1
|
Shi S, Zhang A, Zhang J, Xu S. Partial hypopituitarism with ACTH deficiency as the main manifestation as a complication of hemorrhagic fever with renal syndrome. BMC Endocr Disord 2024; 24:61. [PMID: 38715016 PMCID: PMC11075197 DOI: 10.1186/s12902-024-01587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Hypopituitarism is a relatively rare complication of hemorrhagic fever with renal syndrome. However, almost all available reported cases were total anterior pituitary hypofunction, isolated growth-hormone deficiency, or isolated gonadotropin deficiency. Here, we firstly describe a patient with partial hypopituitarism with ACTH deficiency as the main manifestation as a complication of hemorrhagic fever with renal syndrome.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China
| | - Aoni Zhang
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China
| | - Jingjing Zhang
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China.
| | - Shaoyong Xu
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China.
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
2
|
Noack D, van den Hout MCGN, Embregts CWE, van IJcken WFJ, Koopmans MPG, Rockx B. Species-specific responses during Seoul orthohantavirus infection in human and rat lung microvascular endothelial cells. PLoS Negl Trop Dis 2024; 18:e0012074. [PMID: 38536871 PMCID: PMC11020687 DOI: 10.1371/journal.pntd.0012074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
Seoul orthohantavirus (SEOV) is a rat-borne zoonotic virus that is transmitted via inhalation of aerosolized infectious excreta, and can cause hemorrhagic fever with renal syndrome (HFRS) in humans worldwide. In rats, SEOV predominantly exists as a persistent infection in the absence of overt clinical signs. Lack of disease in rats is attributed to downregulation of pro-inflammatory and upregulation of regulatory host responses. As lung microvascular endothelial cells (LMECs) represent a primary target of infection in both human and rats, infections in these cells provide a unique opportunity to study the central role of LMECs in the dichotomy between pathogenicity in both species. In this study, host responses to SEOV infection in primary human and rat LMECs were directly compared on a transcriptional level. As infection of rat LMECs was more efficient than human LMECs, the majority of anti-viral defense responses were observed earlier in rat LMECs. Most prominently, SEOV-induced processes in both species included responses to cytokine stimulus, negative regulation of innate immune responses, responses to type I and II interferons, regulation of pattern recognition receptor signaling and MHC-I signaling. However, over time, in the rat LMECs, responses shifted from an anti-viral state towards a more immunotolerant state displayed by a PD-L1, B2M-, JAK2-focused interaction network aiding in negative regulation of cytotoxic CD8-positive T cell activation. This suggests a novel mechanism by which species-specific orthohantavirus-induced endothelium and T cell crosstalk may play a crucial role in the development of acute disease in humans and persistence in rodents.
Collapse
Affiliation(s)
- Danny Noack
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mirjam C. G. N. van den Hout
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carmen W. E. Embregts
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Meza-Fuentes G, López R, Vial C, Cortes LJ, Retamal MA, Delgado I, Vial P. Assessing Pulmonary Epithelial Damage in Hantavirus Cardiopulmonary Syndrome: Challenging the Predominant Role of Vascular Endothelium through sRAGE as a Potential Biomarker. Viruses 2023; 15:1995. [PMID: 37896774 PMCID: PMC10611316 DOI: 10.3390/v15101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hantavirus cardiopulmonary syndrome (HCPS) is a severe respiratory illness primarily associated with microvascular endothelial changes, particularly in the lungs. However, the role of the pulmonary epithelium in HCPS pathogenesis remains unclear. This study explores the potential of soluble Receptors for Advanced Glycation End-products (sRAGE) as a biomarker for assessing pulmonary epithelial damage in severe HCPS, challenging the prevailing view that endothelial dysfunction is the sole driver of this syndrome. We conducted a cross-sectional study on critically ill HCPS patients, categorizing them into mild HCPS, severe HCPS, and negative control groups. Plasma sRAGE levels were measured, revealing significant differences between the severe HCPS group and controls. Our findings suggest that sRAGE holds promise as an indicator of pulmonary epithelial injury in HCPS and may aid in tracking disease progression and guiding therapeutic strategies. This study brings clarity on the importance of investigating the pulmonary epithelium's role in HCPS pathogenesis, offering potential avenues for enhanced diagnostic precision and support in this critical public health concern.
Collapse
Affiliation(s)
- Gabriela Meza-Fuentes
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Plaza #680, San Carlos de Apoquindo, Las Condes, Santiago 7610658, Chile; (G.M.-F.); (C.V.); (L.J.C.); (P.V.)
| | - René López
- Grupo Intensivo, ICIM, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile
- Departamento de Paciente Crítico Clínica Alemana de Santiago, Santiago 7610658, Chile
| | - Cecilia Vial
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Plaza #680, San Carlos de Apoquindo, Las Condes, Santiago 7610658, Chile; (G.M.-F.); (C.V.); (L.J.C.); (P.V.)
| | - Lina Jimena Cortes
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Plaza #680, San Carlos de Apoquindo, Las Condes, Santiago 7610658, Chile; (G.M.-F.); (C.V.); (L.J.C.); (P.V.)
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Iris Delgado
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Pablo Vial
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Plaza #680, San Carlos de Apoquindo, Las Condes, Santiago 7610658, Chile; (G.M.-F.); (C.V.); (L.J.C.); (P.V.)
| |
Collapse
|
4
|
miR-142 Targets TIM-1 in Human Endothelial Cells: Potential Implications for Stroke, COVID-19, Zika, Ebola, Dengue, and Other Viral Infections. Int J Mol Sci 2022; 23:ijms231810242. [PMID: 36142146 PMCID: PMC9499484 DOI: 10.3390/ijms231810242] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.
