803 participants were included. After exercise training, plasma angiotensin-II (SMD -0.71; 95% CI -1.24, -0.19; p = 0.008; n = 9 trials), aldosterone (SMD -0.37; 95% CI -0.65, -0.09; p = 0.009; n = 8 trials) and norepinephrine (SMD -0.82; 95% CI -1.18, -0.46; p < 0.001; n = 8 trials) were reduced. However, plasma renin activity, epinephrine, and 24-h urinary sodium and potassium excretion remained unchanged with exercise training. Systolic BP was reduced (MD -6.2 mmHg; 95% CI -9.9, -2.6; p = 0.001) as was diastolic BP (MD -4.5 mmHg; 95% CI -6.9, -2.1; p < 0.001) but not HR (MD -3.0 bpm; 95% CI -6.0, 0.4; p = 0.053). Exercise training may reduce some aspects of RAAS and sympathetic nervous system activity, and this explains some of the anti-hypertensive response.
Collapse
Affiliation(s)
- Biggie Baffour-Awuah
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Melody Man
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Karla F Goessler
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Véronique A Cornelissen
- Cardiovascular Exercise Physiology Unit, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Gudrun Dieberg
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia.
| | - Neil A Smart
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Melissa J Pearson
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
6
|
Mohamed AA, Abdallah AA, Jan YK. Role of Enhancing Aerobic Capacity in Countering COVID-19-induced Liver Injury in Elderlies. Endocr Metab Immune Disord Drug Targets 2024; 24:418-429. [PMID: 37937559 DOI: 10.2174/0118715303250788231018080821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
COVID-19 is still a world disaster; however, its vaccination is globally available. Liver and gastrointestinal disturbances occur in patients infected with COVID-19 at varying incidences. Aging decreases the functions of the liver. Thus, the elderly have a weaker response to the COVID-19 virus. The COVID-19 virus affects the liver directly through direct and indirect mechanisms. It directly affects the renin-angiotensin system or indirectly causes sepsis, uncontrolled immune reactions, drug-related hepatic injury, and cytokine storm. Also, COVID-19 vaccines and anti-drugs have adverse effects on the liver too. Thus, this review explores the effect of enhancing aerobic capacity as a nonpharmacological intervention on decreasing COVID- 19-induced liver injury. Enhancing aerobic capacity decreases COVID-19-induced liver injury through the following: 1) downregulating systemic and tissue ACE/ANG II/AT1R axis, upregulating ACE2/ANG 1-7/Mas axis, and moving the renin-angiotensin system to the direction of the ACE2/ANG (1-7)/Mas axis, 2) Improving mitochondrial function and oxygenation to body and lung tissues, causing a decrease in harmful oxidative reactions, 3) Increasing the processing of accumulated free radicals and inhibiting the acute respiratory distress syndrome, 4) Acting as an antioxidant to protect the liver from oxidative stress, 5) Increasing the effect of antiviral drugs and COVID-19 vaccines, which improves the function of immune biomarkers, decreases the viral load, and increases the body's defense against the virus, 6) Decreasing coagulation abnormalities and thrombosis. In conclusion, enhancing aerobic capacity may be an efficient nonpharmacological intervention to decrease COVID-19-induced liver injury in elderlies and regenerate the liver to its normal status after being infected by the COVID-19 virus. It also helps to strengthen the body's immunity for better effects of both COVID-19 vaccination and drugs.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Basic Sciences, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
- Faculty of Physical Therapy, Nahda University, Beni Suef, Egypt
| | - Ahmed A Abdallah
- Department of Basic Sciences, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
7
|
Nakayasu ES, Gritsenko MA, Kim YM, Kyle JE, Stratton KG, Nicora CD, Munoz N, Navarro KM, Claborne D, Gao Y, Weitz KK, Paurus VL, Bloodsworth KJ, Allen KA, Bramer LM, Montes F, Clark KA, Tietje G, Teeguarden J, Burnum-Johnson KE. Elucidating regulatory processes of intense physical activity by multi-omics analysis. Mil Med Res 2023; 10:48. [PMID: 37853489 PMCID: PMC10583322 DOI: 10.1186/s40779-023-00477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Nathalie Munoz
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kathleen M Navarro
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, 80204, USA
| | - Daniel Claborne
- Computational Analytics Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kelsey A Allen
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Fernando Montes
- Los Angeles County Fire Department, Los Angeles, CA, 90063, USA
| | - Kathleen A Clark
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, USA
| | - Grant Tietje
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Kristin E Burnum-Johnson
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
| |
Collapse
|
8
|
Lestari YM, Tarawan VM, Achadiyani A, Radhiyanti PT, Ray HRD, Lesmana R, Goenawan H. Exercise intensities modulate ACE2/MasR/eNOS pathway in male Wistar rat's lung. Physiol Rep 2023; 11:e15803. [PMID: 37667409 PMCID: PMC10477189 DOI: 10.14814/phy2.15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Specific exercise intensities could improve lung vascular function by increasing nitric oxide (NO). The ACE2/MasR/eNOS axis is one of the pathways facilitating NO synthesis. This study examines the effect of different intensities of aerobic training on the ACE2/MasR/eNOS axis and histology of lung muscular arteries. Male Wistar rats were used in this study and randomized into control and exercise groups receiving low-, moderate-, and high-intensity training. The training was conducted for 30 min daily, five times a week, for 8 weeks. We observed that different exercise intensities affect the ACE2/MasR/eNOS pathway differently. Compared to control, high-intensity aerobic exercise significantly increased ACE2, Mas receptor (MasR), and eNOS mRNA expressions (p < 0.01). Moderate-intensity exercise significantly increased MasR and eNOS mRNA expressions compared to the control (p < 0.05), and this intensity also increased ACE2 mRNA but not significantly. Low-intensity exercise increased ACE2, MasR, and eNOS mRNA expressions but not significantly. Low-, moderate-, or high-intensity exercises reduced the medial wall thickness of the lung muscular arteries but not significantly. In conclusion, high-intensity exercise may induce NO synthesis in the lung by increasing mRNA expression of ACE2, MasR, and eNOS without decreasing the medial wall thickness of the muscular artery. Thus, high-intensity exercise may be the optimal intensity to improve NO synthesis and vascular function in the lung.
Collapse
Affiliation(s)
- Yani Medina Lestari
- Biomedical Science Master Program, Faculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
| | - Achadiyani Achadiyani
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
| | - Putri Teesa Radhiyanti
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
- Central LaboratoryUniversitas PadjadjaranJatinangorIndonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
- Central LaboratoryUniversitas PadjadjaranJatinangorIndonesia
| |
Collapse
|
9
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
10
|
XU LUSI, HU GAIZUN, QIU JIAHE, MIURA TAKAHIRO, YAMAKOSHI SEIKO, NAMAI-TAKAHASHI ASAKO, KOHZUKI MASAHIRO, ITO OSAMU. Exercise Training Prevents High Fructose-Induced Hypertension and Renal Damages in Male Dahl Salt-Sensitive Rats. Med Sci Sports Exerc 2023; 55:803-812. [PMID: 36729699 PMCID: PMC10090347 DOI: 10.1249/mss.0000000000003100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION High-fructose diet (HFr) causes metabolic syndrome, and HFr-induced hypertension and renal damage are exaggerated in Dahl salt-sensitive (DS) rats. Exercise training (Ex) has antihypertensive and renal protective effects in rats fed HFr; however, there has been little discussion about the DS rats, which exhibit metabolic disturbances. This study thus examined the effects of Ex on DS rats fed HFr. METHODS Male DS rats were divided into three groups. The control group was fed a control diet, and both the HFr group and the HFr-Ex group were fed an HFr (60% fructose). The HFr-Ex group also underwent treadmill running (20 m·min -1 , 60 min·d -1 , 5 d·wk -1 ). After 12 wk, renal function, histology, and renin-angiotensin system were examined. RESULTS HFr increased blood pressure, urinary albumin, and creatinine clearance, and Ex inhibited these increases. HFr induced glomerular sclerosis, podocyte injury, afferent arteriole thickening, and renal interstitial fibrosis, and Ex ameliorated them. HFr reduced plasma renin activity, and Ex further reduced the activity. HFr also increased the expression of angiotensinogen, renin, angiotensin-converting enzyme (ACE), and angiotensin II type 1 receptor, and Ex restored the ACE expression to the control levels. HFr decreased the expression of ACE2, angiotensin II type 2 receptor, and Mas receptor, and Ex restored the ACE2 and Mas receptor expressions to the control levels and further decreased the angiotensin II type 2 receptor expression. HFr increased the ACE activity and decreased the ACE2 activity, and Ex restored these activities to the control levels. CONCLUSIONS Ex prevents HFr-induced hypertension and renal damages in DS rats. The changes in renal renin-angiotensin system may be involved in the mechanism of the antihypertensive and renal protective effects of Ex.
