1
|
Szabados M, Csákó Z, Kakucs R, Középesy S, Czégény Z, Ciglova K, Dvorakova D, Szigeti T. Phthalate and DINCH metabolites in the urine of Hungarian schoolchildren: Cumulative risk assessment and exposure determinants. ENVIRONMENTAL RESEARCH 2024; 262:119834. [PMID: 39182753 DOI: 10.1016/j.envres.2024.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A human biomonitoring study was conducted to assess the exposure of Hungarian children aged 8-11 years to ten phthalate esters (PEs) and DINCH between 2017 and 2018. In addition to collecting urine samples from 262 participants, a questionnaire was completed by the parents or legal guardians to identify potential determinants of exposure. The highest geometric mean concentration was observed for MiBP, followed by MBP, cx- MEHP, OH-MEHP and MEP. Three out of the four DINCH metabolites were detected in more than 90% of the samples. The comparison of the urinary concentrations measured in this study with those observed in the DEMOCOPHES study revealed a significant decreasing trend in all PE metabolites investigated in both studies between 2011/2012 and 2017/2018. Different approaches were used to assess the health risks associated with the exposure to PEs and DINCH. Our results highlighted that the hazard index (HI) values were higher than 1 in 17.6% of the children when the human biomonitoring guidance values were applied. In contrast, less than 3% of the children had HI values exceeding 1 when other sources of reference values were used. By applying a safety factor of 10 for the risk assessment, 17.6-91.6% of the children were characterized by HI values higher than 0.1, indicating the need for risk reduction measures. Overall, DnBP, DiBP and DEHP were identified as the main drivers of the mixture risk. Although PEs and DINCH are ubiquitous contaminants, there are still inconsistencies and gaps in our understanding of the determinants of exposure. The results of the multivariate regression analysis showed significant associations between PE or DINCH metabolite concentrations and certain individual characteristics, use of personal care products, home and school environment and food and beverages consumption 24 h prior to sample collection.
Collapse
Affiliation(s)
- Máté Szabados
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Zsófia Csákó
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Réka Kakucs
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Szilvia Középesy
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Zsuzsanna Czégény
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| | - Kateřina Ciglova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Tamás Szigeti
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary.
| |
Collapse
|
2
|
Sharpe RM. Endocrine disruption and male reproductive disorders: unanswered questions. Hum Reprod 2024; 39:1879-1888. [PMID: 38926156 PMCID: PMC11373384 DOI: 10.1093/humrep/deae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Maternal exposure to endocrine-disrupting chemicals (EDCs) in human pregnancy is widely considered as an important cause of adverse changes in male reproductive health due to impaired foetal androgen production/action. However, the epidemiological evidence supporting this view is equivocal, except for certain phthalates, notably diethyl hexyl phthalate (DEHP). Maternal phthalate exposure levels associated with adverse reproductive changes in epidemiological studies are several thousand-fold lower than those needed to suppress foetal androgen production in rats, and direct studies using human foetal testis tissue show no effect of high phthalate exposure on androgen production. This conundrum is unexplained and raises fundamental questions. Human DEHP exposure is predominantly via food with highest exposure associated with consumption of a Western style (unhealthy) diet. This diet is also associated with increased exposure to the most common EDCs, whether persistent (chlorinated or fluorinated chemicals) or non-persistent (phthalates, bisphenols) compounds, which are found at highest levels in fatty and processed foods. Consequently, epidemiological studies associating EDC exposure and male reproductive health disorders are confounded by potential dietary effects, and vice versa. A Western diet/lifestyle in young adulthood is also associated with low sperm counts. Disentangling EDC and dietary effects in epidemiological studies is challenging. In pregnancy, a Western diet, EDC exposure, and maternal living in proximity to industrial sites are all associated with impaired foetal growth/development due to placental dysfunction, which predisposes to congenital male reproductive disorders (cryptorchidism, hypospadias). While the latter are considered to reflect impaired foetal androgen production, effects resulting from foetal growth impairment (FGI) are likely indirect. As FGI has numerous life-long health consequences, and is affected by maternal lifestyle, research into the origins of male reproductive disorders should take more account of this. Additionally, potential effects on foetal growth/foetal testis from the increasing use of medications in pregnancy deserves more research attention.
Collapse
Affiliation(s)
- Richard M Sharpe
- Centre for Reproductive Health, Institute for Regeneration & Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Rochester JR, Kwiatkowski CF, Neveux I, Dabe S, Hatcher KM, Lathrop MK, Daza EJ, Eskenazi B, Grzymski JJ, Hua J. A Personalized Intervention to Increase Environmental Health Literacy and Readiness to Change in a Northern Nevada Population: Effects of Environmental Chemical Exposure Report-Back. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:905. [PMID: 39063482 PMCID: PMC11277309 DOI: 10.3390/ijerph21070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Interventions are needed to help people reduce exposure to harmful chemicals from everyday products and lifestyle habits. Report-back of individual exposures is a potential pathway to increasing environmental health literacy (EHL) and readiness to reduce exposures. OBJECTIVES Our objective was to determine if report-back of endocrine-disrupting chemicals (EDCs) can reduce EDC exposure, increase EHL, and increase readiness to change (i.e., to implement EDC exposure-reduction behaviors). METHODS Participants in the Healthy Nevada Project completed EHL and readiness-to-change surveys before (n = 424) and after (n = 174) a report-back intervention. Participants used mail-in kits to measure urinary biomarkers of EDCs. The report-back of results included urinary levels, information about health effects, sources of exposure, and personalized recommendations to reduce exposure. RESULTS EHL was generally very high at baseline, especially for questions related to the general pollution. For questions related to chemical exposures, responses varied across several demographics. Statistically reliable improvements in EHL responses were seen after report-back. For readiness to change, 72% were already or planning to change their behaviors. Post-intervention, women increased their readiness (p = 0.053), while men decreased (p = 0.007). When asked what challenges they faced in reducing exposure, 79% cited not knowing what to do. This dropped to 35% after report-back. Participants with higher propylparaben were younger (p = 0.03) and women and participants who rated themselves in better health had higher levels of some phthalates (p = 0.02-0.003 and p = 0.001-0.003, respectively). After report-back, monobutyl phthalate decreased among the 48 participants who had valid urine tests before and after the intervention (p < 0.001). CONCLUSIONS The report-back intervention was successful as evidenced by increased EHL behaviors, increased readiness to change among women, and a decrease in monobutyl phthalate. An EHL questionnaire more sensitive to chemical exposures would help differentiate high and low literacy. Future research will focus on understanding why men decreased their readiness to change and how the intervention can be improved for all participants.
Collapse
Affiliation(s)
- Johanna R. Rochester
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| | - Carol F. Kwiatkowski
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| | - Iva Neveux
- Healthy Nevada Project, Renown Health, Reno, NV 89557, USA; (I.N.); (S.D.); (J.J.G.)
- Department of Internal Medicine, University of Nevada, Reno, NV 89557, USA
| | - Shaun Dabe
- Healthy Nevada Project, Renown Health, Reno, NV 89557, USA; (I.N.); (S.D.); (J.J.G.)
| | - Katherine M. Hatcher
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| | - Michael Kupec Lathrop
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| | - Eric J. Daza
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| | - Brenda Eskenazi
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| | - Joseph J. Grzymski
- Healthy Nevada Project, Renown Health, Reno, NV 89557, USA; (I.N.); (S.D.); (J.J.G.)
- Department of Internal Medicine, University of Nevada, Reno, NV 89557, USA
| | - Jenna Hua
- Million Marker Wellness, Inc., Berkeley, CA 94704, USA; (J.R.R.); (C.F.K.); (K.M.H.); (M.K.L.); (E.J.D.); (B.E.)
| |
Collapse
|
4
|
Shi QQ, Xu F, Shen T, Zhang RR, Liu H, Chen MZ, Sun AL, Zhang ZM, Shi XZ. High-throughput analytical methodology of monoalkyl phthalate esters and the composite risk assessment with their parent phthalate esters in aquatic organisms and seawater. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133186. [PMID: 38086300 DOI: 10.1016/j.jhazmat.2023.133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
A sensitive, robust, and highly efficient analytical methodology involving solid phase extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry was successfully established to detect 13 monoalkyl phthalate esters (MPAEs) in aquatic organisms and seawater. After the organisms were preprocessed using enzymatic deconjugation with β-glucuronidase, extraction, purification, and qualitative and quantitative optimization procedures were performed. Under optimal conditions, the limits of detection varied from 0.07 to 0.88 μg/kg (wet weight) and 0.04-1.96 ng/L in organisms and seawater, respectively. Collectively, MPAEs achieved acceptable recovery values (91.0-102.7%) with relative standard deviations less than 10.4% and matrix effects ranging from 0.93 to 1.07 in the above matrix. Furthermore, MPAEs and phthalate esters were detected by the developed methodology and gas chromatography-triple quadrupole tandem mass spectrometer in practical samples, respectively. Mono-n-butyl phthalate and mono-iso-butyl phthalate were the most predominant congeners, accounting for 24.8-35.2% in aquatic organisms and seawater. Comprehensive health and ecological risks were higher after the MPAEs were incorporated than when phthalate esters were considered separately, and greater than their risk threshold. Therefore, the risks caused by substances and their metabolites in multiple media, with analogous structure-activity relationships, should be considered to ensure the safety of aquatic organisms and consumers.
Collapse
Affiliation(s)
- Qiang-Qiang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Tao Shen
- Ningbo Ecological and Environment Protection Society, Ningbo 315012, PR China
| | - Rong-Rong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Ming-Ze Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ai-Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China.