Collapse
|
5
|
Ashique S, Sandhu NK, Das S, Haque SN, Koley K. Global Comprehensive Outlook of Hantavirus Contagion on Humans: A Review. Infect Disord Drug Targets 2022; 22:e050122199975. [PMID: 34986775 DOI: 10.2174/1871526522666220105110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Hantaviruses are rodent viruses that have been identified as etiologic agents of 2 diseases of humans: hemorrhagic fever with renal syndrome (HFRS) and nephropathiaepidemica (NE) in the Old World and Hantavirus pulmonary syndrome (HPS) in the New World. Orthohantavirus is a genus of sin- gle-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae of the order Bunyavi- rales. The important reservoir of Hantaviruses is rodents. Each virus serotype has its unique rodent host species and is transmitted to human beings with the aid of aerosolized virus, which is shed in urine, fae- ces and saliva and hardly by a bite of the contaminated host. Andes virus is the only Hantavirus identified to be transmitted from human-to-human and its major signs and symptoms include fever, headache, mus- cle aches, lungs filled with fluid etc. In the early 1993, this viral syndrome appeared in the Four Cor- ner location in the south western United States. The only accepted therapeutics for this virus is Ribavirin. Recently, serological examinations to identify Hantavirus antibodies have become most popular for in- vestigation among humans and rodent reservoirs.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Navjot K Sandhu
- Department of Pharmaceuti- cal Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Supratim Das
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sk Niyamul Haque
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| | - Kartick Koley
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| |
Collapse
|
6
|
Koehler FC, Di Cristanziano V, Späth MR, Hoyer-Allo KJR, Wanken M, Müller RU, Burst V. OUP accepted manuscript. Clin Kidney J 2022; 15:1231-1252. [PMID: 35756741 PMCID: PMC9217627 DOI: 10.1093/ckj/sfac008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Hantavirus-induced diseases are emerging zoonoses with endemic appearances and frequent outbreaks in different parts of the world. In humans, hantaviral pathology is characterized by the disruption of the endothelial cell barrier followed by increased capillary permeability, thrombocytopenia due to platelet activation/depletion and an overactive immune response. Genetic vulnerability due to certain human leukocyte antigen haplotypes is associated with disease severity. Typically, two different hantavirus-caused clinical syndromes have been reported: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The primarily affected vascular beds differ in these two entities: renal medullary capillaries in HFRS caused by Old World hantaviruses and pulmonary capillaries in HCPS caused by New World hantaviruses. Disease severity in HFRS ranges from mild, e.g. Puumala virus-associated nephropathia epidemica, to moderate, e.g. Hantaan or Dobrava virus infections. HCPS leads to a severe acute respiratory distress syndrome with high mortality rates. Due to novel insights into organ tropism, hantavirus-associated pathophysiology and overlapping clinical features, HFRS and HCPS are believed to be interconnected syndromes frequently involving the kidneys. As there are no specific antiviral treatments or vaccines approved in Europe or the USA, only preventive measures and public awareness may minimize the risk of hantavirus infection. Treatment remains primarily supportive and, depending on disease severity, more invasive measures (e.g., renal replacement therapy, mechanical ventilation and extracorporeal membrane oxygenation) are needed.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Manuel Wanken
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
7
|
Bauer PK, Krause R, Fabian E, Aumüller ML, Schiller D, Adelsmayr G, Fuchsjäger M, Rechberger E, Schöfl R, Krejs GJ. Clinical-Pathological Conference Series from the Medical University of Graz : Case No 172: A 45-year-old truck driver with fever, vomiting, thrombocytopenia and renal failure. Wien Klin Wochenschr 2021; 133:1222-1230. [PMID: 34402989 PMCID: PMC8599315 DOI: 10.1007/s00508-021-01921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 10/27/2022]
Affiliation(s)
- Philipp K Bauer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Robert Krause
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Elisabeth Fabian
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marja-Liisa Aumüller
- Department of Internal Medicine I, Barmherzige Schwestern Hospital, Ried, Austria
| | - Dietmar Schiller
- Department of Internal Medicine IV, Elisabethinen Hospital, Linz, Austria
| | - Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Ernst Rechberger
- Department of Internal Medicine I, Barmherzige Schwestern Hospital, Ried, Austria
| | - Rainer Schöfl
- Department of Internal Medicine IV, Elisabethinen Hospital, Linz, Austria
| | - Guenter J Krejs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
8
|
Hägele S, Nusshag C, Müller A, Baumann A, Zeier M, Krautkrämer E. Cells of the human respiratory tract support the replication of pathogenic Old World orthohantavirus Puumala. Virol J 2021; 18:169. [PMID: 34404450 PMCID: PMC8369447 DOI: 10.1186/s12985-021-01636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transmission of all known pathogenic orthohantaviruses (family Hantaviridae) usually occurs via inhalation of aerosols contaminated with viral particles derived from infected rodents and organ manifestation of infections is characterized by lung and kidney involvement. Orthohantaviruses found in Eurasia cause hemorrhagic fever with renal syndrome (HFRS) and New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS). However, cases of infection with Old World orthohantaviruses with severe pulmonary manifestations have also been observed. Therefore, human airway cells may represent initial targets for orthohantavirus infection and may also play a role in the pathogenesis of infections with Eurasian orthohantaviruses. METHODS We analyzed the permissiveness of primary endothelial cells of the human pulmonary microvasculature and of primary human epithelial cells derived from bronchi, bronchioles and alveoli for Old World orthohantavirus Puumala virus (PUUV) in vitro. In addition, we examined the expression of orthohantaviral receptors in these cell types. To minimize donor-specific effects, cells from two different donors were tested for each cell type. RESULTS Productive infection with PUUV was observed for endothelial cells of the microvasculature and for the three tested epithelial cell types derived from different sites of the respiratory tract. Interestingly, infection and particle release were also detected in bronchial and bronchiolar epithelial cells although expression of the orthohantaviral receptor integrin β3 was not detectable in these cell types. In addition, replication kinetics and viral release demonstrate enormous donor-specific variations. CONCLUSIONS The human respiratory epithelium is among the first targets of orthohantaviral infection and may contribute to virus replication, dissemination and pathogenesis of HFRS-causing orthohantaviruses. Differences in initial pulmonary infection due to donor-specific factors may play a role in the observed broad variance of severity and symptoms of orthohantavirus disease in patients. The absence of detectable levels of integrin αVβ3 surface expression on bronchial and small airway epithelial cells indicates an alternate mode of orthohantaviral entry in these cells that is independent from integrin β3.
Collapse
Affiliation(s)
- Stefan Hägele
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexander Müller
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexandra Baumann
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Simons P, Guo Y, Bondu V, Tigert SL, Harkins M, Goodfellow S, Tompkins C, Chabot-Richards D, Yang XO, Bosc LG, Bradfute S, Lawrence DA, Buranda T. Longitudinal Assessment of Cytokine Expression and Plasminogen Activation in Hantavirus Cardiopulmonary Syndrome Reveals Immune Regulatory Dysfunction in End-Stage Disease. Viruses 2021; 13:1597. [PMID: 34452463 PMCID: PMC8402847 DOI: 10.3390/v13081597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS), a severe immunopathogenic disease in humans manifested by pulmonary edema and respiratory distress, with case fatality rates approaching 40%. High levels of inflammatory mediators are present in the lungs and systemic circulation of HCPS patients. Previous studies have provided insights into the pathophysiology of HCPS. However, the longitudinal correlations of innate and adaptive immune responses and disease outcomes remain unresolved. This study analyzed serial immune responses in 13 HCPS cases due to Sin Nombre orthohantavirus (SNV), with 11 severe cases requiring extracorporeal membrane oxygenation (ECMO) treatment and two mild cases. We measured viral load, levels of various cytokines, urokinase plasminogen activator (uPA), and plasminogen activator inhibitor-1 (PAI-1). We found significantly elevated levels of proinflammatory cytokines and PAI-1 in five end-stage cases. There was no difference between the expression of active uPA in survivors' and decedents' cases. However, total uPA in decedents' cases was significantly higher compared to survivors'. In some end-stage cases, uPA was refractory to PAI-1 inhibition as measured by zymography, where uPA and PAI-1 were strongly correlated to lymphocyte counts and IFN-γ. We also found bacterial co-infection influencing the etiology and outcome of immune response in two cases. Unsupervised Principal Component Analysis and hierarchical cluster analyses resolved separate waves of correlated immune mediators expressed in one case patient due to a sequential co-infection of bacteria and SNV. Overall, a robust proinflammatory immune response, characterized by an imbalance in T helper 17 (Th17) and regulatory T-cells (Treg) subsets, was correlated with dysregulated inflammation and mortality. Our sample size is small; however, the core differences correlated to survivors and end-stage HCPS are instructive.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Yan Guo
- Bioinformatics Shared Resource Center, Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Susan L. Tigert
- Clinical and Translational Science Center (CTSC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Michelle Harkins
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Samuel Goodfellow
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Cana Tompkins
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Devon Chabot-Richards
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Xuexian O. Yang
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Laura Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Steven Bradfute
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Daniel A. Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| |
Collapse
|
10
|
Saavedra F, Díaz FE, Retamal‐Díaz A, Covián C, González PA, Kalergis AM. Immune response during hantavirus diseases: implications for immunotherapies and vaccine design. Immunology 2021; 163:262-277. [PMID: 33638192 PMCID: PMC8207335 DOI: 10.1111/imm.13322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.
Collapse
Affiliation(s)
- Farides Saavedra
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Fabián E. Díaz
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Angello Retamal‐Díaz
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Camila Covián
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Pablo A. González
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Millennium Institute on Immunology and ImmunotherapyDepartamento de EndocrinologíaFacultad de MedicinaEscuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
11
|
Monocyte subset redistribution from blood to kidneys in patients with Puumala virus caused hemorrhagic fever with renal syndrome. PLoS Pathog 2021; 17:e1009400. [PMID: 33690725 PMCID: PMC7984619 DOI: 10.1371/journal.ppat.1009400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14-CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16- classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16- monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.
