1
|
Ruíz-Baltazar ÁDJ. Advancements in nanoparticle-modified zeolites for sustainable water treatment: An interdisciplinary review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174373. [PMID: 38964399 DOI: 10.1016/j.scitotenv.2024.174373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The contamination of water sources with heavy metals, dyes, and other pollutants poses significant challenges to environmental sustainability and public health. Traditional water treatment methods often exhibit limitations in effectively addressing these complex contaminants. In response, recent developments in nanotechnology have catalyzed the exploration of novel materials for water remediation, with nanoparticle-doped zeolites emerging as a promising solution. This comprehensive review synthesizes current literature on the integration of nanoparticles into zeolite frameworks for enhanced contaminant removal in water treatment applications. We delve into synthesis methodologies, elucidate mechanistic insights, and evaluate the efficacy of nanoparticle-doped zeolites in targeting specific pollutants, while also assessing considerations of material stability and environmental impact. The review underscores the superior adsorptive and catalytic properties of nanoparticle-doped zeolites, owing to their high surface area, tailored porosity, and enhanced ion-exchange capabilities. Furthermore, we highlight recent advancements in heavy metal and organic pollutant uptake facilitated by these materials. Additionally, we explore the catalytic degradation of contaminants through advanced oxidation processes, demonstrating the multifunctionality of nanoparticle-doped zeolites in water treatment. By providing a comprehensive analysis of existing research, this review aims to guide future developments in the field, promoting the sustainable utilization of nanoparticle-doped zeolites as efficient and versatile materials for water remediation endeavors.
Collapse
Affiliation(s)
- Álvaro de Jesús Ruíz-Baltazar
- CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
2
|
Guaya D, Debut A, Campoverde J. A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites. Molecules 2024; 29:4643. [PMID: 39407573 PMCID: PMC11478182 DOI: 10.3390/molecules29194643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A zeolitic sample, named MT-ZLSH, was synthesized using mining tailings (MT) as the precursor material, resulting in a structure comprising: Linde type A (LTA) and sodalite-hydroxysodalite (ZLSH). This naming convention reflects the material's origin and its structural characteristics. The material was further modified by incorporating lithium, producing MT-ZLSH-Li+. Physicochemical characterizations were performed, and the material was evaluated for its potential to remove methylene blue (MB) from synthetic wastewater through adsorption and photocatalysis. Efficient adsorption was observed under typical wastewater pH conditions, with a maximum adsorption capacity of 23.4 mg·g-1, which fit well with the Langmuir isotherm model. The key mechanisms governing MB adsorption were identified as ion exchange, electrostatic attraction, and hydrogen bonding. The adsorption process was exothermic, with kinetic data fitting both the pseudo-second order and intraparticle diffusion models, achieving 82% removal and a maximum adsorption capacity of 40 mg·g-1 over 12 h. MB adsorption followed a two-step process, initially involving film diffusion, followed by intraparticle diffusion. Additionally, photocatalytic degradation of MB achieved 77% degradation within 180 min. However, a decrease in reusability was observed during a second cycle of MB adsorption and photodegradation, highlighting the need for further optimization to enhance the material's long-term performance.
Collapse
Affiliation(s)
- Diana Guaya
- Departmento de Química, Universidad Técnica Particular de Loja, Loja 110107, Ecuador;
| | - Alexis Debut
- Centro de Nanociencia Nanotechnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Jhuliana Campoverde
- Departmento de Química, Universidad Técnica Particular de Loja, Loja 110107, Ecuador;
| |
Collapse
|
3
|
Isnaini MD, Vanichsetakul B, Phisalaphong M. Alginate-Based Hydrogel Bead Reinforced with Montmorillonite Clay and Bacterial Cellulose-Activated Carbon as an Effective Adsorbent for Removing Dye from Aqueous Solution. Gels 2024; 10:597. [PMID: 39330199 PMCID: PMC11431803 DOI: 10.3390/gels10090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
According to environmental concerns related to water pollution, this study aims to develop a novel hydrogel bead as a biocompatible and efficient adsorbent by integrating bacterial cellulose-activated carbon (BCAC) and montmorillonite (MT) in alginate hydrogel (ALG). The ionotropic gelation method was applied to the fabrication of BCAC/MT/ALG hydrogel beads. The BCAC/MT/ALG hydrogel bead exhibited significantly higher tensile strength, Young's modulus, and thermal stability, with ~1.4 times higher adsorption uptake of methylene blue (MB) from aqueous solution as compared to the pristine ALG bead. The textural properties, including specific surface area and porosity, were beneficial to accommodate the size of cationic MB as the target molecule. This resulted in a remarkable MB adsorption uptake of 678.2 mg/g at pH 7 and 30 °C. The adsorption isotherm showed the best fit for the nonlinear Redlich-Peterson isotherm model. Experimental adsorption data were well-described by the pseudo-second order kinetic model, with R2 values reaching 0.997. In addition, the adsorbent bead demonstrated easy regeneration with high reusability with approximately 75% of MB removal after being used for six cycles. Therefore, BCAC/MT/ALG bead represents an eco-friendly, cost-effective, and highly efficient adsorbent for MB removal from water and could potentially be used for removal of a wide range of cationic dye pollutants from wastewater.
Collapse
Affiliation(s)
- Muhammad Dody Isnaini
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhawaranchat Vanichsetakul
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Wawszczak A, Kocki J, Kołodyńska D. Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications-The Case Studies. J Biomed Mater Res B Appl Biomater 2024; 112:1-23. [PMID: 39269132 DOI: 10.1002/jbm.b.35475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.
Collapse
Affiliation(s)
- Alicja Wawszczak
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
5
|
Hemdan M, Ragab AH, Gumaah NF, Mubarak MF. Sodium alginate-encapsulated nano-iron oxide coupled with copper-based MOFs (Cu-BTC@Alg/Fe 3O 4): Versatile composites for eco-friendly and effective elimination of Rhodamine B dye in wastewater purification. Int J Biol Macromol 2024; 274:133498. [PMID: 38944086 DOI: 10.1016/j.ijbiomac.2024.133498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
This study explores the effectiveness of Alginate-coated nano‑iron oxide combined with copper-based MOFs (Cu-BTC@Alg/Fe3O4) composites for the sustainable and efficient removal of Rhodamine B (RhB) dye from wastewater through adsorption and photocatalysis. Utilizing various characterization techniques such as FTIR, XRD, SEM, and TEM, we confirmed the optimal synthesis of this composite. The composites exhibit a significant surface area of approximately 160 m2 g-1, as revealed by BET analysis, resulting in an impressive adsorption capacity of 200 mg g-1 and a removal efficiency of 97 %. Moreover, their photocatalytic activity is highly effective, producing environmentally friendly degradation byproducts, thus underlining the sustainability of Cu-BTC@Alg/Fe3O4 composites in dye removal applications. Our investigation delves into kinetics and thermodynamics, revealing a complex adsorption mechanism influenced by both chemisorption and physisorption. Notably, the adsorption kinetics indicate equilibrium attainment within 100 min across all initial concentrations, with the pseudo-second-order kinetic model fitting the data best (R2 ≈ 0.999). Furthermore, adsorption isotherm models, including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich, elucidate the adsorption behavior, with the Temkin and Dubinin-Radushkevich models showing superior accuracy compared to the Langmuir model (R2 ≈ 0.98 and R2 ≈ 0.96, respectively). Additionally, thermodynamic analysis reveals a negative Gibbs free energy value (-6.40 kJ mol-1), indicating the spontaneity of the adsorption process, along with positive enthalpy (+24.3 kJ mol-1) and entropy (+82.06 kJ mol-1 K) values, suggesting an endothermic and disorderly process at the interface. Our comprehensive investigation provides insights into the optimal conditions for RhB adsorption onto Cu-BTC@Alg/Fe3O4 composites, highlighting their potential in wastewater treatment applications.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed H Ragab
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia.
