1
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Vecchio E, Rotundo S, Veneziano C, Abatino A, Aversa I, Gallo R, Giordano C, Serapide F, Fusco P, Viglietto G, Cuda G, Costanzo F, Russo A, Trecarichi EM, Torti C, Palmieri C. The spike-specific TCRβ repertoire shows distinct features in unvaccinated or vaccinated patients with SARS-CoV-2 infection. J Transl Med 2024; 22:33. [PMID: 38185632 PMCID: PMC10771664 DOI: 10.1186/s12967-024-04852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neutralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity. METHODS A T-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRβ repertoire in peripheral blood mononuclear cells of previously vaccinated (n = 8) or unvaccinated (n = 6) COVID-19 patients. RESULTS Diversity and clonality of the TCRβ repertoire showed no significant differences between vaccinated and unvaccinated groups. When comparing the TCRβ data to public databases, 692 unique TCRβ sequences linked to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCRβ clonotypes related to spike regions S135-177, S264-276, S319-350, and S448-472 appear notably more prevalent in the vaccinated group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 variants of concern, don't hinder their cross-reactive recognition by associated TCRβ clonotypes. CONCLUSIONS Our findings reveal distinct TCRβ signatures in vaccinated and unvaccinated individuals with COVID-19. These differences might be associated with disease severity and could influence clinical outcomes. TRIAL REGISTRATION FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Claudia Veneziano
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Antonio Abatino
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Gallo
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Giordano
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Serapide
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
4
|
Docken SS, McCormick K, Pampena MB, Samer S, Lindemuth E, Pinkevych M, Viox EG, Wu Y, Schlub TE, Cromer D, Keele BF, Paiardini M, Betts MR, Bar KJ, Davenport MP. Preferential selection of viral escape mutants by CD8+ T cell 'sieving' of SIV reactivation from latency. PLoS Pathog 2023; 19:e1011755. [PMID: 38032851 PMCID: PMC10688670 DOI: 10.1371/journal.ppat.1011755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.
Collapse
Affiliation(s)
- Steffen S. Docken
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kevin McCormick
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sadia Samer
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharine J. Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Zheng MZ, Tan TK, Villalon-Letelier F, Lau H, Deng YM, Fritzlar S, Valkenburg SA, Gu H, Poon LL, Reading PC, Townsend AR, Wakim LM. Single-cycle influenza virus vaccine generates lung CD8 + Trm that cross-react against viral variants and subvert virus escape mutants. SCIENCE ADVANCES 2023; 9:eadg3469. [PMID: 37683004 PMCID: PMC10491285 DOI: 10.1126/sciadv.adg3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, OX3 7FZ Oxford, UK
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
6
|
Li X, Liang H, Fan J. Prospects of Cytomegalovirus-Specific T-Cell Receptors in Clinical Diagnosis and Therapy. Viruses 2023; 15:1334. [PMID: 37376633 DOI: 10.3390/v15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for widespread infections worldwide. In immunocompetent individuals it is typically latent, while infection or reactivation in immunocompromised individuals can result in severe clinical symptoms or even death. Although there has been significant progress in the treatment and diagnosis of HCMV infection in recent years, numerous shortcomings and developmental limitations persist. There is an urgent need to develop innovative, safe, and effective treatments, as well as to explore early and timely diagnostic strategies for HCMV infection. Cell-mediated immune responses are the primary factor controlling HCMV infection and replication, but the protective role of humoral immune responses remains controversial. T-cells, key effector cells of the cellular immune system, are critical for clearing and preventing HCMV infection. The T-cell receptor (TCR) lies at the heart of T-cell immune responses, and its diversity enables the immune system to differentiate between self and non-self. Given the significant influence of cellular immunity on human health and the indispensable role of the TCR in T-cell immune responses, we posit that the impact of TCR on the development of novel diagnostic and prognostic methods, as well as on patient monitoring and management of clinical HCMV infection, will be far-reaching and profound. High-throughput and single-cell sequencing technologies have facilitated unprecedented quantitative detection of TCR diversity. With these current sequencing technologies, researchers have already obtained a vast number of TCR sequences. It is plausible that in the near future studies on TCR repertoires will be instrumental in assessing vaccine efficacy, immunotherapeutic strategies, and the early diagnosis of HCMV infection.
