1
|
Li Z, Cheng Z, Jia Z, Tang Y. Treatment of Corneal Dermoid with Fibrin Glue Boned Multi-Layer Lenticules from Small Incision Lenticules Extraction Surgery: A Preliminary Study of Five Patients. Curr Eye Res 2025; 50:132-138. [PMID: 39229665 DOI: 10.1080/02713683.2024.2398121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Dermoid excision combined with lamellar keratoplasty was one of the most common surgical techniques for corneal dermoid. Due to the huge shortage of corneal donors, small incision lenticule extraction (SMILE) derived lenticules might be the novel and feasible corneal grafts instead of traditional corneal donors. Therefore, we tried to use FG boned multi-layer lenticules as grafts in the treatment of corneal dermoid. METHODS Five patients (the oldest patient was 54 years old and the youngest case was 5 years old) were diagnosed with corneal dermoid and complaining of blurred vision or unsatisfied cosmetic appearance. All patients underwent corneal dermoid excision combined with FG boned multi-layer corneal lenticules transplantation. Slit-lamp microscopy and anterior-segmental optical coherence tomography(AS-OCT)were used to observe ocular appearance, corneal grafts survival, epithelialization, transparency, interlamellar fluid accumulation and the degradation of FG. The preoperative and postoperative change of best-corrected visual acuity (BCVA) and astigmatism were respectively recorded. RESULTS All patients were satisfied with the postoperative cosmetic results. BCVA had been increased and astigmatism had been decreased in all cases. We observed that the FG boned multi-layer corneal lenticules were covered with smooth corneal epithelium in one week after transplantation and successfully adhered to the corneal beds, without any dislocation or interlayer separation. FG was gradually degraded and absorbed within 1 month after surgery. The lenticule grafts grew well without rejection and kept transparency during the follow-up period. CONCLUSIONS FG boned multi-layer lenticules would be the novel and feasible substitute for lamellar keratoplasty in the treatment of corneal dermoid. FG could not be only used as binder adhering multi-layer lenticules, closing the interlayer space of multi-layer lenticules, preventing the formation of interlayer fluid, but also increasing the thickness and toughness of lenticules, and therefore which is more facilitate to intraoperative suture.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Department of Ophthalmology, The People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Zhongxia Cheng
- Department of Ophthalmology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Ziyu Jia
- Department of Ophthalmology, The People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Yuyan Tang
- Department of Ophthalmology, The People's Hospital of Leshan, Leshan, Sichuan Province, China
| |
Collapse
|
2
|
Rai R, Xavier D, Pathak S, Fernandez FB, Komath M, Sureshan KM. A Malleable Collagen-Mimic that Undergoes Moisture-Induced Hardening for Gluing Hydrophilic Surfaces. Angew Chem Int Ed Engl 2025:e202422593. [PMID: 39791355 DOI: 10.1002/anie.202422593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement. On heating, the monomer crystals undergo regiospecific single-crystal-to-single-crystal azide-alkyne cycloaddition polymerization, yielding triazolyl- polypeptide. Polymerization softens the crystals, making the polymer malleable and mouldable. The polymer grains absorb moisture and form agglomerates through water-bridged adhesion, which hardens over time. The weight-bearing capacity of a mould made from this polymer increased by 50-fold due to moisture-induced hardening. We have demonstrated that this collagen-mimic can glue both biological specimens such as wood and bone and synthetic materials such as glass and paper. In vitro studies established the biocompatibility, making it an attractive bioinspired material for potential application as a bioadhesive.
Collapse
Affiliation(s)
- Rishika Rai
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Divina Xavier
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Sourav Pathak
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Francis B Fernandez
- Bioceramics Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, 695011, India
| | - Manoj Komath
- Bioceramics Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, 695011, India
| | - Kana M Sureshan
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
3
|
Hu Z, He X, Teng L, Zeng X, Zhu S, Dong Y, Zeng Z, Zheng Q, Sun X. Adhesion Mechanism, Applications, and Challenges of Ocular Tissue Adhesives. Int J Mol Sci 2025; 26:486. [PMID: 39859199 PMCID: PMC11765468 DOI: 10.3390/ijms26020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Corneal injury is prevalent in ophthalmology, with mild cases impacting vision and severe cases potentially resulting in permanent blindness. In clinical practice, standard treatments for corneal injury involve transplantation surgery combined with pharmacological therapy. However, surgical sutures exhibit several limitations, which can be overcome using tissue adhesives. With recent advances in biomedical materials, the use of ophthalmic tissue adhesives has expanded beyond wound closure, including tissue filling and drug delivery. Furthermore, the use of tissue adhesives has demonstrated promising outcomes in drug delivery, ophthalmic disease diagnosis, and biological scaffolds. This study briefly introduces common adhesion mechanisms and their applications in ophthalmology, aiming to increase interest in tissue adhesives and clinical ophthalmic treatment.
Collapse
Affiliation(s)
- Zuquan Hu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Xinyuan He
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Xiangyu Zeng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Simian Zhu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Yu Dong
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Qiang Zheng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Xiaomin Sun
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
4
|
Kabir H, Mahdavi SS, Abdekhodaie MJ, Rafii AB, Merati M. Development of an in-situ forming collagen-based hydrogel as a regenerative bioadhesive for corneal perforations. Int J Biol Macromol 2024; 278:134761. [PMID: 39151870 DOI: 10.1016/j.ijbiomac.2024.134761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Corneal injuries play a significant role in global visual impairment, underscoring the demand for innovative biomaterials with specific attributes such as adhesion, cohesion, and regenerative potential. In this study, we have developed a biocompatible bioadhesive for corneal reconstruction. Derived from Collagen type I, naturally present in human corneal stromal tissue, the bioadhesive was cross-linked with modified polyethylene glycol diacrylate (PEGDA-DOPA), rendering it curable through visible light exposure and exhibiting superior adhesion to biological tissues even in wet conditions. The physicochemical characteristics of the proposed bioadhesive were customized by manipulating the concentration of its precursor polymers and adjusting the duration of photocrosslinking. To identify the optimal sample with maximum adhesion, mechanical strength, and biocompatibility, characterization tests were conducted. The optimal specimen, consisting of 30 % (w/v) PEGDA-DOPA and cured with visible light for 5 min, exhibited commendable adhesive strength of 783.6 kPa and shear strength of 53.7 kPa, surpassing that of commercialized eye adhesives.Additionally, biocompatibility test results indicated a notably high survival rate (>100 %) of keratocytes seeded on the hydrogel adhesive after 7 days of incubation. Consequently, this designed bioadhesive, characterized by high adhesion strength, robust mechanical strength, and excellent biocompatibility, is anticipated to enhance the spontaneous repair process of damaged corneal stromal tissue.