Collapse
Affiliation(s)
- LUSI XU
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, JAPAN
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - GAIZUN HU
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA
| | - JIAHE QIU
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - TAKAHIRO MIURA
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - SEIKO YAMAKOSHI
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University Sendai, JAPAN
| | - ASAKO NAMAI-TAKAHASHI
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, JAPAN
| | - MASAHIRO KOHZUKI
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - OSAMU ITO
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, JAPAN
| |
Collapse
|
11
|
Dabidi Roshan V, Ahmadian M, Nasiri K, Akbari A, Ghasemi M, Nasrollahi Borujeni N, Zahedmanesh F, Nabavi Chashmi SM, Imani F. Exercise-induced expression of SARS-CoV-2 entry receptors: impact of mask modality, sex, and exercise intensity. J Sports Med Phys Fitness 2023; 63:319-328. [PMID: 35686871 DOI: 10.23736/s0022-4707.22.14093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Wearing a facemask affects physiological responses to exercise. We explored how exercising with a facemask affects the expression of SARS-CoV-2 entry receptor (angiotensin-converting enzyme 2 [ACE2]) and some associated genes (angiotensin type-1 receptors [AT<inf>1</inf>R]; Mas receptor [MasR]; hypoxia-inducible factor 1α [HIF-1α]; endothelial nitric oxide synthase [eNOS]) among healthy males and females. METHODS One hundred forty-four apparently healthy individuals (72 females; age: 30±6) were allocated to three mask groups of 48 (N95, Surgical, No Mask) with two exercise subgroups for each mask for both sexes. Participants in each experimental group performed either a submaximal (walking with no grade) or maximal (a modified Bruce Protocol) treadmill exercise test. Blood samples were collected before and after each exercise test and used to analyze the mRNA expression of the genes studied. RESULTS The post-exercise expression of genes examined were comparable between Surgical, N95, and No Mask (P>0.05). ACE2 was significantly greater in Surgical and N95 against No Mask at baseline and following moderate-intensity exercise (P<0.05). Whilst similar expressions were noted for MasR and eNOS (P>0.05), AT<inf>1</inf>R was greater in N95 than Surgical following high-intensity exercise (P<0.05). HIF-1α following either exercise intensity was significantly lower in N95 than Surgical (P<0.05). AT<inf>1</inf>R and HIF-1α were similar between Surgical and N95 against No Mask (P>0.05). ACE2 and AT<inf>1</inf>R were significantly higher in either mask modality than No Mask in males at baseline and postexercise (P<0.05). HIF-1α, MasR, and eNOS expressions were comparable between all mask groups in either sex (P<0.05). CONCLUSIONS Our findings suggest that wearing a facemask does not differentiate the gene expression of SARS-CoV-2 entry receptor following exercise among both sexes.
Collapse
Affiliation(s)
- Valiollah Dabidi Roshan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran - .,Athletic Performance and Health Research Center, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran -
| | - Mehdi Ahmadian
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Abolfazl Akbari
- School of Veterinary Medicine, Department of Physiology, Shiraz University, Shiraz, Iran
| | - Mohammad Ghasemi
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | | | - Foruzan Zahedmanesh
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Seyedeh M Nabavi Chashmi
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Fattaneh Imani
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
12
|
Hayes P, Ferrara A, Keating A, McKnight K, O'Regan A. Physical Activity and Hypertension. Rev Cardiovasc Med 2022; 23:302. [PMID: 39077709 PMCID: PMC11262345 DOI: 10.31083/j.rcm2309302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 07/31/2024] Open
Abstract
Hypertension and physical inactivity are leading causes of premature mortality. While both are modifiable risk factors for cardiovascular disease, their prevalence remains high. As populations grow older, they are more likely to develop hypertension and to become less physically active. Scientific advances have contributed to understanding of how physical activity improves blood pressure and the clinically relevant ambulatory blood pressure, but this is not reflected in hypertension guidelines for clinical management of hypertension. The aim of this paper is to clearly present up to date knowledge from scientific studies that underpin the role of physical activity in hypertension management. Longitudinal studies in this review demonstrate a protective effect of higher physical activity levels as well as higher levels of cardiorespiratory fitness. Interventional studies report improvements in blood pressure associated with aerobic, resistance and concurrent exercise; the improvements in some studies were greatest among participant groups with established hypertensions; the effect was observed for groups with treatment-resistant hypertension also, a clinically important subgroup. The most recent research provides evidence for the synergy between physical activity and pharmacotherapy for the treatment of hypertension, providing an opportunity for clinicians to promote physical activity as an adjunctive treatment for hypertension as well as a preventative strategy. This review critiques the evidence and summarises the most up to date literature in the field of physical activity and hypertension.
