1
|
Zhang J, Ding L, Hou H, Yu L, Li J, Dong P. Insights into the molecular mechanism of dextran sulfate inhibiting DNA digestion by pepsin: a crucial role of sulfate group on the binding to DNA. J Biomol Struct Dyn 2025; 43:498-504. [PMID: 37975333 DOI: 10.1080/07391102.2023.2283145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Sulfate polysaccharides can inhibit DNA digestion in simulated gastric juice in vitro, which is important for regulating dietary nucleic acids metabolism, but the mechanism of inhibition is unclear. This study used dextran sulfate (DS) with different sulfate groups and molecular weights to explore the effect of DS on DNA digestion. Molecular interactions between DS and DNA were investigated by biolayer interferometry (BLI), isothermal titration calorimetry (ITC) and molecular dynamics simulations. Results indicated that DS with higher molecular weight and sulfate group content showed stronger inhibitory effect of DNA digestion. ITC results showed that the combined Kd value of DNA and DS was about 2.53 mM. The main reason for inhibition of DNA digestion is that the formation of hydrogen bonds between the sulfate group of DS and DNA bases hinders the binding of DNA to pepsin. This finding will facilitate new strategies for nucleic acid metabolism and oral drug delivery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Leshan Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Long Yu
- Adelaide Glycomics, School of Food, Agriculture and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Ren L, Dang L, Wang D, Jiang Y, Wang T, Liu Z, Li X, Cui F, Li T, Li J. Natural polysaccharides in the prevention of hyperuricemia: Source, classification, mechanism, application in food industry. Int J Biol Macromol 2025; 286:138421. [PMID: 39645137 DOI: 10.1016/j.ijbiomac.2024.138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hyperuricemia (HUA) is one of the major threats to human health. In recent years, with the gradual increase in the incidence rate of Hua, the prevention and treatment of HUA has attracted more and more attention. Clinical pharmaceutical interventions, such as Allopurinol, Febuxostat, and so on, though effective, are usually accompanied by notable adverse effects. Therefore, alternative therapy with high-safety natural components has received more and more attention from scholars. The natural polysaccharides showed a significant potential in HUA therapy and more and more natural polysaccharides for treating HUA were being obtained. Therefore, in this review, the recent progress on natural polysaccharides in preventing HUA was presented focusing on the sources, classification, and biological activities (oxidative stress, anti-inflammatory, and UA-lowering) of natural polysaccharides. Furthermore, this review explores the mechanisms of action and application. It is beneficial to the development of polysaccharides for natural HUA therapy and the results of this review could offer guidance on preventing the occurrence of HUA in daily life.
Collapse
Affiliation(s)
- Likun Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Lingling Dang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Yang Jiang
- School of Public Health, Dali University, Dali 671000, China
| | - Tian Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Zhiteng Liu
- Dalian Food Co., Ltd., Jinzhou, Liaoning 121209, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| |
Collapse
|
3
|
An H, Lin B, Huang F, Wang N. Advances in the study of polysaccharides from Anemarrhena asphodeloides Bge.: A review. Int J Biol Macromol 2024; 282:136999. [PMID: 39476924 DOI: 10.1016/j.ijbiomac.2024.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Anemarrhena asphodeloides Bge. (AA), a traditional Chinese medicine, is used clinically to treat inflammation, diabetes, osteoporosis, and tumors. Polysaccharides are the most abundant components in AA, and have antioxidant, immunomodulatory, anti-inflammatory, hypoglycemic, anti-osteoporosis, and laxative effects. It is necessary to conduct a comprehensive analysis on the structure and pharmacological activity of the polysaccharides from AA (PAAs). This review systematically summarizes the structural characteristics of PAAs, including the monosaccharide compositions, molecular weights, and backbone structures. We discuss the relationship between the structure and pharmacological activities of PAAs. The chemical modification methods of PAAs, including zinc chelation, carboxymethylation, and sulfation, are then reviewed. This review may offer new insights for research on the PAAs and polysaccharides with similar structures.
Collapse
Affiliation(s)
- Huan An
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Feihua Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Nani Wang
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
4
|
Tong A, Wang D, Jia N, Zheng Y, Qiu Y, Chen W, El-Seed HR, Zhao C. Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus. BIOLOGY 2024; 13:904. [PMID: 39596859 PMCID: PMC11591677 DOI: 10.3390/biology13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery. Seaweed active substances, including algal polysaccharides, algal polyphenols, algal unsaturated fatty acids, and algal dietary fiber, have unique biological activities. This article reviews the effects and mechanisms of the types, structures, and compositions of seaweed on inhibiting glucose and lipid metabolism disorders, with a focus on the inhibitory effect of active substances on blood glucose reduction. The aim is to provide a basis for the development of seaweed active substance hypoglycemic drugs.
Collapse
Affiliation(s)
- Aijun Tong
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China;
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusong Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hesham R. El-Seed
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Zhang J, Wang S, Yang M, Ding J, Huang Y, Zhu Y, Zhou M, Yan B. Antiviral activity of a polysaccharide from Sargassum fusiforme against respiratory syncytial virus. Int J Biol Macromol 2024; 279:135267. [PMID: 39233150 DOI: 10.1016/j.ijbiomac.2024.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
This experiment examined the antiviral activity of polysaccharides from Sargassum fusiforme against respiratory syncytial virus (RSV) in vitro, including their mechanism of action and preliminary structural analysis. Four polysaccharides (SFP1, SFP2, SFP3, and SFP4) were purified from Sargassum fusiforme using a DEAE-52 cellulose column and an NW Super 150 gel column. CCK-8 and western blot were utilized to study the antiviral activities and mechanisms of the polysaccharides. Preliminary structural analysis was conducted using HPLC and NMR techniques. The findings suggest that SFP4 (120 kD) is an acidic chemical compound composed of 88.8 % total sugars, 0.13 % proteins, 10.8 % glucuronidic acids, and 21.1 % sulfates. It contains at least ten monosaccharides, primarily mannuronic acid and fucose. Among the four polysaccharides, SFP4 had the highest anti-RSV activity, with a therapeutic index (TI) exceeding 139. SFP4 exhibited noteworthy antiviral efficacy in both upper and lower respiratory cells that were infected, especially when administered as a prophylactic treatment 2 h in advance. Furthermore, SFP4 showed a dose-dependent antiviral effect, with the highest therapeutic index (TI > 320) observed at a concentration of 7.81 μg·mL-1 during the prophylactic phase. It was speculated that SFP4's antiviral effect is due to its ability to inhibit the attachment of G-proteins to cells.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangzhi Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mingrui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinming Ding
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yizhen Huang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yangdong Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ming Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bin Yan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Li Q, Jiang S, Wang Q, Sun J, Wang Z, Wang X, Shi X, Mu Y, Wei L, Yang C. Structural characterisation and anti-colon cancer activity of an arabinogalactan RSA-1 from Raphani semen. Carbohydr Polym 2024; 342:122417. [PMID: 39048243 DOI: 10.1016/j.carbpol.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