Collapse
Affiliation(s)
- Hannaneh Kabir
- Cellular and Molecular Biomechanics Lab, Department of Bioengineering, University of California at Berkeley, California, USA; Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran.
| | - S Sharareh Mahdavi
- Research Operations, The Hospital for Sick Children, Toronto, Canada; Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Jafar Abdekhodaie
- Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada; Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Alireza Baradaran Rafii
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mohsen Merati
- Division of Gastroenterology, Department of Medicine, University of California at San Francisco, California, USA
| |
Collapse
|
5
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
6
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Li Q, Tang B, Liu X, Chen B, Wang X, Xiao H, Zheng Z. Overcoming the Dilemma of In Vivo Stable Adhesion and Sustained Degradation by the Molecular Design of Polyurethane Adhesives for Bone Fracture Repair. Adv Healthc Mater 2024; 13:e2301870. [PMID: 38145973 DOI: 10.1002/adhm.202301870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Bone adhesive is a promising candidate to revolutionize the clinical treatment of bone repairs. However, several drawbacks have limited its further clinical application, such as unreliable wet adhesive performance leading to fixation failure and poor biodegradability inhibiting bone tissue growth. By incorporating catechol groups and disulfide bonds into polyurethane (PU) molecules, an injectable and porous PU adhesive is developed with both superior wet adhesion and biodegradability to facilitate the reduction and fixation of comminuted fractures and the subsequent regeneration of bone tissue. The bone adhesive can be cured within a reasonable time acceptable to a surgeon, and then the wet bone adhesive strength is near 1.30 MPa in 1 h. Finally, the wet adhesive strength to the cortical bone will achieve about 1.70 MPa, which is also five times more than nonresorbable poly(methyl methacrylate) bone cement. Besides, the cell culture experiments also indicate that the adhesives show excellent biocompatibility and osteogenic ability in vitro. Especially, it can degrade in vivo gradually and promote fracture healing in the rabbit iliac fracture model. These results demonstrate that this ingenious bone adhesive exhibits great potential in the treatment of comminuted fractures, providing fresh insights into the development of clinically applicable bone adhesives.
Collapse
Affiliation(s)
- Qiang Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Tang
- Department of Orthopedics, Central Hospital of Fengxian District, Sixth People's Hospital of Shanghai, Shanghai, 201400, China
- The Third Clinical Medical College of Southern Medical University, Guangzhou, 510630, China
| | - Xinchang Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buyun Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haijun Xiao
- Department of Orthopedics, Central Hospital of Fengxian District, Sixth People's Hospital of Shanghai, Shanghai, 201400, China
- The Third Clinical Medical College of Southern Medical University, Guangzhou, 510630, China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Wu N, Li L. A review on wound management strategies in enhanced recovery after craniotomy: An in-depth analysis of their influence on patient recovery and surgical outcomes. Int Wound J 2024; 21:e14595. [PMID: 38272808 PMCID: PMC10789584 DOI: 10.1111/iwj.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Craniotomy, an essential neurosurgical operation, poses distinct difficulties in the realm of post-operative care, specifically with regard to the management of wounds. Efficient wound management is critical in order to optimize the surgical outcomes, reduce complications and facilitate a speedier recovery. The purpose of this comprehensive review was to assess contemporary wound management approaches as they pertain to improved recovery following craniotomy. This was achieved by contrasting conventional methods with more recent and innovative techniques and analysing the effects of these approaches on patient recovery and surgical results. An exhaustive literature search was undertaken, comprising narrative reviews, clinical studies, peer-reviewed articles and expert opinions. The emphasis was on the evolution of wound management strategies and techniques utilized after cranial section, as well as their contributions to patient recovery. The analysis reveals that while conventional wound management methods, including suturing and antiseptics, continue to be essential, innovative strategies such as negative pressure wound therapy, skin adhesives and advanced pain management protocols are becoming increasingly recognized. It has been demonstrated that these novel approaches improve recovery by decreasing the incidence of infections, enhancing patient comfort and producing superior cosmetic results. Nevertheless, obstacles continue to endure, including patient-specific variables, technological and financial considerations and the enduring consequences of recovery. Thus the treatment of wounds during craniotomy recuperation necessitates an integrated strategy that incorporates conventional techniques alongside contemporary advancements. Progress in this domain necessitates the customization of approaches to suit the unique requirements of each patient, the resolution of identified obstacles and an emphasis on ongoing investigation and interdisciplinary cooperation. The ever-changing terrain of wound management approaches underscores the ever-changing character of neurosurgical treatment and the continuous endeavour to enhance patient results following cranial resection.