Collapse
|
12
|
Munir N, Jahangeer M, Hussain S, Mahmood Z, Ashiq M, Ehsan F, Akram M, Ali Shah SM, Riaz M, Sana A. Hantavirus diseases pathophysiology, their diagnostic strategies and therapeutic approaches: A review. Clin Exp Pharmacol Physiol 2021; 48:20-34. [PMID: 32894790 DOI: 10.1111/1440-1681.13403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Hantaviruses are enveloped negative (-) single-stranded RNA viruses belongs to Hantaviridae family, hosted by small rodents and entering into the human body through inhalation, causing haemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). Hantaviruses infect approximately more than 200 000 people annually all around the world and its mortality rate is about 35%-40%. Hantaviruses play significant role in affecting the target cells as these inhibit the apoptotic factor in these cells. These viruses impair the integrity of endothelial barrier due to an excessive innate immune response that is proposed to be central in the pathogenesis and is a hallmark of hantavirus disease. A wide range of different diagnostic tools including polymerase chain reaction (PCR), focus reduction neutralization test (FRNT), enzyme-linked immunosorbent assay (ELISA), immunoblot assay (IBA), immunofluorescence assay (IFA), and other molecular techniques are used as detection tools for hantavirus in the human body. Now the availability of therapeutic modalities is the major challenge to control this deadly virus because still no FDA approved drug or vaccine is available. Antiviral agents, DNA-based vaccines, polyclonal and monoclonal antibodies neutralized the viruses so these techniques are considered as the hope for the treatment of hantavirus disease. This review has been compiled to provide a comprehensive overview of hantaviruses disease, its pathophysiology, diagnostic tools and the treatment approaches to control the hantavirus infection.
Collapse
Affiliation(s)
- Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shoukat Hussain
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mehvish Ashiq
- Department of Chemistry, The Women University Multan, Multan, Pakistan
| | - Fatima Ehsan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Aneezah Sana
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Microb Pathog 2020; 150:104705. [PMID: 33352214 DOI: 10.1016/j.micpath.2020.104705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Hantaviruses are an emerging zoonotic group of rodent-borne viruses that are having serious implications on global public health due to the increase in outbreaks. Since there is no permanent cure, there is increasing interest in developing a vaccine against the hantavirus. This research aimed to design a robust cross-protective subunit vaccine using a novel immunoinformatics approach. After careful evaluation, the best predicted cytotoxic & helper T-cell and B-cell epitopes from nucleocapsid proteins, glycoproteins, RdRp proteins, and non-structural proteins were considered as potential vaccine candidates. Among the four generated vaccine models with different adjuvant, the model with toll-like receptor-4 (TLR-4) agonist adjuvant was selected because of its high antigenicity, non-allergenicity, and structural quality. The selected model was 654 amino acids long and had a molecular weight of 70.5 kDa, which characterizes the construct as a good antigenic vaccine candidate. The prediction of the conformational B-lymphocyte (CBL) epitope secured its ability to induce the humoral response. Thereafter, disulfide engineering improved vaccine stability. Afterwards, the molecular docking confirmed a good binding affinity of -1292 kj/mol with considered immune receptor TLR-4 and the dynamics simulation showed high stability of the vaccine-receptor complex. Later, the in silico cloning confirmed the better expression of the constructed vaccine protein in E. coli K12. Finally, in in silico immune simulation, significantly high levels of immunoglobulin M (IgM), immunoglobulin G1 (IgG1), cytotoxic & helper T lymphocyte (CTL & HTL) populations, and numerous cytokines such as interferon-γ (IFN-γ), interleukin-2 (IL-2) etc. were found as coherence with actual immune response and also showed faster antigen clearance for repeated exposures. Nonetheless, experimental validation can demonstrate the safety and cross-protective ability of the proposed vaccine to fight against hantavirus infection.
Collapse
|
14
|
Saavedra F, Garrido JL, Fuentes-Villalobos F, Calvo M, Riquelme R, Rioseco ML, Chahín C, Ferreira L, Alvarez R, Nova-Lamperti E, Barria MI. Differential CD4 T Regulatory Cell Phenotype Induced by Andes Hantavirus Glycoprotein. Front Cell Infect Microbiol 2020; 10:430. [PMID: 32984065 PMCID: PMC7477076 DOI: 10.3389/fcimb.2020.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Hantavirus cardiopulmonary syndrome (HCPS) caused by Andes orthohantavirus (ANDV) in South America is a public health threat due to the significant rate of mortality and the lack of a specific treatment. Interestingly, the virus does not produce cytopathic effect, thereby the strong antiviral immune response is suspected to contribute to pathogenesis, hence is important to understand the balance between protective and harmfully immunity. CD4+ T regulatory cells (Treg) are essential to control an exacerbated immune response. In human ANDV infection, little is known about CD4+ Treg cells, which may be involved in control immunopathology associated to the infection. In this report, we characterize the phenotype of memory CD4+ Tregs in a HCPS survivor's cohort. Based on the expression of CXCR3, CCR4, and CCR6, we identified different Th-like Treg populations in ANDV survival's PBMCs. In addition, the effect of ANDV-glycoprotein virus like particles (VLP) was determined. We demonstrated that memory CD4+ Treg from HCPS present a specific phenotype, showing higher frequency of PD-1 compared to healthy donors (HD). In addition, it was observed a decrease in the frequency of Th1-like memory CD4+ Treg in HCPS, important to highlight that this signature could be preserved even years after resolution of infection. Moreover, to gain insight in the mechanism involved, we evaluated whether ANDV-glycoprotein (GP) VLP could modulate CD4+ Treg. Interestingly, ANDV-GP VLP induced a decrease in the frequency of CXCR3 (Th1-like) and an increase in CCR4 (Th2-like) memory CD4+ Treg in both HD and HCPS PBMCs, indicating that ANDV-GP could specifically act over CXCR3 and CCR4 in CD4+ Treg. This report contributes to the study of human CD4+ Treg cells in ANDV infection.
Collapse
Affiliation(s)
- Farides Saavedra
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | - Jose L Garrido
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile.,Ichor Biologics LLC, New York, NY, United States
| | - Francisco Fuentes-Villalobos
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | - Mario Calvo
- Institute of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Raúl Riquelme
- Hospital Puerto Montt Dr. Eduardo Schoütz Schroeder, Puerto Montt, Chile
| | | | - Carolina Chahín
- Hospital Regional Temuco Dr. Hernán Henríquez Aravena, Temuco, Chile
| | - Leonila Ferreira
- Hospital Clínico Regional Guillermo Grant Benavente, Concepción, Chile
| | | | - Estefania Nova-Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Maria Ines Barria
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Kuenzli AB, Marschall J, Schefold JC, Schafer M, Engler OB, Ackermann-Gäumann R, Reineke DC, Suter-Riniker F, Staehelin C. Hantavirus Cardiopulmonary Syndrome Due to Imported Andes Hantavirus Infection in Switzerland: A Multidisciplinary Challenge, Two Cases and a Literature Review. Clin Infect Dis 2019; 67:1788-1795. [PMID: 30084955 PMCID: PMC6233683 DOI: 10.1093/cid/ciy443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Two travellers returning from South America were diagnosed with Andes hantavirus infection, the only member of the Hantaviridae family known to be transmitted from person to person. We describe the clinical course and therapeutic and infection control measures. While both patients showed high viral load (VL) and shedding over several months, 1 patient recovered within 1 week from severe respiratory illness that required noninvasive ventilation, whereas the second patient developed severe hantavirus cardiopulmonary syndrome that required extracorporeal membrane oxygenation for 27 days. The clinical course in the latter patient was complicated by severe disseminated intravascular coagulopathy with diffuse hemorrhage that necessitated mass transfusions, as well as by multiple organ failure, including the need for renal replacement therapy. Results of VL in blood, respiratory secretions, and semen for the first 9 months of follow-up are reported. To our knowledge, these are the first cases of Andes hantavirus infection detected in Europe.