Collapse
Affiliation(s)
- Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
7
|
Shu T, Zhou Z, Bai J, Xiao X, Gao M, Zhang N, Wang H, Xia X, Gao Y, Zheng H. Circulating T-cell receptor diversity as predictive biomarker for PARP inhibitors maintenance therapy in high grade serous ovarian cancer. Gynecol Oncol 2023; 168:135-143. [PMID: 36442424 DOI: 10.1016/j.ygyno.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE T-cell receptor (TCR) repertoire diversity is getting increasing attention as a predictive biomarker in cancer patients. However, the characteristics of the TCR together with its predictive significance for high grade serous ovarian cancer (HGSOC) patients receiving poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance therapy remain unknown. METHODS Twenty-seven patients with HGSOC were analyzed including 22 patients receiving PARPi maintenance therapy and 5 untreated patients as control. Peripheral blood samples were collected for TCR sequencing at baseline as well as one month and three months after the exposure to PARPi. To determine whether TCR diversity was related to PARPi efficacy, we compared the TCR repertoire between patients who had received PARPi and those who had not. RESULTS For patients receiving PARPi treatment or not, we evaluated changes in clone abundance during PARPi maintenance and the similarity of the TCR repertoire before and after the treatment. The results revealed that patients receiving PARPi had TCR repertoires that were more stable than those of untreated cases. We next correlated TCR diversity with the efficacy of PARPi in the treatment group. The rising trend of TCR diversity after three months with PARPi treatment was associated with a longer PFS (21.7 vs 7.4 months, hazard ratio = 0.19, p < 0.001) and a better response to PARPi (91.7% vs 25.0%, p = 0.004). Furthermore, we discovered that the primary characteristic with predictive value for the effectiveness of PARPi is the considerable reduction of the high-frequency T cell clones. CONCLUSION We suggested that the circulating TCR diversity could be a potential predictive biomarker for PARPi maintenance therapy in HGSOC.
Collapse
Affiliation(s)
- Tong Shu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Xiao Xiao
- Geneplus-Shenzhen Institute, Guangdong 518118, China
| | - Min Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongguo Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Yunong Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Hong Zheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
8
|
Frimpong A, Ofori MF, Degoot AM, Kusi KA, Gershom B, Quartey J, Kyei-Baafour E, Nguyen N, Ndifon W. Perturbations in the T cell receptor β repertoire during malaria infection in children: A preliminary study. Front Immunol 2022; 13:971392. [PMID: 36311775 PMCID: PMC9606469 DOI: 10.3389/fimmu.2022.971392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The changes occurring in the T cell repertoire during clinical malaria infection in children remain unknown. In this study, we undertook the first detailed comparative study of the T cell repertoire in African children with and without clinical malaria to test the hypothesis that clonotypic expansions that occur during P. falciparum infection will contribute to the generation of a T cell repertoire that is unique to each disease state. We profiled the complementarity-determining region 3 (CDR3) of the TCRβ chain sequences from children with Plasmodium falciparum infections (asymptomatic, uncomplicated and severe malaria) and compared these with sequences from healthy children. Interestingly, we discovered that children with symptomatic malaria have a lower TCR diversity and frequency of shared (or “public”) TCR sequences compared to asymptomatic children. Also, TCR diversity was inversely associated with parasitemia. Furthermore, by clustering TCR sequences based on their predicted antigen specificities, we identified a specificity cluster, with a 4-mer amino acid motif, that is overrepresented in the asymptomatic group compared to the diseased groups. Further investigations into this finding may help in delineating important antigenic targets for vaccine and therapeutic development. The results show that the T cell repertoire in children is altered during malaria, suggesting that exposure to P. falciparum antigens disrupts the adaptive immune response, which is an underlying feature of the disease.