| | - Najla F Gumaah
- Chemistry Department, Faculty of Science, Northern Border University, Saudi Arabia
| | - Mahmoud F Mubarak
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt; Core Lab Center, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor st., Nasr City, Cairo 11727, Egypt.
| |
Collapse
|
6
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
7
|
Chaharkam M, Tahmasebpoor M, Yilmaz MS. Exploring the structural characteristics and dye removal capabilities of powder-, granule- and film- shaped magnetic activated carbon derived from Oleaster seed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35283-35307. [PMID: 38724844 DOI: 10.1007/s11356-024-33598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Dye pollution in water caused by excessive discharge of industrial effluent has become a major environmental problem in recent decades because of its irreversible effects on human health. In this study, low-cost carbon-based adsorbents synthesized from Oleaster seed (OS) were prepared in three forms of powder (PAC), film (FAC), and granule (GAC) and used for the removal of methylene blue dye. The properties of the synthesized adsorbents were characterized by SEM-EDX, BET, XPS and FTIR analyses. The maximum adsorption capacity (qmax) of PAC, FAC, and GAC adsorbents were obtained as 68.49, 32.25, and 15.10 mg/g, respectively at the optimum experimental conditions of pH = 10, adsorbent dosages of 0.5, 1, and 2 g/l, contact times of 60, 90, and 120 min, dye concentration of 10 mg/L, and temperature of 25°C. The Langmuir isotherm well described the equilibrium data for all three adsorbents. The pseudo-second-order kinetic model provided the best fit with the adsorption data obtained from all three adsorbents. Adsorption occurred spontaneously through a combination of chemical and physical mechanisms, with a thermodynamically exothermic process. The desorption experiments demonstrated that all the adsorbents have substantial potential for recovery. The novel activated carbon/alginate composite films are proposed as more promising biosorbents to remove MB dye from the aquatic environment compared to GAC adsorbents.
Collapse
Affiliation(s)
- Masoomeh Chaharkam
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Maryam Tahmasebpoor
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Muge Sari Yilmaz
- Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
8
|
Saning A, Thanachayanont C, Suksai L, Watcharin W, Techasakul S, Chuenchom L, Dechtrirat D. Green magnetic carbon/alginate biocomposite beads from iron scrap waste for efficient removal of textile dye and heavy metal. Int J Biol Macromol 2024; 261:129765. [PMID: 38290640 DOI: 10.1016/j.ijbiomac.2024.129765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The circular economy can help enhance the value of industrial waste and remediate the environment. This study considers the application of iron scrap from steel production as a free resource to produce magnetic adsorbent beads to remove methylene blue dye and lead (II) ions from wastewater. Composite beads were prepared by incorporating iron scrap and activated carbon into a calcium alginate gel using a simple 'mix and drop' synthesis. The optimized magnetic beads were stable and offered a large specific surface area. The maximum adsorption capacity of the adsorbent, calculated from the Langmuir isotherm model, was 476.19 mg g-1 for methylene blue and 163.93 mg g-1 for lead (II) ions. This study places emphasis upon the zero-waste principle and employs a scalable synthetic approach for the conversion of waste iron scrap into an adsorbent material capable of delivering significant environmental benefits.
Collapse
Affiliation(s)
- Amonrada Saning
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Ladawan Suksai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Waralee Watcharin
- Faculty of Biotechnology (Agro-Industry), Assumption University, Bangkok 10240, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Laemthong Chuenchom
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Decha Dechtrirat
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
9
|
Salvestrini S, Debord J, Bollinger JC. Enhanced Sorption Performance of Natural Zeolites Modified with pH-Fractionated Humic Acids for the Removal of Methylene Blue from Water. Molecules 2023; 28:7083. [PMID: 37894563 PMCID: PMC10609103 DOI: 10.3390/molecules28207083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This work explores the effect of humic acids (HA) fractionation on the sorption ability of a natural zeolite (NYT)-HA adduct. HA were extracted from compost, fractionated via the pH fractionation method, and characterized via UV-Vis spectroscopy and gel permeation chromatography. The HA samples were immobilized onto NYT via thermal treatment. The resulting adducts (NYT-HA) were tested for their ability to remove methylene blue (MB) from an aqueous solution. It was found that the sorption performance of NYT-HA strongly depends on the chemical characteristics of humic acids. Sorption capacity increased with the molecular weight and hydrophobicity degree of the HA fractions. Hydrophobic and π-π interactions are likely the primary mechanisms by which MB interacts with HA. The sorption kinetic data conform to the pseudo-second-order model. The Freundlich isotherm model adequately described the sorption equilibrium and revealed that the uptake of MB onto NYT-HA is endothermic in nature.
Collapse
Affiliation(s)
- Stefano Salvestrini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Jean Debord
- Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, 87042 Limoges, France;
| | - Jean-Claude Bollinger
- Laboratoire E2Lim, Faculté des Sciences et Techniques, Université de Limoges, 87060 Limoges, France;
| |
Collapse
|
10
|
Jioui I, Abrouki Y, Aboul Hrouz S, Sair S, Dânoun K, Zahouily M. Efficient removal of Cu 2+ and methylene blue pollutants from an aqueous solution by applying a new hybrid adsorbent based on alginate-chitosan and HAP derived from Moroccan rock phosphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107790-107810. [PMID: 37740159 DOI: 10.1007/s11356-023-29890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Alginate-chitosan/hydroxyapatite (Alg-Cs/HAP) beads were prepared as adsorbent to remove methylene blue (MB) and copper ions from an aqueous solution using a batch system. FTIR, TGA, point of zero charge (pHpzc), SEM, XRD, and BET analysis were used to characterize the elaborated material. The effect of several parameters such as initial pH value, adsorbent dose, temperature, contact time, and initial pollutant concentration were also investigated. The obtained results showed that Alg-Cs/HAP exhibit excellent adsorption properties for Cu (II) and MB removal, with high adsorption capacities of copper ions (208.34 mg/g) and methylene blue (454.54 mg/g). The kinetic of the adsorption process is correlated with the pseudo-first-order for methylene blue and the pseudo-second-order for copper ions. The equilibrium data for MB dye fitted the Freundlich isotherm model, thus implying that the adsorption process consists of multilayer adsorption as well as interactions between the adsorbate and the adsorbent. The equilibrium data for copper ions corresponds closely with the Langmuir model which suggests that the adsorbed molecules occur over a monolayer. Various thermodynamic parameters such as the standard Gibbs energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were calculated. All results indicated that Alg-Cs/HAP material has a good potential for the treatment of wastewater.