Collapse
Affiliation(s)
| | - Jonas Marschall
- Bern University Hospital and University of Bern, Switzerland
| | | | | | - Oliver B Engler
- Spiez Laboratory, Federal Office for Civil Protection, Switzerland
| | | | - David C Reineke
- Bern University Hospital and University of Bern, Switzerland
| | | | | |
Collapse
|
16
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Kallel H, Matheus S, Mayence C, Houcke S, Mathien C, Lavergne A, Hommel D. Capillary leak-syndrome triggered by Maripa virus in French Guiana: case report and implication for pathogenesis. BMC Infect Dis 2019; 19:260. [PMID: 30876401 PMCID: PMC6420753 DOI: 10.1186/s12879-019-3887-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report hereby a severe case of Hantavirus Pulmonary Syndrome" (HPS) induced by Maripa virus in French Guiana and describe the mechanism of severity of the human disease. CASE PRESENTATION A 47-year- old patient started presenting a prodromic period with fever, dyspnea, cough and head ache. This clinical presentation was followed by a rapid respiratory, hemodynamic and renal failure leading to admission in the ICU. Biological exams revealed an increased haematocrit level with a paradoxical low protein level. Echocardiographic and hemodynamic monitoring showed a normal left ventricular function with low filling pressures, an elevated extravascular lung water index and pulmonary vascular permeability index. These findings were compatible with a capillary leak-syndrome (CLS). CONCLUSIONS The severity of HPS caused by the virus Maripa in French Guiana can be explained by the tropism of hantavirus for the microvascular endothelial cell leading to a CLS.
Collapse
Affiliation(s)
- Hatem Kallel
- Service de Réanimation Polyvalente, Centre Hospitalier Andrée Rosemon de Cayenne, Avenue des Flamboyants, 6006 97306, Cayenne, BP, French Guiana.
| | - Séverine Matheus
- Centre National de Référence des Hantavirus, Laboratoire associé, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Claire Mayence
- Service de Réanimation Polyvalente, Centre Hospitalier Andrée Rosemon de Cayenne, Avenue des Flamboyants, 6006 97306, Cayenne, BP, French Guiana
| | - Stéphanie Houcke
- Service de Réanimation Polyvalente, Centre Hospitalier Andrée Rosemon de Cayenne, Avenue des Flamboyants, 6006 97306, Cayenne, BP, French Guiana
| | - Cyrille Mathien
- Service de Réanimation Polyvalente, Centre Hospitalier Andrée Rosemon de Cayenne, Avenue des Flamboyants, 6006 97306, Cayenne, BP, French Guiana
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Didier Hommel
- Service de Réanimation Polyvalente, Centre Hospitalier Andrée Rosemon de Cayenne, Avenue des Flamboyants, 6006 97306, Cayenne, BP, French Guiana
| |
Collapse
|
18
|
Pal E, Korva M, Resman Rus K, Kejžar N, Bogovič P, Strle F, Avšič-Županc T. Relationship between circulating vascular endothelial growth factor and its soluble receptor in patients with hemorrhagic fever with renal syndrome. Emerg Microbes Infect 2018; 7:89. [PMID: 29765019 PMCID: PMC5953927 DOI: 10.1038/s41426-018-0090-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/02/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is characterized by endothelial dysfunction with capillary leakage without obvious cytopathology in the capillary endothelium. The aim of the study was to analyze the kinetics of vascular endothelial growth factor (VEGF) and its soluble receptor (sVEGFR-2) in HFRS patients infected with Dobrava (DOBV) or Puumala virus (PUUV). VEGF and sVEGFR-2 levels were measured in daily plasma and urine samples of 73 patients with HFRS (58 with PUUV, 15 with DOBV) and evaluated in relation to clinical and laboratory variables. In comparison with the healthy controls, initial samples (obtained in the first week of illness) from patients with HFRS had higher plasma and urine VEGF levels, whereas sVEGFR-2 levels were lower in plasma but higher in urine. VEGF levels did not differ in relation to hantavirus species, viral load, or the severity of HFRS. The comparison of VEGF dynamics in plasma and urine showed the pronounced secretion of VEGF in urine. Significant correlations were found between daily VEGF/sVEGFR-2 levels and platelet counts, as well as with diuresis: the correlations were positive for plasma VEGF/sVEGFR-2 levels and negative for urine levels. In addition, patients with hemorrhagic manifestations had very high plasma and urine VEGF, together with high urine sVEGFR-2. Measuring the local secretion of sVEGFR-2 in urine might be a useful biomarker for identifying HFRS patients who will progress to severe disease.
Collapse
Affiliation(s)
- Emil Pal
- Department of Infectious Diseases, Murska Sobota General Hospital, 9000, Murska Sobota, Slovenia
| | - Misa Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nataša Kejžar
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Abstract
Hantaviruses are known to cause haemorrhagic fever with renal syndrome in Eurasia and hantavirus cardiopulmonary syndrome in the Americas. They are globally emerging pathogens as newer serotypes are routinely being reported. This review discusses hantavirus biology, clinical features and pathogenesis of hantavirus disease, its diagnostics, distribution and mammalian hosts. Hantavirus research in India is also summarised.
Collapse
Affiliation(s)
- Sara Chandy
- International Clinical Epidemiology Network (INCLEN), INCLEN Trust International, New Delhi, India
| | - Dilip Mathai
- Apollo Medical College and Research Center, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Scholz S, Baharom F, Rankin G, Maleki KT, Gupta S, Vangeti S, Pourazar J, Discacciati A, Höijer J, Bottai M, Björkström NK, Rasmuson J, Evander M, Blomberg A, Ljunggren HG, Klingström J, Ahlm C, Smed-Sörensen A. Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways. PLoS Pathog 2017. [PMID: 28640917 PMCID: PMC5498053 DOI: 10.1371/journal.ppat.1006462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients’ bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients. Inhalation of hantavirus-infected rodent droppings can cause a wide range of disease ranging from mild symptoms to deaths in humans. Central to hantavirus disease is vascular leakage that can manifest in different organs, including the lungs. Although the virus can infect endothelial cells lining the blood vessels, it does not cause cell death. Instead, activation of the immune system in response to viral infection has been implicated in causing vascular leakage. In this study, we investigated how monocytes and dendritic cells (DCs) are involved in hantavirus disease, given their capacity to activate other immune cells. We obtained unique clinical material from 17 Puumala virus-infected patients including mucosal biopsies from the airways as well as multiple blood draws over the course of disease. In the airways of these patients, we observed an infiltration of monocytes and DCs. In parallel, there was a dramatic depletion in peripheral blood—more than ten-fold—of monocytes and DCs that was sustained throughout the first two weeks of disease. Taken together, this study provides novel insights into immune mediated processes underlying human hantavirus pathogenesis.
Collapse
Affiliation(s)
- Saskia Scholz
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shawon Gupta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Andrea Discacciati
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Höijer
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rasmuson
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Koskela S, Laine O, Mäkelä S, Pessi T, Tuomisto S, Huhtala H, Karhunen PJ, Pörsti I, Mustonen J. Endothelial Nitric Oxide Synthase G894T Polymorphism Associates with Disease Severity in Puumala Hantavirus Infection. PLoS One 2015; 10:e0142872. [PMID: 26561052 PMCID: PMC4641644 DOI: 10.1371/journal.pone.0142872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction Hantavirus infections are characterized by both activation and dysfunction of the endothelial cells. The underlying mechanisms of the disease pathogenesis are not fully understood. Here we tested the hypothesis whether the polymorphisms of endothelial nitric oxide synthase, eNOS G894T, and inducible nitric oxide synthase, iNOS G2087A, are associated with the severity of acute Puumala hantavirus (PUUV) infection. Patients and Methods Hospitalized patients (n = 172) with serologically verified PUUV infection were examined. Clinical and laboratory variables reflecting disease severity were determined. The polymorphisms of eNOS G894T (Glu298Asp, rs1799983) and iNOS G2087A (Ser608Leu, rs2297518) were genotyped. Results The rare eNOS G894T genotype was associated with the severity of acute kidney injury (AKI). The non-carriers of G-allele (TT-homozygotes) had higher maximum level of serum creatinine than the carriers of G-allele (GT-heterozygotes and GG-homozygotes; median 326, range 102–1041 vs. median 175, range 51–1499 μmol/l; p = 0.018, respectively). The length of hospital stay was longer in the non-carriers of G-allele than in G-allele carriers (median 8, range 3–14 vs. median 6, range 2–15 days; p = 0.032). The rare A-allele carriers (i.e. AA-homozygotes and GA-heterozygotes) of iNOS G2087A had lower minimum systolic and diastolic blood pressure than the non-carriers of A-allele (median 110, range 74–170 vs.116, range 86–162 mmHg, p = 0.019, and median 68, range 40–90 vs. 72, range 48–100 mmHg; p = 0.003, respectively). Conclusions Patients with the TT-homozygous genotype of eNOS G894T had more severe PUUV-induced AKI than the other genotypes. The eNOS G894T polymorphism may play role in the endothelial dysfunction observed during acute PUUV infection.