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China.
| |
Collapse
|
5
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Li D, Yao Y, Chen D, Wu Y, Liao Y, Zhou L. Phthalates, physical activity, and diet, which are the most strongly associated with obesity? A case-control study of Chinese children. Endocrine 2023; 82:69-77. [PMID: 37532921 DOI: 10.1007/s12020-023-03465-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Phthalate esters have been a research hotspot recently owing to potential obesogenic activity, but conflicting results have been reported. This case-control study was designed to investigate whether there was an association between phthalate metabolites and childhood obesity in China. METHODS A total of 240 pairs of obese/overweight children and age- (±3 months) and gender-matched controls were recruited. Nine phthalate metabolites were analyzed in the first morning urine sample. Physical activity and dietary intake were recorded using validated questionnaires. RESULTS In monofactor analysis, the levels of monomethyl phthalate (MMP) and monobutyl phthalate (MnBP) in controls were significantly higher than those of overweight/obese children (p < 0.05). Moderate physical activity (p = 0.004), consumption of vegetables, fruits, and tonic were significantly higher in controls (all p < 0.05), and consumption of fried food, western fast food, carbonated drinks, and juice were higher in cases (all p < 0.05). After adjusting for physical activity and dietary intake, neither MMP [OR = 0.825, (95% CI: 0.559-1.217)] nor MnBP [(OR = 0.808, 95% CI: 0.556-1.176)], were significantly associated with obesity. In all models, moderate physical activity was negatively associated and high glucose high fat dietary patterns were positively associated with the risk of childhood obesity (p < 0.01). CONCLUSION Diet and physical activity, but not phthalate metabolites were associated with childhood obesity. Further studies are needed to verify our findings. The trial was registered at clinicaltrials.gov as NCT05622513.
Collapse
Affiliation(s)
- Di Li
- Department of Clinical Nutrition, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong Province, China
- Department of School Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Yao Yao
- Department of School Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity&Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong Province, China
| | - Dingyan Chen
- Department of School Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Yu Wu
- Department of School Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Yi Liao
- Department of School Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Li Zhou
- Department of School Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China.
| |
Collapse
|
7
|
Strømmen K, Lyche JL, Moltu SJ, Müller MHB, Blakstad EW, Brække K, Sakhi AK, Thomsen C, Nakstad B, Rønnestad AE, Drevon CA, Iversen PO. Estimated daily intake of phthalates, parabens, and bisphenol A in hospitalised very low birth weight infants. CHEMOSPHERE 2022; 309:136687. [PMID: 36206919 DOI: 10.1016/j.chemosphere.2022.136687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Very low birth weight infants (VLBW, birth weight (BW) < 1500 g) are exposed to phthalates, parabens and bisphenol A (BPA) early in life. We estimated daily intake (EDI) of these excipients in 40 VLBW infants the first and fifth week of life while hospitalised. Based on urinary samples collected in 2010, EDI was calculated and compared to the tolerable daily intake (TDI) with hazard quotients (HQs) evaluated. A HQ > 1 indicates that EDI exceeded TDI with increased risk of adverse health effects. EDI was higher in VLBW infants compared to term-born infants and older children. VLBW infants born at earlier gestational age (GA), or with lower BW, had higher EDI than infants born at later GA or with higher BW. First week median EDI for BPA was higher than TDI in 100% of infants, in 75% for di(2-ethylhexyl) phthalate (DEHP), 90% for the sum of butyl benzyl phthalate (BBzP), di-n-butyl phthalate (DnBP), DEHP and di-iso-nonyl phthalate (DiNP) = ∑BBzP+DnBP+DEHP+DiNP, and in 50% of infants for propylparaben (PrPa), indicating increased risk of adverse effects. Fifth week EDI remained higher than TDI in all infants for BPA, in 75% for DEHP and ∑BBzP+DnBP+DEHP+DiNP, and 25% of infants for PrPa, indicating prolonged risk. Maximum EDI for di-iso-butyl phthalate was higher than TDI suggesting risk of adverse effects at maximum exposure. VLBW infants born earlier than 28 weeks GA had higher EDI, above TDI, for PrPa compared to infants born later than 28 weeks GA. Infants with late-onset septicaemia (LOS) had higher EDI for DEHP, ∑BBzP+DnBP+DEHP+DiNP and BPA, above TDI, compared to infants without LOS. More 75% of the infants' EDI for DEHP and ∑BBzP+DnBP+DEHP+DiNP, 25% for PrPa, and 100% of infants' EDI for BPA, were above TDI resulting in HQs > 1, indicating increased risk of adverse health effects.
Collapse
Affiliation(s)
- Kenneth Strømmen
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Rikshospitalet, Oslo University Hospital, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Sissel Jennifer Moltu
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Ullevål, Oslo University Hospital, Norway
| | - Mette H B Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Elin Wahl Blakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway
| | - Kristin Brække
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Ullevål, Oslo University Hospital, Norway
| | | | | | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway; Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Arild Erlend Rønnestad
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Rikshospitalet, Oslo University Hospital, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
8
|
Stuchlík Fišerová P, Melymuk L, Komprdová K, Domínguez-Romero E, Scheringer M, Kohoutek J, Přibylová P, Andrýsková L, Piler P, Koch HM, Zvonař M, Esteban-López M, Castaño A, Klánová J. Personal care product use and lifestyle affect phthalate and DINCH metabolite levels in teenagers and young adults. ENVIRONMENTAL RESEARCH 2022; 213:113675. [PMID: 35700762 DOI: 10.1016/j.envres.2022.113675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Humans are widely exposed to phthalates and their novel substitutes, and considering the negative health effects associated with some phthalates, it is crucial to understand population levels and exposure determinants. This study is focused on 300 urine samples from teenagers (aged 12-17) and 300 from young adults (aged 18-37) living in Czechia collected in 2019 and 2020 to assess 17 plasticizer metabolites as biomarkers of exposure. We identified widespread phthalate exposure in the study population. The diethyl phthalate metabolite monoethyl phthalate (MEP) and three di (2-ethylhexyl) phthalate metabolites were detected in the urine of >99% of study participants. The highest median concentrations were found for metabolites of low-molecular-weight (LMW) phthalates: mono-n-butyl phthalate (MnBP), monoisobutyl phthalate (MiBP) and MEP (60.7; 52.6 and 17.6 μg/L in young adults). 1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) metabolites were present in 68.2% of the samples with a median of 1.24 μg/L for both cohorts. Concentrations of MnBP and MiBP were similar to other European populations, but 5-6 times higher than in populations in North America. We also observed large variability in phthalate exposures within the study population, with 2-3 orders of magnitude differences in urinary metabolites between high and low exposed individuals. The concentrations varied with season, gender, age, and lifestyle factors. A relationship was found between high levels of MEP and high overall use of personal care products (PCPs). Cluster analysis suggested that phthalate exposures depend on season and multiple lifestyle factors, like time spent indoors and use of PCPs, which combine to lead to the observed widespread presence of phthalate metabolites in both study populations. Participants who spent more time indoors, particularly noticeably during colder months, had higher levels of high-molecular weight phthalate metabolites, whereas participants with higher PCP use, particularly women, tended to have higher concentration of LMW phthalate metabolites.
Collapse
Affiliation(s)
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Klára Komprdová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Martin Zvonař
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Faculty of Sports, Masaryk University, Kamenice, Brno, Czech Republic
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
9
|
Zhong HW, Guo JL, Hu YB, Jia LL, Guo Y. Phthalate exposure and DNA oxidative damage in young people of takeaway food lovers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71978-71987. [PMID: 35606587 DOI: 10.1007/s11356-022-20849-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have demonstrated the ubiquitous of phthalates in materials of food and food packaging, and the effects of regular eating takeaway food for a long time on human health and phthalate exposure levels were not fully investigated. A total of 288 college students who love eating takeaway food were recruited to explore phthalate exposure and oxidative stress, by measuring metabolites of traditional or alternative phthalates and 8-hydroxydeoxyguanosine (8-OHdG, a biomarker of DNA oxidative damage) in their urine samples. Both traditional and alternative phthalates were highly detected. Based on weekly frequency of takeaway eating collecting from questionnaire, the students were divided into four groups including level 1 (L1, < 3 times), level 2 (L2, 3-7 times), level 3 (L3, 8-12 times) and level 4 (L4, > 12 times). The total concentrations of all phthalate metabolites were 42.5-893 ng/mL in all students, which were significantly different among four groups, with the lowest level in L1 (p < 0.05). Checking with the generalized linear model (L1 as the reference), the concentrations of most phthalate metabolites increased 12.0-144% in L2 and L3 compared with those in L1. For each group increase, the concentrations of total metabolites, and metabolites of high and low molecular weight phthalates will increase by 0.156%, 0.128%, and 0.142%, respectively. Besides, levels of 8-OHdG (0.639-33.7 ng/mL) were positively correlated with phthalate daily exposure doses. The each increase of a percentage unit of daily exposure of phthalates, the concentrations of 8-OHdG will increase by 0.258-0.405%. However, levels of 8-OHdG were not significantly different among the four groups. The alternative phthalates have already entered the body of Chinese young people. Our results indicated the regular consumption of takeaway food (e.g., more than three times per week) may increase the chance of exposure to certain phthalates, and may not significantly increase the levels of DNA oxidative damage, unless exposed to other pollutants such as phthalates.
Collapse
Affiliation(s)
- Hao-Wen Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Yi-Bin Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Melough MM, Maffini MV, Otten JJ, Sathyanarayana S. Diet quality and exposure to endocrine-disrupting chemicals among US adults. ENVIRONMENTAL RESEARCH 2022; 211:113049. [PMID: 35240113 DOI: 10.1016/j.envres.2022.113049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Human exposure to endocrine-disrupting chemicals (EDCs) may increase risk for chronic disease. Diet is a significant source of EDC exposure, yet healthy diets recommended for chronic disease prevention have not been thoroughly examined for associations with EDC exposure. Using data from the National Health and Nutrition Examination Survey 2013-2016, we examined associations of dietary patterns with exposure to non-persistent EDCs potentially consumed through diet. EDCs were measured in spot urine samples. Diet was assessed using 24-h recalls. Multivariable linear regression was used to examine associations of three healthy diet scores [Healthy Eating Index (HEI), relative Mediterranean Diet (rMED), and Dietary Approaches to Stop Hypertension] and fast-food consumption with EDCs. In fully adjusted models, no diet was associated with exposure to the bisphenols, phthalates, or polycyclic aromatic hydrocarbons examined. A 1-point increase in rMED (of 18 possible points) was associated with 2.7% (95% CI: 1.7%, 3.8%) greater urinary nitrate. A 10-point increase in HEI (of 100 possible points) was associated with 5.3% (95% CI: 2.8%, 7.9%) greater nitrate and 6.8% (95% CI: 4.5%, 9.2%) greater perchlorate. Because perchlorate and nitrate can disrupt thyroid hormone production, we conducted an exploratory analysis to examine whether these chemicals mediate an association between diet and thyroid hormones. A 10-point increase in HEI was associated with 0.6% reduced serum total thyroxine (95% CI: 1.7%, 0.5%) among all adults, with 57.5% of the effect explained by perchlorate. Nitrate mediated an association of rMED with modestly reduced total triiodothyronine among females. Most EDCs examined had no association with the diets evaluated, indicating that recommended healthy diets were not protective against EDC exposures. As observed with two thyroid antagonists, some recommended diets may increase EDC exposures and related adverse health outcomes. Additional work should identify effective food production and processing practices to reduce dietary exposures to potentially harmful EDCs.