Collapse
Affiliation(s)
- Ilham Jioui
- MAScIR Foundation-Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Younes Abrouki
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterial, Water and Environment, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| | - Soumia Aboul Hrouz
- MAScIR Foundation-Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Said Sair
- MAScIR Foundation-Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Karim Dânoun
- MAScIR Foundation-Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Zahouily
- MAScIR Foundation-Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, University of Hassan II Casablanca, 20000, Casablanca, Morocco
| |
Collapse
|
11
|
Ansari H, Oladipo AA, Gazi M. Alginate-based porous polyHIPE for removal of single and multi-dye mixtures: Competitive isotherm and molecular docking studies. Int J Biol Macromol 2023; 246:125736. [PMID: 37423450 DOI: 10.1016/j.ijbiomac.2023.125736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
A novel hydrophilic porous alginate-based polyHIPE (AGA) was synthesized via an oil-in-water emulsion templating approach. AGA was used as an adsorbent for removing methylene blue (MB) dye in single- and multi-dye systems. BET, SEM, FTIR, XRD, and TEM were used to characterize AGA to elucidate its morphology, composition and physicochemical properties. According to the results, 1.25 g/L AGA adsorbed 99 % of 10 mg/L MB in 3 h in a single-dye system. The removal efficiency decreased to 97.2 % in the presence of 10 mg/L Cu2+ ions and 40.2 % when the solution salinity increased to 70 %. In a single-dye system, the experimental data do not match well with the Freundlich isotherm, pseudo-first order, and the Elovich kinetic model, however, in a multi-dye system, it fit well with both extended Langmuir and the Sheindorf-Rebhun-Sheintuch. Notably, AGA removed 66.87 mg/g in a dye solution containing only MB, whereas 50.14-60.01 mg/g adsorption of MB was accomplished in a multiple-dye system. According to the molecular docking analysis, the dye removal process involved chemical bonds between the functional groups of AGA and the dye molecules, hydrogen bonds, hydrophobic and electrostatic interactions. The overall binding score of MB decreased from -26.9 kcal/mol in a single-dye system to -18.3 kcal/mol in a ternary system.
Collapse
Affiliation(s)
- Hoda Ansari
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Türkiye
| | - Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Türkiye.
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Türkiye.
| |
Collapse
|
12
|
Umejuru EC, Mashifana T, Kandjou V, Amani-Beni M, Sadeghifar H, Fayazi M, Karimi-Maleh H, Sithole T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. ENVIRONMENTAL RESEARCH 2023; 231:116073. [PMID: 37164282 DOI: 10.1016/j.envres.2023.116073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.
Collapse
Affiliation(s)
- Emmanuel Christopher Umejuru
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Vepika Kandjou
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Materials and Metallurgical Engineering (CMME), Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Majid Amani-Beni
- School of Architecture, Southwest Jiaotong University, 611756, Chengdu, China
| | - Hasan Sadeghifar
- R&D Laboratory, Hollingsworth & Vose (H&V) Company, West Groton, MA, 01452, USA
| | - Mahsa Fayazi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
13
|
Jing Z, Li Y, Zhang Y, Chen K, Sun Y, Wang M, Chen B, Zhao S, Jin Y, Du Q, Pi X, Wang Y. Simple synthesis of chitosan/alginate/graphene oxide/UiO-67 amphoteric aerogels: Characterization, adsorption mechanism and application for removal of cationic and anionic dyes from complex dye media. Int J Biol Macromol 2023; 242:124683. [PMID: 37141973 DOI: 10.1016/j.ijbiomac.2023.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
A chitosan/alginate/graphene oxide/UiO-67 (CS/SA/GO/UiO-67) amphoteric aerogel was synthesized successfully. A series of characterization experiments of CS/SA/GO/UiO-67 amphoteric aerogel was performed by SEM, EDS, FT-IR, TGA, XRD, BET, and zeta potential. The competitive adsorption properties of different adsorbents for complex dyes wastewater (MB and CR) at room temperature (298 K) were compared. Langmuir isotherm model predicted that the maximum adsorption quantity of CS/SA/GO/UiO-67 for CR and MB was 1091.61 and 1313.95 mg/g, respectively. The optimum pH values of CS/SA/GO/UiO-67 for the adsorption of CR and MB were 5 and 10, respectively. The kinetic analysis showed that the adsorption of MB and CR on CS/SA/GO/UiO-67 was more suitable for the pseudo-second-order and pseudo-first-order kinetic model, respectively. The isotherm study revealed that the adsorption of MB and CR was consistent with the Langmuir isotherm model. The thermodynamic study demonstrated that the adsorption process of MB and CR was exothermic and spontaneous. FT-IR analysis and zeta potential characterization experiments revealed that the adsorption mechanism of MB and CR on CS/SA/GO/UiO-67 depended on π-π bond, hydrogen bond, and electrostatic attraction. Repeatable experiments showed that the removal rates of MB and CR of CS/SA/GO/UiO-67 after six cycles of adsorption were 67.19 and 60.82 %, respectively.
Collapse
Affiliation(s)
- Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
14
|
Zhao Z, Zhou H, Han X, Han L, Xu Z, Wang P. Rapid, Highly-Efficient and Selective Removal of Anionic and Cationic Dyes from Wastewater Using Hollow Polyelectrolyte Microcapsules. Molecules 2023; 28:molecules28073010. [PMID: 37049773 PMCID: PMC10095712 DOI: 10.3390/molecules28073010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and methylene blue (909.25 mg/g), with an extremely low equilibrium adsorption time (~20 min). The P2P MCs exhibited high adsorption capacities of reactive orange K-G (ROKG) and direct yellow 5G (DY5G) which were 404.79 and 451.56 mg/g. Adsorption processes of all dyes onto microcapsules were best described by the Langmuir isotherm model and a pseudo-second-order kinetic model. In addition, the P2P MCs loaded with reactive dyes (P2P–ROKG), could further adsorb rhodamine B (RhB) dye, and P2 MCs that had adsorbed cationic MB dyes could also be used for secondary adsorption treatment of direct dye waste-water, respectively. The present work confirmed that P2P and P2 MCs were expected to become an excellent adsorbent in the water treatment industry.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Hongbing Zhou
- Zhejiang Huaguang Automotive Interior Decoration Co., Ltd., Rui’an 325200, China
| | - Xu Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| |
Collapse
|
15
|
Mallakpour S, Sirous F, Dinari M. Comparative study for removal of cationic and anionic dyes using alginate-based hydrogels filled with citric acid-sawdust/UiO-66-NH 2 hybrid. Int J Biol Macromol 2023; 238:124034. [PMID: 36924868 DOI: 10.1016/j.ijbiomac.2023.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, a big challenge is developing a sustainable and effective method for removing contaminants like dyes from aqueous solutions. In this regard, Zr-based metal-organic framework (UiO-66-NH2) and sawdust as the ideal adsorbents were used. Due to their low separation in adsorption processes, embedding into alginate and obtaining composite beads are suggested as a suitable strategy. The achieved Ca-alginate/citric acid (CA)-sawdust/UiO-66-NH2 hydrogel beads were used to compare cationic and anionic dyes removal. This sorbent indicated an excellent selectivity for removing methylene blue versus methyl orange in a binary system. pH = 6, adsorbent amount = 80 mg, methylene blue concentration = 10 mg/L, and contact time = 420 min were achieved as optimal parameters on methylene blue adsorption with an adsorption capacity of about 26 mg/g. The removal process of methylene blue followed linear Freundlich isotherm and nonlinear pseudo-2nd-order kinetic models. The regeneration test demonstrated methylene blue removal efficiency higher than about 89 % after 9 cycles. According to the outcomes, methylene blue could be attached to the adsorbent surface through the electrostatic, hydrogen bonding, and π-π interactions of the aromatic rings. These results confirm the potential of Ca-alginate/CA-sawdust/UiO-66-NH2 hydrogel beads as a selective bio-sorbent for cationic dye removal.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| |