Collapse
Affiliation(s)
- Sirpa Koskela
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- * E-mail:
| | - Outi Laine
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere, Tampere, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere, Tampere, Finland
| | - Tanja Pessi
- School of Medicine, University of Tampere, Tampere, Finland
- Science Centre, Pirkanmaa Hospital District, Tampere, Finland
| | - Sari Tuomisto
- School of Medicine, University of Tampere, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere, Finland
| | - Heini Huhtala
- School of Health Sciences, University of Tampere, Tampere, Finland
| | - Pekka J. Karhunen
- School of Medicine, University of Tampere, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere, Finland
| | - Ilkka Pörsti
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere, Tampere, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
22
|
Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:793257. [PMID: 26266264 PMCID: PMC4523679 DOI: 10.1155/2015/793257] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
Abstract
Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.
Collapse
|
23
|
Abstract
Over the past few decades understanding and recognition of hantavirus infection has greatly improved worldwide, but both the amplitude and the magnitude of hantavirus outbreaks have been increasing. Several novel hantaviruses with unknown pathogenic potential have been identified in a variety of insectivore hosts. With the new hosts, new geographical distributions of hantaviruses have also been discovered and several new species were found in Africa. Hantavirus infection in humans can result in two clinical syndromes: haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) caused by Old World and New World hantaviruses, respectively. The clinical presentation of HFRS varies from subclinical, mild, and moderate to severe, depending in part on the causative agent of the disease. In general, HFRS caused by Hantaan virus, Amur virus and Dobrava virus are more severe with mortality rates from 5 to 15%, whereas Seoul virus causes moderate and Puumala virus and Saaremaa virus cause mild forms of disease with mortality rates <1%. The central phenomena behind the pathogenesis of both HFRS and HCPS are increased vascular permeability and acute thrombocytopenia. The pathogenesis is likely to be a complex multifactorial process that includes contributions from immune responses, platelet dysfunction and the deregulation of endothelial cell barrier functions. Also a genetic predisposition, related to HLA type, seems to be important for the severity of the disease. As there is no effective treatment or vaccine approved for use in the USA and Europe, public awareness and precautionary measures are the only ways to minimize the risk of hantavirus disease.
Collapse
Affiliation(s)
- T Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia.
| | - A Saksida
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - M Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| |
Collapse
|
24
|
Mackow ER, Gorbunova EE, Gavrilovskaya IN. Endothelial cell dysfunction in viral hemorrhage and edema. Front Microbiol 2015; 5:733. [PMID: 25601858 PMCID: PMC4283606 DOI: 10.3389/fmicb.2014.00733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022] Open
Abstract
The endothelium maintains a vascular barrier by controlling platelet and immune cell interactions, capillary tone and interendothelial cell (EC) adherence. Here we suggest common elements in play during viral infection of the endothelium that alter normal EC functions and contribute to lethal hemorrhagic or edematous diseases. In viral reservoir hosts, infection of capillaries and lymphatic vessels may direct immunotolerance without disease, but in the absence of these cognate interactions they direct the delayed onset of human disease characterized by thrombocytopenia and vascular leakage in a severe endothelial dysfunction syndrome. Here we present insight into EC controls of hemostasis, immune response and capillary permeability that are altered by viral infection of the endothelium.
Collapse
Affiliation(s)
- Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Irina N Gavrilovskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| |
Collapse
|
25
|
Koskela SM, Laine OK, Paakkala AS, Mäkelä SM, Mustonen JT. Spleen enlargement is a common finding in acute Puumala hantavirus infection and it does not associate with thrombocytopenia. ACTA ACUST UNITED AC 2014; 46:723-6. [DOI: 10.3109/00365548.2014.930967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Neutrophil depletion suppresses pulmonary vascular hyperpermeability and occurrence of pulmonary edema caused by hantavirus infection in C.B-17 SCID mice. J Virol 2014; 88:7178-88. [PMID: 24719427 DOI: 10.1128/jvi.00254-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hantavirus infections are characterized by vascular hyperpermeability and neutrophilia. However, the pathogenesis of this disease is poorly understood. Here, we demonstrate for the first time that pulmonary vascular permeability is increased by Hantaan virus infection and results in the development of pulmonary edema in C.B-17 severe combined immunodeficiency (SCID) mice lacking functional T cells and B cells. Increases in neutrophils in the lung and blood were observed when pulmonary edema began to be observed in the infected SCID mice. The occurrence of pulmonary edema was inhibited by neutrophil depletion. Moreover, the pulmonary vascular permeability was also significantly suppressed by neutrophil depletion in the infected mice. Taken together, the results suggest that neutrophils play an important role in pulmonary vascular hyperpermeability and the occurrence of pulmonary edema after hantavirus infection in SCID mice. IMPORTANCE Although hantavirus infections are characterized by the occurrence of pulmonary edema, the pathogenic mechanism remains largely unknown. In this study, we demonstrated for the first time in vivo that hantavirus infection increases pulmonary vascular permeability and results in the development of pulmonary edema in SCID mice. This novel mouse model for human hantavirus infection will be a valuable tool and will contribute to elucidation of the pathogenetic mechanisms. Although the involvement of neutrophils in the pathogenesis of hantavirus infection has largely been ignored, the results of this study using the mouse model suggest that neutrophils are involved in the vascular hyperpermeability and development of pulmonary edema in hantavirus infection. Further study of the mechanisms could lead to the development of specific treatment for hantavirus infection.
Collapse
|
27
|
Koivula TT, Tuulasvaara A, Hetemäki I, Mäkelä SM, Mustonen J, Sironen T, Vaheri A, Arstila TP. Regulatory T cell response correlates with the severity of human hantavirus infection. J Infect 2013; 68:387-94. [PMID: 24269676 DOI: 10.1016/j.jinf.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hantaviruses are an important group of emerging zoonotic pathogens, with significant mortality rates. Immunopathology is thought to be important in hantaviral disease, but the balance between protective and harmful responses is unknown. We studied Puumala hantavirus (PUUV) infection, which causes hemorrhagic fever with renal syndrome (HFRS) with a generally mild but highly variable clinical course. METHODS Clinical data and blood samples were collected from 24 patients with acute PUUV infection, and analyzed by flow cytometry and quantitative PCR. RESULTS The patients had a significantly increased frequency of CD4(+) and CD8(+) cells expressing the cell cycle marker Ki-67, but the magnitude of the effector T cell response did not correlate with disease severity. The frequency of FOXP3(+) regulatory T (Treg) cells expressing Ki-67 was also increased, and likewise did not correlate with disease outcome. In contrast, the level of FOXP3 expression, a surrogate of the suppressive phenotype, had a strong positive correlation with disease severity. This correlation was also found in samples taken 6-12 months after the HFRS. CONCLUSIONS The best predictor of a severe disease course in HFRS was the FOXP3(+) Treg cell response, suggesting that the role of Treg cells in acute human hantaviral infections may be deleterious.
Collapse
Affiliation(s)
- Tuisku-Tuulia Koivula
- Department of Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Programs Unit, Immunobiology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | - Anni Tuulasvaara
- Department of Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Programs Unit, Immunobiology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Iivo Hetemäki
- Department of Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Programs Unit, Immunobiology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Satu Marjo Mäkelä
- Department of Medicine, University of Tampere School of Medicine, Tampere, Finland; Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Jukka Mustonen
- Department of Medicine, University of Tampere School of Medicine, Tampere, Finland
| | - Tarja Sironen
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - T Petteri Arstila
- Department of Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Research Programs Unit, Immunobiology, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013; 4:525-36. [PMID: 23841977 PMCID: PMC5359750 DOI: 10.4161/viru.25569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity.