Collapse
Affiliation(s)
- Nan Wu
- Nursing Department, Sir Run Run Shaw HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| | - Luping Li
- Nursing Department, Sir Run Run Shaw HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| |
Collapse
|
9
|
Li X, Ding J, Xie D, He S, Guo J. Editorial: Recent progress in polymer-based biomaterials as adhesives. Front Bioeng Biotechnol 2023; 11:1305531. [PMID: 38152289 PMCID: PMC10751916 DOI: 10.3389/fbioe.2023.1305531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Affiliation(s)
- Xiaoyuan Li
- Northeast Normal University, Changchun, China
- School of Chemistry, Northeast Normal University, Changchun, China
| | - Jianxun Ding
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China
| | - Denghui Xie
- Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | | | - Jinshan Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China
- Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Li W, Xu K, Liu Y, Lei X, Ru X, Guo P, Feng H, Chen Y, Xing M. Hydrophobic Polystyrene-Modified Gelatin Enhances Fast Hemostasis and Tissue Regeneration in Traumatic Brain Injury. Adv Healthc Mater 2023; 12:e2300708. [PMID: 37442090 PMCID: PMC11468692 DOI: 10.1002/adhm.202300708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Hemostatic sealant is required to deal with blood loss, especially in the scenario of traumatic brain injury (TBI), which presents high rates of morbidity and disability. Hemostasis in surgery with traditional gelatin-based sealants often leads to blood loss and other issues in brain because of the hydrophilic gelatin swelling. Herein, hydrophobic effects on the hemostasis in TBI surgery are studied by tuning the chain length of polystyrene (PS) onto methylacrylated gelatin (Gel-MA). The hydrophobicity and hemostatic efficiency can be tuned by controlling the length of PS groups. The platelet activation of modified sealants Gel-MA-2P, Gel-MA-P, and Gel-MA-0.5P is as much as 17.5, 9.1, and 2.1 times higher than Gel-MA in vitro. The hemostatic time of Gel-MA-2P, Gel-MA-P, and Gel-MA-0.5P groups is 2.0-, 1.6-, and 1.1-folds faster than that in Gel-MA group in TBI mice. Increased formation of fibrins and platelet aggregation can also be observed in vitro by scanning electron microscopy. Animal's mortality is lowered by 46%, neurologic deficiency is reduced by 1.5 times, and brain edema is attenuated by 10%. Protein expression is further investigated to exhibit toxic iron-related processes caused by delayed hemostasis and activation of platelets via PI3K/PKC-α signaling. The hydrophobic Gel-MA has the potential in hemostatic TBI and promotes nervous system recovery in brain with the potentials in clinics.
Collapse
Affiliation(s)
- Wenyan Li
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of Manitoba75 Chancellors CircleWinnipegMBR3T 5V6Canada
| | - Yuqing Liu
- Department of Mechanical EngineeringUniversity of Manitoba75 Chancellors CircleWinnipegMBR3T 5V6Canada
| | - Xuejiao Lei
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Xufang Ru
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Peiwen Guo
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Yujie Chen
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of Manitoba75 Chancellors CircleWinnipegMBR3T 5V6Canada
| |
Collapse
|
11
|
Sahu SA, Panda S, Das AC, Mishra L, Rath S, Sokolowski K, Kumar M, Mohanty R, Nayak R, Satpathy A, Lapinska B. Efficacy of Sub-Gingivally Delivered Propolis Nanoparticle in Non-Surgical Management of Periodontal Pocket: A Randomized Clinical Trial. Biomolecules 2023; 13:1576. [PMID: 38002260 PMCID: PMC10669236 DOI: 10.3390/biom13111576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Naturally sourced products like propolis are commonly employed for the non-surgical treatment of periodontal pockets. The use of nanoparticle formulations of these natural remedies has the potential to improve treatment outcomes. The aim of the present study was to evaluate the efficacy of sub-gingivally delivered propolis nanoparticles in the non-surgical management of periodontal pockets. Forty patients diagnosed with periodontitis presenting at least one periodontal pocket with a probing pocket depth between 4 and 6 mm were selected. Patients were randomly assigned into the control group (n = 20), which received scaling and root planing (SRP) and saline (SRP + Saline), and the test group (n = 20), which received SRP and sub-gingivally delivered propolis nanoparticles (PRO) into the periodontal pocket (SRP + PRO). The clinical parameters recorded were plaque index (PI), gingival index (GI), relative attachment loss (RAL), probing pocket depth (PPD), and bleeding on probing (BOP). They were assessed at baseline, one month, and three months post therapy. The results indicated that there was a significant improvement in clinical parameters (p < 0.05) in the test sites compared with the control sites at the end of the study. The gingival index at one month and three months was found to be significantly better in the SRP + PRO group than the SRP + Saline group, with a p value of <0.001. The BOP, PPD, and RAL showed significant improvement with the SRP + PRO group at the end of the 3-month follow-up with p values of 0.0001, 0.001, and 0.05, respectively. The subgingival delivery of propolis nanoparticles showed promising results as an adjunct to SRP in patients with periodontitis presenting periodontal pockets.
Collapse
Affiliation(s)
- Sushree Ambika Sahu
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Saurav Panda
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Abhaya Chandra Das
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Lora Mishra
- Department of Conservative Dentistry & Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India;
| | - Satchidananda Rath
- Department of Physics, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India;
| | - Krzysztof Sokolowski
- Department of Conservative Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Manoj Kumar
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Rinkee Mohanty
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Rashmita Nayak
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Anurag Satpathy
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
12
|
Grosjean M, Girard E, Bethry A, Chagnon G, Garric X, Nottelet B. Degradable Bioadhesives Based on Star PEG-PLA Hydrogels for Soft Tissue Applications. Biomacromolecules 2023; 24:4430-4443. [PMID: 36524541 DOI: 10.1021/acs.biomac.2c01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Edouard Girard
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
- Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, Grenoble38043, France
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université Grenoble Alpes, Grenoble38058, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Grégory Chagnon
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| |
Collapse
|
13
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
14
|
Zhao W, Gao W, Li D, Jin L, Wu X, Liu H, Wang L, Zhao Y, Liu X, Chen P, Dong G. Management of esophagogastric fistula caused by adjustable gastric band erosion: A case report and literature review. Obes Res Clin Pract 2023; 17:428-431. [PMID: 37739856 DOI: 10.1016/j.orcp.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Laparoscopic adjustable gastric banding (LAGB) is commonly used in the treatment of morbid obesity. However, with clinical application and long-term follow-up, the shortcomings of this procedure were also exposed, bringing about surgery-related complications include dysphagia, intragastric band migration, slippage, and gastric band erosion. Lower esophageal and gastric fistula is a rare but dangerous complication after LAGB. We describe a case of esophagogastric fistula occurring twelve years after a laparoscopic band procedure and its successful management in a multidisciplinary and staged manner, followed by a short review of the literature.