Collapse
|
16
|
Design of novel hyper-branched dendritic boehmite/gallic acid alumoxane for methylene blue removal: Adsorption mechanism and reusability. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
17
|
Baig MT, Kayan A. Eco-friendly novel adsorbents composed of hybrid compounds for efficient adsorption of methylene blue and Congo red dyes: Kinetic and thermodynamic studies. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2166845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mirza Talha Baig
- Department of Chemistry, Faculty of Art and Science, Kocaeli University, Kocaeli, Turkey
| | - Asgar Kayan
- Department of Chemistry, Faculty of Art and Science, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
18
|
Mohrazi A, Ghasemi-Fasaei R. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:339. [PMID: 36705863 DOI: 10.1007/s10661-022-10900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Wastewater contains organic compounds, including dyes, which have potential risks to the environment. Hence, these compound needs to be eliminated from the aqueous solution. In the present study, chitosan-pectin composite (Cs-Pc) was used as an adsorbent to remove methylene blue dye (MB) from synthetic wastewater. To evaluate the parameters affecting adsorption, including the initial MB concentration, solution pH, contact time, and Cs-Pc dose, batch experiments were carried out. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), and pH point of zero charges (pH pzc) were applied for characterizations of Cs-Pc. The optimum conditions were obtained with an initial MB concentration of 50 mg L-1: solution pH ~ 11, Cs-Pc dose: 1.5 g L-1 and 180 min contact time, which caused 97.77% of MB removal. In addition, the removal efficiency of MB was more influenced by pH than by sorbate dose. Also, Cs-Pc had a higher ability to remove MB than chitosan and pectin, probably due to its highly porous structure and rough surfaces that provides active sites and facilitate MB adsorption. The maximum removal efficiency and the adsorption capacity of MB onto Cs-Pc at 500 mg L-1 concentration under optimum conditions were 98.67% and 328.02 mg g-1, respectively. The adsorption kinetics and isotherms were best described by pseudo-second-order and Freundlich equation, respectively. After four times of recycling, the removal efficiency of MB was above 96%. Electrostatic and pi-pi interactions are the main mechanisms for the removal of MB onto the adsorbent. So the application of Cs-Pc is promising for MB removal from polluted solutions not only due to its strong adsorbing capability but also due to its excellent ability to reuse.
Collapse
Affiliation(s)
- Ava Mohrazi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
19
|
Saigl Z, Tifouti O, Alkhanbashi B, Alharbi G, Algamdi H. Chitosan as adsorbent for removal of some organic dyes: a review. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Valizadeh K, Bateni A, Sojoodi N, Ataabadi MR, Behroozi AH, Maleki A, You Z. Magnetized inulin by Fe 3O 4 as a bio-nano adsorbent for treating water contaminated with methyl orange and crystal violet dyes. Sci Rep 2022; 12:22034. [PMID: 36539589 PMCID: PMC9767922 DOI: 10.1038/s41598-022-26652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Current work focuses on fabricating a new bio-nano adsorbent of Fe3O4@inulin nanocomposite via an in-situ co-precipitation procedure to adsorb methyl orange (MO) and crystal violet (CV) dyes from aqueous solutions. Different physical characterization analyses verified the successful fabrication of the magnetic nanocomposite. The adsorbent performance in dye removal was evaluated by varying initial dye concentration, adsorbent dosage, pH and temperature in 5110 mg/L, 0.10.8 g/L, 111 and 283-338 K, respectively. Due to the pH of zero point of charge and intrinsic properties of dyes, the optimum pHs were 5 and 7 for MO and CV adsorption, respectively. The correlation of coefficient (R2) and reduced chi-squared value were the criteria in order to select the best isotherm and kinetics models. The Langmuir model illustrated a better fit for the adsorption data for both dyes, demonstrating the maximum adsorption capacity of 276.26 and 223.57 mg/g at 338 K for MO and CV, respectively. As well, the pseudo-second-order model showed a better fitness for kinetics data compared to the pseudo-first-order and Elovich models. The thermodynamic parameters exhibited that the dye adsorption process is endothermic and spontaneous, which supported the enhanced adsorption rate by increasing temperature. Moreover, the nanocomposite presented outstanding capacity and stability after 6 successive cycles by retaining more than 87% of its initial dye removal efficiency. Overall, the magnetized inulin with Fe3O4 could be a competent adsorbent for eliminating anionic and cationic dyes from water.
Collapse
Affiliation(s)
- Kamran Valizadeh
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Bateni
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Sojoodi
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Rostami Ataabadi
- grid.411748.f0000 0001 0387 0587School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amir Hossein Behroozi
- grid.411748.f0000 0001 0387 0587School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- grid.411748.f0000 0001 0387 0587Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Zhenjiang You
- grid.1038.a0000 0004 0389 4302Center for Sustainable Energy and Resources, Edith Cowan University, Joondalup, WA 6027 Australia ,grid.1003.20000 0000 9320 7537School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
21
|
Araújo MEB, Silva VC, Fernandes JV, Cartaxo JM, Rodrigues AM, Menezes RR, de Araújo Neves G. Innovative adsorbents based on bentonite mining waste for removal of cationic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90446-90462. [PMID: 35871192 DOI: 10.1007/s11356-022-22083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Waste rock from bentonite mining (WRBM) was evaluated as potential adsorbents for removing crystal violet (CV) and methylene blue (MB) cationic dyes from contaminated water. The waste samples (AM01, AM02, and AM03) were collected from different locations of the bentonite mine and characterized through X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N2 adsorption/desorption, and cation exchange capacity. The adsorption efficiency of CV and MB dyes was investigated through the effect of initial concentration, contact time, pH, the dosage of adsorbent, and temperature. Sample AM02 showed the largest surface area (69.13 m2/g) and the best adsorptive performance for both dyes, with removal more significant than 90%. The adsorption of CV and MB in the waste followed the Langmuir isothermal model. Samples AM01 and AM02 followed the pseudo-second-order (PSO) kinetic model, while AM03 better fitted the Elovich kinetic model. The enthalpy (ΔH), entropy (ΔS), and Gibbs energy (ΔG) were evaluated as adsorption parameters. The process of adsorption of CV and MB dyes in the waste was predominantly endothermic and occurred spontaneously. WRBM samples proved to be a promising candidate for removing cationic dyes present in water.
Collapse
Affiliation(s)
- Maria Eduarda Barbosa Araújo
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Vanderlane Cavalcanti Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Jucielle Veras Fernandes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Juliana Melo Cartaxo
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| | - Alisson Mendes Rodrigues
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil.
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| |
Collapse
|
22
|
Peramune D, Manatunga DC, Dassanayake RS, Premalal V, Liyanage RN, Gunathilake C, Abidi N. Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: A review. ENVIRONMENTAL RESEARCH 2022; 215:114242. [PMID: 36067842 DOI: 10.1016/j.envres.2022.114242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.