RSA-1 is a polysaccharide obtained from Raphani semen with a relatively clear structure and anti-colon cancer activity. In this study, high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy were applied to characterise the complex chain structure of RSA-1. Subsequently, the inhibitory effect on colon cancer growth through apoptosis induction in colon cancer cells was explored. The findings indicate that the main chain of RSA-1 consists of →3)-β-D-Galp-(1 → and 3,6)-β-D-Galp-(1 → substituted at C-6 with branched α-L-Araf side chains. RSA-1 disrupts the Bax/Bcl-2 ratio and thus inhibits the viability of colon cancer cells in vitro. Furthermore, it inhibits colon cancer migration by attenuating epithelial-mesenchymal transition. Notably, RSA-1 exhibited negligible impact on the growth of human intestinal epithelial cells within a relevant concentration range. This study establishes a theoretical foundation and provides technical support for the prospective development and application of RSA-1 as a dual-purpose anti-colon cancer drug and functional food.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qianbo Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xuepeng Shi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yuanqiu Mu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Lin Wei
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
7
|
Wu X, Li W, Li S, Zhu S, Pan F, Gu Q, Song D. Hypolipidemic effect of polysaccharide from Sargassum fusiforme and its ultrasonic degraded polysaccharide on zebrafish fed high-fat diet. Int J Biol Macromol 2024; 276:133771. [PMID: 38992531 DOI: 10.1016/j.ijbiomac.2024.133771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Sargassum fusiforme is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries. The polysaccharides derived from Sargassum fusiforme (SFPS) have received much interest due to their various bioactivities, such as hypolipidemic, hypoglycemic, and antioxidant activities. In this study, we extracted and purified SFPS, and obtained the ultrasonic degradation product (SFPSUD). The lipid regulatory effects of SFPS and SFPSUD were investigated in a zebrafish model fed a high-fat diet. The results showed that SFPS significantly decreased the levels of total cholesterol (TC) and triglycerides (TG), and increased the activities of lipoprotein lipase (LPL) and hepatic lipase (HL). SFPSUD was more effective than the SFPS in reducing the TC and TG levels in zebrafish, as well as increasing the LPL and HL activities. Histopathological observations of zebrafish livers showed that SFPSUD significantly improved lipid metabolism disorder in the hepatocytes. The possible lipid-lowering mechanism in zebrafish associated with SFPS and SFPSUD may involve acceleration of the lipid metabolism rate by increasing the activities of LPL and HL. Thus, SFPSUD could be tested as a highly effective hypolipidemic drug. Our results suggest that SFPS and SFPSUD have potential uses as functional foods for the prevention and treatment of hyperlipidemia. Ultrasound can be effectively applied to degrade SFPS to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Xuhan Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Wenqing Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Shengjie Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Sunting Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Feng Pan
- Wenzhou Xingbei Seaweed Food Co., Ltd., China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
8
|
Liu W, Li N, Hou J, Cao R, Jia L, Guo Y, Xu J. Structure and antitumor activity of a polysaccharide from Rosa roxburghii. Int J Biol Macromol 2024; 273:132807. [PMID: 38825289 DOI: 10.1016/j.ijbiomac.2024.132807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
It is well known that Rosa roxburghii, as a homology of both medicine and food, is rich in polysaccharides. To discover bioactive macromolecules for combating cancer, the polysaccharides in R. roxburghii were investigated, leading to the purification of a polysaccharide (RRTP80-1). RRTP80-1 was measured to have an average molecular weight of 8.65 × 103 g/mol. Monosaccharide composition analysis revealed that RRTP80-1 was formed from three types of monosaccharides including arabinose, glucose, and galactose. Methylation and GC-MS analysis suggested that the backbone of RRTP80-1 consisted of →5)-α-l-Araf-(1→, →6)-α-d-Glcp-(1→, →2,5)-α-l-Araf-(1→, →4,6)-β-d-Galp-(1→, and →3)-α-l-Araf-(1→, with branch chains composed of α-l-Araf-(1→. In vivo studies indicated that RRTP80-1 exhibited inhibitory activity against the growth and proliferation of neoplasms in the zebrafish tumor xenograft model by suppressing angiogenesis. Additionally, RRTP80-1 was found to upregulate reactive oxygen species (ROS) and nitric oxide (NO) production levels in zebrafish models. All these studies suggest that RRTP80-1 activates the immune system to inhibit tumors. The potential role of the newly discovered homogeneous polysaccharide RRTP80-1 in cancer treatment was preliminarily clarified in this study.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lingyun Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
9
|
Samudra AG, Nugroho AE, Murwanti R. Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:597-617. [PMID: 38354976 DOI: 10.1016/j.pharma.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Indonesia is the largest archipelagic country in the world, with 70% of its territory covered by oceans that are rich in various types of biological resources. Indonesia's biodiversity has made it possible to develop natural medicine. Marine algae have enormous potential, but the types of marine algae used still need to be more varied. Research on the pharmacology of marine macroalgae has been conducted in Indonesia, but studies on such topic related to diabetes mellitus (DM) still need to be completed. This study provides a comprehensive dataset of pharmacological anti-diabetic potential of marine macroalgae used for managing DM and reports on preclinical trials that provide pharmacological evidence. Data on the Indonesian marine macroalgae used to lower blood glucose were obtained from online sources. The bioactive chemicals of marine macroalgae have been found efficient at blocking several diabetes enzymes in in-vivo and in-vitro studies, and such chemicals have anti-inflammatory, anti-obesity, antioxidant, and other therapeutic benefits. The Google Scholar was used to search for the pharmacological literature with the keywords marine AND macroalgae AND diabetes AND Indonesia. Pharmacological research on the anti-diabetic activity of marine macroalgae has been carried out on five major Indonesian islands, including Sumatra, Kalimantan, Java, Sulawesi, and Papua, which encompassed 12 provinces: Southwest Papua, South Sulawesi, West Kalimantan, Riau Archipelago, Banten, West Java, North Sulawesi, East Java, Yogyakarta, Maluku, Jakarta, and Bengkulu. Articles on preclinical tests (in vitro and in vivo) were also used for the phytochemical problem section. The results briefly describe which class of algae has been widely used in Indonesia as an anti-diabetic. The findings of this research can be utilized to help find DM treatment drugs based on natural resources from marine macroalgae.
Collapse
Affiliation(s)
- Agung Giri Samudra
- Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Bengkulu University, 38371 Bengkulu, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia.
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| |
Collapse
|
10
|
Luo Y, Chen H, Huang C, He S, Wen Q, Cai D. Structure Elucidation of a Novel Polysaccharide Isolated from Euonymus fortunei and Establishing Its Antioxidant and Anticancer Properties. Int J Anal Chem 2024; 2024:8871600. [PMID: 38827786 PMCID: PMC11142861 DOI: 10.1155/2024/8871600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Euonymusfortunei polysaccharides (EFPs) have not been extensively investigated yet in terms of their extraction and biological activity. The orthogonal experimental design was employed in this study to evaluate the optimum yield of EFPs. A maximum yield of 2.63 ± 0.23% was attained using material-liquid ratios of 60 mL/g, extraction temperature of 80°C, ultrasonic power of 144 W, and extraction time of 75 mins. The polysaccharide content reached 53.47 ± 0.31% when deproteinized thrice. An analysis of monosaccharide composition revealed that these polysaccharides consist of Gal, Glc, Man, Fuc, and Rha with a molar ratio of 7.14 ∶ 23.99 ∶ 6.29 ∶ 6.55 ∶ 1.00, respectively, in EFPs. Subsequently, the in vitro scavenging capacities of 2,2-diphenylpicrylhydrazyl (DPPH) and ·OH and superoxide anion radicals, along with the reducing power of EFPs, were studied. Results revealed that EFPs have higher antioxidant activity, particularly ·OH scavenging, as well as reducing power, as compared to Astragalus polysaccharides (ASPs) and Lycium barbarum polysaccharides (LBPs). The Cell Counting Kit-8 (CCK-8) method was used to evaluate the effects of different concentrations of polysaccharides on SKOV3 cell proliferation, and the results revealed their inhibition at concentrations in the range of 200-800 μg/mL. In addition, findings from flow cytometry further confirmed that EFPs blocked the cell cycle at G0/G1 and S phases and induced SKOV3 cell apoptosis. In a word, EFPs could be exploited and used further based on the experimental results from this study.