Collapse
Affiliation(s)
- Melissa M Melough
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | | | - Jennifer J Otten
- Center for Public Health Nutrition, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sheela Sathyanarayana
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Center for Public Health Nutrition, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
11
|
Harmon P, Otter R. A review of common non-ortho-phthalate plasticizers for use in food contact materials. Food Chem Toxicol 2022; 164:112984. [PMID: 35452769 DOI: 10.1016/j.fct.2022.112984] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Several non-ortho phthalate plasticizers, including ATBC, DEHA, DINCH, DOTP, and ESBO, are currently used in flexible PVC applications for food packaging and processing. The aim of this review is to summarize the available toxicity, migration, and human biomonitoring data. Available assessments from US CPSC, EFSA, other governmental and non-governmental organizations, and published toxicology studies were used to show that these plasticizers are generally well-studied and demonstrate low toxicity with a focus on potential carcinogenicity, reproductive, developmental, and endocrine related adverse effects as well as biodegradation, aquatic toxicity, and bioaccumulation. Seven other plasticizers, 2EHESBO, ASE, CMCHA, DBT, DEHCH, PETV, and TOTM, have at least some recent but limited food contact clearances; assessments from CPSC, EFSA, and robust summaries in the REACH dossiers were reviewed for these products. Data gaps were found for some of these products; however, there were no concerns raised by the existing data, and they for now have limited use in food contact applications. Migration of ASE, COMGHA, DINCH, DOTP, DEHCH, and TOTM in simulants for aqueous and low alcohol foods ranged from <0.02 to 0.165 mg/kg, which showed they are below established migration limits and well-suited for these applications. Human biomonitoring data are available for DINCH, DOTP, DEHA, DINA, and TOTM, and are essential for determining exposure from all uses.
Collapse
Affiliation(s)
- Patrick Harmon
- BASF Corporation, 11750 Katy Freeway, Houston, TX, 77079, United States.
| | - Rainer Otter
- BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, D-67056, Germany
| |
Collapse
|
12
|
Li Y, Zheng N, Li Y, Li P, Sun S, Wang S, Song X. Exposure of childbearing-aged female to phthalates through the use of personal care products in China: An assessment of absorption via dermal and its risk characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150980. [PMID: 34662603 DOI: 10.1016/j.scitotenv.2021.150980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Phthalates (PAEs) are widely used in personal care products (PCPs) and skin care packaging materials. Through national representative sampling, 328 childbearing-aged females in China were investigated by questionnaire, whose contact factors for 30 cosmetic products were collected. According to the daily exposure method and adverse cumulative effects of PAE exposure on female reproduction, we derived the ERα, ERβ binding, and AR anti-androgenic effects. The utilization rates of acne cleanser, acne cream, cleanser (non-acne), and cream (non-acne) in volunteers were 21.90%, 22.22%, 51.63%, and 51.96%, respectively. Examining the data for PAEs in PCPs, the content of DBP (dibutyl phthalate) in them was significantly higher for tubes (0.26 ± 0.05 μg/g) and other packaging (pump type and metal tube) (0.25 ± 0.03 μg/g) than bowl (0.17 ± 0.04 μg/g). The DBP content of acne cream (0.27 ± 0.03 μg/g) was significantly higher than that of non-acne cream (0.17 ± 0.03 μg/g); likewise, there was significantly more DEHP (di (2-ethylhexyl) phthalate) in acne cleanser (0.87 ± 0.15 μg/g) than non-acne cleanser (0.64 ± 0.36 μg/g). Students and office worker were the main consumers of PCPs; however, among all occupation groups, the daily exposure dose of PCPs for workers was highest (mean = 0.0004, 0.0002, 0.0009 μg/kg bw/day for DEP (diethyl phthalate), DBP, and DEHP, respectively). The cumulative indices of PAEs' exposure revealed that the level of ERα and ERβ binding and AR anti-androgenic effects in workers was respectively 0.4935, 0.0186, and 0.2411 μg/kg bw/day. The risk index (HITDI and HIRfDs) of DEP, DBP, and DEHP was lower than their corresponding reference value (hazard index <1), but using PCPs may cause potential health risks. Therefore, we should pay attention to the adverse effects of PAEs on female reproductive functioning, especially the cumulative exposure of females of childbearing age.
Collapse
Affiliation(s)
- Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Yang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xue Song
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
13
|
Jung SK, Choi W, Kim SY, Hong S, Jeon HL, Joo Y, Lee C, Choi K, Kim S, Lee KJ, Yoo J. Profile of Environmental Chemicals in the Korean Population-Results of the Korean National Environmental Health Survey (KoNEHS) Cycle 3, 2015-2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020626. [PMID: 35055445 PMCID: PMC8776061 DOI: 10.3390/ijerph19020626] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023]
Abstract
The Korean National Environmental Health Survey (KoNEHS) program provides useful information on chemical exposure, serves as the basis for environmental health policies, and suggests appropriate measures to protect public health. Initiated on a three-year cycle in 2009, it reports the concentrations of major environmental chemicals among the representative Korean population. KoNEHS Cycle 3 introduced children and adolescents into the analysis, where the blood and urine samples of 6167 participants were measured for major metals, phthalates, phenolics, and other organic compounds. Lead, mercury, cadmium, metabolites of DEHP and DnBP, and 3-phenoxybenzoic acid levels of the Korean adult population tended to decrease compared to previous survey cycles but remained higher than those observed in the US or Canada. Both bisphenol A (BPA) and trans,trans-muconic acid concentrations have increased over time. Heavy metal concentrations (blood lead, and cadmium) in children and adolescents were approximately half that of adults, while some organic substances (e.g., phthalates and BPA) were high. BPA showed higher levels than in the US or Canada, whereas BPF and BPS showed lower detection rates in this cycle; however, as these are increasingly used as a substitute for BPA, further research is necessary. As environmental chemicals may affect childhood health and development, additional analyses should assess exposure sources and routes through continuous observations.
Collapse
Affiliation(s)
- Sun Kyoung Jung
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
- Graduate School of Urban Public Health, University of Seoul, Seoul 02504, Korea
| | - Wookhee Choi
- Monitoring and Analysis Division, Wonju Regional Environmental Office, Ministry of Environment, Wonju 26461, Korea;
| | - Sung Yeon Kim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
| | - Sooyeon Hong
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
| | - Hye Li Jeon
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
| | - Youngkyung Joo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
| | - Chulwoo Lee
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul 08826, Korea; (K.C.); (S.K.)
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Korea; (K.C.); (S.K.)
| | - Kee-Jae Lee
- Department of Information Statistics and Data Science, College of Natural Science, Korea National Open University, Seoul 03087, Korea;
| | - Jiyoung Yoo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (S.K.J.); (S.Y.K.); (S.H.); (H.L.J.); (Y.J.); (C.L.)
- Correspondence: ; Tel.: +82-32-560-7103
| |
Collapse
|
14
|
Lee I, Pälmke C, Ringbeck B, Ihn Y, Gotthardt A, Lee G, Alakeel R, Alrashed M, Tosepu R, Jayadipraja EA, Tantrakarnapa K, Kliengchuay W, Kho Y, Koch HM, Choi K. Urinary Concentrations of Major Phthalate and Alternative Plasticizer Metabolites in Children of Thailand, Indonesia, and Saudi Arabia, and Associated Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16526-16537. [PMID: 34846872 DOI: 10.1021/acs.est.1c04716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phthalates are widely used in consumer products and are well-known for adverse endocrine outcomes. Di-(2-ethylhexyl) phthalate (DEHP), one of the most extensively used phthalates, has been rapidly substituted with alternative plasticizers in many consumer products. The aim of this study was to assess urinary phthalate and alternative plasticizer exposure and associated risks in children of three Asian countries with different geographical, climate, and cultural characteristics. Children were recruited from elementary schools of Saudi Arabia (n = 109), Thailand (n = 104), and Indonesia (n = 89) in 2017-2018, and their urine samples were collected. Metabolites of major phthalates and alternative plasticizers were measured in the urine samples by HPLC-MS/MS. Urinary metabolite levels differed substantially between the three countries. Metabolite levels of diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), di(2-ethylhexyl) terephthalate (DEHTP), and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) were the highest in Saudi children: Median urinary concentrations of oxo-MiNP, OH-MiDP, 5cx-MEPTP, and OH-MINCH were 8.3, 8.4, 128.0, and 2.9 ng/mL, respectively. Urinary DEHP metabolite concentrations were the highest in the Indonesian children. The hazard index (HI) derived for the plasticizers with antiandrogenicity based reference doses (RfDAA) was >1 in 86%, 80%, and 49% of the Saudi, Indonesian, and Thai children, respectively. DEHP was identified as a common major risk driver for the children of all three countries, followed by DnBP and DiBP depending on the country. Among alternative plasticizers, urinary DEHTP metabolites were detected at levels comparable to those of DEHP metabolites or higher among the Saudi children, and about 4% of the Saudi children exceeded the health based human biomonitoring (HBM)-I value. Priority plasticizers that were identified among the children of three countries warrant refined exposure assessment for source identification and relevant exposure reduction measures.