Collapse
Affiliation(s)
- Peter Hayes
- School of Medicine, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandra Ferrara
- School of Medicine, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Aoife Keating
- School of Medicine, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Kathryn McKnight
- School of Medicine, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrew O'Regan
- School of Medicine, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
13
|
Kjertakov M. Commentary: Moderate exercise may prevent the development of severe forms of COVID-19, whereas high-intensity exercise may result in the opposite. Front Physiol 2022; 13:902739. [PMID: 36072850 PMCID: PMC9441653 DOI: 10.3389/fphys.2022.902739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
|
14
|
Krittanawong C, Maitra N, Kumar A, Hahn J, Wang Z, Carrasco D, Zhang HJ, Sun T, Jneid H, Virani SS. COVID-19 and preventive strategy. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2022; 12:153-169. [PMID: 36147788 PMCID: PMC9490164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
In December 2019, an unprecedented outbreak of the novel coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) began to spread internationally, now impacting more than 293,750,692 patients with 5,454,131 deaths globally as of January 5, 2022. COVID-19 is highly pathogenic and contagious which has caused a large-scale epidemic impacting more deaths than the severe acute respiratory syndrome (SARS) epidemic in 2002-2003 or the Middle East respiratory syndrome (MERS) epidemic in 2012-2013. Although COVID-19 symptoms are mild in most people, in those with pre-existing comorbidities there is an increased risk of progression to severe disease and death. In an attempt to mitigate this pandemic, urgent public health measures including quarantining exposed individuals and social distancing have been implemented in most states, while some states have even started the process of re-opening after considering both the economic and public health consequences of social distancing measures. While prevention is crucial, both novel agents and medications already in use with other indications are being investigated in clinical trials for patients with COVID-19. The collaboration between healthcare providers, health systems, patients, private sectors, and local and national governments is needed to protect both healthcare providers and patients to ultimately overcome this pandemic. The purpose of this review is to summarize the peer-reviewed and preprint literature on the epidemiology, transmission, clinical presentation, and available therapies as well as to propose a preventive strategy to overcome the present global pandemic.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Section of Cardiology, Baylor College of MedicineHouston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, Mount Sinai HeartNew York, NY, USA
| | - Neil Maitra
- Section of Cardiology, Baylor College of MedicineHouston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
| | - Anirudh Kumar
- Heart and Vascular Institute, Cleveland ClinicCleveland, OH, USA
| | - Joshua Hahn
- Section of Cardiology, Baylor College of MedicineHouston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for The Science of Health Care Delivery, Mayo ClinicRochester, MN, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo ClinicRochester, MN, USA
| | - Daniela Carrasco
- Section of Cardiology, Baylor College of MedicineHouston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
| | - Hong Ju Zhang
- Division of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s HealthBeijing, China
| | - Tao Sun
- Division of Cardiology, Anzhen Hospital Capital Medical UniversityBeijing, China
| | - Hani Jneid
- Section of Cardiology, Baylor College of MedicineHouston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
| | - Salim S Virani
- Section of Cardiology, Baylor College of MedicineHouston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
| |
Collapse
|
15
|
Sakuyama A, Ogawa Y, Xu L, Komatsu M, Miura T, Namai-Takahashi A, Kohzuki M, Ito O. Effects of Exercise Training on the Renin-Angiotensin System in the Kidneys of Dahl Salt-Sensitive Rats. Med Sci Sports Exerc 2022; 54:1105-1113. [PMID: 35220367 DOI: 10.1249/mss.0000000000002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Exercise training (Ex) has antihypertensive and renal protective effects; however, the precise mechanisms remain unclear. The renal renin-angiotensin system (RAS) plays a vital role in renal function and pathology. Therefore, we investigated the effects of Ex on the renal RAS components in Dahl salt-sensitive (Dahl-S) rats. METHODS Male Dahl-S rats were divided into four groups: normal salt diet + sedentary, normal salt diet + Ex, high-salt diet (HS, 8% NaCl) + sedentary, and HS + Ex. Treadmill running was performed for 8 wk in the Ex groups. RESULTS Ex attenuated the HS-induced renal dysfunction and glomerular injury without causing blood pressure alterations. HS increased urinary excretion of both total and intact angiotensinogen. Ex decreased the HS-induced increased urinary excretion of total angiotensinogen. However, it did not change the HS-induced urinary excretion of intact angiotensinogen, indicating reduced intact angiotensinogen cleaving. Ex restored the HS-induced increased angiotensinogen and angiotensin II type 1 receptor expressions in the outer medulla and the HS-induced increased angiotensin-converting enzyme expression in the cortex. Ex restored the HS-induced decreased renin expression in the cortex and outer medulla, and the HS-induced decreased angiotensin-converting enzyme 2, angiotensin II type 2 receptor, and Mas receptor expressions in the outer medulla. CONCLUSIONS Ex attenuates HS-induced renal dysfunction, glomerular injury, and renal RAS dysregulation in Dahl-S rats.
Collapse
Affiliation(s)
| | - Yoshiko Ogawa
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, JAPAN
| | - Lusi Xu
- Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, JAPAN
| | - Miwa Komatsu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - Takahiro Miura
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - Asako Namai-Takahashi
- Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, JAPAN
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, JAPAN
| |
Collapse
|
16
|
Klöting N, Schwarzer M, Heyne E, Ceglarek U, Hoffmann A, Krohn K, Doenst T, Blüher M. Intrinsic Exercise Capacity Affects Glycine and Angiotensin-Converting Enzyme 2 (ACE2) Levels in Sedentary and Exercise Trained Rats. Metabolites 2022; 12:548. [PMID: 35736481 PMCID: PMC9228358 DOI: 10.3390/metabo12060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been identified as the cellular entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High ACE2 tissue expression and low glycine levels were suggested to increase susceptibility for SARS-CoV-2 infection and increasing circulating ACE2 has been proposed as one possible strategy to combat COVID-19. In humans, aerobic physical exercise induces an increase in plasma ACE2 in some individuals. However, it is not clear whether glycine and ACE2 levels depend on intrinsic exercise capacity or on exercise training. We used rats selectively bred for high intrinsic exercise capacity (HCR) or low exercise capacity (LCR) and tested the influence of this genetic predetermination and/or aerobic exercise on metabolites, ACE2 tissue expression and circulating ACE 2. ACE2 expression was measured in different tissues in the sedentary animals and again after 4 weeks of high-intensity aerobic exercise in both LCRs and HCRs. Sedentary HCRs exhibited significantly higher circulating ACE2 concentrations compared to LCRs, but a lower expression of ACE2 in all investigated tissues except for adipose tissue. Body weight was negatively correlated with serum ACE2 and positively correlated with ACE2 expression in the heart. Aerobic exercise caused a significant decrease in ACE2 expression in the lung, heart, muscle, and kidney both in LCRs and HCRs. Our results suggest that ACE2 expression, circulating ACE2 and glycine serum concentration are related to aerobic intrinsic exercise capacity and can be influenced with exercise. These results may support the hypothesis that physically fit individuals have a lower susceptibility for COVID-19 infection.
Collapse
Affiliation(s)
- Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig, Ph. Rosenthal Street 27, 04103 Leipzig, Germany; (A.H.); (M.B.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (M.S.); (E.H.); (T.D.)
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (M.S.); (E.H.); (T.D.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig, Ph. Rosenthal Street 27, 04103 Leipzig, Germany; (A.H.); (M.B.)
| | - Knut Krohn
- CoreUnit DNA Technologies, Medical Faculty, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany;
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (M.S.); (E.H.); (T.D.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig, Ph. Rosenthal Street 27, 04103 Leipzig, Germany; (A.H.); (M.B.)
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Chang YS, Lin CL, Lee CW, Lin HC, Wu YT, Shih YH. Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. Int J Mol Sci 2022; 23:ijms23105531. [PMID: 35628344 PMCID: PMC9146761 DOI: 10.3390/ijms23105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hypertension is associated with blood-brain barrier alteration and brain function decline. Previously, we established the 2-kidney,1-clip (2K1C) hypertensive mice model by renin-angiotensin system (RAS) stimulating. We found that 2K1C-induced hypertension would impair hippocampus-related memory function and decrease adult hippocampal neurogenesis. Even though large studies have investigated the mechanism of hypertension affecting brain function, there remains a lack of efficient ways to halt this vicious effect. The previous study indicated that running exercise ameliorates neurogenesis and spatial memory function in aging mice. Moreover, studies showed that exercise could normalize RAS activity, which might be associated with neurogenesis impairment. Thus, we hypothesize that running exercise could ameliorate neurogenesis and spatial memory function impairment in the 2K1C-hypertension mice. In this study, we performed 2K1C surgery on eight-weeks-old C57BL/6 mice and put them on treadmill exercise one month after the surgery. The results indicate that running exercise improves the spatial memory and neurogenesis impairment of the 2K1C-mice. Moreover, running exercise normalized the activated RAS and blood-brain barrier leakage of the hippocampus, although the blood pressure was not decreased. In conclusion, running exercise could halt hypertension-induced brain impairment through RAS normalization.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan 70043, Taiwan;
| | - Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Yi-Ting Wu
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 92641, Taiwan;
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2144)
| |
Collapse
|
18
|
Poor Performance of Angiotensin II Enzyme-Linked Immuno-Sorbent Assays in Mostly Hypertensive Cohort Routinely Screened for Primary Aldosteronism. Diagnostics (Basel) 2022; 12:diagnostics12051124. [PMID: 35626280 PMCID: PMC9139787 DOI: 10.3390/diagnostics12051124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Primary aldosteronism (PA) is the most common, but broadly underdiagnosed, form of hormonal hypertension. To improve screening procedures, current biochemical approaches aim to determine newly appreciated angiotensin II (Ang II) and calculate the aldosterone-to-angiotensin II ratio (AA2R). Thus, the aim of this study was to assess the diagnostic performance of these screening tests in comparison to the aldosterone-to-direct renin ratio (ADRR), which is routinely used. Cheap and available ELISA was used for Ang II measurement. To our knowledge, this is the first study of this laboratory method’s usage in PA. The study cohort included 20 PA patients and 80 controls. Ang II concentrations were comparable between PA and non-PA patients (773.5 vs. 873.2 pg/mL, p = 0.23, respectively). The AA2R was statistically significantly higher in PA group when compared with non-PA (0.024 vs. 0.012 ng/dL/pg/mL, p < 0.001). However, the diagnostic performance of the AA2R was significantly worse than that of the ADRR (AUROC 0.754 vs. 0.939, p < 0.01). The sensitivity and specificity of the AA2R were 70% and 76.2%, respectively. Thus, the AA2R was not effective as a screening tool for PA. Our data provide important arguments in the discussion on the unsatisfactory accuracy of renin−angiotensin system evaluation by recently repeatedly used ELISA tests.