Collapse
Affiliation(s)
- Yu Luo
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Nanning 530021, China
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hongtao Chen
- Guangxi University of Chinese Medicine Bainianle Pharmaceutical Co., Ltd, Nanning 530000, China
| | - Chunxi Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shujia He
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qilong Wen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Danzhao Cai
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
11
|
Zhu X, Yang G, Shen Y, Niu L, Peng Y, Chen H, Li H, Yang X. Physicochemical Properties and Biological Activities of Quinoa Polysaccharides. Molecules 2024; 29:1576. [PMID: 38611855 PMCID: PMC11013414 DOI: 10.3390/molecules29071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/14/2024] Open
Abstract
Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.
Collapse
Affiliation(s)
- Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haiting Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| |
Collapse
|
12
|
Park JS, Han JM, Park YS, Shin YN, Shin YR, Chun BS, Lee HJ. Optimization and evaluation of Atrina pectinata polysaccharides recovered by subcritical water extraction: A promising path to natural products. Int J Biol Macromol 2024; 259:129130. [PMID: 38181917 DOI: 10.1016/j.ijbiomac.2023.129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In this study, the recovery of Atrina pectinata posterior adductor polysaccharides (APP-PS) using subcritical water extraction (SWE) was optimized by response surface methodology (RSM) and the physicochemical and biological properties of the recovered APP-PS were evaluated. The optimal extraction conditions, which resulted in a maximum yield of 55.58 ± 1.12 %, were temperature, 152.08 °C; extraction time, 10 min; solid-liquid ratio, 30 g/600 mL. The obtained APP-PS was found to be 88.05 ± 0.17 % total sugar. Fourier transform infrared (FT-IR) and Nuclear magnetic resonance (NMR) analyses confirmed the presence of the α-coordination of D-glucan in the polymer sample. The analysis of monosaccharide composition, along with thermogravimetric analysis, revealed the typical structure of the sample, composed of glucose alone. Total phenolic contents of APP-PS were measured as 5.47 ± 0.01 mg Gallic acid/g of dry sample and total flavonoids contents were determined to be 0.78 ± 0.06 mg Quercetin/g of dry sample. For biological activities, ABTS+, DPPH and FRAP antioxidant activities were measured to be 20.00 ± 0.71, 2.35 ± 0.05 and 4.02 ± 0.07 μg Trolox equivalent/100 g of dry sample, respectively. Additionally ACE inhibitory was confirmed to be 87.02 ± 0.47 %. These results showed that SWE is an effective method to recover biofunctional materials from marine organisms.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ye-Seul Park
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Yu-Na Shin
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ye-Ryeon Shin
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Republic of Korea.
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Republic of Korea.
| |
Collapse
|
13
|
Tian D, Qiao Y, Peng Q, Xu X, Shi B. Anti-biofilm mechanism of a synthetical low molecular weight poly-d-mannose on Salmonella Typhimurium. Microb Pathog 2024; 187:106515. [PMID: 38160987 DOI: 10.1016/j.micpath.2023.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
In this study, a low molecular weight poly-d-mannose (LMWM) was separated from a mixed polysaccharide synthesized previously. Monosaccharide composition, Fourier-Transform infrared spectroscopy (FT-IR), periodate oxidation and smith degradation were determined. After safety evaluation, the inhibition of LMWM on the different biofilm formation stages of Salmonella enterica serovar Typhimurium (S. Typhimurium) was tested in vitro. Furthermore, the effect of LMWM on the adhesion of S. Typhimurium to Caco-2 cells and cell surface hydrophobicity (CSH) were observed. Results indicated that LMWM was a homopolysaccharide without cytotoxicity and hemolysis, containing both α-mannose and β-mannose. It showed obvious anti-biofilm activity on S. Typhimurium and mainly activated on the initial adhesion and formation stage, even better than the commercial S. cerevisiae mannan (CM). LMWM inhibited the adhesion of S. Typhimurium on Caco-2 cells with the inhibition rate of 61.04 % at 2 mg/ml. Meanwhile, LMWM decreased the hydrophobicity of S. Typhimurium cell surface. In conclusion, the inhibitory effect on S. Typhimurium biofilm was not caused by bacteriostatic or bactericidal activity of LMWM. The specific anti-adhesion and the decrease of bacterial CSH by LMWM may closely relate to anti-biofilm mechanism. This study provides some supports for the application of LMWM as antibiotics alternative on S. Typhimurium in the future.
Collapse
Affiliation(s)
- Dandan Tian
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Qing Peng
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
14
|
Liu L, Chen Y, Chen B, Xu M, Liu S, Su Y, Qiao K, Liu Z. Advances in Research on Marine-Derived Lipid-Lowering Active Substances and Their Molecular Mechanisms. Nutrients 2023; 15:5118. [PMID: 38140377 PMCID: PMC10745522 DOI: 10.3390/nu15245118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic disorder caused by abnormal lipid metabolism. Recently, the prevalence of HLP caused by poor dietary habits in the population has been increasing year by year. In addition, lipid-lowering drugs currently in clinical use have shown significant improvement in blood lipid levels, but are accompanied by certain side effects. However, bioactive marine substances have been shown to possess a variety of physiological activities such as hypoglycemic, antioxidant, antithrombotic and effects on blood pressure. Therefore, the hypolipidemic efficacy of marine bioactive substances with complex and diverse structures has also attracted attention. This paper focuses on the therapeutic role of marine-derived polysaccharides, unsaturated fatty acids, and bioactive peptides in HLP, and briefly discusses the main mechanisms by which these substances exert their hypolipidemic activity in vivo.
Collapse
Affiliation(s)
- Lina Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Y.C.)
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, Fuzhou 350002, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Y.C.)
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, Fuzhou 350002, China
| | - Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| |
Collapse
|
15
|
Chang S, Chen X, Chen Y, You L, Hileuskaya K. UV/H 2O 2-Degraded Polysaccharides from Sargassum fusiforme: Purification, Structural Properties, and Anti-Inflammatory Activity. Mar Drugs 2023; 21:561. [PMID: 37999385 PMCID: PMC10672335 DOI: 10.3390/md21110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The main purpose of this study was to analyze the structural properties and anti-inflammatory activity of the purified fractions derived from UV/H2O2-degraded polysaccharides from Sargassum fusiforme. Results indicated that twofractions with different monosaccharide compositions and morphological characteristics, PT-0.25 (yield 39.5%) and PT-0.5 (yield 23.9%), were obtained. The average molecular weights of PT-0.25 and PT-0.5 were 14.52 kDa and 22.89 kDa, respectively. In addition, PT-0.5 exhibited better anti-inflammatory activity with a clear dose dependence. The mechanism was associated with the inhibition of LPS-activated Toll-like receptor 4-mediated inflammatory pathways in RAW264.7 cells. The results showed that PT-0.5 was a complex polysaccharide mainly composed of 4-Fucp, t-Manp, 6-Galp, t-Fucp, and 3,4-GlcAp. These results would provide theoretical support for studying the structural properties and biological activities of UV/H2O2-degraded polysaccharides.
Collapse
Affiliation(s)
- Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (S.C.); (X.C.); (Y.C.)
| | - Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (S.C.); (X.C.); (Y.C.)
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yifan Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (S.C.); (X.C.); (Y.C.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (S.C.); (X.C.); (Y.C.)