Collapse
Affiliation(s)
- Dinusha Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka.
| | - Vikum Premalal
- Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Chamila Gunathilake
- Department of Material and Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, 60200, Sri Lanka
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
23
|
PREPARATION AND CHARACTERIZATION OF PEGDE-EDTA-MODIFIED MAGNETIC CHITOSAN MICROSPHERE AS AN ECO-FRIENDLY ADSORBENT FOR METHYLENE BLUE REMOVAL. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Youssef MA, Sami NM, Hassan HS. Extraction and separation feasibility of cerium (III) and lanthanum (III) from aqueous solution using modified graphite adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79649-79666. [PMID: 35713835 PMCID: PMC9587071 DOI: 10.1007/s11356-022-20823-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Graphite (GR) and graphite/alginate (GRA) composite were synthesized utilizing the thermal annealing technique and used as a new adsorbent material for the selective separation and removal of La(III) and Ce(III) from aqueous solutions. Fourier transform infrared (FTIR) spectroscopy, thermal analysis (DTA, TGA), X-ray diffraction (XRD), surface area, porosity, and scanning electron microscope (SEM) were also used to characterize the generated material. Distinct experiments were performed to test the ability of the GRA to La(III) and Ce(III) removal, which include the effect of pH, shaken time, initial concentration of La(III), and Ce(III) at different temperatures range. After 20 min, both ions have reached equilibrium. The pseudo second-order kinetic model was chosen as one which best fits the experimental evidence and better reflects the chemical sorption process. Adsorption isotherm was studied using the Langmuir, Freundlich, and D-R models. The Langmuir model was used to better fit the results obtained. At 25 °C, Ce(III) and La(III) have maximum monolayer capacities of 200 and 83.3 mg/g, respectively. The sorption was endothermic reaction and spontaneous, as illustrated by the data of thermodynamics studies. GRA has the ability to be used as a novel lanthanide adsorbent material, especially for selective separation between Ce(III) and La(III).
Collapse
Affiliation(s)
- Maha A Youssef
- Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Nesreen M Sami
- Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| | - Hisham S Hassan
- Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
25
|
Prasannamedha G, Kumar PS, Shivaani S, Kokila M. Sodium alginate/magnetic hydrogel microspheres from sugarcane bagasse for removal of sulfamethoxazole from sewage water: Batch and column modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119523. [PMID: 35643290 DOI: 10.1016/j.envpol.2022.119523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Magnetic carbon were synthesized from sugarcane bagasse using hydrothermal carbonization followed by thermal activation was converted to solid state as beads (hydrogels SACFe) using sodium alginate and applied as adsorbent in removal sulfamethoxazole in batch and column mode. From adsorption parameter analysis it was confirmed that 0.6 g L-1 SACFe was effective in removing 50 mg L-1 of SMX at pH 6.2. Sorption of SMX on SACFe beads followed Elovich kinetics and Freundlich isotherm. It was further confirmed that sorption occurred on heterogeneous surface of SACFe beads with chemisorption as rate limiting step. Maximum adsorption capacity was obtained as 58.439 mg g-1 pH studies revealed that charged assisted hydrogen bonding, EDA interactions are some of the mechanism that favoured removal of SMX. From column studies it was found that bead height of 2 cm and flow rate of 1.5 mL min-1 found to be best in removing pollutant. Thomas model fitted better the experimental data stating that improved interaction between adsorbent and adsorbate act as major driving force tool in obtaining maximum sorption capacity. Breakthrough curve was completely affected by varied flow rate and bed height. Column adsorption was effective in reducing COD and BOD levels of sewage which are affected by toxic pollutants and miscellaneous compounds. Feasibility analysis showed that SACFe beads could be employed for real-time applications as it is cost, energy effective and easy recovery.
Collapse
Affiliation(s)
- G Prasannamedha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India.
| | - S Shivaani
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - M Kokila
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| |
Collapse
|
26
|
Miao JL, Ren JQ, Li HJ, Wu DG, Wu YC. Mesoporous crosslinked chitosan-activated clinoptilolite biocomposite for the removal of anionic and cationic dyes. Colloids Surf B Biointerfaces 2022; 216:112579. [PMID: 35598510 DOI: 10.1016/j.colsurfb.2022.112579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023]
Abstract
A mesoporous crosslinked chitosan-activated clinoptilolite biocomposite (CS-GA/ACP) was prepared with chitosan (CS) as the substrate and glutaraldehyde (GA) as the crosslinking agent. Structural analysis of the CS-GA/ACP composite beads was performed using FTIR, SEM, and BET techniques. The adsorption properties of the CS-GA/ACP for Congo red (CR) and methylene blue (MB) removal were examined using a batch method. The effects of CS loading, CS-GA/ACP dosages (0.005-0.25 g), pH values (3-11), initial concentrations (30-300 mg/L), contact time (5-120 min), ionic strength, and temperatures (25-65 ℃) on the adsorption of CR and MB on the CS-GA/ACP composite beads were investigated. The pseudo-second-order kinetics could better describe the adsorption process than the pseudo-first-order kinetics, and the Langmuir isotherms model agreed well with the experimental data. The maximum adsorption capacities of the CS-GA/ACP for CR and MB were 180.59 mg/g and 143.67 mg/g at 25 ℃, respectively. The proposed mechanism studies showed that the possible interaction between the adsorbent and dye molecules were Yoshida H-bonding, dipole-dipole H-bonding, electrostatic interaction and n-π interaction. The CS-GA/ACP can be recycled to remove dyes without significant loss of efficacy, and the adsorption of dyes on the CS-GA/ACP is spontaneous endothermic adsorption. Overall, the CS-GA/ACP showed an excellent performance for dyes removal in aqueous solution and could be a practical candidate for industrial applications.
Collapse
Affiliation(s)
- Jia-Lin Miao
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jia-Qi Ren
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Da-Gang Wu
- Shandong Muxiang Biotechnology Co., Ltd, Qingdao 266100, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
27
|
A polyurethane foam membrane filled with double cross-linked chitosan/carboxymethyl cellulose gel and decorated with ZSM-5 nano zeolite: Simultaneous dye removal. Int J Biol Macromol 2022; 213:699-717. [PMID: 35644314 DOI: 10.1016/j.ijbiomac.2022.05.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
A novel bio-based polyurethane foam was fabricated using double cross-linked chitosan/carboxymethyl cellulose gel, filled with ZSM-5 nano zeolite, and hot-pressed into the membrane. The prepared foam membrane was characterized using FESEM, FTIR, BET, TGA, and pHZPC analyses and then used for continuous dye removal. The results modification of polyurethane foam with chitosan/carboxymethyl cellulose gel and ZSM-5 nano zeolite would increase the retention ability of positive cationic methylene blue. Also, the foam could simultaneously remove methyl orange, eriochrome black T, and methylene blue from the binary and trinary solutions but could effectively be used to selectively removal methylene blue. In addition, the dye removal ability at the breakthrough was enhanced with decreasing flow rate, and increasing bed height, pH, initial dye concentration, and nano zeolite content in the foam. To describe the breakthrough curves different models were utilized which best fits were obtained with Modified Dose-Response as compared to Thomas, Adams & Bohart, Yoon-Nelson, and Wolborska models.