Collapse
|
19
|
Angiotensin II Promotes Skeletal Muscle Angiogenesis Induced by Volume-Dependent Aerobic Exercise Training: Effects on miRNAs-27a/b and Oxidant-Antioxidant Balance. Antioxidants (Basel) 2022; 11:antiox11040651. [PMID: 35453336 PMCID: PMC9026451 DOI: 10.3390/antiox11040651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Aerobic exercise training (ET) produces beneficial adaptations in skeletal muscles, including angiogenesis. The renin–angiotensin system (RAS) is highly involved in angiogenesis stimuli. However, the molecular mechanisms underlying capillary growth in skeletal muscle induced by aerobic ET are not completely understood. This study aimed to investigate the effects of volume-dependent aerobic ET on skeletal muscle angiogenesis involving the expression of miRNAs-27a and 27b on RAS and oxidant–antioxidant balance. Eight-week-old female Wistar rats were divided into three groups: sedentary control (SC), trained protocol 1 (P1), and trained protocol 2 (P2). P1 consisted of 60 min/day of swimming, 5×/week, for 10 weeks. P2 consisted of the same protocol as P1 until the 8th week, but in the 9th week, rats trained 2×/day, and in the 10th week, trained 3×/day. Angiogenesis and molecular analyses were performed in soleus muscle samples. Furthermore, to establish ET-induced angiogenesis through RAS, animals were treated with an AT1 receptor blocker (losartan). Aerobic ET promoted higher VO2 peak and exercise tolerance values. In contrast, miRNA-27a and -27b levels were reduced in both trained groups, compared with the SC group. This was in parallel with an increase in the ACE1/Ang II/VEGF axis, which led to a higher capillary-to-fiber ratio. Moreover, aerobic ET induced an antioxidant profile increasing skeletal muscle SOD2 and catalase gene expression, which was accompanied by high nitrite levels and reduced nitrotyrosine concentrations in the circulation. Additionally, losartan treatment partially re-established the miRNAs expression and the capillary-to-fiber ratio in the trained groups. In summary, aerobic ET promoted angiogenesis through the miRNA-27a/b–ACE1/Ang II/VEGF axis and improved the redox balance. Losartan treatment demonstrates the participation of RAS in ET-induced vascular growth. miRNAs and RAS components are promising potential targets to modulate angiogenesis for combating vascular diseases, as well as potential biomarkers to monitor training interventions and physical performance.
Collapse
|
20
|
Association between Exercise and Blood Pressure in Hypertensive Residents: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2453805. [PMID: 35069755 PMCID: PMC8767394 DOI: 10.1155/2022/2453805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exercise is recommended as an effective lifestyle behaviour for adults to prevent and treat hypertension. In this study, a randomized-effect meta-analysis was used to analyse the influence of exercise interventions on blood pressure in patients with hypertension. METHODS Candidate papers were retrieved from PubMed, Web of Science, Embase, and Cochrane Library electronic databases, and 46 studies were finally included and analysed. RESULTS It was shown that preplanned walking (systolic blood pressure (SBP): WMD (weighted mean difference) = -5.94, 95% CI: -8.57, -3.30; diastolic blood pressure (DBP): WMD = -2.66, 95% CI: -3.66, -1.67), yoga (SBP: WMD = -5.09, 95% CI: -9.28, -0.89; DBP: WMD = -3.06, 95% CI: -5.16, -0.96), aquatic sports (SBP WMD = -7.53, 95% CI: -11.40, -3.65; DBP: WMD = -5.35, 95% CI: -9.00, -1.69), and football (SBP: WMD = -6.06, 95% CI: -9.30, -2.82; DBP: WMD = -5.55, 95% CI: -8.98, -2.13) had significant effects on blood pressure reduction. However, Tai Chi (SBP: WMD = -8.31, 95% CI: -20.39, 3.77; DBP: WMD = -3.05, 95% CI: -6.96, 0.87) and Qigong (SBP: WMD = -4.34, 95% CI: -13.5, 4.82; DBP: WMD = -3.44, 95% CI: -7.89, 1.01) did not significantly reduce blood pressure. The heterogeneity of the meta-analysis was high. CONCLUSION Walking, yoga, aquatic sports, and football were feasible and independent lifestyle interventions, and they were effective options for treating hypertension. More scientifically designed randomized controlled trials are needed in the future to further compare different forms of exercise for the treatment of hypertension.
Collapse
|
21
|
Kushkestani M, Parvani M, Kazemzadeh Y. SARS-COV-2 in Type 2 Diabetic Patients: Possible Roles of Exercise Training as a Medicine. Curr Diabetes Rev 2022; 18:e010921196029. [PMID: 34468301 DOI: 10.2174/1573399817666210901121824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
SARS-COV-2 is the novel type of beta coronavirus that was first evolved in December 2019 in Wuhan, China. People with type 2 diabetes are the most vulnerable group to SARS-COV-2 and its associated complications. Many factors such as medication, pathophysiologic-induced compensatory mechanisms, and alterations in protein expression and immune system function can all contribute to severe outcomes in diabetics. In this review article, we first described the possible mechanisms of increased risk and more severe complications rate of SARS-COV-2 in diabetic patients. Secondly, we discussed the crucial role of exercise in diabetic patients in balancing the RAS system (ACE2/ACE). Finally, we examine the possible roles of acute and chronic exercise in reducing SARS-COV-2 severe outcomes in people with diabetes in accordance with the latest evidence. We concluded that regular exercise (especially moderate-intensity exercise) can play a role in immune- enhancing, anti-inflammatory, and anti-oxidant activities and can balance the ACE2/ACE ratio (decreasing ANG2 levels) in diabetic subjects.
Collapse
Affiliation(s)
- Mehdi Kushkestani
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba\'i University, Tehran, Iran
| | - Mohsen Parvani
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba\'i University, Tehran, Iran
| | - Yaser Kazemzadeh
- Department of Physiology Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
22
|
Supriya R, Gao Y, Gu Y, Baker JS. Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Front Immunol 2021; 12:761382. [PMID: 35003073 PMCID: PMC8727446 DOI: 10.3389/fimmu.2021.761382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Rashmi Supriya,
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
23
|
Sanz B, Rezola-Pardo C, Arrieta H, Fernández-Atutxa A, Lora-Diaz I, Gil-Goikouria J, Rodriguez-Larrad A, Irazusta J. High serum angiotensin-converting enzyme 2 activity as a biomarker of frailty in nursing home residents. Exp Gerontol 2021; 158:111655. [PMID: 34915109 DOI: 10.1016/j.exger.2021.111655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) are two of the main components of the renin-angiotensin system (RAS). Imbalanced RAS showing lower ACE2 has been associated with increased cardiovascular risk, muscular pathologies, sarcopenia, frailty, other age-related pathologies and a poorer health status. However, its role in aging remains unclear. Thus, the aim of this work was to analyze the serum enzymatic activity of ACE and ACE2, the ACE/ACE2 ratio and its association with anthropometric parameters, blood pressure, physical function, dependence and frailty in older people living in nursing homes. This study is a secondary analysis of baseline data from two randomized clinical trials in a population of 228 older individuals living in nursing homes (Spain). Serum ACE and ACE2 enzymatic activities were measured by fluorimetry. Variables linked to cardiovascular risk, physical function, dependence and frailty were measured using validated tests, indexes and scales. Association between ACE, ACE2 serum activities, the ACE/ACE2 ratio and the rest of the quantitative variables were assessed by Pearson's correlations and by partial correlations controlled by age and sex. The association between serum ACE and ACE2 activities, the ACE/ACE2 ratio and frailty scores was analyzed by generalized linear models with and without controlling for sex and age. Differences in enzymatic activities between sexes and between frail and non-frail individuals were analyzed using Student's t-test and general linear models to control analysis by age and sex. We found that higher serum ACE2 activity was associated with a higher body mass index, worse physical function, greater dependence and increased frailty. This association is consistent with the elevation of circulating ACE2 in certain pathological conditions and in line with RAS deregulation in muscular dystrophies. Serum ACE2 activity, in combination with other molecules, could be proposed as a biomarker of poor physical function, higher dependence and frailty.