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36F. Skaryna Str., 220141 Minsk, Belarus;
| |
Collapse
|
16
|
Zheng Q, Zheng Y, Jia RB, Luo D, Chen C, Zhao M. Fucus vesiculosus polysaccharide alleviates type 2 diabetes in rats via remodeling gut microbiota and regulating glycolipid metabolism-related gene expression. Int J Biol Macromol 2023; 248:126504. [PMID: 37625739 DOI: 10.1016/j.ijbiomac.2023.126504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The antidiabetic activity and underlying mechanisms of Fucus vesiculosus polysaccharide (FVP) were studied in type 2 diabetic rats. Our results exhibited that FVP intervention reversed body weight loss, alleviated hyperglycemia and insulin resistance in diabetic rats. FVP also had the potential to ameliorate dyslipidemia, liver and kidney dysfunction, decrease oxidative stress, promote glycogen synthesis, and boost short-chain fatty acid production and total bile acid excretion. 16S rRNA gene sequencing analysis suggested that FVP interfered with the gut microbiota in a beneficial manner. Moreover, RT-qPCR results demonstrated that the antidiabetic activity of FVP in connection with the acceleration of blood glucose absorption and glycogen synthesis, the inhibition of gluconeogenesis, and the regulation of lipid metabolism in the liver. These findings suggested that FVP had antidiabetic effects on high-fat diet and STZ-induced diabetic rats and could be a potential resource for treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qianwen Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Yang Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
17
|
Tian D, Qiao Y, Peng Q, Zhang Y, Gong Y, Shi L, Xiong X, He M, Xu X, Shi B. A Poly-D-Mannose Synthesized by a One-Pot Method Exhibits Anti-Biofilm, Antioxidant, and Anti-Inflammatory Properties In Vitro. Antioxidants (Basel) 2023; 12:1579. [PMID: 37627574 PMCID: PMC10451989 DOI: 10.3390/antiox12081579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, D-mannose was used to synthesize poly-D-mannose using a one-pot method. The molecular weight, degree of branching, monosaccharide composition, total sugar content, and infrared spectrum were determined. In addition, we evaluated the safety and bioactivity of poly-D-mannose including anti-pathogen biofilm, antioxidant, and anti-inflammatory activity. The results showed that poly-D-mannose was a mixture of four components with different molecular weights. The molecular weight of the first three components was larger than 410,000 Da, and that of the fourth was 3884 Da. The branching degree of poly-D-mannose was 0.53. The total sugar content was 97.70%, and the monosaccharide was composed only of mannose. The infrared spectra showed that poly-D-mannose possessed characteristic groups of polysaccharides. Poly-D-mannose showed no cytotoxicity or hemolytic activity at the concentration range from 0.125 mg/mL to 8 mg/mL. In addition, poly-D-mannose had the best inhibition effect on Salmonella typhimurium at the concentration of 2 mg/mL (68.0% ± 3.9%). The inhibition effect on Escherichia coli O157:H7 was not obvious, and the biofilm was reduced by 37.6% ± 2.9% at 2 mg/mL. For Staphylococcus aureus and Bacillus cereus, poly-D-mannose had no effect on biofilms at low concentration; however, 2 mg/mL of poly-D-mannose showed inhibition rates of 33.7% ± 6.4% and 47.5% ± 4%, respectively. Poly-D-mannose showed different scavenging ability on free radicals. It showed the best scavenging effect on DPPH, with the highest scavenging rate of 74.0% ± 2.8%, followed by hydroxyl radicals, with the scavenging rate of 36.5% ± 1.6%; the scavenging rates of superoxide anion radicals and ABTS radicals were the lowest, at only 10.1% ± 2.1% and 16.3% ± 0.9%, respectively. In lipopolysaccharide (LPS)-stimulated macrophages, poly-D-mannose decreased the secretion of nitric oxide (NO) and reactive oxygen species (ROS), and down-regulated the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Therefore, it can be concluded that poly-D-mannose prepared in this research is safe and has certain biological activity. Meanwhile, it provides a new idea for the development of novel prebiotics for food and feed industries or active ingredients used for pharmaceutical production in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.T.); (Y.Q.); (Q.P.); (Y.Z.); (Y.G.); (L.S.); (X.X.); (M.H.)
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.T.); (Y.Q.); (Q.P.); (Y.Z.); (Y.G.); (L.S.); (X.X.); (M.H.)
| |
Collapse
|
18
|
Tang L, Xiao M, Cai S, Mou H, Li D. Potential Application of Marine Fucosyl-Polysaccharides in Regulating Blood Glucose and Hyperglycemic Complications. Foods 2023; 12:2600. [PMID: 37444337 DOI: 10.3390/foods12132600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes mellitus (DM) has become the world's third major disease after tumors and cardiovascular disease. With the exploitation of marine biological resources, the efficacy of using polysaccharides isolated from marine organisms in blood glucose regulation has received widespread attention. Some marine polysaccharides can reduce blood glucose by inhibiting digestive enzyme activity, eliminating insulin resistance, and regulating gut microbiota. These polysaccharides are mainly fucose-containing sulphated polysaccharides from algae and sea cucumbers. It follows that the hypoglycemic activity of marine fucosyl-polysaccharides is closely related to their structure, such as their sulfate group, monosaccharide composition, molecular weight and glycosidic bond type. However, the structure of marine fucosyl-polysaccharides and the mechanism of their hypoglycemic activity are not yet clear. Therefore, this review comprehensively covers the effects of marine fucosyl-polysaccharides sources, mechanisms and the structure-activity relationship on hypoglycemic activity. Moreover, the potential regulatory effects of fucosyl-polysaccharides on vascular complications caused by hyperglycemia are also summarized in this review. This review provides rationales for the activity study of marine fucosyl-polysaccharides and new insights into the high-value utilization of marine biological resources.
Collapse
Affiliation(s)
- Luying Tang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Shenyuan Cai
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| |
Collapse
|
19
|
Zhang S, Cao Y, Wang Z, Liu H, Teng Y, Li G, Liu J, Xia X. Fermented Sargassum fusiforme Mitigates Ulcerative Colitis in Mice by Regulating the Intestinal Barrier, Oxidative Stress, and the NF-κB Pathway. Foods 2023; 12:foods12101928. [PMID: 37238746 DOI: 10.3390/foods12101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, Sargassum fusiforme has gained increasing attention for its ability to improve human health and reduce the risk of disease. Nevertheless, there have been few reports on the beneficial functions of fermented Sargassum fusiforme. In this study, the role of fermented Sargassum fusiforme in the mitigation of ulcerative colitis was investigated. Both fermented and unfermented Sargassum fusiforme demonstrated significant improvement in weight loss, diarrhea, bloody stools, and colon shortening in mice with acute colitis. Fermented Sargassum fusiforme further protected against goblet cell loss, decreased intestinal epithelium permeability, and enhanced the expression of tight junction proteins. Fermented Sargassum fusiforme reduced oxidative stress, which was demonstrated by a decrease in nitric oxide (NO), myeloperoxidase (MPO), and malondialdehyde (MDA) concentrations in the colon of mice and an increase in total superoxide dismutase (T-SOD) activity in the colon. Meanwhile, catalase (CAT) concentrations in both the colon and serum of mice were significantly increased. Fermented Sargassum fusiforme also attenuated the inflammatory response, which was evidenced by the decreased level of pro-inflammatory cytokines in the colon. Moreover, fermented Sargassum fusiforme inhibited the nuclear factor-κB (NF-κB) signaling pathway and increased the production of short-chain fatty acids in the intestine. These findings indicate that fermented Sargassum fusiforme may have the potential to be developed as an alternative strategy for alleviating colitis.