Collapse
|
28
|
Liu K, Yang Y, Sun F, Liu Y, Tang M, Chen J. Rapid degradation of Congo red wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube - Silver modified titanium dioxide photocatalytic composite with sodium alginate. CHEMOSPHERE 2022; 299:134417. [PMID: 35351474 DOI: 10.1016/j.chemosphere.2022.134417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
With a large number of Congo red used in textiles, Congo red wastewater was not easily degraded, resulting in environmental and health-related problems. In order to improve the degradation efficiency of Congo red wastewater, A novel intimately coupled photocatalysis and biodegradation (ICPB) system was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA). Compared with immobilized CAT and R. palustris, the R. palustris/CAT@SA improved the degradation and removal rates of Congo red by 14.3% and 42.1%, and the COD removal rates by 76% and 44.6%, respectively. The mechanism of the degradation of Congo red by the new ICPB was that the Congo red on the surface of the support was degraded into long-chain alkanes by the superoxide and hydroxyl radicals of CAT product, and then the long-chain alkanes were completely mineralization by R. Palustris, which reduced the accumulation of intermediates in the photocatalysis. Most of the Congo red was adsorbed to the interior of the carrier was degraded into aromatic hydrocarbons by R. Palustris, and then oxidized and degraded by CAT, and a small part of the Congo red would be directly mineralized by R. Palustris. A novel technical solution of R. palustris/CAT@SA provided a potential application to the degradation of dye wastewater.
Collapse
Affiliation(s)
- Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
29
|
Mokhtar A, Boukoussa B, Baba Ahmed A, Abdelkrim S, Djelad A, Hachemaoui M, Zaoui F, Bengueddach A, Sassi M. Alginate@Layered Silicate Composite Beads: Dye Elimination, Box–Behnken Design Optimization and Antibacterial Property. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02350-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8030175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presently, hazardous metal and dye removal from wastewater is one of the major areas of research focus. For the elimination of these contaminants, many approaches have been devised and applied. However, the accomplishment of various water treatment processes has largely depended on the medium utilized and the associated problem with the leaching of harmful compounds into the water process with most commercial and chemically manufactured materials for water treatment processes. Hence, this study is aimed at reviewing existing studies on the sorption of heavy metals (HMs) and dyes using bionanocomposites (BNCs). The key focus of this review is on the development of eco-friendly, effective, and appropriate nanoadsorbents that could accomplish superior and enhanced contaminant sequestration using BNCs owing to their biodegradability, biocompatible, environmentally friendly, and not posing as secondary waste to the environment. The sorption of most pollutants was observed to be pH, sorbent dosage, and initial contaminant concentration-dependent, with most contaminants’ elimination taking place in the pH range of 2-10. The sorption process of HMs and dyes to various BNCs was superlatively depicted utilizing the Langmuir (LNR) and Freundlich (FL) as well as the pseudo-second-order (PSO) models, suggestive of the sorption process of a monolayer and multilayer and the chemisorption process, the rate-limiting stage in surface sorption. The established sorption capacities for the reviewed sorption process for various contaminants ranged from 1.47 to 740.97 mg/g. Future prospective for the treatment and remediation of contaminated water using BNCs was also discussed.
Collapse
|
31
|
Zare K, Banihashemi A, Javanbakht V, Mohammadifard H. Fluoride removal from aqueous solutions using alginate beads modified with functionalized silica particles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Roy N, Alex SA, Chandrasekaran N, Kannabiran K, Mukherjee A. Studies on the removal of acid violet 7 dye from aqueous solutions by green ZnO@Fe 3O 4 chitosan-alginate nanocomposite synthesized using Camellia sinensis extract. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114128. [PMID: 34823906 DOI: 10.1016/j.jenvman.2021.114128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ZnO-Fe3O4 nanoparticles were synthesized using the leaves of Camellia sinensis and immobilized in crosslinked alginate-chitosan polymer beads and tested for their photocatalytic applications. The prepared nanocomposite was used for the simultaneous adsorption and photocatalytic degradation of acid violet 7 (AV7) dye. The optimization of reaction conditions ensured higher dye removal efficacy up to 94.21 ± 1.02% using the nanocomposite under UV-C irradiation of 365 nm. The kinetics of the adsorption study fitted well with the pseudo-first-order reaction. The Langmuir model fitted better to the adsorption isotherms compared to the Freundlich and Temkin models. The mechanism of degradation was studied by analyzing the treated AV7 solution. The removal efficiency in tap water, groundwater, and lake water was 83.23 ± 0.4%, 69.13 ± 1.6%, and 67.89 ± 0.3%, respectively. The residual toxicity of the degraded AV7 solution was tested on model organisms like freshwater algae, Scenedesmus sp., and plant model, Allium cepa, demonstrating the lower toxicity of the degraded AV7 product. Finally, a cost-benefit analysis of the experiments was also carried out.
Collapse
Affiliation(s)
- Namrata Roy
- School of Biosciences and Technology, VIT, Vellore, India; Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | | | | | | |
Collapse
|
33
|
Ma J, Zhang M, Ji M, Zhang L, Qin Z, Zhang Y, Gao L, Jiao T. Magnetic graphene oxide-containing chitosan‑sodium alginate hydrogel beads for highly efficient and sustainable removal of cationic dyes. Int J Biol Macromol 2021; 193:2221-2231. [PMID: 34780889 DOI: 10.1016/j.ijbiomac.2021.11.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023]
Abstract
Developing recyclable and efficient adsorbents for cationic dyes removal from wastewater is crucial for ensuring green ecology and drinking water safety. Herein, we demonstrated a novel magnetic gel bead adsorbent that was synthesized by employing graphene oxide (GO) modified Fe3O4 as magnetic nanoparticles doped sodium alginate (SA)/chitosan (CS) gel (SA/GO@Fe3O4/CS). The GO@Fe3O4 sample was prepared based on GO by the chemical co-precipitation method, which not only reduced the aggregation of Fe3O4 but also increases the specific surface area of the composite gel beads. The prepared gel beads were used to adsorb methylene blue (MB), neutral red (NR), and safranine T (ST). The experimental results showed that the adsorption capacity of SA/GO@Fe3O4/CS gel beads for MB, NR, and ST reached 21.325 mg/g, 44.654 mg/g and 44.313 mg/g. After five recycles, the removal rates could still reach more than 90% of the original, exhibiting a high recovery rate. Therefore, this paper provides a strategy for the preparation of high efficiency and recyclable cationic dye adsorbents with a large specific surface area.
Collapse
Affiliation(s)
- Jinming Ma
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Meng Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Miaomiao Ji
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yaru Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lili Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
34
|
Rathinam K, Kou X, Hobby R, Panglisch S. Sustainable Development of Magnetic Chitosan Core-Shell Network for the Removal of Organic Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7701. [PMID: 34947299 PMCID: PMC8706649 DOI: 10.3390/ma14247701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The wide use of alizarin red S (ARS), a typical anthraquinone dye, has led to its continued accumulation in the aquatic environment, which causes mutagenic and carcinogenic effects on organisms. Therefore, this study focused on the removal of ARS dye by adsorption onto a magnetic chitosan core-shell network (MCN). The successful synthesis of the MCN was confirmed by ATR-FTIR, SEM, and EDX analysis. The influence of several parameters on the removal of ARS dye by the MCN revealed that the adsorption process reached equilibrium after 60 min, pH played a major role, and electrostatic interactions dominated for the ARS dye removal under acidic conditions. The adsorption data were described well by the Langmuir isotherm and a pseudo-second order kinetic model. In addition to the preferable adsorption of hydrophobic dissolved organic matter (DOM) fractions onto the MCN, the electrostatic repulsive forces between the previously adsorbed DOM onto MCN and ARS dye resulted in lower ARS dye removal. Furthermore, the MCN could easily be regenerated and reused for up to at least five cycles with more than 70% of its original efficiency. Most importantly, the spent MCN was pyrolytically converted into N-doped magnetic carbon and used as an adsorbent for various dyes, thus establishing a waste-free adsorption process.