Collapse
Affiliation(s)
- Augustina Frimpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- African Institute for Mathematical Sciences, Accra, Ghana
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| | - Michael Fokuo Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abdoelnaser M. Degoot
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Buri Gershom
- African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jacob Quartey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Wilfred Ndifon
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
- African Institute for Mathematical Sciences, Cape Town, South Africa
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| |
Collapse
|
9
|
Multiple modes of antigen exposure induce clonotypically diverse epitope-specific CD8+ T cells across multiple tissues in nonhuman primates. PLoS Pathog 2022; 18:e1010611. [PMID: 35797339 PMCID: PMC9262242 DOI: 10.1371/journal.ppat.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Antigen-specific CD8+ T cells play a key role in the host’s antiviral response. T cells recognize viral epitopes via the T cell receptor (TCR), which contains the complementarity-determining region-3 (CDR3), comprising the variable, diversity and joining regions of the TCRβ gene. During chronic simian immunodeficiency virus (SIV) infection of Asian macaque nonhuman primates, tissue-specific clonotypes are identifiable among SIV-specific CD8+ T cells. Here, we sought to determine level of antigen exposure responsible for the tissue-specific clonotypic structure. We examined whether the priming event and/or chronic antigen exposure is response for tissue-specific TCR repertoires. We evaluated the TCR repertoire of SIV-specific CD8+ T cells after acute antigen exposure following inoculation with a SIV DNA vaccine, longitudinally during the acute and chronic phases of SIV, and after administration of antiretrovirals (ARVs). Finally, we assessed the TCR repertoire of cytomegalovirus (CMV)-specific CD8+ T cells to establish if TCR tissue-specificity is shared among viruses that chronically replicate. TCR sequences unique to anatomical sites were identified after acute antigen exposure via vaccination and upon acute SIV infection. Tissue-specific clones also persisted into chronic infection and the clonotypic structure continued to evolve after ARV administration. Finally, tissue-specific clones were also observed in CMV-specific CD8+ T cells. Together, these data suggest that acute antigen priming is sufficient to induce tissue-specific clones and that this clonal hierarchy can persist when antigen loads are naturally or therapeutically reduced, providing mechanistic insight into tissue-residency. During viral infection, CD8+ T cells that bind a specific viral particle through their T cell receptor (TCR) can help control viral replication. Infection with simian immunodeficiency virus (SIV) in nonhuman primates is a commonly used animal model of HIV infection. Here we assess the TCR sequences of CD8+ T cells specific for the SIV gag gene during vaccination with an experimental SIV vaccine and throughout SIV infection, including during treatment with antiretroviral drugs. We identified unique TCR sequences in specific tissues, which were not identified in the blood or in other tissues, both in response to vaccination and throughout SIV infection with and without antiretroviral treatment. We also observed tissue-specific TCR sequences in CD8+ T cells specific for Cytomegalovius, another virus that causes a chronic infection in humans. Together, our findings identify the conditions required to form a tissue-specific TCR repertoire.
Collapse
|
10
|
Liu G, Qin L, Li Y, Zhao S, Shugay M, Yan Y, Ye Y, Chen Y, Huang C, Bayaer N, Adah D, Zhang H, Su Z, Chen X. Subsequent malaria enhances virus-specific T cell immunity in SIV-infected Chinese rhesus macaques. Cell Commun Signal 2022; 20:101. [PMID: 35778766 PMCID: PMC9248186 DOI: 10.1186/s12964-022-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Coinfection with HIV and Plasmodium parasites is fairly common, but the sequence of infection with these two pathogens and their impact on disease progression are poorly understood. Methods A Chinese rhesus macaque HIV and Plasmodium coinfection model was established to compare the impact of pre-existing and subsequent malaria on the progression of SIV infection. Results We found that a pre-existing malaria caused animals to produce a greater number of CD4+CCR5+ T cells for SIV replication, resulting in higher viral loads. Conversely, subsequent malaria induced a substantially larger proportion of CD4+CD28highCD95high central memory T cells and a stronger SIV-specific T cell response, maintained the repertoire diversity of SIV-specific T cell receptors, and generated new SIV-specific T cell clonotypes to trace SIV antigenic variation, resulting in improved survival of SIV-infected animals. Conclusion The complex outcomes of this study may have important implications for research on human HIV and malaria coinfection. The infection order of the two pathogens (HIV and malaria parasites) should be emphasized. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00910-7.