Collapse
Affiliation(s)
- Siteng Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixuan Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huanhuan Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guopeng Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
20
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
21
|
Wang W, Sun M, Yu J, Ma X, Han C. Relationship between Components, Intestinal Microbiota, and Mechanism of Hypoglycemic Effect of the Saggy Ink Cap Medicinal Mushroom (Coprinus Comatus, Agaricomycetes): A Review. Int J Med Mushrooms 2023; 25:81-90. [PMID: 37947066 DOI: 10.1615/intjmedmushrooms.2023050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Coprinus comatus is rich in a variety of nutrients, which has been reported to display a good hypoglycemic effect. However, there is no consensus on the hypoglycemic mechanism of this mushroom. Intestinal microbiota, a complex and intrinsic system, is closely related to metabolism. In this review, we discussed the potential relationship between certain components of C. comatus and intestinal microbiota to illustrate the possible hypoglycemic mechanism of C. comatus through intestinal microbiota. It will provide a new perspective for the study of hypoglycemic mechanism of C. comatus and promote the development and utilization of this mushroom.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Min Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Jinyan Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Xumin Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
22
|
Wan C, Jiang H, Tang MT, Zhou S, Zhou T. Purification, physico-chemical properties and antioxidant activity of polysaccharides from Sargassum fusiforme by hydrogen peroxide/ascorbic acid-assisted extraction. Int J Biol Macromol 2022; 223:490-499. [PMID: 36356868 DOI: 10.1016/j.ijbiomac.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The biological activities of Sargassum fusiforme polysaccharides (SFP) were affected significantly by the extraction method. In order to screen the optimum extraction technology for SFP with high yield and biological activities, six extraction methods, including hot water extraction (HWE), acid-assisted extraction (ACAE), alkali-assisted extraction (ALAE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE) and hydrogen peroxide/ascorbic acid-assisted extraction (HAE) were compared for the preparation of SFP. Based on the yield and in vitro antioxidant activity of the crude polysaccharides obtained by the six extraction methods, HAE was selected for the extraction of SFP. The SFP prepared by HAE (H-SFP) was purified by cellulose DEAE-52 ion-exchange chromatography, obtaining two purified fractions, namely H-SFP3 and H-SFP5. The analyses of their chemical composition, physico-chemical properties and the antioxidant capacity were performed. It was found that the crude SFP and the purified fractions possessed considerable ability to scavenge DPPH, hydroxyl and ABTS•+ radicals. These polysaccharide fractions were also found to effectively reduce the reactive oxygen species (ROS) level and increase the superoxide dismutase (SOD) activity in H2O2-induced oxidative stress RAW264.7 cells. The SFP prepared by the HAE has the potential as a natural non-toxic antioxidant and can be used as an ingredient in functional foods.
Collapse
Affiliation(s)
- Cheng Wan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Hui Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Meng-Ting Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, United Kingdom
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
23
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
New Betulin Derivatives with Nitrogen Heterocyclic Moiety-Synthesis and Anticancer Activity In Vitro. Biomolecules 2022; 12:biom12101540. [PMID: 36291749 PMCID: PMC9599051 DOI: 10.3390/biom12101540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022] Open
Abstract
As part of the search for new medicinal substances with potential application in oncology, the synthesis of new compounds combining the betulin molecule and the indole system was carried out. The structure of the ester derivatives obtained in the Steglich reaction was confirmed by spectroscopic methods (1H and 13C NMR, HR-MS). The obtained new 3-indolyl betulin derivatives were evaluated for anticancer activity against several human cancer cell lines (melanomas, breast cancers, colorectal adenocarcinomas, lung cancer) as well as normal human fibroblasts. The significant reduction in MCF-7 cells viability for 28-hydroxy-(lup-20(29)-ene)-3-yl 2-(1H-indol-3-yl)acetate was observed at a concentration of 10 µg/mL (17 µM). In addition, cytometric analysis showed that this compound strongly reduces the proliferation rate of breast cancer cells. For this, the derivative showing the promising cytotoxic effect on MCF-7 breast cancer cells, the pharmacokinetic profile prediction was performed using in silico methods. Based on the results obtained in the study, it can be concluded that indole-functionalized triterpene EB367 is a promising starting point for further research in the field of breast cancer therapy or the synthesis of new derivatives.
Collapse
|
26
|
Yang Y, Liang M, Ouyang D, Tong H, Wu M, Su L. Research Progress on the Protective Effect of Brown Algae-Derived Polysaccharides on Metabolic Diseases and Intestinal Barrier Injury. Int J Mol Sci 2022; 23:10784. [PMID: 36142699 PMCID: PMC9503908 DOI: 10.3390/ijms231810784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the human body, the intestine is the largest digestive and immune organ, where nutrients are digested and absorbed, and this organ plays a key role in host immunity. In recent years, intestinal health issues have gained attention and many studies have shown that oxidative stress, inflammation, intestinal barrier damage, and an imbalance of intestinal microbiota may cause a range of intestinal diseases, as well as other problems. Brown algae polysaccharides, mainly including alginate, fucoidan, and laminaran, are food-derived natural products that have received wide attention from scholars owing to their good biological activity and low toxic side effects. It has been found that brown algae polysaccharides can repair intestinal physical, chemical, immune and biological barrier damage. Principally, this review describes the protective effects and mechanisms of brown algae-derived polysaccharides on intestinal health, as indicated by the ability of polysaccharides to maintain intestinal barrier integrity, inhibit lipid peroxidation-associated damage, and suppress inflammatory cytokines. Furthermore, our review aims to provide new ideas on the prevention and treatment of intestinal diseases and act as a reference for the development of fucoidan as a functional product for intestinal protection.
Collapse
Affiliation(s)
- Ying Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Dan Ouyang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
27
|
A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022; 11:foods11182832. [PMID: 36140958 PMCID: PMC9498133 DOI: 10.3390/foods11182832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable, specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many health benefits. On the other hand, there is currently hardly any article dedicated specifically to C. lentillifera regarding nutritional composition and recent advancements in its potential health benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera and compile recently discovered beneficial properties throughout the past decade. From the data compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of C. lentillifera differs from one region to another depending on various external factors. As a result, this paper will offer researchers the groundwork to develop food products based on C. lentillifera. The authors of this paper are hopeful that a more systematic review could be done in the future as currently, existing data is still scarce.
Collapse
|
28
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
29
|
The structures and applications of microbial chondroitin AC lyase. World J Microbiol Biotechnol 2022; 38:199. [PMID: 35996038 DOI: 10.1007/s11274-022-03395-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
As an important glycosaminoglycan hydrolase, chondroitin lyases can hydrolyze chondroitin sulfate (CS) and release disaccharides and oligosaccharides. They are further divided into chondroitin AC, ABC, and B lyases according to their spatial structure and substrate specificity. Chondroitin AC lyase can hydrolyze chondroitin sulfate A (CS-A), chondroitin sulfate C (CS-C), and hyaluronic acid (HA), making it an essential biocatalyst for the preparation of low molecular weight chondroitin sulfate, analysis of the structure of the chondroitin sulfate, treatment of spinal cord injury, and purification of heparin. This paper provides an overview of reported chondroitin AC lyases, including their properties and the challenges faced in industrial applications. Up to now, although many attempts have been adopted to improve the enzyme properties, the most important factors are still the low activity and stability. The relations between the stability of the enzyme and the spatial structure were also summarized and discussed. Also perspectives for remodeling the enzymes with protein engineering are included.
Collapse
|
30
|
Zhang M, Zhang Z, Guo L, Zhao W. The effect of subcritical water treatment on the physicochemical properties and α‐glucosidase inhibitory activity of
Sargassum fusiforme
polysaccharides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengqing Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology Jiangnan University Wuxi Jiangsu PR China
| | - Zhenna Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology Jiangnan University Wuxi Jiangsu PR China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology Jiangnan University Wuxi Jiangsu PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology Jiangnan University Wuxi Jiangsu PR China
| |
Collapse
|
31
|
Gong P, Guo Y, Chen X, Cui D, Wang M, Yang W, Chen F. Structural Characteristics, Antioxidant and Hypoglycemic Activities of Polysaccharide from Siraitia grosvenorii. Molecules 2022; 27:molecules27134192. [PMID: 35807439 PMCID: PMC9268605 DOI: 10.3390/molecules27134192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
The structural characterization, the in vitro antioxidant activity, and the hypoglycemic activity of a polysaccharide (SGP-1-1) isolated from Siraitia grosvenorii (SG) were studied in this paper. SGP-1-1, whose molecular weight is 19.037 kDa, consisted of Gal:Man:Glc in the molar ratio of 1:2.56:4.90. According to the results of methylation analysis, GC–MS, and NMR, HSQC was interpreted as a glucomannan with a backbone composed of 4)-β-D-Glcp-(1→4)-, α-D-Glcp-(1→4)-, and 4)-Manp-(1 residues. α-1,6 linked an α-D-Galp branch, and α-1,6 linked an α-D-Glcp branch. The study indirectly showed that SGP-1-1 has good in vitro hypoglycemic and antioxidant activities and that these activities may be related to the fact that the SGP-1-1’s monosaccharide composition (a higher proportion of Gal and Man) is the glycosidic-bond type (α- and β-glycosidic bonds). SGP-1-1 could be used as a potential antioxidant and hypoglycemic candidate for functional and nutritional food applications.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.G.); (X.C.); (D.C.); (M.W.); (W.Y.)