Collapse
Affiliation(s)
- Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Yunchul Ihn
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Alexandra Gotthardt
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Raid Alakeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Medical and Molecular Genetics Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramadhan Tosepu
- Department of Environmental Health, Faculty of Public Health, University of Halu Oleo, Kendari 93232, Indonesia
| | | | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Wissanupong Kliengchuay
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Wang K. Expanding the definition of healthy eating: Incorporating food packaging, kitchen equipment, and food storage. Explore (NY) 2021; 18:129-130. [PMID: 34785156 DOI: 10.1016/j.explore.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
't Mannetje A, Coakley J, Douwes J. Levels and determinants of urinary phthalate metabolites in New Zealand children and adults. Int J Hyg Environ Health 2021; 238:113853. [PMID: 34634755 DOI: 10.1016/j.ijheh.2021.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND This first national biomonitoring survey of urinary phthalate metabolites in the New Zealand population aimed to provide baseline data, identify exposure determinants, and make comparisons with health-based exposure guidance values. METHODS The survey conducted in 2014-2016 involved the collection of morning-void urine from 298 children (5-18 years) and 302 adults (20-65 years), 33% of Māori ethnicity. A questionnaire collected information on demographic factors and diet. Urine was analysed for creatinine, specific gravity, and 10 phthalate metabolites through liquid chromatography tandem-mass spectrometry (MMP; MEP; MBP iso+n; MBzP; MCHP; MEHP; MEOHP; MEHHP; MCPP; and MiNP). Determinants of exposure were assessed using multivariable linear regression. RESULTS Detection frequencies exceeded 95% for metabolites of DEP, DEHP and DBP. The highest GM was observed for the DBP metabolite MBP iso+n (36.1 μg/L adults; 60.5 μg/L children), followed by the sum of three DEHP metabolites (MEHP+MEOHP+MEHHP: 19.0 μg/L adults; 37.0 μg/L children), and the DEP metabolite MEP (19.1 μg/L adults; 12.0 μg/L children). For most phthalate metabolites New Zealand levels were in the mid-range of internationally reported levels, while for DEP they were in the low range. Māori and non-Māori had similar levels. Children had higher GMs than adults for most metabolites, except for MEP. A proportion of children and adults exceeded the biomonitoring equivalents of health-based guidance values for DBP (0-16% and 0-3% respectively), and DEHP (0-0.7% and 0-0.3% respectively). Eating warm meals from plastic containers ≥2 times/week was associated with higher levels of DEHP metabolites, MBP iso+n, and MBzP. CONCLUSION Phthalate exposure is omnipresent in both children and adults in New Zealand. Exceedances of the biomonitoring equivalents for DBP and DEHP indicate that potential health effects from exposure to these phthalates cannot be excluded with sufficient certainty.
Collapse
Affiliation(s)
- Andrea 't Mannetje
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand.
| | - Jonathan Coakley
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Jeroen Douwes
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| |
Collapse
|
17
|
Jung M, Kim MJ, Kim S, Kyung Y, Kim M, Lee JY, Jeong HI, Lee BR, Kim J, Ahn K, Park YM. Effect of prenatal phthalate exposure on childhood atopic dermatitis: A systematic review and meta-analysis. Allergy Asthma Proc 2021; 42:e116-e125. [PMID: 34187630 DOI: 10.2500/aap.2021.42.210036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: The association between prenatal exposure to phthalate and childhood atopic dermatitis (AD) has previously been investigated; however, the results are inconsistent. Objective: We aimed to perform a systematic review and meta-analysis of birth cohort studies to investigate whether prenatal exposure to phthalate increases the risk of developing AD in children. Methods: We performed an electronic search of medical literature data bases. Studies were critically appraised, and a meta-analysis was performed. Results: Among 129 articles identified, 11 studies met the eligibility criteria. Included studies originated from Europe (n = 5), the United States (n = 4), and Asia (n = 2). The study sample size ranged from 147 to 1024 mother-child pairs. Quality assessment by using the Newcastle-Ottawa scale of all the studies had scores of ≥6. A meta-analysis of data from eight selected studies suggested that monobenzyl phthalate (MBzP) exposure was significantly associated with the risk of AD development (odds ratio 1.16 [95% confidence interval, 1.04-1.31]; I² = 17.36%). However, AD development was not associated with other phthalate metabolites, such as mono-(2-ethylhexyl) phthalate, monoethyl phthalate, mono-isobutyl phthalate, mono-n-butyl phthalate, and the sum of di-[2-ethylhexyl] phthalate on the development of AD (all p values were > 0.05). Conclusion: Our meta-analysis suggested that prenatal exposure to phthalates may be associated with the development of childhood AD. However, further research is needed because only MBzP showed statistical significance and the number of articles in the literature is still insufficient.
Collapse
Affiliation(s)
- Minyoung Jung
- From the Department of Pediatrics, Kosin University Gospel Hospital, Kosin University School of Medicine, Busan, Republic of Korea
| | - Min-Ji Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Seonwoo Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yechan Kyung
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Ji Young Lee
- Department of Pediatrics, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Hye-In Jeong
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Ra Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Mean Park
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
18
|
On J, Kim SH, Lee J, Park MJ, Lee SW, Pyo H. Urinary di(2-ethylhexyl)phthalate metabolite ratios in obese children of South Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29590-29600. [PMID: 33559826 DOI: 10.1007/s11356-021-12823-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Phthalate exposure has been reported to be more associated with obesity in children than in adults. The concentration of di(2-ethylhexyl)phthalate (DEHP) was high temporal variability in spot urine, so additional tools of assessing DEHP exposure were required. Therefore, we used relative metabolite ratios (RMRs) as well as concentrations, and RMRs did not need to be corrected to the creatinine concentration. We aimed to evaluate the levels of urinary DEHP metabolites and their RMRs in obese children in South Korea, and to investigate the potential of RMRs for assessing the risks for childhood obesity. We analyzed the four urinary DEHP metabolites (mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP)) in 240 children aged 5-16 years, using isotope dilution GC-MS/MS. The children were placed into three groups ("normal weight," "overweight," and "obese") according to body mass index (BMI) percentiles. We statistically compared the concentrations and RMRs of DEHP metabolites among these groups. The obese group had lower MEHP levels, and higher secondary metabolite (MEHHP, MEOHP, and MECPP) levels, than the normal weight group. DEHP metabolite levels did not differ significantly between the normal weight and obese groups, whereas RMRA2 (as the ratio of the molar concentrations of MEOHP to MEHHP) was found to be negatively associated with BMI percentile (β= -0.236, p <0.01) and weight percentile (β= -0.282, p<0.001). Therefore, we suggest that RMRs are an additional tool for assessing the health risks of DEHP.
Collapse
Affiliation(s)
- Jiwon On
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 5,Hwarang-ro 14 gil, Seongbuk-gu, Seoul, 02792, Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Dongil-ro 1342, Nowon-gu, Seoul, 01757, Korea
| | - Jeongae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 5,Hwarang-ro 14 gil, Seongbuk-gu, Seoul, 02792, Korea
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Dongil-ro 1342, Nowon-gu, Seoul, 01757, Korea
| | - Sang-Won Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Heesoo Pyo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 5,Hwarang-ro 14 gil, Seongbuk-gu, Seoul, 02792, Korea.
| |
Collapse
|
19
|
Liao KW, Chang WH, Chou WC, Huang HB, Waits A, Chen PC, Huang PC. Human biomonitoring reference values and characteristics of Phthalate exposure in the general population of Taiwan: Taiwan Environmental Survey for Toxicants 2013-2016. Int J Hyg Environ Health 2021; 235:113769. [PMID: 34051577 DOI: 10.1016/j.ijheh.2021.113769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Since a 2011 incident involving phthalate-tainted food, Taiwanese people have become concerned with food quality, and they are still being exposed to certain levels of phthalates. However, no nationwide human biomonitoring survey had been conducted to gather information on levels or reference values (RVs) of phthalates in the Taiwanese population. We aimed to establish the urinary levels and RVs of phthalate metabolites and identify exposure characteristics among Taiwan's population. We enrolled 1857 participants 7 years of age and older from the Taiwan Environmental Survey for Toxicants (TESTs) conducted during 2013-2016. Levels of 11 phthalate metabolites in each participant's urine samples were determined using liquid chromatography-tandem mass spectrometry. For all phthalate metabolites except for mono-methyl phthalate (MMP), mono-ethyl phthalate (MEP), and mono-ethylhexyl phthalate (MEHP), urinary median levels were significantly higher in the 7-17-year old group than in the ≧18-year-old group. For most phthalate metabolites and in the general population, the geometric mean decreased with increasing age. Median levels of MEP (19.55 μg/L), mono-benzyl phthalate (MBzP) (2.11 μg/L), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (22.82 μg/L), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEOHP) (16.08 μg/L), ΣDibutyl phthalate metabolites (ΣDBPm) (0.17 nmol/mL), Σdi-(2-ethylhexyl) phthalate metabolites (ΣDEHPm) (0.29 nmol/mL) were higher in participants from central Taiwan than those from other areas. The median level of DBP (ΣDBPm: 0.20 nmol/mL) was significantly higher in participants from harbor areas than those from other urbanization groups. The RV of the 95 percentile (P95) for phthalate metabolites in the 7-17/≧18-year-old groups were 185.95/208.19 μg/L for MMP, 198.46/265.81 μg/L for MEP, 119.85/69.99 μg/L for mono-isononyl phthalate (MiBP), 165.19/204.32 μg/L for Mono-n-butyl phthalate (MnBP), 15.61/11.73 μg/L for MBzP, 62.09/59.23 μg/L for MEHP, 149.70/69.66 μg/L for MEHHP, 112.06/35.07 μg/L for MEOHP, 195.20/93.83 μg/L for mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), 45.66/27.69 μg/L for mono-(2-carboxymethylhexyl) phthalate (MCMHP), and 9.09/12.13 μg/L for mono-iso-nonyl phthalate (MiNP). We concluded that phthalate exposure of the general population in Taiwan varies by sex, age, region, and urbanization level. Exposure by the 7-17-year-old group to DMP, DBP, and DEHP in Taiwan remains higher than that of youth from other countries. RV of phthalate metabolites in Taiwan were established in the current study.