Collapse
Affiliation(s)
- Begoña Sanz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain.
| | - Chloe Rezola-Pardo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
| | - Haritz Arrieta
- Department of Nursing II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
| | - Ainhoa Fernández-Atutxa
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
| | - Inmaculada Lora-Diaz
- DomusVi Berra, Berratxo Bidea, 2, 20017 Donostia-San Sebastián, Gipuzkoa, Spain.
| | - Javier Gil-Goikouria
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain.
| | - Ana Rodriguez-Larrad
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain.
| | - Jon Irazusta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|
24
|
Arazi H, Falahati A, Suzuki K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front Physiol 2021; 12:747200. [PMID: 34867452 PMCID: PMC8634264 DOI: 10.3389/fphys.2021.747200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the angiotensin converting enzyme 2 (ACE2) is the cellular receptor of SARS-CoV-2, it has a strong interaction with the renin angiotensin system (RAS). Experimental studies have shown that the higher levels of ACE2 or increasing ACE2/ACE1 ratio improve COVID-19 outcomes through lowering inflammation and death. Aerobic moderate intensity physical exercise fights off infections by two mechanisms, the inhibition of ACE/Ang II/AT1-R pathway and the stimulation of ACE2/Ang-(1-7)/MasR axis. Exercise can also activate the anti-inflammatory response so that it can be a potential therapeutic strategy against COVID-19. Here, we summarize and focus the relation among COVID-19, RAS, and immune system and describe the potential effect of aerobic moderate intensity physical exercise against CoV as a useful complementary tool for providing immune protection against SARS-CoV-2 virus infection, which is a novel intervention that requires further investigation.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Akram Falahati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
25
|
Hagiu BA. Moderate exercise may prevent the development of severe forms of COVID-19, whereas high-intensity exercise may result in the opposite. Med Hypotheses 2021; 157:110705. [PMID: 34670172 PMCID: PMC8520569 DOI: 10.1016/j.mehy.2021.110705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Sedentary lifestyle increases the risk of hospitalization for COVID-19 independently of other factors. There is enough statistics to show that exercise prevents severe forms of COVID-19, but current recommendations do not set an upper limit for exercise intensity. The hypothesis presented in the paper states that intense exercise, through blood hypoxia, increases the expression of transmembrane angiotensin-converting enzyme 2 (tACE2) in the vascular endothelium, increasing the risk of developing serious forms of disease, especially in the untrained. On the other hand, moderate-intensity exercise increases the blood concentration of soluble angiotensin-converting enzyme 2 (ACE2) which has a protective role for SARS-CoV-2 infection and may prevent complications. The importance of this hypothesis consists in the revision of COVID-19 prophylaxis programs through physical exercises, with the possibility of administration of antioxidants to speed up the adaptation of vascular endothelial cells to exertion.
Collapse
Affiliation(s)
- B A Hagiu
- Department of Physical Education and Sport, Faculty of Physical Education and Sports, "Alexandru Ioan Cuza" University of Iasi, Romania.
| |
Collapse
|
26
|
Ejaz R, Ashraf MT, Qadeer S, Irfan M, Azam A, Butt S, Bibi S. Gender-based incidence, recovery period, and mortality rate of COVID-19 among the population of district Attock, Pakistan. BRAZ J BIOL 2021; 83:e249125. [PMID: 34669800 DOI: 10.1590/1519-6984.249125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is reported as an extremely contagious disease with common symptoms of fever, dry cough, sore throat, and tiredness. The published literature on incidence and gender-wise prevalence of COVID-19 is scarce in Pakistan. Therefore, the present study was designed to compare the distribution, incubation period and mortality rate of COVID-19 among the male and female population of district Attock. The data were collected between 01 April 2020 and 07 December 2020 from the population of district Attock, Pakistan. A total of 22,962 individuals were screened and 843 were found positive for RT-qPCR for SARS-CoV-2. The confirmed positive cases were monitored carefully. Among the positive cases, the incidence of COVID-19 was 61.7% among males and 38.2% among females. The average recovery period of males was 18.89±7.75 days and females were 19±8.40 days from SARS-CoV-2. The overall mortality rate was 8.06%. The death rate of male patients was significantly higher (P<0.05) compared to female patients. Also, the mortality rate was higher (P<0.05) in male patients of 40-60 years of age compared to female patients of the same age group. Moreover, the mortality rate significantly increased (P<0.05) with the increase of age irrespective of gender. In conclusion, the incidence and mortality rate of COVID-19 is higher in males compared to the female population. Moreover, irrespective of gender the mortality rate was significantly lower among patients aged <40 years.
Collapse
Affiliation(s)
- R Ejaz
- Shaheed Benazir Bhutto Women University, Department of Zoology, Peshawar, Pakistan
| | - M T Ashraf
- Health Services Academy, Islamabad, Pakistan
| | - S Qadeer
- University of Education, Division of Science and Technology, Department of Zoology, Lahore, Pakistan
| | - M Irfan
- Pir Mehr Ali Shah, Arid Agriculture University, Department of Zoology, Rawalpindi, Pakistan
| | - A Azam
- Shaheed Benazir Bhutto Women University, Department of Zoology, Peshawar, Pakistan
| | - S Butt
- Shaheed Benazir Bhutto Women University, Department of Microbiology, Peshawar, Pakistan
| | - S Bibi
- Pir Mehr Ali Shah, Arid Agriculture University, Department of Zoology, Rawalpindi, Pakistan
| |
Collapse
|
27
|
Garcia-Pelagio KP, Hew-Butler T, Fahlman MM, Roche JA. Women's Lives Matter-The Critical Need for Women to Prioritize Optimal Physical Activity to Reduce COVID-19 Illness Risk and Severity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10271. [PMID: 34639569 PMCID: PMC8507774 DOI: 10.3390/ijerph181910271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023]
Abstract
Physical activity (PA) is beneficial for the health and wellness of individuals and societies. During an infectious disease pandemic, such as the one caused by COVID-19, social distancing, quarantines, and lockdowns are used to reduce community spread of the disease. Unfortunately, such nonpharmacological interventions or physical risk mitigation measures also make it challenging to engage in PA. Reduced PA could then trigger physiological changes that affect both mental and physical health. In this regard, women are more likely to experience physical and psychological distress. PA is a safe and effective nonpharmacological modality that can help prevent and manage several mental and physical health problems when performed correctly. PA might even confer benefits that are directly related to decreasing COVID-19 morbidity and mortality in women. In this review, we summarize why optimal PA must be a priority for women during the COVID-19 pandemic. We then discuss chronic COVID-19 illness and its impact on women, which further underscores the need for worldwide preventive health strategies that include PA. Finally, we discuss the importance of vaccination against COVID-19 for women, as part of prioritizing preventive healthcare and an active lifestyle.