- Correspondence: ; Tel.: +86-137-7219-6479
| | - Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.G.); (X.C.); (D.C.); (M.W.); (W.Y.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.G.); (X.C.); (D.C.); (M.W.); (W.Y.)
| | - Dandan Cui
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.G.); (X.C.); (D.C.); (M.W.); (W.Y.)
| | - Mengrao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.G.); (X.C.); (D.C.); (M.W.); (W.Y.)
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.G.); (X.C.); (D.C.); (M.W.); (W.Y.)
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
| |
Collapse
|
32
|
Liang X, Ye Y, Qiao Y, Xiao J, Zhu Y, Zhang L, Liu Y. Multivariate comparative evaluation of chemical constituents and antibacterial activity of Ribes stenocarpum Maxim. From different regions in Qinghai-Tibet Plateau. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Jia RB, Wu J, Luo D, Lin L, Chen C, Xiao C, Zhao M. The Beneficial Effects of Two Polysaccharide Fractions from Sargassum fusiform against Diabetes Mellitus Accompanied by Dyslipidemia in Rats and Their Underlying Mechanisms. Foods 2022; 11:foods11101416. [PMID: 35626992 PMCID: PMC9141567 DOI: 10.3390/foods11101416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
The current study aimed to assess the anti-diabetic effects and potential mechanisms of two Sargassum fusiform polysaccharide fractions (SFPs, named SFP-1 and SFP-2). The carbohydrate-loading experiment revealed that SFP-2 could control postprandial hyperglycemia by inhibiting the activity of digestive enzymes in rats. The analysis of diabetic symptoms and serum profiles indicated that SFPs could mitigate diabetes accompanied by dyslipidemia, and SFP-2 showed better regulatory effects on body weight, food intake and the levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) and free fatty acid (FFA) in diabetic rats. Intestinal bacterial analysis showed that SFP treatment could reshape the gut flora of diabetic rats, and SFP-2 possessed a greater regulatory effect on the growth of Lactobacillus and Blautia than SFP-1. RT-qPCR analysis revealed that SFPs could regulate the genes involved in the absorption and utilization of blood glucose, hepatic glucose production and lipid metabolism, and the effects of SFP-2 on the relative expressions of Protein kinase B (Akt), Glucose-6-phosphatase (G-6-Pase), Glucose transporter 2 (GLUT2), AMP-activated protein kinase-α (AMPKα), Peroxisome proliferator-activated receptor γ (PPARγ) and Cholesterol 7-alpha hydroxylase (CYP7A1) were greater than SFP-1. All above results indicated that SFPs could be exploited as functional foods or pharmaceutical supplements for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Rui-Bo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Lianzhu Lin
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Chong Chen
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China;
| | - Chuqiao Xiao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- Correspondence: (C.X.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Correspondence: (C.X.); (M.Z.)
| |
Collapse
|
34
|
Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods 2022; 11:foods11070974. [PMID: 35407061 PMCID: PMC8997417 DOI: 10.3390/foods11070974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) may lead to abnormally elevated blood glucose, lipid metabolism disorder, and low-grade inflammation. Besides, the development of T2DM is always accompanied by gut microbiota dysbiosis and metabolic dysfunction. In this study, the T2DM mice model was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. Additionally, the effects of oral administration of ethanol extract from Sanghuangporous vaninii (SVE) on T2DM and its complications (including hypoglycemia, hyperlipidemia, inflammation, and gut microbiota dysbiosis) were investigated. The results showed SVE could improve body weight, glycolipid metabolism, and inflammation-related parameters. Besides, SVE intervention effectively ameliorated the diabetes-induced pancreas and jejunum injury. Furthermore, SVE intervention significantly increased the relative abundances of Akkermansia, Dubosiella, Bacteroides, and Parabacteroides, and decreased the levels of Lactobacillus, Flavonifractor, Odoribacter, and Desulfovibrio compared to the model group (LDA > 3.0, p < 0.05). Metabolic function prediction of the intestinal microbiota by PICRUSt revealed that glycerolipid metabolism, insulin signaling pathway, PI3K-Akt signaling pathway, and fatty acid degradation were enriched in the diabetic mice treated with SVE. Moreover, the integrative analysis indicated that the key intestinal microbial phylotypes in response to SVE intervention were strongly correlated with glucose and lipid metabolism-associated biochemical parameters. These findings demonstrated that SVE has the potential to alleviate T2DM and its complications by modulating the gut microbiota imbalance.
Collapse
|
35
|
An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022; 27:molecules27061903. [PMID: 35335266 PMCID: PMC8952498 DOI: 10.3390/molecules27061903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a chronic metabolic disease caused by the abnormal metabolism of lipoproteins in the human body. Its main hazard is to accelerate systemic atherosclerosis, which causes cerebrovascular diseases such as coronary heart disease and thrombosis. At the same time, although the current hypolipidemic drugs have a certain therapeutic effect, they have side effects such as liver damage and digestive tract discomfort. Many kinds of polysaccharides from natural resources possess therapeutic effects on hyperlipidemia but still lack a comprehensive understanding. In this paper, the research progress of natural polysaccharides on reducing blood lipids in recent years is reviewed. The pharmacological mechanisms and targets of natural polysaccharides are mainly introduced. The relationship between structure and hypolipidemic activity is also discussed in detail. This review will help to understand the value of polysaccharides in lowering blood lipids and provide guidance for the development and clinical application of new hypolipidemic drugs.