Collapse
Affiliation(s)
- Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety & Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Alexander Waits
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Office of Occupational Safety and Health, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
20
|
Bastiaensen M, Gys C, Colles A, Malarvannan G, Verheyen V, Koppen G, Govarts E, Bruckers L, Morrens B, Franken C, Den Hond E, Schoeters G, Covaci A. Biomarkers of phthalates and alternative plasticizers in the Flemish Environment and Health Study (FLEHS IV): Time trends and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116724. [PMID: 33631684 DOI: 10.1016/j.envpol.2021.116724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Restrictions on the use of legacy phthalate esters (PEs) as plasticizer chemicals in several consumer products has led to the increased use of alternative plasticizers (APs), such as di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate (DINCH) and di-(2-ethylhexyl) terephthalate (DEHTP). In the fourth cycle of the Flemish Environment and Health Study (FLEHS IV, 2016-2020), we monitored exposure to seven PEs (diethyl phthalate (DEP), di-(2-ethylhexyl) phthalate (DEHP), di-isobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBzP, di-isononyl phthalate (DINP), and di-isodecyl phthalate (DIDP))and three APs (DINCH, DEHTP, and di-(2-ethylhexyl) adipate (DEHA)) by measuring multiple biomarkers in urine of 416 adolescents from Flanders, Belgium (14-15 years old). The reference values show that exposure to PEs is still widespread, although levels of several PE metabolites (e.g., sum of DEHP metabolites, mono-normal-butyl phthalate (MnBP) and mono-benzyl phthalate (MBzP)) have decreased significantly compared to previous human biomonitoring cycles (2003-2018). On the other hand, metabolites of DINCH and DEHTP were detected in practically every participant. Concentrations of AP exposure biomarkers in urine were generally lower than PE metabolites, but calculations of estimated daily intakes (EDIs) showed that exposure to DINCH and DEHTP can be considerable. However, preliminary risk assessment showed that none of the EDI or urinary exposure levels of APs exceeded the available health-based guidance values, while a very low number of participants had levels of MiBP and MnBP exceeding the HBM value. Several significant determinants of exposure could be identified from multiple regression models: the presence of building materials containing PVC, ventilation habits, socio-economic status and season were all associated with PE and AP biomarker levels. Cumulatively, the results of FLEHS IV show that adolescents in Flanders, Belgium, are exposed to a wide range of plasticizer chemicals. Close monitoring over the last decade showed that the exposure levels of restricted PEs have decreased, while newer APs are now frequently detected in humans.
Collapse
Affiliation(s)
- Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Govindan Malarvannan
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Bert Morrens
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Carmen Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
21
|
Lange R, Apel P, Rousselle C, Charles S, Sissoko F, Kolossa-Gehring M, Ougier E. The European Human Biomonitoring Initiative (HBM4EU): Human biomonitoring guidance values for selected phthalates and a substitute plasticizer. Int J Hyg Environ Health 2021; 234:113722. [PMID: 33711757 DOI: 10.1016/j.ijheh.2021.113722] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Ubiquitous use of plasticizers has led to a widespread internal exposure of the European population. Until today, metabolites are detected in almost every urine sample analysed. This raised the urgent need for a toxicological interpretation of the internal exposure levels. The European Human Biomonitoring Initiative (HBM4EU) contributes substantially to the knowledge on the actual exposure of European citizens to chemicals prioritised within HBM4EU, on their potential impact on health and on the interpretation of these data to improve policy making. On that account, human biomonitoring guidance values (HBM-GVs) are derived for the general population and the occupationally exposed population agreed at HBM4EU consortium level. These values can be used to assess phthalate exposure levels measured in HBM studies in a health risk assessment context. HBM-GVs were derived for five phthalates (DEHP, DnBP, DiBP, BBzP and DPHP) and for the non-phthalate substitute Hexamoll® DINCH. For the adult general population, the HBM-GVs for the specific metabolite(s) of the respective parent compounds in urine are the following: 0.5 mg/L for the sum of 5-oxo-MEHP and 5-OH-MEHP; 0.19 mg/L for MnBP, 0.23 mg/L for MiBP; 3 mg/L for MBzP; 0.5 mg/L for the sum of oxo-MPHP and OH-MPHP and 4.5 mg/L for the sum of OH-MINCH and cx-MINCH. The present paper further specifies HBM-GVs for children and for workers.
Collapse
Affiliation(s)
- Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | - Sandrine Charles
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | - Fatoumata Sissoko
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | | | - Eva Ougier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| |
Collapse
|
22
|
Ashley-Martin J, Dodds L, Arbuckle TE, Lanphear B, Muckle G, Foster WG, Ayotte P, Zidek A, Asztalos E, Bouchard MF, Kuhle S. Urinary phthalates and body mass index in preschool children: The MIREC Child Development Plus study. Int J Hyg Environ Health 2021; 232:113689. [PMID: 33445101 DOI: 10.1016/j.ijheh.2021.113689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Childhood exposure to phthalates, a class of chemicals with known reproductive and developmental effects, has been hypothesized to increase the risk of obesity, but this association is not well understood in preschool children. We examined the association between urinary concentrations of phthalate metabolites and concurrently measured body mass index (BMI) and skinfolds among children between the ages of two and five years. We collected anthropometric measures and biomonitoring data on approximately 200 children enrolled in the Maternal-Infant Research on Environmental Chemicals Child Development Plus study. We measured 22 phthalate metabolites in children's urine and used the 19 metabolites detected in at least 40% of samples. Our primary outcome was BMI z-scores calculated using the World Health Organization growth standards. Skinfold z-scores were secondary outcomes. We used multivariable linear regression to evaluate the association between tertiles of phthalate concentrations and each anthropometric measure. We also used weighted quantile sum regression to identify priority exposures of concern. Our analytic sample included 189 singleton-born children with complete anthropometric data. Children with concentrations of the parent compound di-n-butyl phthalate (∑DnBP) in the third tertile had 0.475 (95% CI: 0.068, 0.883) higher BMI z-scores than those in the lower tertile. ∑DnBP was identified as a priority exposure in the weighted quantile sum regression BMI model. In this population of Canadian preschool aged children, we identified DnBP as a potential chemical of concern in regard to childhood obesity. Future research with serial phthalate measurements and anthropometric measurements in young children will help confirm these findings.
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Linda Dodds
- Perinatal Epidemiology Research Unit, Dalhousie University. 5850-5980 University Ave, Halifax, NS, B3K 6R8, Canada.
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Bruce Lanphear
- Faculty of Health Sciences. Simon Fraser University. 8888 University Drive Burnaby, B.C, V5A 1S6, Canada.
| | - Gina Muckle
- Laval University and CHU Research Centre, Quebec City, Quebec, Canada.
| | - Warren G Foster
- McMaster University Health Sciences Center, Hamilton, Ontario, Canada.
| | - Pierre Ayotte
- Institut National de Santé Publique du Québec (INSPQ), Quebec, Canada.
| | - Angelika Zidek
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | - Maryse F Bouchard
- Department of Environmental and Occupational Health, University of Montreal, Canada.
| | - Stefan Kuhle
- Perinatal Epidemiology Research Unit, Dalhousie University. 5850-5980 University Ave, Halifax, NS, B3K 6R8, Canada.
| |
Collapse
|
23
|
Lu S, Yang D, Ge X, Li L, Zhao Y, Li C, Ma S, Yu Y. The internal exposure of phthalate metabolites and bisphenols in waste incineration plant workers and the associated health risks. ENVIRONMENT INTERNATIONAL 2020; 145:106101. [PMID: 32905998 DOI: 10.1016/j.envint.2020.106101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Many hazardous substances can be released during incineration of municipal solid waste (MSW), which pose a potential threat to human health. As additives, phthalates (PAEs) and bisphenols (BPs), which are widely used in daily goods, are likely to be present in the released hazardous substances. In the present study, we investigated the urinary levels of phthalate metabolites (mPAEs) and BPs in workers in an MSW incineration plant (the exposed group) and in residents 8 km away (the control group) in Shenzhen, China. The results showed that the median total urinary concentration of mPAEs in workers was significantly higher than that in residents (1.02 × 103 vs. 375 ng/mL). However, there was no significant difference between workers and residents for BPs. Among the mPAEs measured, the most abundant compound was mono-n-butyl phthalate in both exposed and control groups. Monoethyl phthalate and monomethyl phthalate might be potential markers for MSW incineration because of significantly high levels in the exposed group. The workers engaged in different types of workshops showed no significant differences in the urinary levels of mPAEs, also for BPs. It was worth noting that 70.8% of workers were at risk of the non-carcinogenic effects caused by PAEs with diethylhexyl phthalate having the highest risk. Actions should be taken to reduce the risks caused by these hazardous chemicals.
Collapse
Affiliation(s)
- Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongfeng Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health, University of South China, Hengyang 421001, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Xiang Ge
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Le Li
- School of Public Health, University of South China, Hengyang 421001, PR China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Schwedler G, Rucic E, Koch HM, Lessmann F, Brüning T, Conrad A, Schmied-Tobies MI, Kolossa-Gehring M. Metabolites of the substitute plasticiser Di-(2-ethylhexyl) terephthalate (DEHTP) in urine of children and adolescents investigated in the German Environmental Survey GerES V, 2014–2017. Int J Hyg Environ Health 2020; 230:113589. [DOI: 10.1016/j.ijheh.2020.113589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
|
25
|
Sugeng EJ, Symeonides C, O'Hely M, Vuillermin P, Sly PD, Vijayasarathy S, Thompson K, Pezic A, Mueller JF, Ponsonby AL. Predictors with regard to ingestion, inhalation and dermal absorption of estimated phthalate daily intakes in pregnant women: The Barwon infant study. ENVIRONMENT INTERNATIONAL 2020; 139:105700. [PMID: 32361062 DOI: 10.1016/j.envint.2020.105700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to phthalate chemicals, used in consumer product plastics, occurs throughout the day. Phthalate levels in pregnant women are associated with offspring health effects including obesity and neurodevelopmental problems. Knowledge of predictors of exposure is necessary in order to effectively reduce phthalate exposure. The present study aims to identify predictors of phthalate levels in Australian pregnant women from the Barwon Infant study birth cohort. Maternal urine samples from 841 women were analyzed for phthalate metabolites. Maternal diet and food preparation practices, use of volatile household products, household characteristics and personal care product use were assessed with questionnaires. All maternal urine contained phthalate metabolites. Maternal prenatal high-fat milk consumption was associated with higher benzyl butyl phthalate (BBzP) (p < 0.001), and bis(2-ethylhexyl) phthalate (DEHP) (p = 0.0023). Higher phthalate levels were associated with consumption of tinned food (fish and tomatoes). Diethyl phthalate (DEP) levels were significantly higher when women reported using air freshener (35% increase, p = 0.01), aerosols (40% increase, p = 0.005), hair treatment chemicals (28% increase, p = 0.031), and chlorine (34% increase, p = 0.009) compared to no use. Maternal phthalate levels did not vary by reported plastic avoidance during pregnancy. The study showed that phthalate exposure is ubiquitous and increased by multiple factors. Future intervention studies to reduce phthalate levels among pregnant women will need to take into account the variety of sources identified in this study.