Collapse
|
29
|
Korva M, Saksida A, Kejžar N, Schmaljohn C, Avšič-Županc T. Viral load and immune response dynamics in patients with haemorrhagic fever with renal syndrome. Clin Microbiol Infect 2013; 19:E358-66. [PMID: 23573903 DOI: 10.1111/1469-0691.12218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 11/30/2022]
Abstract
Haemorrhagic fever with renal syndrome (HFRS) in Slovenia can be caused by infection with either Dobrava (DOBV) or Puumala (PUUV) virus, but a clear difference in disease severity is observed. We hypothesized that the wide spectrum of disease observed among HFRS patients might be related to differing immune responses and viral load kinetics. To test this hypothesis we analysed sequential blood samples from 29 HFRS patients hospitalized in Slovenia. Measuring viral RNA in patient samples revealed that viraemia lasts for longer than previously believed, with DOBV or PUUV-infected patients having viraemias lasting on average 30 days or 16 days, respectively. DOBV-infected patients were found to have a higher viral load than the PUUV-infected patients (10(7) vs. 10(5) RNA copies/mL). Both DOBV and PUUV-infected patients had IgM at the time of hospital admission, but there was a difference in IgG antibody dynamics, with only a minority of DOBV-infected patients having IgG antibodies. In our study, elevated levels of IL-10, TNF-α and IFN-γ were detected in all of the samples regardless of the causative agent. In DOBV-infected patients the decrease in cytokine secretion level appeared around day 20 post-infection, while in PUUV-infected patients the change was earlier. In general, our findings point toward notable differences between PUUV and DOBV infections, in terms of viral load and antibody and cytokine response dynamics, all of which may be reflected in differing disease severities and clinical outcomes.
Collapse
Affiliation(s)
- M Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
30
|
Antonen J, Leppänen I, Tenhunen J, Arvola P, Mäkelä S, Vaheri A, Mustonen J. A severe case of Puumala hantavirus infection successfully treated with bradykinin receptor antagonist icatibant. ACTA ACUST UNITED AC 2013; 45:494-6. [PMID: 23294035 DOI: 10.3109/00365548.2012.755268] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A patient with severe capillary leakage syndrome caused by a Puumala hantavirus infection was treated with a single dose of icatibant, a bradykinin receptor antagonist, with a dramatic positive response. We suggest that this drug should be tested in a larger number of patients with severe hantavirus infection.
Collapse
Affiliation(s)
- Jaakko Antonen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sustained high level of serum VEGF at convalescent stage contributes to the renal recovery after HTNV infection in patients with hemorrhagic fever with renal syndrome. Clin Dev Immunol 2012; 2012:812386. [PMID: 23097674 PMCID: PMC3477746 DOI: 10.1155/2012/812386] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/15/2012] [Accepted: 09/16/2012] [Indexed: 12/07/2022]
Abstract
To investigate the role of vascular endothelial growth factor (VEGF) in the increased permeability of vascular endothelial cells after Hantaan virus (HTNV) infection in humans, the concentration of VEGF in serum from HTNV infected patients was quantified with sandwich ELISA. Generally, the level of serum VEGF in patients was elevated to 607.0 (542.2-671.9) pg/mL, which was dramatically higher compared with healthy controls (P < 0.001). There was a rapid increase of the serum VEGF level in all patients from the fever onset to oliguric stage, at which the serum creatinine reached the peak level of the disease, indicating that VEGF may be involved in the pathogenesis of renal hyper-permeability. Moreover, the serum VEGF level at convalescent stage was positively correlated with the degree of the disease severity. The sustained high level of serum VEGF at convalescence was observed in critical HFRS patients, suggesting that VEGF would probably contribute to the renal recovery after the virus clearance. Taken together, our results suggested that the VEGF would be involved in the pathogenesis of renal dysfunction at the oliguric stage after HTNV infection, but may function as a recovery factor during the convalescence to help the body self-repair of the renal injury.
Collapse
|
32
|
McLean N, Kelly A, Molinar E, Ghachu J, Hart L, O'Brien C, Wright K, Schountz T, Hartney C, Lehmer EM. How can hantaviruses kill humans but leave deer mice unaffected? ACTA ACUST UNITED AC 2012. [DOI: 10.1893/0005-3155-83.3.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Seoul virus-infected rat lung endothelial cells and alveolar macrophages differ in their ability to support virus replication and induce regulatory T cell phenotypes. J Virol 2012; 86:11845-55. [PMID: 22915818 DOI: 10.1128/jvi.01233-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hantaviruses cause a persistent infection in reservoir hosts that is attributed to the upregulation of regulatory responses and downregulation of proinflammatory responses. To determine whether rat alveolar macrophages (AMs) and lung microvascular endothelial cells (LMVECs) support Seoul virus (SEOV) replication and contribute to the induction of an environment that polarizes CD4(+) T cell differentiation toward a regulatory T (Treg) cell phenotype, cultured primary rat AMs and LMVECs were mock infected or infected with SEOV and analyzed for viral replication, cytokine and chemokine responses, and expression of cell surface markers that are related to T cell activation. Allogeneic CD4(+) T cells were cocultured with SEOV-infected or mock-infected AMs or LMVECs and analyzed for helper T cell (i.e., Treg, Th17, Th1, and Th2) marker expression and Treg cell frequency. SEOV RNA and infectious particles in culture media were detected in both cell types, but at higher levels in LMVECs than in AMs postinfection. Expression of Ifnβ, Ccl5, and Cxcl10 and surface major histocompatibility complex class II (MHC-II) and MHC-I was not altered by SEOV infection in either cell type. SEOV infection significantly increased Tgfβ mRNA in AMs and the amount of programmed cell death 1 ligand 1 (PD-L1) in LMVECs. SEOV-infected LMVECs, but not AMs, induced a significant increase in Foxp3 expression and Treg cell frequency in allogeneic CD4(+) T cells, which was virus replication and cell contact dependent. These data suggest that in addition to supporting viral replication, AMs and LMVECs play distinct roles in hantavirus persistence by creating a regulatory environment through increased Tgfβ, PD-L1, and Treg cell activity.
Collapse
|
34
|
Sane J, Laine O, Mäkelä S, Paakkala A, Jarva H, Mustonen J, Vapalahti O, Meri S, Vaheri A. Complement activation in Puumala hantavirus infection correlates with disease severity. Ann Med 2012; 44:468-75. [PMID: 21495786 DOI: 10.3109/07853890.2011.573500] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Hantaviruses are important human pathogens that cause clinical diseases characterized by renal and cardiopulmonary manifestations. Their pathogenesis is currently poorly understood. We have studied the role of the complement system in the pathogenesis of Puumala (PUUV) hantavirus infection. MATERIAL AND METHODS We studied the activation of complement by measuring the terminal complement complex SC5b-9 and complement component C3 and C4 levels in patients with acute PUUV infection. Several laboratory parameters and clinical findings reflecting the severity of PUUV-HFRS were evaluated with regard to complement activation. RESULTS The levels of SC5b-9 were significantly increased and C3 decreased in the acute stage as compared to the levels at full recovery (P < 0.001). We found that SC5b-9 levels were higher in patients with chest X-ray abnormalities than in patients with a normal X-ray during the acute stage (P = 0.028). Furthermore, SC5b-9 and C3 levels showed significant correlation with several clinical and laboratory parameters that reflect the severity of the acute PUUV infection. CONCLUSIONS We showed that the complement system becomes activated via the alternative pathway in the acute stage of PUUV infection and the level of activation correlates with disease severity. The results further suggest that complement activation may contribute to the pathogenesis of acute PUUV infection.