Collapse
Affiliation(s)
- Wen Zhao
- School of Medicine, Nankai University, Tianjin 300071, China; Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wenxing Gao
- Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Dingchang Li
- Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Lujia Jin
- Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China
| | - XianSheng Wu
- Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Liu
- School of Medicine, Nankai University, Tianjin 300071, China; Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Wang
- Medical School of Chinese PLA, Beijing, China; Department & Institute of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yingjie Zhao
- Department & Institute of General Surgery, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Xianqiang Liu
- Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Peng Chen
- Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China.
| | - Guanglong Dong
- School of Medicine, Nankai University, Tianjin 300071, China; Department & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
15
|
Han GY, Hwang SK, Cho KH, Kim HJ, Cho CS. Progress of tissue adhesives based on proteins and synthetic polymers. Biomater Res 2023; 27:57. [PMID: 37287042 DOI: 10.1186/s40824-023-00397-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
In recent years, polymer-based tissue adhesives (TAs) have been developed as an alternative to sutures to close and seal incisions or wounds owing to their ease of use, rapid application time, low cost, and minimal tissue damage. Although significant research is being conducted to develop new TAs with improved performances using different strategies, the applications of TAs are limited by several factors, such as weak adhesion strength and poor mechanical properties. Therefore, the next-generation advanced TAs with biomimetic and multifunctional properties should be developed. Herein, we review the requirements, adhesive performances, characteristics, adhesive mechanisms, applications, commercial products, and advantages and disadvantages of proteins- and synthetic polymer-based TAs. Furthermore, future perspectives in the field of TA-based research have been discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Soo-Kyung Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ki-Hyun Cho
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Chong-Su Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
16
|
Della Sala F, Malle BM, Ambrosio L, Borzacchiello A. Fermentation-Derived Albumin-Based Hydrogels for Tissue Adhesion Applications. Polymers (Basel) 2023; 15:polym15112530. [PMID: 37299328 DOI: 10.3390/polym15112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, most of the clinically available surgical glues and sealants lack elasticity, good adhesion and biocompatibility properties. Hydrogels as tissue adhesives have received extensive attention for their tissue-mimicking features. Here, a novel surgical glue hydrogel based on a fermentation-derived human albumin (rAlb) and biocompatible crosslinker for tissue-sealant applications has been developed. In order to reduce the risks of viral transmission diseases and an immune response, Animal-Free Recombinant Human Albumin from the saccharomyces yeast strain was used. A more biocompatible crosslinking agent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), was used and compared with glutaraldehyde (GA). The design of crosslinked albumin-based adhesive gels was optimized by varying the albumin concentration, the mass ratio between albumin and the crosslinking agent as well as the crosslinker type. Tissue sealants were characterized in terms of mechanical (tensile and shear), adhesive and in vitro biocompatibility properties. The results indicated that the mechanical and adhesive properties improved as the albumin concentration increased and the mass ratio between albumin and crosslinker decreased. Moreover, the EDC-crosslinked albumin gels have better biocompatibility properties than GA-crosslinked glues.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | | | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
17
|
Gan S, Zheng Z, Zhang M, Long L, Zhang X, Tan B, Zhu Z, Liao J, Chen W. Lyophilized Platelet-Rich Fibrin Exudate-Loaded Carboxymethyl Chitosan/GelMA Hydrogel for Efficient Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37224006 DOI: 10.1021/acsami.3c02528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Platelet-rich fibrin (PRF) is an autologous growth factor carrier that promotes bone tissue regeneration, but its effectiveness is restrained by poor storage capabilities, uncontrollable concentration of growth factors, unstable shape, etc. Herein, we developed a photocrosslinkable composite hydrogel by incorporating lyophilized PRF exudate (LPRFe) into the carboxymethyl chitosan methacryloyl (CMCSMA)/gelatin methacryloyl (GelMA) hydrogel to effectively solve the dilemma of PRF. The hydrogel possessed suitable physical properties and sustainable release ability of growth factors in LPRFe. The LPRFe-loaded hydrogel could improve the adhesion, proliferation, migration, and osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs). Furthermore, the animal experiments demonstrated that the hydrogel possessed excellent biocompatibility and biodegradability, and the introduction of LPRFe in the hydrogel can effectively accelerate the bone healing process. Conclusively, the combination of LPRFe with CMCSMA/GelMA hydrogel may be a promising therapeutic approach for bone defects.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Tang W, Wang J, Hou H, Li Y, Wang J, Fu J, Lu L, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol 2023; 240:124398. [PMID: 37059277 DOI: 10.1016/j.ijbiomac.2023.124398] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
19
|
Zheng C, Wen D, Xu K, Zhang X, Ren X, Li X. Advances in biomaterials as a retinal patch for the repair of rhegmatogenous retinal detachment. Front Bioeng Biotechnol 2022; 10:997243. [DOI: 10.3389/fbioe.2022.997243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is the most common retinological emergency that can cause blindness without surgical treatment. RRD occurs when liquefied vitreous accumulates between the neurosensory retina and the retinal pigment epithelium via retinal breaks, which are caused by the separation of the vitreous from the retina with aging. Currently, the main treatment option is pars plana vitrectomy, which involves surgical removal of the vitreous and laser photocoagulation around retinal breaks to generate firm chorioretinal adhesion, as well as subsequent filling of the vitreous cavity with long-lasting substitutes (expansile gas or silocone oil) to prevent the connection between the subretinal space and the vitreous cavity via the breaks before the chorioretinal adhesion firm enough. However, the postoperative face-down position and the not very satisfactory first retinal reattachment rate place a heavy burden on patients. With the development of technology and materials engineering, researchers have developed biomaterials that can be used as a retinal patch to seal retinal breaks and prevent the connection of subretinal space and vitreous cavity via breaks, thus replacing the long-lasting vitreous substitutes and eliminating the postoperative face-down position. Preclinical studies have demonstrated that biomaterial sealants have enough biocompatibility and efficacy in the in vitro and in vivo experiments. Some sealants have been used in clinical trials on a small scale, and the results indicate promising application prospects of the biomaterial sealants as retinal patches in the repair of RRD. Herein, we review the recent advances in biomaterials as retinal patches for the repair of RRD, focusing on the biomaterial categories, methods, and procedures for sealing retinal breaks, as well as their biocompatibility and efficacy, current limitations, and development perspectives.