Collapse
Affiliation(s)
- Eva J Sugeng
- Department of Environment and Health, Vrije Universiteit, Amsterdam, the Netherlands
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Deakin University, Geelong, Victoria, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Deakin University, Geelong, Victoria, Australia; Barwon Health, Geelong, Victoria, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Angela Pezic
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Yoshida T, Mimura M, Sakon N. Intakes of phthalates by Japanese children and the contribution of indoor air quality in their residences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19577-19591. [PMID: 32219650 DOI: 10.1007/s11356-020-08397-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Some phthalates, which are used mainly as plasticizers, are suspected to be endocrine disruptors. In the present study, daily intakes of phthalates by Japanese children through all exposure pathways and the contribution of indoor air quality to the intakes were examined by measuring urinary phthalate metabolites in the children and the airborne phthalates in their residences. Spot urine samples excreted first after waking up in the morning were collected from the subjects aged 6 to 15 years (n = 132), and airborne phthalates were sampled in the subjects' bedrooms for 24 h. Eight airborne phthalates and their urinary metabolites were determined by gas chromatography/mass spectrometry. The daily intakes of the phthalates estimated were as follows (median, μg/kg b.w./day): dimethyl phthalate (DMP), 0.15; diethyl phthalate (DEP), 0.42; diisobutyl phthalate (DiBP), 1.1; di-n-butyl phthalate (DnBP), 2.2; dicyclohexyl phthalate (DcHP), 0.026; benzylbutyl phthalate (BBzP), 0.032; di(2-ethylhexyl) phthalate (DEHP), 6.3. The 95th percentile (21 μg/kg b.w./day) of the DEHP intakes exceeded the reference doses (RfD, 20 μg/kg b.w./day) of the US Environmental Protection Agency (EPA). DEHP was suggested to be the most notable phthalate from the perspective of adverse effects on the health of Japanese children. On the other hand, DcHP and di-n-hexyl phthalate were not considered to be very important as indoor air pollutants and as internal contaminants for the children. The contribution rates of the amounts absorbed by inhalation to the amounts absorbed via all of the exposure pathways were only 7.9, 4.4, 6.6, 3.2, 0.22, and 1.0% as the median for DMP, DEP, DiBP, DnBP, BBzP, and DEHP, respectively. Therefore, inhalation did not seem to contribute very much as an absorption pathway of the phthalates for Japanese children while at home.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan.
| | - Mayumi Mimura
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan
| | - Naomi Sakon
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan
| |
Collapse
|
27
|
Zhang X, Tang S, Qiu T, Hu X, Lu Y, Du P, Xie L, Yang Y, Zhao F, Zhu Y, Giesy JP. Investigation of phthalate metabolites in urine and daily phthalate intakes among three age groups in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114005. [PMID: 31995769 DOI: 10.1016/j.envpol.2020.114005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are widely used as binders and plasticizers in industrial and consumer products but show diverse toxicity. We investigated the level of human exposure to phthalates in Beijing, one of the most densely populated cities in the world. In this study, 12 metabolites of phthalates were measured in 70 spot urine samples collected from Beijing residents from August 2017 to April 2018 using ultra high-performance liquid chromatography tandem mass spectrometry. We found that metabolites of phthalates were ubiquitous in all urine samples. Total concentrations of phthalate metabolites ranged from 39.6 to 1931 ng mL-1, with median concentrations were in decreasing order of children (371 ng mL-1)> younger adults (332 ng mL-1)> older adults (276 ng mL-1). Mono-n-butyl phthalate (MnBP) was the predominant compound, and occurred at concentrations greater than those reported for people in other countries. The mean values of estimated daily intakes (EDIs) of ∑phthalate were 35.2, 10.3 and 10.9 ng (kg-bm)-1 d-1 for children, younger adults and older adults, respectively. EDIs of di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP) and di-(2-ethylhexyl) phthalate (DEHP) exceeded reference values suggested by the US Environmental Protection Agency and the European Food Safety Authority. When concentrations were normalized to volume or creatinine-adjusted, hazard quotients (HQs) for 40 of 70 participants exhibited larger HQs >1 for individual phthalates, which was indicative of potential for adverse effects. Thus, exposure to phthalates might be a critical factor contributing to adverse health effects in Beijing residents. To the best of our knowledge, this is the first study to establish a pre-baseline level of urinary phthalate metabolites among residents in Beijing.
Collapse
Affiliation(s)
- Xu Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Qiu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojian Hu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifu Lu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Du
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Linna Xie
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwei Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Zhu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biomedical and Veterinary Biosciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
28
|
Apel P, Kortenkamp A, Koch HM, Vogel N, Rüther M, Kasper-Sonnenberg M, Conrad A, Brüning T, Kolossa-Gehring M. Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank. ENVIRONMENT INTERNATIONAL 2020; 137:105467. [PMID: 32036120 DOI: 10.1016/j.envint.2020.105467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 05/12/2023]
Abstract
In several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subject's combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures.
Collapse
Affiliation(s)
- Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany.
| | - Andreas Kortenkamp
- Brunel University London, Department of Life Sciences, College of Health and Life Sciences, Kingston Lane, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Maria Rüther
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Andre Conrad
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | | |
Collapse
|
29
|
Podlecka D, Gromadzińska J, Mikołajewska K, Fijałkowska B, Stelmach I, Jerzynska J. Longitudinal effect of phthalates exposure on allergic diseases in children. Ann Allergy Asthma Immunol 2020; 125:84-89. [PMID: 32244034 DOI: 10.1016/j.anai.2020.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Environmental chemicals, such as phthalates, phenols, and parabens, may affect children's immune development and contribute to the risk of atopic diseases and asthma. OBJECTIVE To evaluate the associations between prenatal and childhood phthalate exposure and atopic diseases in children at the age of 9 years. METHODS This analysis is restricted to 145 mother-child pairs from the prospective Polish Mother and Child Cohort Study. Phthalate metabolite levels were assessed in the urine samples collected from mothers during the third trimester of pregnancy and from children at age of 2 and 9 years. For the appropriate recognition of children's health status, a questionnaire was administered to the mothers and completed with information from the medical record of each child. The clinical examination was performed by a pediatrician/allergist in the presence of the mother or a relative. RESULTS A higher urine concentration of mono-2-ethyl-5-oxohexyl phthalate increased the risk of food allergy in children at the age of 9 years (odds ratio [OR], 1.75; 95% CI, 1.19-2.57; P = .004) and decreased the risk of atopic dermatitis (OR, 0.49; 95% CI, 0.27-0.87; P = .02). For mono-2-ethyl-5-hydroxyhexyl phthalate, an increased risk of atopic dermatitis was observed (OR, 1.90; 95% CI, 1.18-3.05; P = .008). A higher urine concentration of mono-benzyl phthalate increased the risk of asthma in children (OR, 1.67; 95% CI, 1.08-2.58; P = .02), but the risk of asthma decreased when the concentration of mono-2-ethylhexyl phthalate was higher (OR, 0.64; 95% CI, 10.43-0.97; P = .04). CONCLUSION Our study has not provided clear evidence of the negative effect of phthalate exposure during pregnancy and within the 9 years after birth on allergic diseases in children.
Collapse
Affiliation(s)
- Daniela Podlecka
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Jolanta Gromadzińska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Karolina Mikołajewska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Fijałkowska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Iwona Stelmach
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Jerzynska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland.
| |
Collapse
|
30
|
Schwedler G, Rucic E, Lange R, Conrad A, Koch HM, Pälmke C, Brüning T, Schulz C, Schmied-Tobies MIH, Daniels A, Kolossa-Gehring M. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017. Int J Hyg Environ Health 2020; 225:113444. [PMID: 32058939 DOI: 10.1016/j.ijheh.2019.113444] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
During the population representative German Environmental Survey of Children and Adolescents (GerES V, 2014-2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were analysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), butylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate (DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)). Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97%-100% of the participants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geometric means (GM) were highest for metabolites of DiBP (MiBP: 26.1 μg/L), DEP (MEP: 25.8 μg/L), DnBP (MnBP: 20.9 μg/L), and DEHP (cx-MEPP: 11.9 μg/L). For all phthalates but DEP, GMs were consistently higher in the 3-5 years old children than in the 14-17 years old adolescents. For DEHP, the age differences were most pronounced. All detectable phthalate biomarker concentrations were positively associated with the levels of the respective phthalate in house dust. In GerES V we found considerably lower phthalate biomarker levels than in the preceding GerES IV (2003-2006). GMs of biomarker levels in GerES V were only 18% (BBzP), 23% (MnBP), 23% (DEHP), 29% (MiBP) and 57% (DiNP) of those measured a decade earlier in GerES IV. However, some children and adolescents still exceeded health-based guidance values in the current GerES V. 0.38% of the participants had levels of DnBP, 0.08% levels of DEHP and 0.007% levels of DiNP which were higher than the respective health-based guidance values. Accordingly, for these persons an impact on health cannot be excluded with sufficient certainty. The ongoing and substantial exposure of vulnerable children and adolescents to many phthalates confirms the need of a continued monitoring of established phthalates, whether regulated or not, as well as of potential substitutes. With this biomonitoring approach we provide a picture of current individual and cumulative exposure developments and body burdens to phthalates, thus providing support for timely and effective chemicals policies and legislation.