Collapse
Affiliation(s)
- Jussi Sane
- Infection Biology Research Program, Department of Virology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vaheri A, Henttonen H, Voutilainen L, Mustonen J, Sironen T, Vapalahti O. Hantavirus infections in Europe and their impact on public health. Rev Med Virol 2012; 23:35-49. [PMID: 22761056 DOI: 10.1002/rmv.1722] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 11/09/2022]
Abstract
Hantaviruses (genus Hantavirus, family Bunyaviridae) are enveloped tri-segmented negative-stranded RNA viruses each carried by a specific rodent or insectivore host species. Several different hantaviruses known to infect humans circulate in Europe. The most common is Puumala (PUUV) carried by the bank vole; another two important, genetically closely related ones are Dobrava-Belgrade (DOBV) and Saaremaa viruses (SAAV) carried by Apodemus mice (species names follow the International Committee on Taxonomy of Viruses nomenclature). Of the two hantaviral diseases, hemorrhagic fever with renal syndrome (HFRS) and hantaviral cardiopulmonary syndrome, the European viruses cause only HFRS: DOBV with often severe symptoms and a high case fatality rate, and PUUV and SAAV more often mild disease. More than 10,000 HFRS cases are diagnosed annually in Europe and in increasing numbers. Whether this is because of increasing recognition by the medical community or due to environmental factors such as climate change, or both, is not known. Nevertheless, in large areas of Europe, the population has a considerable seroprevalence but only relatively few HFRS cases are reported. Moreover, no epidemiological data are available from many countries. We know now that cardiac, pulmonary, ocular and hormonal disorders are, besides renal changes, common during the acute stage of PUUV and DOBV infection. About 5% of hospitalized PUUV and 16%-48% of DOBV patients require dialysis and some prolonged intensive-care treatment. Although PUUV-HFRS has a low case fatality rate, complications and long-term hormonal, renal, and cardiovascular consequences commonly occur. No vaccine or specific therapy is in general use in Europe. We conclude that hantaviruses have a significant impact on public health in Europe.
Collapse
Affiliation(s)
- Antti Vaheri
- Department of Virology, Haartman Institute, and Research Programs Unit, Infection Biology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
36
|
Hong YM, Moon JC, Yang HC, Kang KP, Kim W, Park SK, Lee S. Hemorrhagic fever with renal syndrome and coexisting hantavirus pulmonary syndrome. Kidney Res Clin Pract 2012; 31:118-20. [PMID: 26889418 PMCID: PMC4715131 DOI: 10.1016/j.krcp.2012.04.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/28/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral disease with fever, hemorrhage and renal failure caused by hantavirus infection. Hantavirus induces HFRS or hantavirus pulmonary syndrome (HPS). HPS progression to a life-threatening pulmonary disease is found primarily in the USA and very rarely in South Korea. Here, we report a case of HFRS and coexisting HPS.
Collapse
Affiliation(s)
- Young Min Hong
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Jin Chang Moon
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Hee Chan Yang
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Kyung Pyo Kang
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Won Kim
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Sung Kwang Park
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Sik Lee
- Division of Nephrology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
37
|
Cytokine expression during early and late phase of acute Puumala hantavirus infection. BMC Immunol 2011; 12:65. [PMID: 22085404 PMCID: PMC3259039 DOI: 10.1186/1471-2172-12-65] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/16/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. RESULTS We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively). A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . CONCLUSION High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of human hantavirus infection.
Collapse
|
38
|
Do viral infections mimic bacterial sepsis? The role of microvascular permeability: A review of mechanisms and methods. Antiviral Res 2011; 93:2-15. [PMID: 22068147 DOI: 10.1016/j.antiviral.2011.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/12/2011] [Accepted: 10/22/2011] [Indexed: 12/13/2022]
Abstract
A dysregulated immune response and functional immunosuppression have been considered the major mechanisms of the bacterial sepsis syndrome. More recently, the loss of endothelial barrier function and resultant microvascular leak have been found to be a key determinant of the pathogenesis of bacterial sepsis. Whether a similar paradigm applies to systemic viral syndromes is not known. Answering this question has far-reaching implications for the development of future anti-viral therapeutic strategies. In this review, we provide an overview of the structure and function of the endothelium and how its barrier integrity is compromised in bacterial sepsis. The various in vitro and in vivo methodologies available to investigate vascular leak are reviewed. Emphasis is placed on the advantages and limitations of cell culture techniques, which represent the most commonly used methods. Within this context, we appraise recent studies of three viruses - hantavirus, human herpes virus 8 and dengue virus - that suggest microvascular leak may play a role in the pathogenesis of these viral infections. We conclude with a discussion of how endothelial barrier breakdown may occur in other viral infections such as H5N1 avian influenza virus.
Collapse
|
39
|
Macneil A, Nichol ST, Spiropoulou CF. Hantavirus pulmonary syndrome. Virus Res 2011; 162:138-47. [PMID: 21945215 DOI: 10.1016/j.virusres.2011.09.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 12/27/2022]
Abstract
Hantavirus pulmonary syndrome (HPS) is a severe disease characterized by a rapid onset of pulmonary edema followed by respiratory failure and cardiogenic shock. The HPS associated viruses are members of the genus Hantavirus, family Bunyaviridae. Hantaviruses have a worldwide distribution and are broadly split into the New World hantaviruses, which includes those causing HPS, and the Old World hantaviruses [including the prototype Hantaan virus (HTNV)], which are associated with a different disease, hemorrhagic fever with renal syndrome (HFRS). Sin Nombre virus (SNV) and Andes virus (ANDV) are the most common causes of HPS in North and South America, respectively. Case fatality of HPS is approximately 40%. Pathogenic New World hantaviruses infect the lung microvascular endothelium without causing any virus induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of HPS. This article briefly reviews the knowledge on HPS-associated hantaviruses accumulated since their discovery, less than 20 years ago.
Collapse
Affiliation(s)
- Adam Macneil
- Viral Special Pathogens Branch, Division of High-consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA
| | | | | |
Collapse
|
40
|
Longitudinal analysis of the human T cell response during acute hantavirus infection. J Virol 2011; 85:10252-60. [PMID: 21795350 DOI: 10.1128/jvi.05548-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Longitudinal studies of T cell immune responses during viral infections in humans are essential for our understanding of how effector T cell responses develop, clear infection, and provide long-lasting immunity. Here, following an outbreak of a Puumala hantavirus infection in the human population, we longitudinally analyzed the primary CD8 T cell response in infected individuals from the first onset of clinical symptoms until viral clearance. A vigorous CD8 T cell response was observed early following the onset of clinical symptoms, determined by the presence of high numbers of Ki67(+)CD38(+)HLA-DR(+) effector CD8 T cells. This response encompassed up to 50% of total blood CD8 T cells, and it subsequently contracted in parallel with a decrease in viral load. Expression levels of perforin and granzyme B were high throughout the initial T cell response and likewise normalized following viral clearance. When monitoring regulatory components, no induction of regulatory CD4 or CD8 T cells was observed in the patients during the infection. However, CD8 as well as CD4 T cells exhibited a distinct expression profile of inhibitory PD-1 and CTLA-4 molecules. The present results provide insight into the development of the T cell response in humans, from the very onset of clinical symptoms following a viral infection to resolution of the disease.
Collapse
|
41
|
T cells are not required for pathogenesis in the Syrian hamster model of hantavirus pulmonary syndrome. J Virol 2011; 85:9929-44. [PMID: 21775442 DOI: 10.1128/jvi.05356-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology.
Collapse
|
42
|
Terajima M, Ennis FA. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome. Viruses 2011; 3:1059-73. [PMID: 21994770 PMCID: PMC3185782 DOI: 10.3390/v3071059] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/17/2022] Open
Abstract
We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses.