Collapse
Affiliation(s)
- Karla P. Garcia-Pelagio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 4510, Mexico
| | - Tamara Hew-Butler
- Division of Kinesiology, Health and Sport Studies, College of Education, Wayne State University, Detroit, MI 48201, USA; (T.H.-B.); (M.M.F.)
| | - Mariane M. Fahlman
- Division of Kinesiology, Health and Sport Studies, College of Education, Wayne State University, Detroit, MI 48201, USA; (T.H.-B.); (M.M.F.)
| | - Joseph A. Roche
- Physical Therapy Program, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Seman S, Dražilov SS, Ilić V, Tešić M, Stojiljković S, Arena R, Popović D. Physical activity and exercise as an essential medical strategy for the COVID-19 pandemic and beyond. Exp Biol Med (Maywood) 2021; 246:2324-2331. [PMID: 34233523 DOI: 10.1177/15353702211028543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
COVID-19 disease has been a problem in today's society, which has worldwide effects on different areas, especially on the economy; also, from a health perspective, the disease affects the daily life quality. Physical activity is one major positive factor with regard to enhancing life quality, as it can improve the whole psychological, social, and physical health conditions. Current measures such as social distancing are focused on preventing the viral spread. However, the consequences on other areas are yet to be investigated. Elderly, people with chronic diseases, obese, and others benefit largely from exercise from the perspective of improved health, and preventive measures can drastically improve daily living. In this article, we elaborate the effects of exercise on the immune system and the possible strategies that can be implemented toward greater preventive potential.
Collapse
Affiliation(s)
- Stefan Seman
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade 11000, Serbia.,Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL 60612, USA
| | | | - Vladimir Ilić
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade 11000, Serbia
| | - Milorad Tešić
- Division of Cardiology, Clinical Center of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Stanimir Stojiljković
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade 11000, Serbia
| | - Ross Arena
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL 60612, USA.,Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dejana Popović
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL 60612, USA.,Division of Cardiology, Clinical Center of Serbia, University of Belgrade, Belgrade 11000, Serbia.,Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
29
|
Aimo A, Vergaro G, Passino C, Clerico A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021; 58:530-545. [PMID: 34196254 DOI: 10.1080/10408363.2021.1942782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the progressive improvements in diagnosis and therapy during the first 20 years of this century, the morbidity and mortality of patients with heart failure (HF) remain high, resulting in an enormous health and economic burden. Only a further improvement in understanding the pathophysiological mechanisms related to the development of cardiac injury and dysfunction can allow more innovative and personalized approaches to HF management. The renin-angiotensin system (RAS) has a critical role in cardiovascular physiology by regulating blood pressure and electrolyte balance. The RAS is mainly regulated by both angiotensin converting enzyme (ACE) and type 2 angiotensin converting enzyme (ACE2). However, the balance between the various peptides and peptidases constituting the RAS/ACE pathway remains in great part unraveled in patients with HF. This review summarizes the role of the RAS/ACE axis in cardiac physiology and HF pathophysiology as well as some analytical issues relevant to the clinical and laboratory assessment of inter-relationships between these two systems. There is evidence that RAS peptides represent a dynamic network of peptides, which are altered in different HF states and influenced by medical therapy. However, the mechanisms of signal transduction have not been fully elucidated under physiological and pathophysiological conditions. Further investigations are necessary to explore novel molecular mechanisms related to the RAS, which will provide alternative therapeutic agents. Moreover, monitoring the circulating levels of active RAS peptides in HF patients may enable a personalized approach by facilitating assessment of the pathophysiological status of several cardiovascular diseases and thus better selection of therapies for HF patients.
Collapse
Affiliation(s)
- Alberto Aimo
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Aldo Clerico
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
30
|
Lower limb strength training (LLST) modulates serum and urinary levels of renin angiotensin system molecules in healthy young males. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Park SY, Reinl M, Schott N. Effects of acute exercise at different intensities on fine motor-cognitive dual-task performance while walking: A functional near-infrared spectroscopy study. Eur J Neurosci 2021; 54:8225-8248. [PMID: 33876859 DOI: 10.1111/ejn.15241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/26/2022]
Abstract
Studies on the effects of acute exercises on cognitive functions vary greatly and depend on the duration and intensity of exercise and the type of cognitive tasks. This study aimed to investigate the neural correlates that underpin the acute effects of high-intensity interval (HIIE) versus moderate-intensity continuous exercise (MCE) on fine motor-cognitive performance while walking (dual-task, DT) in healthy young adults. Twenty-nine healthy right-handers (mean age: 25.1 years ± 4.04; 7 female) performed the digital trail-making-test (dTMT) while walking (5 km/h) before and after acute exercise. During task performance, the hemodynamic activation of the frontopolar area (FPA), dorsolateral prefrontal (DLPFC), and motor cortex (M1) was recorded using functional near-infrared spectroscopy (fNIRS). Both HIIE and MCE resulted in improved dTMT performance, as reflected by an increase in the number of completed circles and a reduction in the time within and between circuits (reflecting improvements in working memory, inhibition, and decision making). Notably, HIIE evoked higher cortical activity on all brain areas measured in the present study than the MCE group. To our knowledge, these results provide the first empirical evidence using a mobile neuroimaging approach that both HIIE and MCE improve executive function during walking, likely mediated by increased activation of the task-related area of the prefrontal cortex and the ability to effectively use, among other things, high fitness levels as neural enrichment resources.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Sport and Exercise Science, Institute of Sport Psychology and Human Movement Performance, University of Stuttgart, Stuttgart, Germany
| | - Maren Reinl
- Department of Sport and Exercise Science, Institute of Sport Psychology and Human Movement Performance, University of Stuttgart, Stuttgart, Germany
| | - Nadja Schott
- Department of Sport and Exercise Science, Institute of Sport Psychology and Human Movement Performance, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
32
|
Souza RAD, Nakamura PM, Teixeira IP, Souza MTD, Higino WP. A Probable Relationship between Physical Exercise and COVID-19 Mediated by the Renin-Angiotensin-Aldosterone System. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
De Sousa RAL, Improta-Caria AC, Aras-Júnior R, de Oliveira EM, Soci ÚPR, Cassilhas RC. Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. Neurol Sci 2021; 42:1325-1334. [PMID: 33492565 PMCID: PMC7829117 DOI: 10.1007/s10072-021-05082-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
The current pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The quarantine period during corona virus disease 19 (COVID-19) outbreak might affect the quality of life leading thousands of individuals to diminish the daily caloric expenditure and mobility, leading to a sedentary behavior and increase the number of health disorders. Exercising is used as a non-pharmacological treatment in many chronic diseases. Here, we review the molecular mechanisms of physical exercise in COVID-19 pandemic on mental health. We also point links between exercise, mental, and cardiovascular health. The infection caused by SARS-CoV-2 affects host cells binding to angiotensin-converting enzyme-2 (ACE2), which is the receptor for SARS-CoV-2. If there is not enough oxygen supply the lungs and other tissues, such as the heart or brain, are affected. SARS-CoV-2 enhances ACE2 leading to inflammation and neuronal death with possible development of mood disorders, such as depression and anxiety. Physical exercise also enhances the ACE2 expression. Conversely, the activation of ACE2/Ang 1-7/Mas axis by physical exercise induces an antiinflammatory and antifibrotic effect. Physical exercise has beneficial effects on mental health enhancing IGF-1, PI3K, BDNF, ERK, and reducing GSK3β levels. In addition, physical exercise enhances the activity of PGC-1α/ FNDC5/Irisin pathway leading to neuronal survival and the maintenance of a good mental health. Thus, SARS-CoV-2 infection leads to elevation of ACE2 levels through pathological mechanisms that lead to neurological and cardiovascular complications, while the physiological response of ACE2 to physical exercise improves cardiovascular and mental health.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.
- Laboratório de Treinamento Físico (LETFIS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, Km 583, Alto da Jacuba, n° 5000 - CEP, Diamantina, MG, 39100-000, Brazil.