Collapse
|
20
|
Mondal P, Chakraborty I, Chatterjee K. Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. CHEM REC 2022; 22:e202200155. [PMID: 35997710 DOI: 10.1002/tcr.202200155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Abstract
Injectable bioadhesives offer several advantages over conventional staples and sutures in surgery to seal and close incisions or wounds. Despite the growing research in recent years few injectable bioadhesives are available for clinical use. This review summarizes the key chemical features that enable the development and improvements in the use of polymeric injectable hydrogels as bioadhesives or sealants, their design requirements, the gelation mechanism, synthesis routes, and the role of adhesion mechanisms and strategies in different biomedical applications. It is envisaged that developing a deep understanding of the underlying materials chemistry principles will enable researchers to effectively translate bioadhesive technologies into clinically-relevant products.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
21
|
Li M, Shi X, Yang B, Qin J, Han X, Peng W, He Y, Mao H, Kong D, Gu Z. Single-component hyaluronic acid hydrogel adhesive based on phenylboronic ester bonds for hemostasis and wound closure. Carbohydr Polym 2022; 296:119953. [DOI: 10.1016/j.carbpol.2022.119953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
|
22
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
23
|
Tzagiollari A, McCarthy HO, Levingstone TJ, Dunne NJ. Biodegradable and Biocompatible Adhesives for the Effective Stabilisation, Repair and Regeneration of Bone. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060250. [PMID: 35735493 PMCID: PMC9219717 DOI: 10.3390/bioengineering9060250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Bone defects and complex fractures present significant challenges for orthopaedic surgeons. Current surgical procedures involve the reconstruction and mechanical stabilisation of complex fractures using metal hardware (i.e., wires, plates and screws). However, these procedures often result in poor healing. An injectable, biocompatible, biodegradable bone adhesive that could glue bone fragments back together would present a highly attractive solution. A bone adhesive that meets the many clinical requirements for such an application has yet to be developed. While synthetic and biological polymer-based adhesives (e.g., cyanoacrylates, PMMA, fibrin, etc.) have been used effectively as bone void fillers, these materials lack biomechanical integrity and demonstrate poor injectability, which limits the clinical effectiveness and potential for minimally invasive delivery. This systematic review summarises conventional approaches and recent developments in the area of bone adhesives for orthopaedic applications. The required properties for successful bone repair adhesives, which include suitable injectability, setting characteristics, mechanical properties, biocompatibility and an ability to promote new bone formation, are highlighted. Finally, the potential to achieve repair of challenging bone voids and fractures as well as the potential of new bioinspired adhesives and the future directions relating to their clinical development are discussed.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK;
- School of Chemical Sciences, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)1-7005712
| |
Collapse
|
24
|
Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Material-Assisted Strategies for Osteochondral Defect Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200050. [PMID: 35322596 PMCID: PMC9165504 DOI: 10.1002/advs.202200050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The osteochondral (OC) unit plays a pivotal role in joint lubrication and in the transmission of constraints to bones during movement. The OC unit does not spontaneously heal; therefore, OC defects are considered to be one of the major risk factors for developing long-term degenerative joint diseases such as osteoarthritis. Yet, there is currently no curative treatment for OC defects, and OC regeneration remains an unmet medical challenge. In this context, a plethora of tissue engineering strategies have been envisioned over the last two decades, such as combining cells, biological molecules, and/or biomaterials, yet with little evidence of successful clinical transfer to date. This striking observation must be put into perspective with the difficulty in comparing studies to identify overall key elements for success. This systematic review aims to provide a deeper insight into the field of material-assisted strategies for OC regeneration, with particular considerations for the therapeutic potential of the different approaches (with or without cells or biological molecules), and current OC regeneration evaluation methods. After a brief description of the biological complexity of the OC unit, the recent literature is thoroughly analyzed, and the major pitfalls, emerging key elements, and new paths to success are identified and discussed.
Collapse
Affiliation(s)
- Constance Lesage
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
- HTL Biotechnology7 Rue Alfred KastlerJavené35133France
| | - Marianne Lafont
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Guihard
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Weiss
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Jérôme Guicheux
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Vianney Delplace
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| |
Collapse
|
25
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Wei C, Song J, Tan H. A paintable ophthalmic adhesive with customizable properties based on symmetrical/asymmetrical cross-linking. Biomater Sci 2021; 9:7522-7533. [PMID: 34643623 DOI: 10.1039/d1bm01197a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In situ and efficient incision sealing for ophthalmic surgery remains unresolved. Current commercially available gel adhesives often suffer from unsuitable gelation time, difficulty in micro-delivery, and mismatched degradation period, leading to difficulties for application in ocular tissue areas. Herein, a novel hydrogel adhesive was developed based on the simultaneous crosslinking of poly(lysine) (PLL) and lysine (Lys) with an end-modified active ester multi-arm polyethylene glycol (PEG) via the amidation reaction, where the residual terminal active ester of PEG can also bond to amino groups on tissue to provide strong adhesion. Due to the different molecular structures around their amino groups, PLL and Lys can crosslink with 4-arm-PEG-NHS (active ester) respectively, to form symmetrical and asymmetrical crosslinking networks, which exhibit various mechanical properties. Therefore, just by adjusting PLL/Lys ratios, the PEG-PLL-Lys hydrogel can easily possess a suitable gelation time, appropriate mechanical properties and matched degradation rate. As a result, a paintable, readily accessible and biocompatible ophthalmic tissue adhesive (sealant) is prepared for sealing ocular tissue incision. Considering the simple strategy and outstanding performance, the PEG-PLL-Lys hydrogel is promising for clinical transformation.