Collapse
|
36
|
Wang H, Li Y, Wang X, Li Y, Cui J, Jin DQ, Tuerhong M, Abudukeremu M, Xu J, Guo Y. Preparation and structural properties of selenium modified heteropolysaccharide from the fruits of Akebia quinata and in vitro and in vivo antitumor activity. Carbohydr Polym 2022; 278:118950. [PMID: 34973766 DOI: 10.1016/j.carbpol.2021.118950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023]
Abstract
Cancer is a complex disease, and blocking tumor angiogenesis has become one of the most promising approaches in cancer therapy. Here, an exopoly heteropolysaccharide (AQP70-2B) was firstly isolated from Akebia quinata. Monosaccharide composition indicated that the AQP70-2B was composed of rhamnose, glucose, galactose, and arabinose. The backbone of AQP70-2B consisted of →1)-l-Araf, →3)-l-Araf-(1→, →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →2,5)-l-Araf-(1→, →4)-d-Glcp-(1→, →6)-d-Galp-(1→, and →1)-d-Rhap residues. Based on the close relationship between selenium and anti-tumor activity, AQP70-2B was modified with selenium to obtain selenized polysaccharide Se-AQP70-2B. Then, a series of methods for analysis and characterization, especially scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS), indicated that Se-AQP70-2B was successfully synthesized. Furthermore, zebrafish xenografts and anti-angiogenesis experiments indicated that selenization could improve the antitumor activity by inhibiting tumor cell proliferation and migration and blocking angiogenesis.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuelian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
37
|
Agarwal S, Singh V, Chauhan K. Antidiabetic potential of seaweed and their bioactive compounds: a review of developments in last decade. Crit Rev Food Sci Nutr 2022; 63:5739-5770. [PMID: 35048763 DOI: 10.1080/10408398.2021.2024130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes Mellitus is a public health problem worldwide due to high morbidity and mortality rate associated with it. Diabetes can be managed by synthetic hypoglycemic drugs, although their persistent uses have several side effects. Hence, there is a paradigm shift toward the use of natural products having antidiabetic potential. Seaweeds, large marine benthic algae, are an affluent source of various bioactive compounds, including phytochemicals and antioxidants thus exhibiting various health promoting properties. Seaweed extracts and its bioactive compounds have antidiabetic potential as they inhibit carbohydrate hydrolyzing enzymes in vitro and exhibit blood glucose lowering effect in random and post prandial blood glucose tests in vivo. In addition, they have been associated with reduced weight gain in animals probably by decreasing mRNA expression of pro-inflammatory cytokines with concomitant increase in mRNA expression levels of anti-inflammatory cytokines. Their beneficial effect has been seen in serum and hepatic lipid profile and antioxidant enzymes indicating the protective role of seaweeds against free radicals mediated oxidative stress induced hyperglycemia and associated hyperlipidemia. However, the detailed and in-depth studies of seaweeds as whole, their bioactive isolates and their extracts need to be explored further for their health benefits and wide application in food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Surbhi Agarwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| | - Vikas Singh
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| |
Collapse
|
38
|
Zhang XF, Tang YJ, Guan XX, Lu X, Li J, Chen XL, Deng JL, Fan JM. Flavonoid constituents of Amomum tsao-ko Crevost et Lemarie and their antioxidant and antidiabetic effects in diabetic rats - in vitro and in vivo studies. Food Funct 2022; 13:437-450. [PMID: 34918725 DOI: 10.1039/d1fo02974f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 μM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 μM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, 116 Park Road, Zhengzhou, Henan 450002, China
| | - Jiao Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Li Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jin-Lan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
39
|
Zheng Q, Jia RB, Ou ZR, Li ZR, Zhao M, Luo D, Lin L. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. Int J Biol Macromol 2022; 194:602-610. [PMID: 34808147 DOI: 10.1016/j.ijbiomac.2021.11.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Sargassum fusiforme polysaccharides (SFPs), including SFP-3-40, SFP-3-60, SFP-3-80, SFP-7-40, SFP-7-60, SFP-7-80, SFP-10-40, SFP-10-60, and SFP-10-80, were extracted at different pH (3, 7, and 10), and then precipitated with graded precipitation of 40%, 60% and 80% (v/v) ethanol solution, respectively. Their physicochemical properties and α-glucosidase inhibitory activity were determined. Results showed that SFPs significantly differed in the contents of total sugar, protein, uronic acid, sulfate, the zeta potential, and molecular weight distribution. SFPs, including SFP-10-40, SFP-10-60, and SFP-10-80, had bigger absolute zeta potential value and higher respective average molecular weight in the same ethanol concentration precipitate. All samples were mainly composed of fucose, glucuronic acid, and mannose with different molar ratios. The extraction pH and precipitation ethanol solution concentration caused little changes in functional groups, but significantly altered surface morphology of SFPs. Congo red test revealed that all polysaccharides were not helical polysaccharides. Rheological measurements indicated that SFPs were pseudoplastic fluids and showed elastic behavior of the gel. Except SFP-3-40 and SFP-3-60, all other samples had a stronger α-glucosidase inhibitory activity than that of acarbose. The inhibition type of SFPs against α-glucosidase varied owing to different extraction pH and precipitation ethyl concentration. This study shows that extraction pH can significantly affect the structure and hypoglycemic activity of SFPs and provide a data support for the scientific use of Sargassum fusiforme in industrial production.
Collapse
Affiliation(s)
- Qianwen Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Zhi-Rong Ou
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
40
|
Zhu Y, Christakos G, Wang H, Jin R, Wang Z, Li D, Liu Y, Xiao X, Wu J. Distribution, accumulation and health risk assessment of trace elements in Sargassum fusiforme. MARINE POLLUTION BULLETIN 2022; 174:113155. [PMID: 34863071 DOI: 10.1016/j.marpolbul.2021.113155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This study compared the ability of Sargassum fusiforme to accumulate As, Cd, Cr, Cu, Ni, Pb and Zn in its five tissues (main branch, lateral branch, leaf, receptacles and pneumathode). The concentrations of these trace elements in seawater, surface sediments and different tissues of S. fusiforme were analyzed in different areas in Dongtong County (Wenzhou City, China). The presence of receptacle at all sites indicated that S. fusiforme had entered the mature stage. However, the proportion of each tissue in S. fusiforme in different sites was varied, indicating subtle differences in growth. S. fusiforme has a great capacity to accumulate trace elements, showing relatively high levels of As (28.2-64.2 mg kg-1) and Zn (19.9-80.8 mg kg-1). The elements are mainly stored in leaf, receptacles and pneumathode. Compared to element concentrations in the surrounding environment, the seaweed exhibited stronger bioconcentration capacity for As and Cd than for other elements. According to our health risk assessment results, the hazard index and carcinogenic risk were below the limit, suggesting that the S. fusiforme ingestion would not pose any health risk and the potential risk of intake branches was even lower than that of other tissues.
Collapse
Affiliation(s)
- Yaojia Zhu
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| | - George Christakos
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China; Department of Geography, San Diego State University, San Diego, CA 92182, United States
| | - Hengwei Wang
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| | - Runjie Jin
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| | - Zhiyin Wang
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| | - Dan Li
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China.
| | - Yuxuan Liu
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| | - Xi Xiao
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| | - Jiaping Wu
- Zhejiang University, Ocean College, Zhoushan, Zhejiang 316021, China
| |
Collapse
|
41
|
Differences of gut microbiota composition in mice supplied with polysaccharides from γ-irradiated and non-irradiated Schizophyllum commune. Food Res Int 2022; 151:110855. [PMID: 34980391 DOI: 10.1016/j.foodres.2021.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023]
Abstract
In this study, polysaccharides from normal (N-SFP) and γ-irradiated (I-SFP) Schizophyllum commune were supplied to Kunming mice for 30 days. The results showed that N-SFP and I-SFP supplementation prevent body weight gain, enhance kidney uric acid metabolism and increase the concentration of SCFAs to a certain extent. Moreover, N-SFP and I-SFP promote the growth of beneficial gut microbiota and inhibit the growth of harmful bacteria. Compared to N-SFP, I-SFP decreased the relative abundance of Muribaculaceae and Lactobacillaceae, and increased the beneficial gut microbiota, especially the family of Akkermansiaceae, Lachnospiraceae and Bacteroidaceae. In total, I-SFP showed better effects than N-SFP in preventing weight gain, and modulating the mice gut microbiota, which suggests that I-SFP could act as a potential health supplement in the prevention of obesity.