Collapse
Affiliation(s)
- Karthik Rathinam
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Xinwei Kou
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Ralph Hobby
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
- DGMT German Society for Membrane Technology e.V., Universitätsstr. 2, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|
35
|
Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. Carbohydr Polym 2021; 273:118604. [PMID: 34561004 DOI: 10.1016/j.carbpol.2021.118604] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The presence of pollutants in the water bodies deteriorate the water quality and make it unfit for use. From an environmental perspective, it is essential to develop new technologies for the wastewater treatment and recycling of dye contaminated water. The surface modified chitin and chitosan biopolymeric composites based adsorbents, have an important role in the toxic organic dyes from removal wastewater. The surface modification of biopolymers with various organics and inorganics produces more active sites at the surface of the adsorbent, which enhances dye and adsorbent interaction more reliable. Herein, the work brought in the thought of the application of various chitin and chitosan composites in wastewater remediation and suggested the versatility in composites for the development of rapid, selective and effective removal processes for the detoxification of a variety of organic dyes. It further emphasizes the existing obstruction and impending prediction for the deprivation of dyes via adsorption techniques.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi - 676306, Malappuram, Kerala, India
| | | | - Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Nadar Saraswathi College of Engineering and Technology, 11 Vadapudupatti- 625 531, Theni, Tamil Nadu, India
| | | | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
36
|
Arumugam V, Moodley KG, Dass A, Gengan RM, Ali D, Alarifi S, Chandrasekaran M, Gao Y. Ionic liquid covered iron-oxide magnetic nanoparticles decorated zeolite nanocomposite for excellent catalytic reduction and degradation of environmental toxic organic pollutants and dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Dryaz AR, Shaban M, AlMohamadi H, Al-Ola KAA, Hamd A, Soliman NK, Ahmed SA. Design, characterization, and adsorption properties of Padina gymnospora/zeolite nanocomposite for Congo red dye removal from wastewater. Sci Rep 2021; 11:21058. [PMID: 34702834 PMCID: PMC8548541 DOI: 10.1038/s41598-021-00025-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
A comprehensive study combined experimental, computational and field experiments was conducted to find out the most appropriate adsorbent system for industrial elimination of congo red (CR) dye from simulated industrial wastewater. Modification of the zeolite (Z) by the Padina gymnospora algae (PG) (Egyptian marine algae) was evaluated in terms of the adsorption capability of the zeolite (Z) to remove CR dye from aqueous solutions. The zeolite/algae composite (ZPG) was fabricated using the wet impregnation technique. Various techniques were used to characterize the PG, Z, and the produced ZPG nanocomposite. Batch experiments were performed to study the influence of various practical variables on adsorption processes. The isotherms and kinetics of dye adsorption were also studied. The newly synthesized ZPG nanocomposite exhibits much higher adsorption capacity, especially at low CR concentrations than that of Z. The computational calculations have shown that owing to the presence of intermolecular interactions, the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. For all configurations, increasing the zeolite size does not have a noticeable impact on the adsorption energies. The experimental results revealed that the ZPG nanocomposite can be applied as an economical nanoadsorbent to eliminate anionic dyes from simulated industrial wastewater at low CR dye concentrations. The adsorption isotherm of dye onto Z, PG, and ZPG almost agreed with Langmuir isotherm and pseudo-second-order kinetics. The sorption mechanism was also evaluated using Weber's intra-particle diffusion module. Finally, the field experiments revealed optimistic results for the newly synthesized adsorbent in removing dyes from industrial wastewater with 82.1% efficiency, which in turn confirmed the foundation of new eco-friendly materials that aid in the reuse of industrial wastewater.
Collapse
Affiliation(s)
- Asmaa Ragab Dryaz
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia.
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt.
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Khulood A Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Ahmed Hamd
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
- Basic Science Department, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - N K Soliman
- Basic Science Department, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| |
Collapse
|
38
|
Nawaz S, Rashid EU, Bagheri AR, Aramesh N, Bhatt P, Ali N, Nguyen TA, Bilal M. Mitigation of environmentally hazardous pollutants by magnetically responsive composite materials. CHEMOSPHERE 2021; 276:130241. [PMID: 34088101 DOI: 10.1016/j.chemosphere.2021.130241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
At present, environmental contamination has become an emerging issue among researchers. These facts are due to the adverse impacts of an alarming number of recalcitrant contaminants that can affect both humans and animals. There is an urgent need to develop eco-friendly approaches to mitigate the effects of toxic pollutants from the environment. Magnetically responsive composite-based sorbents are very interesting and popular materials for pollutant abatement owing to the high specific surface area, superior adsorption capacity, and magnetic properties, which make their easy separation from sample solution/media. In this review article, we discuss various synthesis approaches, key physicochemical properties, and applications of magnetic composites for pollutant removal. Current gaps for coping with contamination are identified, and a comprehensive outlook in pollutant treatment using magnetic composites is outlined. This study unveils new horizons to researches for better understanding the properties of magnetically-composite-based sorbents and their application in environmental remediation.
Collapse
Affiliation(s)
- Shahid Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | | | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tuan Anh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
39
|
Kulkarni P, Watwe V, Doltade T, Kulkarni S. Fractal kinetics for sorption of Methylene blue dye at the interface of Alginate Fullers earth composite beads. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Tailoring Chitosan/LTA Zeolite Hybrid Aerogels for Anionic and Cationic Dye Adsorption. Int J Mol Sci 2021; 22:ijms22115535. [PMID: 34073898 PMCID: PMC8197200 DOI: 10.3390/ijms22115535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) is largely employed in environmental applications as an adsorbent of anionic dyes, due to the presence in its chemical structure of amine groups that, if protonated, act as adsorbing sites for negatively charged molecules. Efficient adsorption of both cationic and anionic dyes is thus not achievable with a pristine chitosan adsorbent, but it requires the combination of two or more components. Here, we show that simultaneous adsorption of cationic and anionic dyes can be obtained by embedding Linde Type A (LTA) zeolite particles in a crosslinked CS-based aerogel. In order to optimize dye removal ability of the hybrid aerogel, we target the crosslinker concentration so that crosslinking is mainly activated during the thermal treatment after the fast freezing of the CS/LTA mixture. The adsorption of isotherms is obtained for different CS/LTA weight ratios and for different types of anionic and cationic dyes. Irrespective of the formulation, the Langmuir model was found to accurately describe the adsorption isotherms. The optimal tradeoff in the adsorption behavior was obtained with the CS/LTA aerogel (1:1 weight ratio), for which the maximum uptake of indigo carmine (anionic dye) and rhodamine 6G (cationic dye) is 103 and 43 mg g−1, respectively. The behavior observed for the adsorption capacity and energy cannot be rationalized as a pure superposition of the two components, but suggests that reciprocal steric effects, chemical heterogeneity, and molecular interactions between CS and LTA zeolite particles play an important role.