Collapse
Affiliation(s)
- Changzheng Wei
- Shanghai Qisheng Biological Preparation Co., Ltd, Shanghai, 201106, China.
| | - Jialin Song
- Shanghai Qisheng Biological Preparation Co., Ltd, Shanghai, 201106, China.
| | - Haoqi Tan
- Shanghai Qisheng Biological Preparation Co., Ltd, Shanghai, 201106, China.
| |
Collapse
|
27
|
Topical hemostatic agents in neurosurgery, a comprehensive review: 15 years update. Neurosurg Rev 2021; 45:1217-1232. [PMID: 34734343 DOI: 10.1007/s10143-021-01684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022]
Abstract
Hemostasis in neurosurgery is of utmost importance. Bleeding management is one of the crucial steps of each neurosurgical procedure. Several strategies, namely thermal, mechanical, electric, and chemical, have been advocated to face blood loss within the surgical field. Over time, countless hemostatic agents and devices have been proposed. Furthermore, the ever-growing recent technological innovation has made available several novel and interesting tools. Pursuant to their impact on surgical practice, we perceived the imperative to update our previous disclosure paper. Therefore, we reviewed the literature and analyzed technical data sheets of each product in order to provide an updated and comprehensive overview in regard to chemical properties, mechanisms of action, use, complications, tricks, and pitfalls of topical hemostatic agents.
Collapse
|
28
|
Bon S, Chiesa I, Degli Esposti M, Morselli D, Fabbri P, De Maria C, Morabito A, Coletta R, Calamai M, Pavone FS, Tonin R, Morrone A, Giorgi G, Valentini L. Carbon Nanotubes/Regenerated Silk Composite as a Three-Dimensional Printable Bio-Adhesive Ink with Self-Powering Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21007-21017. [PMID: 33934601 PMCID: PMC8153539 DOI: 10.1021/acsami.1c03288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/18/2021] [Indexed: 05/21/2023]
Abstract
In this study, regenerated silk (RS) obtained from Bombyx Mori cocoons is compounded with carboxyl-functionalized carbon nanotubes (f-CNTs) in an aqueous environment for the fabrication of functional bio-adhesives. Molecular interactions between RS and carboxyl groups of CNTs result in structural increase of the β-sheet formation, obtaining a resistant adhesive suitable for a wet biological substrate. Moreover, the functionalization of CNTs promotes their dispersion in RS, thus enabling the production of films with controlled electrical conductivity. The practical utility of such a property is demonstrated through the fabrication of a piezoelectric device implanted in a rat to monitor the breathing in vivo and to be used as a self-powered system. Finally, RS/f-CNTs were used as a printable biomaterial ink to three dimensionally print bilayer hollow tubular structures composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and RS. Initial tests carried out by seeding and growing human skin fibroblasts demonstrated that the 3D printed bilayer hollow cylindrical structures offer a suitable surface for the seeded cells to attach and proliferate. In general, the herein proposed RS/f-CNT composite serves as a versatile material for solvent-free dispersion processing and 3D printing, thus paving a new approach to prepare multifunctional materials with potential applications of great interest in sealing biological substrates and implantable devices for regenerative medicine.
Collapse
Affiliation(s)
- Silvia
Bittolo Bon
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, Strada di Pentima 4, Terni 05100, Italy
- Italian
Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
| | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Micaela Degli Esposti
- Italian
Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
- Department
of Civil Chemical, Environmental and Materials Engineering (DICAM), Università; di Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Davide Morselli
- Italian
Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
- Department
of Civil Chemical, Environmental and Materials Engineering (DICAM), Università; di Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Paola Fabbri
- Italian
Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
- Department
of Civil Chemical, Environmental and Materials Engineering (DICAM), Università; di Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Antonino Morabito
- Department
of Pediatric Surgery, Meyer Children’s
Hospital, Viale Pieraccini
24, Firenze 50139, Italy
- Dipartimento
Neuroscienze, Psicologia, Area del Farmaco e della Salute del Bambino
NEUROFARBA, Università degli Studi
di Firenze, Viale Pieraccini
6, Firenze 50121, Italy
| | - Riccardo Coletta
- Department
of Pediatric Surgery, Meyer Children’s
Hospital, Viale Pieraccini
24, Firenze 50139, Italy
- School
of Health and Society, University of Salford, Salford M5 4WT, United Kingdom
| | - Martino Calamai
- European
Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto
Fiorentino (FI) 50129, Italy
- National
Institute of Optics -National Research Council (CNR-INO), Sesto Fiorentino (FI) 50129, Italy
| | - Francesco Saverio Pavone
- European
Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto
Fiorentino (FI) 50129, Italy
- Department
of Physics, University of Florence, Sesto Fiorentino (FI) 50121, Italy
| | - Rodolfo Tonin
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit
and Laboratories, Neuroscience Department, Meyer Children’s Hospital, Firenze 50139, Italy
| | - Amelia Morrone
- Dipartimento
Neuroscienze, Psicologia, Area del Farmaco e della Salute del Bambino
NEUROFARBA, Università degli Studi
di Firenze, Viale Pieraccini
6, Firenze 50121, Italy
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit
and Laboratories, Neuroscience Department, Meyer Children’s Hospital, Firenze 50139, Italy
| | - Giacomo Giorgi
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Università degli Studi di Perugia, Via G. Duranti 93, Perugia 06125, Italy
- CNR-SCITEC, Perugia I-06123, Italy
| | - Luca Valentini
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, Strada di Pentima 4, Terni 05100, Italy
- Italian
Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
| |
Collapse
|
29
|
Cheng L, Zhang T, Fei Y, Shen H, Huang H, Chen J, Xu B, Xu J. Expression, Purification and Characterization of Recombinant Human Coagulation Factor XIIIa in Pichia Pastoris. Protein Pept Lett 2021; 28:55-62. [PMID: 32586241 DOI: 10.2174/0929866527666200625203240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coagulation factor XIIIa(FXIIIa) plays a critical role in the final stage of blood coagulation. It is extremely important in wound healing, tissue repairing and promoting cell adhesion. The deficiency of the coagulation factor can cause hemorrhage and slow wound healing. OBJECTIVE In this study, recombinant pPICZαC-FXIIIa was expressed in Pichia pastoris, purified as well as its biological activity was determined. METHODS The FXIIIa fragment obtained from the human placenta was inserted into pPICZαC to obtain pPICZαC-FXIIIa, which was transformed into X33 after linearization, and FXIIIa inserted into Pichia pastoris X33 was screened for methanol induction. The expressed product was identified by western blotting, then the supernatant was purified by affinity chromatography, and the purified product was determined by plasma coagulation experiment. RESULTS Polymerase Chain Reaction(PCR) showed that the FXIIIa fragment of 2250 bp was inserted successfully into pPICZαC. The expression and purification products of the same molecular weight as target protein(about 83 kDa) were obtained, which solidified significantly when reacted with plasma. CONCLUSION The expression and purification products were successful, with sufficient biological activity, which can be used as a candidate FXIIIa hemostatic agent in genetic engineering.