Collapse
Affiliation(s)
- Guangjie Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,The Fist Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Lamvac Biotech Co., Ltd, Guangzhou, China
| | - Youjia Li
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,The Fist Affiliated Hospital of Shenzhen University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Lamvac Biotech Co., Ltd, Guangzhou, China
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Laboratory, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Yongxiang Yan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yijian Ye
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Chen
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cuizhu Huang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nashun Bayaer
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dickson Adah
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Su
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,CAS Lamvac Biotech Co., Ltd, Guangzhou, China.
| |
Collapse
|
11
|
Wu TH, Liao HT, Li TH, Tsai HC, Lin NC, Chen CY, Tsai SF, Huang TH, Tsai CY, Yu CL. High-Throughput Sequencing of Complementarity Determining Region 3 in the Heavy Chain of B-Cell Receptor in Renal Transplant Recipients: A Preliminary Report. J Clin Med 2022; 11:jcm11112980. [PMID: 35683373 PMCID: PMC9181060 DOI: 10.3390/jcm11112980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Graft failure resulting from rejection or any other adverse event usually originates from an aberrant and/or exaggerated immune response and is often catastrophic in renal transplantation. So, it is essential to monitor patients’ immune status for detecting a rejection/graft failure early on. Methods: We monitored the sequence change of complementary determining region 3 (CDR3) in B-cell receptor (BCR) immunoglobulin heavy-chain (IGH) immune repertoire (iR) in 14 renal transplant patients using next-generation sequencing (NGS), correlating its diversity to various clinical events occurring after transplantation. BCR-IGH-CDR3 in peripheral blood mononuclear cells was sequenced along the post-transplantation course by NGS using the iRweb server. Results: Datasets covering VDJ regions of BCR-IGH-CDR3 indicated clonal diversity (D50) variations along the post-transplant course. Furthermore, principal component analysis showed the clustering of these sequence variations. A total of 544 shared sequences were identified before transplantation. D50 remained low in three patients receiving rituximab. Among them, one’s D50 resumed after 3 m, indicating graft tolerance. The D50 rapidly increased after grafting and decreased thereafter in four patients without rejection, decreased in two patients with T-cell-mediated rejection (TCMR) and exhibited a sharp down-sliding after 3 m in two patients receiving donations after cardiac death (DCD). In another two patients with TCMR, D50 was low just before individual episodes, but either became persistently low or returned to a plateau, depending on the failure or success of the immunosuppressive treatments. Shared CDR3 clonal expansions correlated to D50 changes. Agglomerative hierarchical clustering showed a commonly shared CDR3 sequence and at least two different clusters in five patients. Conclusions: Clonal diversity in BCR-IGH-CDR3 varied depending on clinical courses of 14 renal transplant patients, including B-cell suppression therapy, TCMR, DCD, and graft tolerance. Adverse events on renal graft failure might lead to different clustering of BCR iR. However, these preliminary data need further verification in further studies for the possible applications of iR changes as genetic expression biomarkers or laboratory parameters to detect renal graft failure/rejection earlier.
Collapse
Affiliation(s)
- Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (H.-T.L.); (H.-C.T.)
| | - Tzu-Hao Li
- Division of Immunology & Rheumatology, Shin Kong Wu Ho Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Hung-Cheng Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (H.-T.L.); (H.-C.T.)
| | - Niang-Cheng Lin
- Division of Transplantation Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (N.-C.L.); (C.-Y.C.)
| | - Cheng-Yen Chen
- Division of Transplantation Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (N.-C.L.); (C.-Y.C.)