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Edilamar Menezes de Oliveira
- Biodynamics of the Human Body Movement Department, School of Physical Education and Sports, Sao Paulo University - USP, São Paulo, Brazil
| | - Úrsula Paula Reno Soci
- Biodynamics of the Human Body Movement Department, School of Physical Education and Sports, Sao Paulo University - USP, São Paulo, Brazil
| | - Ricardo Cardoso Cassilhas
- Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil
- Laboratório de Treinamento Físico (LETFIS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, Km 583, Alto da Jacuba, n° 5000 - CEP, Diamantina, MG, 39100-000, Brazil
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| |
Collapse
|
34
|
de Souto Barreto P, Vellas B, Rolland Y. Physical activity and exercise in the context of SARS-Cov-2: A perspective from geroscience field. Ageing Res Rev 2021; 66:101258. [PMID: 33450400 PMCID: PMC8042847 DOI: 10.1016/j.arr.2021.101258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The recent pandemics of the SARS-Cov-2 has pushed physical activity (PA) and exercise at the forefront of the discussion, since PA is associated with a reduced risk of developing all the chronic diseases strongly associated with severe cases of SARS-Cov-2 and exercise is considered a complimentary therapeutics for the treatment of these age-related conditions. The mechanisms through which PA and exercise could contribute to reduce the severity of the SARS-Cov-2 infection would be multiple, including their capacity to boost the immune system, but also their global effect on slowing down the progression of the aging process. The present perspective presents a discussion on how PA and exercise might hypothetically be linked with SARS-Cov-2 infection, current scientific gaps and shortcomings as well as recommendations for advancing research in this area, placing the debate in the context of aging and gerosciences.
Collapse
Affiliation(s)
- Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France.
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - Yves Rolland
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| |
Collapse
|
35
|
Costa HA, Dias CJM, Martins VDA, de Araujo SA, da Silva DP, Mendes VS, de Oliveira MNS, Mostarda CT, Borges ACR, Ribeiro RM, Filho NS. Effect of treatment with carvacrol and aerobic training on cardiovascular function in spontaneously hypertensive rats. Exp Physiol 2021; 106:891-901. [PMID: 33595154 DOI: 10.1113/ep089235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can two non-drug therapies, carvacrol and aerobic physical training, together have additive effects on the reduction of cardiovascular risks and control of arterial hypertension? What is the main finding and its importance? The oral use of carvacrol (20 mg/kg/day) can control sustained hypertension in spontaneously hypertensive rats, and when this use is associated with aerobic physical training, there is a more pronounced effect on the reduction of blood pressure values, making these therapies an adjunct option in the drug treatment of hypertension. ABSTRACT Systemic arterial hypertension is considered the foremost cardiovascular risk factor, and it is important to examine different therapies that help prevent and treat it, especially when associated with other cardiovascular risk factors. In this context, it is known that both carvacrol and aerobic physical training benefit the cardiovascular system. This study investigated the effects of treatment with carvacrol combined with aerobic exercise on hypertensive rats with cardiovascular risk parameters. We used an experimental design with six groups: normotensive control (Wistar rats); hypertensive control (spontaneously hypertensive rats, SHR); positive control rats treated with amlodipine (Aml-20 mg); rats treated with carvacrol (Carv-20 mg); rats trained with exercise (Exer); and rats treated with carvacrol and exercise (ExerCarv). The treatment lasted for 4 weeks, monitoring heart rate and systolic blood pressure (SBP). At the end of the treatment, vascular reactivity tests were performed in addition to biochemical measurements of urea, creatinine, aspartate aminotransferase, alanine aminotransferase, triglycerides, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, atherogenic indexes, relative heart weight and histopathological analysis of cardiac perivascular tissue. Significant reductions in SBP were observed after the training period, with the ExerCarv group showing a greater magnitude of reduction (∆SBP = 88 ± 10.0 mmHg, 42%). This group also experienced reductions in atherogenic indices and improvement in all analysed lipid parameters, with no differences observed in the Exer group. The findings indicated that the interaction between aerobic exercise and carvacrol offers a greater BP reduction. Exercise is particularly effective for controlling biochemical parameters of cardiovascular risk, regardless of carvacrol use.
Collapse
Affiliation(s)
- Herikson Araujo Costa
- Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Maranhão, Brazil.,Núcleo de Atividade Física e Saúde (NAFS) and Laboratório de Adaptações Cardiorrenais ao Exercício Físico (LACE), Federal University of Maranhão, Pinheiro, Maranhão, Brazil
| | - Carlos José Moraes Dias
- Programa de Pós-graduação em Educação Física, Federal University of Maranhão, São Luís, Maranhão, Brazil.,Programa de Pós-graduação de Rede Nordeste de Biotecnologia (Renorbio), Federal University of Maranhão, São Luís, Maranhão, Brazil.,Núcleo de Atividade Física e Saúde (NAFS) and Laboratório de Adaptações Cardiorrenais ao Exercício Físico (LACE), Federal University of Maranhão, Pinheiro, Maranhão, Brazil
| | - Vicenilma de Andrade Martins
- Programa de Pós-graduação de Rede Nordeste de Biotecnologia (Renorbio), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Sandra Alves de Araujo
- Programa de Pós-graduação de Rede Nordeste de Biotecnologia (Renorbio), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Daiane Pereira da Silva
- Programa de Pós-graduação em Educação Física, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Vinícius S Mendes
- Pharmacology Laboratory, Department of Physiological Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Cristiano Teixeira Mostarda
- Programa de Pós-graduação em Educação Física, Federal University of Maranhão, São Luís, Maranhão, Brazil.,Programa de Pós-graduação de Rede Nordeste de Biotecnologia (Renorbio), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Antônio Carlos Romão Borges
- Programa de Pós-graduação de Rede Nordeste de Biotecnologia (Renorbio), Federal University of Maranhão, São Luís, Maranhão, Brazil.,Pharmacology Laboratory, Department of Physiological Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Rachel Melo Ribeiro
- Programa de Pós-graduação em Educação Física, Federal University of Maranhão, São Luís, Maranhão, Brazil.,Pharmacology Laboratory, Department of Physiological Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Natalino Salgado Filho
- Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
36
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
37
|
Saeidi A, Tayebi SM, To-aj O, Karimi N, Kamankesh S, Niazi S, Khosravi A, Khademosharie M, Soltani M, Johnson KE, Rashid H, Laher I, Hackney AC, Zouhal H. Physical Activity and Natural Products and Minerals in the SARS-CoV-2 Pandemic: An Update. ANNALS OF APPLIED SPORT SCIENCE 2021; 9:e976. [PMID: 35237740 PMCID: PMC8887880 DOI: 10.29252/aassjournal.976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coronavirus-disease 19 (COVID-19) has rapidly become a global public health issue, and there is a desperate need for strategies of prevention, reduction, and treatment to halt the epidemic. The coronavirus affects the immune system, and individuals with a compromised immune system, such as those with diabetes, hypertension, obesity, are more susceptible to this virus. Lifestyle-related variables such as physical activity and nutritional supplements can decrease inflammatory markers, increase anti-inflammatory and antioxidant status, and improve the immune system. Lifesty-lerelated variables play preventive roles against various infectious diseases including COVID-19. This review highlights the effects of physical activity and nutrients supplements on the immune system and their possible benefits in combating the harms caused by infection with the COVID-19 virus.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Damghan Branch, Islamic Azad University, Damghan,
Iran
| | | | - Oam To-aj
- Bangkok Thonburi University, Bangkok, Thailand
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| | | | | | | | | | | | | | | | - Harunor Rashid
- National Centre for Immunisation Research &
Surveillance of Vaccine Preventable Diseases (NCIRS), Westmead, Australia
| | - Ismail Laher
- University of British Columbia, Vancouver, Canada
| | | | - Hassane Zouhal
- University of Rennes 2, Rennes, France
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| |
Collapse
|
38
|
Klöting N, Ristow M, Blüher M. Effects of Exercise on ACE2. Obesity (Silver Spring) 2020; 28:2266-2267. [PMID: 32940950 DOI: 10.1002/oby.23041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Helmholtz Zentrum München, University of Leipzig, Leipzig, Germany
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Helmholtz Zentrum München, University of Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Evangelista FS. Physical Exercise and the Renin Angiotensin System: Prospects in the COVID-19. Front Physiol 2020; 11:561403. [PMID: 33178033 PMCID: PMC7593780 DOI: 10.3389/fphys.2020.561403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recent reports have shown that the renin angiotensin system (RAS) plays an important role in the Coronavirus disease 2019 (COVID-19) because the angiotensin converting enzyme 2 is the receptor for the severe acute respiratory syndrome coronavirus 2. In addition, the balance of RAS components can be involved in the pathogenesis and progression of COVID-19, especially in patients with metabolic and cardiovascular diseases. On the other hand, physical exercise is effective to prevent and to counteract the consequences of such diseases and one of the biological mediators of the exercise adaptation is the RAS. This review was designed to highlight the connection between COVID-19 and RAS, and to discuss the role of the RAS as a mediator of the benefits of physical exercise in COVID-19 pandemic.