Collapse
Affiliation(s)
- Linyan Cheng
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ting Zhang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yuchang Fei
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Hao Shen
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hui Huang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jin Chen
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Jian Xu
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
30
|
Anton-Sales I, Roig-Sanchez S, Traeger K, Weis C, Laromaine A, Turon P, Roig A. In vivo soft tissue reinforcement with bacterial nanocellulose. Biomater Sci 2021; 9:3040-3050. [PMID: 33666604 DOI: 10.1039/d1bm00025j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation. Despite recent advances in the optimization of mesh porous structure, incorporation of anti-adherent coatings or new approaches in the mesh fixation systems, clinicians and manufacturers are still pursuing an optimal material to improve the clinical outcomes at a cost-effective ratio. Here, bacterial nanocellulose (BNC), a bio-based polymer, is evaluated as a soft tissue reinforcement material regarding mechanical properties and in vivo anti-adhesive performance. A double-layer BNC laminate proved sufficient to meet the standards of mechanical resistance for abdominal hernia reinforcement meshes. BNC-polypropylene (BNC-PP) composites incorporating a commercial mesh have also been prepared. The in vivo study of implanted BNC patches in a rabbit model demonstrated excellent anti-adherent characteristics of this natural nanofibrous polymer 21-days after implantation and the animals were asymptomatic after the surgery. BNC emerges as a novel and versatile hernioplasty biomaterial with outstanding mechanical and anti-adherent characteristics.
Collapse
Affiliation(s)
- Irene Anton-Sales
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain.
| | - Soledad Roig-Sanchez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain.
| | - Kamelia Traeger
- Department of Research and Development, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, 08191 Barcelona, Spain.
| | - Christine Weis
- Department of Research and Development, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, 08191 Barcelona, Spain.
| | - Anna Laromaine
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain.
| | - Pau Turon
- Department of Research and Development, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, 08191 Barcelona, Spain.
| | - Anna Roig
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
31
|
Recalcitrant Anaphylaxis Associated with Fibrin Sealant: Treatment with "TISSEEL-ectomy". PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3382. [PMID: 33552820 PMCID: PMC7862072 DOI: 10.1097/gox.0000000000003382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
Here, we present the case of an adolescent male who developed a severe allergic reaction 10 minutes after application of TISSEEL fibrin sealant to control bleeding during a gynecomastia revision surgery. Conventional treatments of acute hypersensitivity were ineffective. After a "tisseel-ectomy," the patient's condition improved and symptoms resolved. Besides oral tranexamic acid, and topical and local anaesthesia, no other medications besides TISSEEL were administered preceding the allergic reaction. After TISSEEL was identified as the allergen upon its removal, his clinical status improved. The patient had been exposed to TISEEL 15 months before the anaphylactic episode. This case can aid in decision-making for surgical re-exposure to fibrin sealants in the setting of acute anaphylaxis.
Collapse
|
32
|
Xu Y, Ji Y, Ma J. Hydrophobic and Hydrophilic Effects in a Mussel-Inspired Citrate-Based Adhesive. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:311-321. [PMID: 33351636 DOI: 10.1021/acs.langmuir.0c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The citrate-based tissue adhesive, synthesized by citric acid, diol, and dopamine, is a kind of mussel-inspired adhesive. The adhesion of mussel-inspired adhesive is not completely dependent on 3, 4-dihydroxyphenylalanine (Dopa) groups. The backbone structure of the adhesive also greatly affects the adhesion. In this study, to explore the effects of hydrophobicity and hydrophilicity of the backbone structure on adhesion, we prepared a series of citrate-based tissue adhesives (POEC-d) by changing the molar ratio of two diols, 1, 8-octanediol (O) and poly(ethylene oxide) (E), which formed hydrophobic segment units and hydrophilic segment units, respectively, in the molecule structure. The properties of cured adhesives showed that the adhesive with high E units had high swelling, rapid degradation, and low cohesion. In the adhesion strength measurement on the porcine skin, the adhesive with higher hydrophobicity was more likely to perform better. For the interfacial adhesion, hydrophilicity was conducive to the diffusion and penetration on the skin surface, but hydrophobic interaction showed a stronger effect to adhere with skin and hydrophobic association increased the adhesive concentration on the interface; for the bulk cohesion, hydrophobicity led to coacervation, promoting the Dopa-quinone coupling for cross-linking. In this amphipathic, citrate-based, soft-tissue adhesive system, when the feed ratio of hydrophilic segment was lower than 0.7, the coacervation could be formed through hydrophobic interaction, forming an efficient underwater adhesion system similar to that of mussels.