Collapse
Affiliation(s)
| | - Enrico Rucic
- German Environment Agency (UBA), Berlin, Germany
| | - Rosa Lange
- German Environment Agency (UBA), Berlin, Germany
| | - André Conrad
- German Environment Agency (UBA), Berlin, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | | | | | - Anja Daniels
- German Environment Agency (UBA), Berlin, Germany
| | | |
Collapse
|
31
|
Milošević N, Milanović M, Sudji J, Bosić Živanović D, Stojanoski S, Vuković B, Milić N, Medić Stojanoska M. Could phthalates exposure contribute to the development of metabolic syndrome and liver disease in humans? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:772-784. [PMID: 31808097 DOI: 10.1007/s11356-019-06831-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/21/2019] [Indexed: 05/05/2023]
Abstract
In the study, 305 patients of both genders were enrolled and divided into three groups: obese (BMI > 30 kg/m2), patients who were diagnosed type 2 diabetes mellitus (T2DM), and control, normal weight healthy volunteers. At least one of ten different phthalate metabolites was determined in the urine samples of 49.84% all enrolled participants. In the obese subgroup, the sum of all urinary phthalate metabolites was positively associated with TG levels (p = 0.031) together with derived TC/HDL and TG/HDL ratios (p = 0.023 and 0.015), respectively. Urinary MEP concentration was positively correlated with the HOMA-IR in T2DM subgroup (p = 0.016) while in the control subgroup, log10MEP levels were negatively correlated with total cholesterol (p = 0.0051), and LDL serum levels (p = 0.0015), respectively. Also, in the control subgroup, positive linear correlations between urinary log10MEP levels and TyG and TYG-BMI values (p = 0.028 and p = 0.027), respectively, were determined. Urinary MEHP levels were associated with glucose serum levels (p = 0.02) in T2DM subgroup, while in the control HDL values were negatively associated with log10MEHP (p = 0.0035). Healthy volunteers exposed to phthalates had elevated AST levels in comparison to non-exposed ones (p = 0.023). In control subgroup, ALT and AST values were increased (p = 0.02 and p = 0.01, respectively) in MEP exposed while GGT levels were enhanced (p = 0.017) in MEHP exposed in comparison with non-exposed. Combined phthalates influence on glucose and lipid metabolism may increase the possibility for NAFLD and insulin resistance development among exposed individuals.
Collapse
Affiliation(s)
- Nataša Milošević
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Maja Milanović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| | - Jan Sudji
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | | | - Stefan Stojanoski
- Faculty of Medicine, Oncology Institute of Vojvodina, University of Novi Sad, Sremska Kamenica, Serbia
| | - Bojan Vuković
- Faculty of Medicine, Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
32
|
Ribeiro C, Mendes V, Peleteiro B, Delgado I, Araújo J, Aggerbeck M, Annesi-Maesano I, Sarigiannis D, Ramos E. Association between the exposure to phthalates and adiposity: A meta-analysis in children and adults. ENVIRONMENTAL RESEARCH 2019; 179:108780. [PMID: 31610390 DOI: 10.1016/j.envres.2019.108780] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to environmental chemicals has become one of the major concerns in the past decades. Phthalates are a family of synthetic organic chemicals used in the manufacture of plastics, solvents, and personal care products. These compounds are considered as endocrine-disrupting compounds (EDCs) since they may interfere with the endocrine system and disrupt its physiologic function. AIM The purpose of this work is to synthesize results from published literature on the association between the exposure to phthalates and adiposity in adults and children. METHODS We searched PubMed from inception up to 01 August 2019, to retrieve original papers reporting data on the association between EDCs and adiposity, using the following search expression: (("Endocrine disruptor" OR Endocrine disruptor[mh] OR phthalate) AND (Obesity OR Overweight OR BMI OR "Body fat" OR Adipose tissue[mh] OR Body size[mh] OR "body size" OR "body weight" OR Anthropometry OR "anthropometric measures")) AND (humans[mh]). The study variables and characteristics were collected during data extraction, namely the study design, sample, exposure, outcome, descriptive and association measures. Study quality was assessed using the STROBE template for observational studies. Although studies examined several adiposity measures, Body Mass Index (BMI) and Waist Circumference (WC) were the most commonly used, therefore, we used the beta coefficients regarding BMI and WC, and odds ratios when BMI outcome was categorical to perform the meta-analysis. Data from the studies were combined using fixed effects meta-analyses to compute summary regression coefficients or odds ratios and corresponding 95% confidence intervals (95% CI). Heterogeneity between studies was assessed by the I2 statistic. RESULTS In the systematic review we found 29 publications addressing the association between phthalate compounds and adiposity. The vast majority of the included studies reported associations that were not statistically significant. For most of the phthalate compounds there were few studies providing compatible measures and therefore it was not possible to combine the results in a meta-analysis. Both for BMI and WC, the meta-analysis for MiBP, MCPP and MbzP showed negative associations and null association for MBP in children, although none of them was significant. For MEP, positive but not significant associations were found both in children and adults. Conversely, for MEHP a negative association was found also in children and adults although it did not reach statistical significance. Only for MECPP a significant association was found for obesity in adults (OR = 1.67 (95% CI 1.30; 2.16). CONCLUSION In general, a positive association between phthalates and adiposity measures was found, especially in adults. However, most of the results did not reach statistical significance and the inconsistencies found between studies did not allow to reach a definitive conclusion. Additionally, we cannot exclude a possible effect of publication bias.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas nº 135, 4050-600, Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade Do Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Vânia Mendes
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas nº 135, 4050-600, Porto, Portugal
| | - Bárbara Peleteiro
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas nº 135, 4050-600, Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade Do Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Inês Delgado
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas nº 135, 4050-600, Porto, Portugal
| | - Joana Araújo
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas nº 135, 4050-600, Porto, Portugal
| | - Martine Aggerbeck
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 45 Rue des Saints Pères, 75006, Paris, France
| | - Isabella Annesi-Maesano
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Denis Sarigiannis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Elisabete Ramos
- EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas nº 135, 4050-600, Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade Do Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
33
|
Jankowska A, Polańska K, Koch HM, Pälmke C, Waszkowska M, Stańczak A, Wesołowska E, Hanke W, Bose-O'Reilly S, Calamandrei G, Garí M. Phthalate exposure and neurodevelopmental outcomes in early school age children from Poland. ENVIRONMENTAL RESEARCH 2019; 179:108829. [PMID: 31677502 DOI: 10.1016/j.envres.2019.108829] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Some phthalates are known endocrine disrupting chemicals (EDC). They are widely present in the environment thus their impact on children's health is of particular scientific interest. The aim of the study was to evaluate the association between phthalate exposure and neurodevelopmental outcomes, in particular behavioral, cognitive and psychomotor development, in 250 early school age children from the Polish Mother and Child Cohort (REPRO_PL). Urine samples were collected at the time of children's neurodevelopmental assessment and were analysed for 21 metabolites of 11 parent phthalates. Behavioral and emotional problems were assessed by the Strengths and Difficulties Questionnaire (SDQ) filled in by the mothers. To assess children's cognitive and psychomotor development, Polish adaptation of the Intelligence and Development Scales (IDS) was administered. The examination was performed by trained psychologists. Dimethyl phthalate (DMP) and di-n-butyl phthalate (DnBP) were the two phthalates showing the highest statistically significant associations, with higher total difficulties scores (β = 1.5, 95% CI 0.17; 2.7; β = 1.5, 95% CI 0.25; 2.8, respectively) as well as emotional symptoms and hyperactivity/inattention problems for DnBP (β = 0.46, 95% CI -0.024; 0.94; β = 0.72, 95% CI 0.065; 1.4, respectively), and peer relationships problems for DMP (β = 0.37, 95% CI -0.013; 0.76). In addition, DnBP and DMP have been found to be negatively associated with fluid IQ (β = -0.14, 95% CI -0.29; 0.0041) and crystallized IQ (β = -0.16, 95% CI -0.29; -0.025), respectively. In the case of mathematical skills, three phthalates, namely DMP (β = -0.17, 95% CI -0.31; -0.033), DEP (β = -0.16, 95% CI -0.29; -0.018) and DnBP (β = -0.14, 95% CI -0.28; 0.0012), have also shown statistically significant associations. This study indicates that exposure to some phthalates seems to be associated with adverse effects on behavioral and cognitive development of early school age children. Further action including legislation, educational and interventional activities to protect this vulnerable population is still needed.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Kinga Polańska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Małgorzata Waszkowska
- Department of Health and Work Psychology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Aleksander Stańczak
- Department of Health and Work Psychology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Ewelina Wesołowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Stephan Bose-O'Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Gemma Calamandrei
- Centre for Behavioral Sciences and Mental Health, National Institute of Health (ISS), Rome, Italy
| | - Mercè Garí
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
34
|