Collapse
Affiliation(s)
- Masanori Terajima
- Center for Infectious Disease and Vaccine Research, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; E-Mail:
| | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; E-Mail:
| |
Collapse
|
43
|
Krüger DH, Schönrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. HUMAN VACCINES 2011; 7:685-93. [PMID: 21508676 DOI: 10.4161/hv.7.6.15197] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hantaviruses are emerging viruses which are hosted by small mammals. When transmitted to humans, they can cause two clinical syndromes, hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. The review compiles the current list of hantaviruses which are thought to be pathogenic in humans on the basis of molecular or at least serological evidence. Whereas induction of a neutralizing humoral immune response is considered to be protective against infection, the dual role of cellular immunity (protection versus immunopathogenicity) is discussed. For active immunisation, inactivated virus vaccines are licensed in certain Asian countries. Moreover, several classical and molecular vaccine approaches are in pre-clinical stages of development. The development of hantavirus vaccines is hampered by the lack of adequate animal models of hantavirus-associated disease. In addition to active immunization strategies, the review summarizes other ways of infection prevention, as passive immunization, chemoprophylaxis, and exposition prophylaxis.
Collapse
Affiliation(s)
- Detlev H Krüger
- Institute of Medical Virology, Helmut Ruska Haus, University Medicine Charité, Charitéplatz, Berlin, Germany.
| | | | | |
Collapse
|
44
|
Abstract
In 1978, hantaviruses were first described as the etiological agent of hemorrhagic fever with renal syndrome (HFRS) in Korea. Since then, numerous related, enveloped, negative-stranded RNA viruses have been identified, forming the genus Hantavirus within the family Bunyaviridae. These pathogens are distributed worldwide and thus can be classified, on the basis of phylogenetic origins, into Old World viruses or New World viruses (ie North, Central, and South America). Similarly, these viruses cause two major types of syndromes, corresponding respectively to their phylogenies: the original HFRS or the more recently described hantavirus pulmonary syndrome (HPS). As the hantavirus pulmonary syndrome is the primary hantaviral disease in North America, it will thus be the focus of this review.
Collapse
|
45
|
Klingström J, Ahlm C. Hantavirus protein interactions regulate cellular functions and signaling responses. Expert Rev Anti Infect Ther 2011; 9:33-47. [PMID: 21171876 DOI: 10.1586/eri.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rodent-borne pathogenic hantaviruses cause two severe and often lethal zoonotic diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Currently, no US FDA-approved therapeutics or vaccines are available for HFRS/HCPS. Infections with hantaviruses are not lytic, and it is currently not known exactly why infections in humans cause disease. A better understanding of how hantaviruses interfere with normal cell functions and activation of innate and adaptive immune responses might provide clues to future development of specific treatment and/or vaccines against hantavirus infection. In this article, the current knowledge regarding immune responses observed in patients, hantavirus interference with cellular proteins and signaling pathways, and possible approaches in the development of therapeutics are discussed.
Collapse
Affiliation(s)
- Jonas Klingström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
46
|
Björkström NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaëlsson J, Malmberg KJ, Klingström J, Ahlm C, Ljunggren HG. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. ACTA ACUST UNITED AC 2010; 208:13-21. [PMID: 21173105 PMCID: PMC3023129 DOI: 10.1084/jem.20100762] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute hantavirus infection in humans triggers a rapid expansion and long-term persistence of NK cells. Natural killer (NK) cells are known to mount a rapid response to several virus infections. In experimental models of acute viral infection, this response has been characterized by prompt NK cell activation and expansion followed by rapid contraction. In contrast to experimental model systems, much less is known about NK cell responses to acute viral infections in humans. We demonstrate that NK cells can rapidly expand and persist at highly elevated levels for >60 d after human hantavirus infection. A large part of the expanding NK cells expressed the activating receptor NKG2C and were functional in terms of expressing a licensing inhibitory killer cell immunoglobulin-like receptor (KIR) and ability to respond to target cell stimulation. These results demonstrate that NK cells can expand and remain elevated in numbers for a prolonged period of time in humans after a virus infection. In time, this response extends far beyond what is considered normal for an innate immune response.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hantaviruses in the americas and their role as emerging pathogens. Viruses 2010; 2:2559-86. [PMID: 21994631 PMCID: PMC3185593 DOI: 10.3390/v2122559] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
The continued emergence and re-emergence of pathogens represent an ongoing, sometimes major, threat to populations. Hantaviruses (family Bunyaviridae) and their associated human diseases were considered to be confined to Eurasia, but the occurrence of an outbreak in 1993–94 in the southwestern United States led to a great increase in their study among virologists worldwide. Well over 40 hantaviral genotypes have been described, the large majority since 1993, and nearly half of them pathogenic for humans. Hantaviruses cause persistent infections in their reservoir hosts, and in the Americas, human disease is manifest as a cardiopulmonary compromise, hantavirus cardiopulmonary syndrome (HCPS), with case-fatality ratios, for the most common viral serotypes, between 30% and 40%. Habitat disturbance and larger-scale ecological disturbances, perhaps including climate change, are among the factors that may have increased the human caseload of HCPS between 1993 and the present. We consider here the features that influence the structure of host population dynamics that may lead to viral outbreaks, as well as the macromolecular determinants of hantaviruses that have been regarded as having potential contribution to pathogenicity.
Collapse
|
48
|
Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J Virol 2010; 84:11227-34. [PMID: 20810734 DOI: 10.1128/jvi.01405-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) are severe diseases associated with hantavirus infection. High levels of virus replication occur in microvascular endothelial cells but without a virus-induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of these diseases. VE-cadherin is a major component of adherens junctions, and its interaction with the vascular endothelial growth factor (VEGF) receptor, VEGF-R2, is important for maintaining the integrity of the endothelial barrier. Here we report that increased secreted VEGF and concomitant decreased VE-cadherin are seen at early times postinfection of human primary lung endothelial cells with an HPS-associated hantavirus, Andes virus. Furthermore, active virus replication results in increased permeability and loss of the integrity of the endothelial cell barrier. VEGF binding to VEGF-R2 is known to result in dissociation of VEGF-R2 from VE-cadherin and in VE-cadherin activation, internalization, and degradation. Consistent with this, we showed that an antibody which blocks VEGF-R2 activation resulted in inhibition of the Andes virus-induced VE-cadherin reduction. These data implicate virus induction of VEGF and reduction in VE-cadherin in the endothelial cell permeability seen in HPS and suggest potential immunotherapeutic targets for the treatment of the disease.
Collapse
|
49
|
Abstract
Hantaviruses are enzootic viruses that maintain persistent infections in their rodent hosts without apparent disease symptoms. The spillover of these viruses to humans can lead to one of two serious illnesses, hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and natural history of these viruses following an increase in the number of outbreaks in the Americas. In this review, current concepts regarding the ecology of and disease associated with these serious human pathogens are presented. Priorities for future research suggest an integration of the ecology and evolution of these and other host-virus ecosystems through modeling and hypothesis-driven research with the risk of emergence, host switching/spillover, and disease transmission to humans.
Collapse
|
50
|
Ontiveros SJ, Li Q, Jonsson CB. Modulation of apoptosis and immune signaling pathways by the Hantaan virus nucleocapsid protein. Virology 2010; 401:165-78. [PMID: 20227103 DOI: 10.1016/j.virol.2010.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/12/2009] [Accepted: 02/10/2010] [Indexed: 01/23/2023]
Abstract
Herein, we show a direct relationship between the Hantaan virus (HTNV) nucleocapsid (N) protein and the modulation of apoptosis. We observed an increase in caspase-7 and -8, but not -9 in cells expressing HTNV N protein mutants lacking amino acids 270-330. Similar results were observed for the New World hantavirus, Andes virus. Nuclear factor kappa B (NF-kappaB) was sequestered in the cytoplasm after tumor necrosis factor receptor (TNFR) stimulation in cells expressing HTNV N protein. Further, TNFR stimulated cells expressing HTNV N protein inhibited caspase activation. In contrast, cells expressing N protein truncations lacking the region from amino acids 270-330 were unable to inhibit nuclear import of NF-kappaB and the mutants also triggered caspase activity. These results suggest that the HTNV circumvents host antiviral signaling and apoptotic response mediated by the TNFR pathway through host interactions with the N protein.
Collapse
Affiliation(s)
- Steven J Ontiveros
- Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|