Collapse
|
41
|
Javanbakht V, Aghili P. Modified Activated Carbon/Cu(OH)2 Nanocomposite for Oil/Water Emulsion Separation. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221050177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Song J, Messele SA, Meng L, Huang Z, Gamal El-Din M. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite. WATER RESEARCH 2021; 194:116930. [PMID: 33631699 DOI: 10.1016/j.watres.2021.116930] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Some metals in oil sands process water (OSPW) are potential threats to human health and the environment. Hence, the removal of excess metals from OSPW is of great significance. In this study, anaerobic sludge waste from a wastewater treatment plant, was reused to prepare sludge-based biochar. A Biochar/Chitosan (Biochar/CS) adsorbent with excellent removal efficiency for metals (Cr, Cu, Se and Pb) in real OSPW was prepared through a facile hydrothermal method. The structural properties of the synthesized Biochar/CS composite were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) method. This study reports for the first time the removal of metals from OSPW under natural pH using Biochar/CS adsorbent. The composite exhibited a higher removal efficiency towards Cr (83.9%), Cu (97.5%), Se (87.9%) and Pb (94.3%) when the initial concentrations of Cr, Cu, Se and Pb were 0.02914, 0.06185, 0.00800 and 0.00516 mg/L, respectively, at a dosage of 0.5 g/L, compared with biochar or chitosan alone. The possible adsorption mechanism was proposed, and the enhanced removal ability was due to the improved specific surface area and pore volume, which increased by about 20 and 14 times as compared with chitosan. Functional groups in the composite, such as -NH2, -OH and some oxygen containing groups, were also responsible for the enhanced removal ability, which also might be the reason for the better performance of the composite than biochar alone due to the lack of functional groups on the biochar. Moreover, the adsorption process was best modelled by the Freundlich model, pseudo second order and intraparticle diffusion kinetic models. The results indicated that chemical adsorption might play the dominant role in the removal process. Overall, the Biochar/CS composite would be a promising and effective adsorbent for metals removal, owing to its advantages of being cost-effective and environmentally friendly.
Collapse
Affiliation(s)
- Junying Song
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Selamawit Ashagre Messele
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Lingjun Meng
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada.
| |
Collapse
|
43
|
Highly efficient and sustainable alginate/carboxylated lignin hybrid beads as adsorbent for cationic dye removal. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Shao Z, Lu J, Ding J, Fan F, Sun X, Li P, Fang Y, Hu Q. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution. Int J Biol Macromol 2021; 176:217-225. [PMID: 33581208 DOI: 10.1016/j.ijbiomac.2021.02.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022]
Abstract
Chitosan-pectin gel beads (CPBs) were synthesized via a facile and green method and applied to remove heavy metals from aqueous solution. The structural characteristics of CPBs were investigated by SEM and FTIR, the mechanical strength of CPBs was measured by Texture Analyzer and the stability of CPBs was evaluated in acidic solution. To study the adsorption characteristics, the effect of pH, contact time, initial heavy metals concentration, temperature, adsorption mechanism and regeneration were systematically investigated. The adsorption kinetics fitted well pseudo-second-order model, and the adsorption isotherms were well described by Langmuir model. The maximum adsorption capacities of Cu(II), Cd(II), Hg(II) and Pb(II) were 169.4, 177.6, 208.5 and 266.5 mg/g, respectively. The adsorption-desorption experiments revealed that the CPBs exhibited a great reusability. Thus, the synthesized CPBs in this study had the potential to be utilized as an environment-friendly and green adsorbent for the removal of heavy metals.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jilai Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
46
|
Zhao H, Wang R, Deng H, Zhang L, Gao L, Zhang L, Jiao T. Facile Preparation of Self-Assembled Chitosan-Based POSS-CNTs-CS Composite as Highly Efficient Dye Absorbent for Wastewater Treatment. ACS OMEGA 2021; 6:294-300. [PMID: 33458481 PMCID: PMC7807773 DOI: 10.1021/acsomega.0c04565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 05/08/2023]
Abstract
In this work, a new nanocomposite based on octa-amino polyhedral oligomeric silsesquioxanes (POSS), carbon nanotubes (CNTs), and chitosan (CS) was synthesized and used for wastewater treatment. The properties and morphologies of the prepared composite were analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscope, thermogravimetric, and atomic force microscopy. The results showed that POSS, CNTs, and CS formed a stable composite through intermolecular forces, and the modification of CS by POSS and CNTs improved its stability. In addition, the obtained composite showed good adsorption performance for the degradation of methyl orange and Congo red dyes. The pseudo-first-order model and pseudo-second-order model were used to analyze the adsorption data, and the results showed that the adsorption process conforms to the kinetic model. Moreover, the maximum adsorption capacity of the composite to methyl orange and Congo red reached 63.23 and 314.97 mg/g, respectively. This work provides new ideas for the preparation of self-assembled multi-composite and their potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Hongjie Zhao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Huizhen Deng
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Lijun Zhang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Lili Gao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 38 West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
47
|
Niu Y, Han X, Song J, Huang L. Removal of methylene blue and lead(ii) via PVA/SA double-cross-linked network gel beads loaded with Fe3O4@KHA nanoparticles. NEW J CHEM 2021. [DOI: 10.1039/d1nj00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The adsorption of MB and Pb(ii) onto and regeneration of PVA/SA/Fe3O4@KHA magnetic gel beads.
Collapse
Affiliation(s)
- Yuhua Niu
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Xingxing Han
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
| | - Jie Song
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Liangxian Huang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|
48
|
KARAKUŞ S, TÜZÜN E. Ultrasound-Assisted Adsorption of Basic Blue 41 onto Salda mud: Optimization and Error Analysis. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.795083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Mahmoodi M, Javanbakht V. Fabrication of Zn-based magnetic zeolitic imidazolate framework bionanocomposite using basil seed mucilage for removal of azo cationic and anionic dyes from aqueous solution. Int J Biol Macromol 2020; 167:1076-1090. [PMID: 33186651 DOI: 10.1016/j.ijbiomac.2020.11.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
The Basil seeds mucilaginous polysaccharide exhibits remarkable physical and chemical properties like high water-absorbing capacity, emulsifying, and stabilizing properties. The metal-organic frameworks are one of the most promising precursors made of metal clusters and organic connectors for the fabrication of advanced adsorbents due to their unique properties. In this study, the bionanocomposite of magnetic zeolitic imidazolate framework-8 was successfully synthesized and applied to adsorb azo cationic and anionic dyes. The synthesized magnetite nanoparticles were pretreated with mucilage extracted from basil seeds to acquire negatively charged magnetite surface, followed by nucleation through attracting zinc cation, and then the growth of metal-organic frameworks which yields high-quality ZIF-8 crystals. The samples were characterized by Field Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infrared Spectrometry, vibrating sample magnetometer, and Brunauer-Emmett-Teller surface area analysis. In the process of adsorption, influencing factors and recycling regeneration were discussed, and the adsorption mechanisms such as kinetics, isotherm, and thermodynamics were explored. The results of the adsorption process showed that maximum adsorption capacities were 9.09 and 13.21 mg/g for Methylene blue and Eriochrome Black T, respectively. The excellent reusability combined with its magnetic separation property makes the nanocomposite a promising adsorbent for the removal of cationic and anionic dyes.
Collapse
Affiliation(s)
- Mahsa Mahmoodi
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan 84175-443, Iran
| | - Vahid Javanbakht
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan 84175-443, Iran.
| |
Collapse
|
50
|
Mohammadabadi SI, Javanbakht V. Development of hybrid gel beads of lignocellulosic compounds derived from agricultural waste: Efficient lead adsorbents for a comparative biosorption. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|