Ding S, Zhang Z, Chen Y, Qi W, Zhang Y, Xu Q, Liu H, Zhang T, Zhao Y, Han X, Song X, Zhao T, Ye L. Urinary levels of phthalate metabolites and their association with lifestyle behaviors in Chinese adolescents and young adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109541. [PMID: 31419700 DOI: 10.1016/j.ecoenv.2019.109541] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Adolescence and young adulthood are critical periods of human growth and development. Phthalates are environmental endocrine disruptors, and their health hazards in adolescents and young adults cannot be ignored. This study was undertaken to assess phthalate exposure and determine the associations between lifestyle behaviors and phthalate metabolite levels in Chinese adolescents and young adults. METHODS Four hundred and seventy-eight adolescents and young adults aged 16-20 years were included in this study. The levels of mono-ethyl phthalate (MEP), mono-butyl phthalate (MBP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono-(2-carboxmethyl)-hexyl phthalate (MCMHP) in the subjects' urine were measured by high-performance liquid chromatography-tandem mass spectrometry. The estimated daily intake (EDI) and hazard index (HI) of phthalates were calculated based on urinary metabolite levels. Relevant information on the subjects was collected via questionnaires. The associations between phthalate metabolite levels and lifestyle behaviors were examined using the independent-sample t-test, Mann-Whitney test and multiple linear regression. RESULTS In this study, the detection rates of all seven metabolites were >98%. The highest median metabolite concentration was MBP, which was 43.00 μg/L (33.11 μg/g creatinine). The highest median EDI was for di-(2-ethylhexyl) phthalate (DEHP), which was 2.40 μg/kg-bw/day (volume-based) and 1.51 μg/kg-bw/day (creatinine-based). 2.7% (volume-based) and 1.0% (creatinine-based) of the subjects showed excessive HITDI (HI of the tolerable daily intake) values, which indicated the cumulative risk of anti-androgenic effects. Furthermore, factors significantly associated with phthalate metabolite levels included the use of plastic food packages (DEHP metabolites), physical exercise (MEOHP), the frequency of fast food consumption (MBP), and the frequency of skin care cosmetics and color cosmetics use (MEP). CONCLUSION Our results suggest that Chinese adolescents and young adults are widely exposed to phthalates and their metabolite levels are influenced by lifestyle behaviors.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhaoming Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingjie Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianrong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
35
|
Buckley JP, Kim H, Wong E, Rebholz CM. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013-2014. ENVIRONMENT INTERNATIONAL 2019; 131:105057. [PMID: 31398592 PMCID: PMC6728187 DOI: 10.1016/j.envint.2019.105057] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ultra-processed food has low nutritional quality, is associated with development of chronic diseases, and may increase exposure to chemicals used in food packaging and production. OBJECTIVES To assess associations of ultra-processed food consumption with exposure to phthalates and bisphenols, including newer replacements, in the general U.S. METHODS Among 2212 National Health and Nutrition Examination Survey (NHANES) 2013-2014 participants (≥6 years), we classified items reported in a 24-h dietary recall according to the NOVA food processing classification system and calculated energy intake from ultra-processed food. Urinary concentrations of mono-benzyl (MBzP), mono-(3-carboxypropyl) (MCPP), mono-(carboxyisononyl) (MCNP), mono-(carboxyisoctyl) (MCOP), and four metabolites of di(2-ethylhexyl) (∑DEHP) phthalates and bisphenols A, F, and S were measured in spot urine samples. We estimated percent changes in natural log creatinine-standardized concentrations per 10% higher energy from ultra-processed food in covariate-adjusted multivariable linear regression models. We examined effect measure modification by age group, race/ethnicity, and poverty:income ratio and assessed associations with minimally processed food intake. RESULTS In adjusted models, higher energy from ultra-processed food was associated with higher urinary concentrations of MCPP, MCNP, and MCOP but not MBzP, ∑DEHP, or bisphenols. Each 10% higher energy from ultra-processed food was associated with 8.0% (95% CI: 5.6%, 10.3%) higher urinary MCOP concentrations, with a stronger association among children than adolescents or adults. Ultra-processed sandwiches/hamburgers, French fries/other potato products, and ice cream/pops were associated with higher concentrations of multiple chemicals. Higher energy from minimally processed food was associated with lower concentrations of MCPP, MCNP, MCOP, and bisphenols A and F. DISCUSSION Ultra-processed food consumption may increase exposure to currently used phthalates. Additional research is needed to determine whether minimally processed food diets or changes in food production practices can reduce phthalate and bisphenol exposures and related health effects, particularly among children who are more vulnerable to toxicants and tend to consume more ultra-processed food than adults.
Collapse
Affiliation(s)
- Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Hyunju Kim
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eugenia Wong
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
36
|
Garí M, Koch HM, Pälmke C, Jankowska A, Wesołowska E, Hanke W, Nowak D, Bose-O'Reilly S, Polańska K. Determinants of phthalate exposure and risk assessment in children from Poland. ENVIRONMENT INTERNATIONAL 2019; 127:742-753. [PMID: 31003057 DOI: 10.1016/j.envint.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Phthalates are a group of widely used chemicals and humans are exposed to them in their daily life. Some phthalates may affect the hormonal balance in both children and adults. The aim of this study was to assess the phthalate exposure and its determinants among children at age of 7 years from the Polish Mother and Child Cohort Study (REPRO_PL). 250 urine samples collected in 2014-2015 were analysed for 21 metabolites of 11 parent phthalates using on-line high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). This represents the most extensive set of phthalate metabolites ever determined for Poland. Ten metabolites were quantifiable in 100% of the samples, another eight in >90%. The highest median concentrations were found for the primary monoester metabolites of di-iso-butyl (MiBP, 72.4 μg/l), di-n-butyl (MnBP, 56.3 μg/l) and diethyl (MEP, 42.0 μg/l) phthalate, followed by the sum of di-2-ethylhexyl (ΣDEHP, 89.3 μg/l) and di-iso-nonyl (ΣDiNP, 21.9 μg/l) phthalate metabolites. Metabolite concentrations were higher in children at 7 years than in the same children at age 2 or in their mothers during pregnancy. Generally, phthalate exposures in this study were much higher than exposures reported in other European populations. Multivariate regression models showed that body mass index, place of residence, breastfeeding duration, socio-economic status and parental education were associated with the metabolite levels in the 7-year old children. Daily intake and hazard index calculations revealed that a small percentage of children (around 3-10%) exceeded the tolerable daily intakes established by international institutions such as EFSA and U.S. EPA indicating that these children might be at risk of anti-androgenic effects from the individual and cumulative exposure to phthalates. Thus, further monitoring of this population, by educational programs and follow-up interventions, is required.
Collapse
Affiliation(s)
- Mercè Garí
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Agnieszka Jankowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Ewelina Wesołowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Bose-O'Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Kinga Polańska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| |
Collapse
|
37
|
A Review of Biomonitoring of Phthalate Exposures. TOXICS 2019; 7:toxics7020021. [PMID: 30959800 PMCID: PMC6630674 DOI: 10.3390/toxics7020021] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have been recognized as substances of high concern. Human exposure to phthalates occurs mainly via dietary sources, dermal absorption, and air inhalation. Phthalates are excreted as conjugated monoesters in urine, and some phthalates, such as di-2-ethylhexyl phthalate (DEHP), undergo secondary metabolism, including oxidative transformation, prior to urinary excretion. The occurrence of phthalates and their metabolites in urine, serum, breast milk, and semen has been widely reported. Urine has been the preferred matrix in human biomonitoring studies, and concentrations on the order of several tens to hundreds of nanograms per milliliter have been reported for several phthalate metabolites. Metabolites of diethyl phthalate (DEP), dibutyl- (DBP) and diisobutyl- (DiBP) phthalates, and DEHP were the most abundant compounds measured in urine. Temporal trends in phthalate exposures varied among countries. In the United States (US), DEHP exposure has declined since 2005, whereas DiNP exposure has increased. In China, DEHP exposure has increased since 2000. For many phthalates, exposures in children are higher than those in adults. Human epidemiological studies have shown a significant association between phthalate exposures and adverse reproductive outcomes in women and men, type II diabetes and insulin resistance, overweight/obesity, allergy, and asthma. This review compiles biomonitoring studies of phthalates and exposure doses to assess health risks from phthalate exposures in populations across the globe.
Collapse
|
38
|
Bertoncello Souza M, Passoni MT, Pälmke C, Meyer KB, Venturelli AC, Araújo G, de Castilhos BS, Morais RN, Dalsenter PR, Swan SH, Koch HM, Martino-Andrade AJ. Unexpected, ubiquitous exposure of pregnant Brazilian women to diisopentyl phthalate, one of the most potent antiandrogenic phthalates. ENVIRONMENT INTERNATIONAL 2018; 119:447-454. [PMID: 30031264 DOI: 10.1016/j.envint.2018.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Human exposure to phthalates and other non-persistent chemicals in developing countries is largely unknown. A preliminary analysis of urinary samples from pregnant Brazilian women revealed the presence of metabolites of Diisopentyl phthalate (DiPeP). OBJECTIVES Reliably quantify DiPeP metabolites in human urine and investigate the potential antiandrogenic activity of this phthalate in rats. METHODS We initiated a pilot pregnancy cohort in Curitiba, Brazil, to examine phthalate exposure in urine samples collected in early pregnancy (n = 50) or pooled samples from early, mid and late pregnancy (n = 44). Our well established phthalate method was modified to include the primary DiPeP metabolite, monoisopentyl phthalate (MiPeP), and two additional secondary oxidized metabolites, 3OH-MiPeP and 4OH-MiPeP. In a parallel approach, we orally exposed pregnant rats to DiPeP or Di-n-butyl phthalate (DnBP; reference phthalate) at 0, 125, 250, and 500 mg/kg/day from gestation day 14 to 18 and measured ex vivo fetal testis testosterone production. RESULTS We were able to detect and quantify specific DiPeP metabolites in nearly all (98%) of the early pregnancy urine samples and in all gestational pool samples with a median concentration for MiPeP of 3.65 and 3.15 μg/L, respectively, and for the two oxidized metabolites between 1.00 and 1.70 μg/L. All three urinary DiPeP metabolites were strongly correlated (r = 0.89 to 0.99). In the rat model, the effective dose (mg/kg/day) inhibiting fetal testosterone production by 50% (ED50 [95% confidence interval]) was 93.6 [62.9-139.3] for DiPeP which was significantly lower than for DnBP (220.3 [172.9-280.7]), highlighting the strong antiandrogenic potency of DiPeP within the spectrum of the phthalates. CONCLUSIONS We unveiled and confirmed the exposure of pregnant Brazilian women to DiPeP via specific urinary metabolites. This unexpected and ubiquitous DiPeP exposure indicates to unique DiPeP exposure sources in Brazil. These exposures spark considerable concern because DiPeP is one of the most potent antiandrogenic phthalates.
Collapse
Affiliation(s)
| | | | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Ruhr University Bochum, Bochum, Germany
| | - Katlyn Barp Meyer
- Department of Physiology, Federal University of Paraná, Curitiba, Brazil
| | | | - Giulia Araújo
- Department of Physiology, Federal University of Paraná, Curitiba, Brazil
| | | | | | | | - Shanna Helen Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Ruhr University Bochum, Bochum, Germany
| | - Anderson Joel Martino-Andrade
- Department of Physiology, Federal University of Paraná, Curitiba, Brazil.; Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil..
| |
Collapse
|