Collapse
Affiliation(s)
- Yiwen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinghong Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
33
|
Zhang Y, Li X, Zhu Q, Wei W, Liu X. Photocurable Hyperbranched Polymer Medical Glue for Water-Resistant Bonding. Biomacromolecules 2020; 21:5222-5232. [DOI: 10.1021/acs.biomac.0c01302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Qinfu Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
34
|
Wang R, Zhu J, Jiang G, Sun Y, Ruan L, Li P, Cui H. Forward Wound Closure with Regenerated Silk Fibroin and Polylysine-Modified Chitosan Composite Bioadhesives as Dressings. ACS APPLIED BIO MATERIALS 2020; 3:7941-7951. [PMID: 35019534 DOI: 10.1021/acsabm.0c01064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wound dressing has been used for decades to be effective for accelerating skin wound healing. However, practical applications are still limited due to their lower cell affinity, tissue adhesiveness, and biocompatibility. Natural polymers are the important biomaterials because of their excellent biodegradability, biocompatibility, and low immunogenicity. In this work, the composite bioadhesives (PLS-CS/RSF) were prepared from regenerated silk fibroin (RSF) and polylysine-modified chitosan (PLS-CS) that were cross-linked by Ca2+ ions. The adhesion property tests showed that the PLS-CS/RSF exhibited excellent bonding potentials for various substrates, and the adhesive strength was up to 70 kPa for isolated porcine skin by the extension test. The as-prepared PLS-CS/RSF was nontoxic, displayed obvious antibacterial effects against Staphylococcus aureus and Escherichia coli in vitro, and their bacteriostasis rates were 100% after 120 min treatment. In addition, the PLS-CS/RSF exhibited favorable cytocompatibility by cell counting kit-8 assay. The animal model of wound closure results showed that PLS-CS/RSF can promote wound closure and the integrity of wound healing, inhibiting the secretion of inflammatory factor and tumor necrosis factor and stimulating vascular factor and α-smooth muscle actin to the release of vascular growth factor and promote angiogenesis during the process of wound healing by immunohistochemical assay.
Collapse
Affiliation(s)
- Ruofan Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zhu
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yanfang Sun
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Liming Ruan
- Department of Dermatology, Beilun District People's Hospital of Ningbo City, Ningbo 315800, China
| | - Pengfei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Haiyan Cui
- Department of Plastic Surgery, Tongji Hospital of Tongji University, Shanghai 200065, China
| |
Collapse
|
35
|
Chen YS, Loh EW, Shen SC, Su YH, Tam KW. Efficacy of Fibrin Sealant in Reducing Complication Risk After Bariatric Surgery: a Systematic Review and Meta-analysis. Obes Surg 2020; 31:1158-1167. [PMID: 33145716 DOI: 10.1007/s11695-020-05098-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Complications including staple-line leakage and bleeding may occur after sleeve gastrectomy and Roux-en-Y gastric bypass. In this meta-analysis, the efficacy of fibrin sealant in strengthening the staple line and reducing complication risk after bariatric surgery was evaluated. METHODS We searched PubMed, Embase, and Cochrane Library databases for randomized controlled trials (RCTs) published up to October 2020. Pooled estimates of the outcomes were computed using a random effects model. The primary outcomes were bleeding and leakage; secondary outcomes were gastric stricture, length of hospital stay, reoperation rate, and total operation time. RESULTS In total, 9 RCTs including 2136 patients were reviewed. Our meta-analysis revealed that compared with controls, fibrin sealants decreased incidence of bleeding significantly (risk ratio [RR] = 0.42; 95% confidence interval [CI], 0.18-0.97), but did not demonstrate significant differences in reducing the incidence of leakage (RR = 0.62; 95% CI, 0.23-1.73), gastric stricture (RR = 1.16; 95% CI, 0.46-2.91), reoperation rate (RR = 0.85; CI, 0.14-5.14), or length of hospital stay (weighted mean difference = 0.62; 95% CI, - 0.31 to 1.55). Compared with oversewing, fibrin sealant use reduced the operation time; however, their efficacies in reducing the incidence of postoperative bleeding and leakage did not differ significantly. CONCLUSIONS Although applying fibrin sealants to the staple line in bariatric surgery may provide favorable results, but it may not reduce postoperative leakage and stricture incidence significantly. Nevertheless, the application of fibrin sealants as a method for reducing risks of complications after bariatric surgery warrant further investigation.
Collapse
Affiliation(s)
- Yi-Shyue Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - El-Wui Loh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chiang Shen
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Yen-Hao Su
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ka-Wai Tam
- Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan.
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
36
|
Dunbar M, Keten S. Energy Renormalization for Coarse-Graining a Biomimetic Copolymer, Poly(catechol-styrene). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
38
|
Jain R, Shetty S, Yadav KS. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101604] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
El Yakhlifi S, Ball V. Polydopamine as a stable and functional nanomaterial. Colloids Surf B Biointerfaces 2019; 186:110719. [PMID: 31846893 DOI: 10.1016/j.colsurfb.2019.110719] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 01/31/2023]
Abstract
The mussel inspired chemistry of dopamine leading to versatile coatings on the surface of all kinds of materials in a one pot process was considered as the unique aspect of catecholamine for a long time. Only recently, research has been undertaken to valorize the simultaneous oxidation and colloid formation in dopamine solutions in the presence of an oxidant. This mini review summarizes the synthesis methods allowing to get controlled nanomaterials, either nanoparticles, hollow capsules or nanotubes and even chiral nanomaterials from dopamine solutions. Finally the applications of those nanomaterials will be described.
Collapse
Affiliation(s)
- Salima El Yakhlifi
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, 11 Rue Humann, 67085, Strasbourg Cedex, France
| | - Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, 11 Rue Humann, 67085, Strasbourg Cedex, France.
| |
Collapse
|
40
|
Love CJ, Serban BA, Katashima T, Numata K, Serban MA. Mechanistic insights into silk fibroin's adhesive properties via chemical functionalization of serine side chains. ACS Biomater Sci Eng 2019; 5:5960-5967. [PMID: 32529029 DOI: 10.1021/acsbiomaterials.9b01014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bombyx mori-derived silk fibroin (SF) has recently gained interest for its intrinsic or engineered adhesive properties. In a previous study by our group, the mechanism of the protein's intrinsic adhesiveness to biological substrates such as leather has been hypothesized to rely on hydrogen bond formation between amino acid side chains of SF and the substrate. In this study, the serine side chains of SF were chemically functionalized with substituents with different hydrogen bonding abilities. The effect of these changes on adhesion to leather was investigated along with protein structural assessments. The results confirm our hypothesis that adhesive interactions are mediated by hydrogen bonds and indicate that the length and nature of the side chains are important for both adhesion and secondary structure formation.
Collapse
Affiliation(s)
- Cooper J Love
- Pre-Medical Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
| | - Bogdan A Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
| | - Takuya Katashima
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Monica A Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA.,Department of Chemistry and Biochemistry, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
| |
Collapse
|