Collapse
|
40
|
Ferrandi PJ, Alway SE, Mohamed JS. Last Word on Viewpoint: The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985) 2020; 129:872. [PMID: 33027605 PMCID: PMC7839239 DOI: 10.1152/japplphysiol.00785.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Peter J Ferrandi
- Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism, and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen E Alway
- Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism, and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Junaith S Mohamed
- Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism, and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
41
|
Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells 2020; 9:E1704. [PMID: 32708755 PMCID: PMC7408073 DOI: 10.3390/cells9071704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The article describes the rationale for inhibition of the renin-angiotensin system (RAS) pathways as specific targets in patients infected by SARS-CoV-2 in order to prevent positive feedback-loop mechanisms. Based purely on experimental studies in which RAS pathway inhibitors were administered in vivo to humans/rodents, a reasonable hypothesis of using inhibitors that block both ACE and ACE2 zinc metalloproteases and their downstream pathways in COVID-19 patients will be proposed. In particular, metal (zinc) chelators and renin inhibitors may work alone or in combination to inhibit the positive feedback loops (initially triggered by SARS-CoV-2 and subsequently sustained by hypoxia independently on viral trigger) as both arms of renin-angiotensin system are upregulated, leading to critical, advanced and untreatable stages of the disease.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy; ; Tel.: +39-0722-304319
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
| |
Collapse
|
42
|
Amaral LSDB, Souza CS, Lima HN, Soares TDJ. Influence of exercise training on diabetic kidney disease: A brief physiological approach. Exp Biol Med (Maywood) 2020; 245:1142-1154. [PMID: 32486850 PMCID: PMC7400720 DOI: 10.1177/1535370220928986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT Diabetic kidney disease (DKD) is associated with increased mortality in diabetic patients and has a negative impact on public health. The identification of potential therapies that help the management of DKD can contribute to the improvement of health and quality of life of patients. Thus, this paper is timely and relevant because, in addition to presenting a concise review of the pathogenesis and major pathophysiological mechanisms of DKD, it addresses the most recent findings on the impact of exercise training on this disease. Thus, since non-pharmacological interventions have gained increasing attention in the fight against chronic diseases, this paper appears as an important tool to increase knowledge and stimulate innovative research on the impact of exercise on kidney disease.
Collapse
Affiliation(s)
| | - Cláudia Silva Souza
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 14049-900, Brazil
| | | | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia 45029-094, Brazil
| |
Collapse
|
43
|
Brito LC, Azevêdo L, Peçanha T, Fecchio RY, Rezende RA, da Silva GV, Pio-Abreu A, Mion D, Halliwill JR, Forjaz CLM. Effects of ACEi and ARB on post-exercise hypotension induced by exercises conducted at different times of day in hypertensive men. Clin Exp Hypertens 2020; 42:722-727. [PMID: 32589058 DOI: 10.1080/10641963.2020.1783546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Post-exercise hypotension (PEH) is greater after evening than morning exercise, but antihypertensive drugs may affect the evening potentiation of PEH. Objective: To compare morning and evening PEH in hypertensives receiving angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARB). METHODS Hypertensive men receiving ACEi (n = 14) or ARB (n = 15) underwent, in a random order, two maximal exercise tests (cycle ergometer, 15 watts/min until exhaustion) with one conducted in the morning (7 and 9 a.m.) and the other in the evening (8 and 10 p.m.). Auscultatory blood pressure (BP) was assessed in triplicate before and 30 min after the exercises. Changes in BP (post-exercise - pre-exercise) were compared between the groups and the sessions using a two-way mixed ANOVA and considering P < .05 as significant. RESULTS In the ARB group, systolic BP decrease was greater after the evening than the morning exercise, while in the ACEi group, it was not different after the exercises conducted at the different times of the day. Additionally, after the evening exercise, systolic BP decrease was lower in the ACEi than the ARB group (ARB = -11 ± 8 vs -6 ± 6 and ACEi = -6 ± 7 vs. -8 ± 5 mmHg, evening vs. morning, respectively, P for interaction = 0.014). CONCLUSIONS ACEi, but not ARB use, blunts the greater PEH that occurs after exercise conducted in the evening than in the morning.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo , Brazil
| | - Luan Azevêdo
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo , Brazil
| | - Tiago Peçanha
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo , Brazil
| | - Rafael Yokoyama Fecchio
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo , Brazil
| | | | | | - Andrea Pio-Abreu
- Hypertension Unit, General Hospital, Medical School, University of São Paulo , Brazil
| | - Décio Mion
- Hypertension Unit, General Hospital, Medical School, University of São Paulo , Brazil
| | - John R Halliwill
- Department of Human Physiology, University of Oregon , Eugene, USA
| | - Claudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo , Brazil
| |
Collapse
|
44
|
Kenyon C. The Forrest Gump approach to preventing severe COVID-19 - reverse the predisposing pro-inflammatory state with exercise. Microbes Infect 2020; 22:151-153. [PMID: 32387334 PMCID: PMC7200388 DOI: 10.1016/j.micinf.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium; Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Observatory, 7700, South Africa.
| |
Collapse
|
45
|
Echeverría-Rodríguez O, Gallardo-Ortíz IA, Del Valle-Mondragón L, Villalobos-Molina R. Angiotensin-(1-7) Participates in Enhanced Skeletal Muscle Insulin Sensitivity After a Bout of Exercise. J Endocr Soc 2020; 4:bvaa007. [PMID: 32104748 PMCID: PMC7039407 DOI: 10.1210/jendso/bvaa007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
A single bout of exercise increases subsequent insulin-stimulated glucose uptake in skeletal muscle; however, it is unknown whether angiotensin-(1-7) (Ang-(1-7)), a vasoactive peptide of the renin-angiotensin system, participates in this process. The aim of this study was to investigate the possible involvement of Ang-(1-7) in enhanced skeletal muscle insulin sensitivity after an exercise session. Male Wistar rats were forced to swim for 2.5 hours. Two hours after exercise, insulin tolerance tests and 2-deoxyglucose uptake in isolated soleus muscle were assessed in the absence or presence of the selective Mas receptor (MasR, Ang-(1-7) receptor) antagonist A779. Ang II and Ang-(1-7) levels were quantified in plasma and soleus muscle by HPLC. The protein abundance of angiotensin-converting enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and MasR was measured in soleus muscle by Western blot. Prior exercise enhanced insulin tolerance and insulin-mediated 2-deoxyglucose disposal in soleus muscle. Interestingly, these insulin-sensitizing effects were abolished by A779. After exercise, the Ang-(1-7)/Ang II ratio decreased in plasma, whereas it increased in muscle. In addition, exercise reduced ACE expression, but it did not change the protein abundance of AT1R, ACE2, and MasR. These results suggest that Ang-(1-7) acting through MasR participates in enhanced insulin sensitivity of skeletal muscle after a bout of exercise.
Collapse
Affiliation(s)
- Omar Echeverría-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090 Estado de México, México
| | - Itzell A Gallardo-Ortíz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090 Estado de México, México
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología "Ignacio Chávez", Tlalpan, 14080 Ciudad de México, México
| | - Rafael Villalobos-Molina
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090 Estado de México, México
| |
Collapse
|