Collapse
|
42
|
Wang L, Jiao T, Yu Q, Wang J, Wang L, Wang G, Zhang H, Zhao J, Chen W. Bifidobacterium bifidum Shows More Diversified Ways of Relieving Non-Alcoholic Fatty Liver Compared with Bifidobacterium adolescentis. Biomedicines 2021; 10:biomedicines10010084. [PMID: 35052765 PMCID: PMC8772902 DOI: 10.3390/biomedicines10010084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
The occurrence of non-alcoholic fatty liver disease (NAFLD) is closely related to intestinal microbiota disturbance, and probiotics has become a new strategy to assist in alleviating NAFLD. In order to investigate the effect of Bifidobacterium on NAFLD and the possible pathway, a NAFLD model was established by using a high-fat diet (HFD) for 18 weeks. Fourteen strains of Bifidobacterium were selected (seven Bifidobacterium adolescentis and seven Bifidobacterium bifidum) for intervention. The effects of different bifidobacteria on NAFLD were evaluated from liver cell injury, liver fat deposition, liver inflammatory state and liver histopathology, and were taken as entry points to explore the mitigation approaches of bifidobacteria through energy intake, lipid metabolism, glucose metabolism and intestinal permeability. The results showed that Bifidobacterium exerts species-specific effects on NAFLD. B. bifidum exerted these effects mainly through regulating the intestinal microbiota, increasing the relative abundance of Faecalibaculum and Lactobacillus, decreasing the relative abundance of Tyzzerella, Escherichia-Shigella, Intestinimonas, Osillibacter and Ruminiclostridium, and further increasing the contents of propionic acid and butyric acid, regulating lipid metabolism and intestinal permeability, and ultimately inhibiting liver inflammation and fat accumulation to alleviate NAFLD. B. adolescentis exerted its effects mainly through changing the intestinal microbiota, increasing the content of propionic acid, regulating lipid metabolism and ultimately inhibiting liver inflammation to alleviate NAFLD.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Ting Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute, Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel./Fax: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Guo Y, Chen X, Gong P, Chen F, Cui D, Wang M. Advances in the
in vitro
digestion and fermentation of polysaccharides. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| | - Xuefeng Chen
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
- Shaanxi Research Institute of Agricultural Product Processing Technology Xi'an 710021 China
| | - Pin Gong
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering Xi’an University of Science and Technology Xi’an 710054 China
| | - Dandan Cui
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| | - Mengrao Wang
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| |
Collapse
|
44
|
Li TT, Huang ZR, Jia RB, Lv XC, Zhao C, Liu B. Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota. Food Res Int 2021; 147:110530. [PMID: 34399508 DOI: 10.1016/j.foodres.2021.110530] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.
Collapse
Affiliation(s)
- Tian-Tian Li
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zi-Rui Huang
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui-Bo Jia
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Cong Lv
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chao Zhao
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
45
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Du H, Li C, Wang Z, He Y, Wang Y, Zhou H, Wan H, Yang J. Effects of Danhong injection on dyslipidemia and cholesterol metabolism in high-fat diets fed rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114058. [PMID: 33766756 DOI: 10.1016/j.jep.2021.114058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong injection (DHI) is a Chinese medical injection applied to the clinical treatment of cardiovascular diseases that has anti-inflammatory, antiplatelet aggregation and antithrombotic effects. This study aimed to explore the effects of DHI on dyslipidemia and cholesterol metabolism in high-fat diet-fed rats. METHODS Sprague Dawley (SD) rats were randomly divided into six groups: normal group (Normal); hyperlipidemia model group (Model); DHI-treated groups at doses of 1.0 mL/kg, 2.0 mL/kg, 4.0 mL/kg; and simvastatin positive control group (2.0 mg/kg). The hypolipidemic effects of DHI were evaluated by measuring serum lipid levels, hepatic function and oxidative stress, respectively. And pathological changes in liver tissues were determined using hematoxylin-eosin (H&E) and oil red O staining. Moreover, the mRNA and protein expression levels of cholesterol metabolism related genes were detected by real-time PCR (RT-PCR) and Western blot. RESULTS Compared with the Model group, DHI treatment markedly decreased the liver index and improved the pathological morphology of liver tissues. DHI treatment dose-dependently decreased the levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA), and free fatty acids (FFA) in serum or liver tissues (P < 0.01 or P < 0.05), and increased the high-density lipoprotein cholesterol (HDL-C) and tripeptide glutathione (GSH) (P < 0.01 or P < 0.05). The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased in the DHI-treated groups (P < 0.01 or P < 0.05), while the alanine transaminase (ALT) and aspartate transaminase (AST) were decreased (P < 0.01 or P < 0.05). Furthermore, the expression levels of LDL receptor (LDLR), cholesterol 7-α-hydroxylase (CYP7A1), liver X receptor α (LXRα), and peroxisome proliferator-activated receptor α (PPARα) were dose-dependently upregulated in the DHI-treated groups, whereas the expression of sterol regulatory element-binding protein-2 (SREBP-2) was downregulated. CONCLUSIONS Our study demonstrated that DHI markedly ameliorated hyperlipidemia rats by regulating serum lipid levels, inhibiting hepatic lipid accumulation and steatosis, improving hepatic dysfunction, and reducing oxidative stress. The potential mechanism was also tentatively investigated and may be related to the promotion of bile acid synthesis via activation of the PPARα-LXRα-CYP7A1 pathway. Therefore, DHI could be regarded as a potential hypolipidemic drug for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Haixia Du
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhixiong Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
47
|
Sun Y, Chen X, Liu H, Liu S, Yu H, Wang X, Qin Y, Li P. Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J. Molecules 2021; 26:3265. [PMID: 34071584 PMCID: PMC8199121 DOI: 10.3390/molecules26113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs.
Collapse
Affiliation(s)
- Yuhao Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Hong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
48
|
Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers (Basel) 2021; 13:polym13111780. [PMID: 34071638 PMCID: PMC8199337 DOI: 10.3390/polym13111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.
Collapse
|
49
|
Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice. Int J Biol Macromol 2021; 182:595-611. [PMID: 33836198 DOI: 10.1016/j.ijbiomac.2021.03.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharides (MOP) on the serum indexes, small intestinal morphology, small intestinal metabolic profile, and caecal microbiota of mice. A new type of polysaccharides with 104,031 Da molecular weight and triple helix structure was isolated from M. oleifera leaves for in vivo experiment. Forty male SPF C57BL/6 mice aged 4 weeks were average divided into four groups randomly according to the MOP gavaged daily (0, 20, 40 and 60 mg/kg body weight MOP). After a 7-day preliminary trial period and a 28-day official trial period, the mice were slaughtered. Results showed that MOP reduced glucose, total cholesterol, and malondialdehyde. It also improved superoxide dismutase and catalase in serum (P < 0.05). For small intestinal morphology, MOP improved the villi length and crypt depth in both ileum and jejunum (P < 0.05); the ratio of villi length to crypt depth in jejunum increased (P < 0.05). MOP could cause the increase of beneficial bacteria and the decrease of harmful bacteria in caecum, further affecting the function of microbiota. In addition, MOP regulated 114 metabolites enriched in the pathway related to the synthesis and metabolism of micromolecules. In sum, MOP exerted positive effects on the serum indexes and intestinal health of mice.
Collapse
|
50
|
Zhong QW, Zhou TS, Qiu WH, Wang YK, Xu QL, Ke SZ, Wang SJ, Jin WH, Chen JW, Zhang HW, Wei B, Wang H. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chem 2021; 341:128148. [PMID: 33038776 DOI: 10.1016/j.foodchem.2020.128148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
The brown seaweed Undaria pinnatifida polysaccharides show various biological activities, but their hypoglycemic activity and the underlying mechanism remain unclear. Here, three fractions of sulfated polysaccharides Up-3, Up-4, and Up-5 were prepared by microwave-assisted extraction from U. pinnatifida. In vitro assays demonstrated that Up-3 and Up-4 had strong α-glucosidase inhibitory activity, and Up-3, Up-4, and Up-5 could improve the glucose uptake in insulin-resistant HepG2 cells without affecting their viability. In vivo studies indicated Up-3 and Up-4 markedly reduced postprandial blood glucose levels. Up-U (a mixture of Up-3, Up-4, and Up-5), reduced fasting blood glucose levels, increased glucose tolerance and alleviated insulin resistance in HFD/STZ-induced hyperglycemic mice. Histopathological observation and hepatic glycogen measurement showed that Up-U alleviated the damage of the pancreas islet cell, reduced hepatic steatosis, and promoted hepatic glycogen synthesis. These findings suggest that Up-U could alleviate postprandial and HFD/STZ-induced hyperglycemia and was a potential agent for diabetes treatment.
Collapse
Affiliation(s)
- Qi-Wu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Hui Qiu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Kun Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiao-Li Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song-Ze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Wei-Hua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|