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Tzu-Hao Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
- Correspondence: or (C.-Y.T.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: or (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
12
|
Koning D, Quakkelaar ED, Schellens IMM, Spierings E, van Baarle D. Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:3-15. [PMID: 34880106 DOI: 10.4049/jimmunol.2001145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells play an important role in the control of untreated HIV infection. Several studies have suggested a decisive role of TCRs involved in anti-HIV immunity. HLA-B*27 and B*57 are often associated with a delayed HIV disease progression, but the exact correlates that provide superior immunity against HIV are not known. To investigate if the T cell repertoire underlies the protective effect in disease outcome in HLA-B*27 and B*57+ individuals, we analyzed Ag-specific TCR profiles from progressors (n = 13) and slow progressors (n = 11) expressing either B*27 or B*57. Our data showed no differences in TCR diversity between progressors and slow progressors. Both alleles recruit biased T cell repertoires (i.e., TCR populations skewed toward specific TRBV families or CDR3 regions). This bias was unrelated to disease progression and was remarkably profound for HLA-B*57, in which TRBV family usage and CDR3 sequences were shared to some extent even between epitopes. Conclusively, these data suggest that the T cell repertoires recruited by protective HLA alleles are highly similar between progressors and slow progressors in terms of TCR diversity, TCR usage, and cross-reactivity.
Collapse
Affiliation(s)
- Dan Koning
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Esther D Quakkelaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Ingrid M M Schellens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Debbie van Baarle
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and .,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
13
|
Currenti J, Law BM, Qin K, John M, Pilkinton MA, Bansal A, Leary S, Ram R, Chopra A, Gangula R, Yue L, Warren C, Barnett L, Alves E, McDonnell WJ, Sooda A, Heath SL, Mallal S, Goepfert P, Kalams SA, Gaudieri S. Cross-Reactivity to Mutated Viral Immune Targets Can Influence CD8 + T Cell Functionality: An Alternative Viral Adaptation Strategy. Front Immunol 2021; 12:746986. [PMID: 34764960 PMCID: PMC8577586 DOI: 10.3389/fimmu.2021.746986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of T cell immunogenicity due to mutations in virally encoded epitopes is a well-described adaptation strategy to limit host anti-viral immunity. Another described, but less understood, adaptation strategy involves the selection of mutations within epitopes that retain immune recognition, suggesting a benefit for the virus despite continued immune pressure (termed non-classical adaptation). To understand this adaptation strategy, we utilized a single cell transcriptomic approach to identify features of the HIV-specific CD8+ T cell responses targeting non-adapted (NAE) and adapted (AE) forms of epitopes containing a non-classical adaptation. T cell receptor (TCR) repertoire and transcriptome were obtained from antigen-specific CD8+ T cells of chronic (n=7) and acute (n=4) HIV-infected subjects identified by either HLA class I tetramers or upregulation of activation markers following peptide stimulation. CD8+ T cells were predominantly dual tetramer+, confirming a large proportion of cross-reactive TCR clonotypes capable of recognizing the NAE and AE form. However, single-reactive CD8+ T cells were identified in acute HIV-infected subjects only, providing the potential for the selection of T cell clones over time. The transcriptomic profile of CD8+ T cells was dependent on the autologous virus: subjects whose virus encoded the NAE form of the epitope (and who transitioned to the AE form at a later timepoint) exhibited an 'effective' immune response, as indicated by expression of transcripts associated with polyfunctionality, cytotoxicity and apoptosis (largely driven by the genes GZMB, IFNɣ, CCL3, CCL4 and CCL5). These data suggest that viral adaptation at a single amino acid residue can provide an alternative strategy for viral survival by modulating the transcriptome of CD8+ T cells and potentially selecting for less effective T cell clones from the acute to chronic phase.
Collapse
Affiliation(s)
- Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Becker M.P. Law
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, WA, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Christian Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anuradha Sooda
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22:809-819. [PMID: 34140679 PMCID: PMC9197228 DOI: 10.1038/s41590-021-00949-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.
Collapse
Affiliation(s)
- Jenna L Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA.,Broad Institute of MIT and Harvard, Cambridge MA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Debattama R Sen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Broad Institute of MIT and Harvard, Cambridge MA
| |
Collapse
|
15
|
Porritt RA, Paschold L, Rivas MN, Cheng MH, Yonker LM, Chandnani H, Lopez M, Simnica D, Schultheiß C, Santiskulvong C, Van Eyk J, McCormick JK, Fasano A, Bahar I, Binder M, Arditi M. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. J Clin Invest 2021; 131:146614. [PMID: 33705359 PMCID: PMC8121516 DOI: 10.1172/jci146614] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory syndrome associated with SARS-CoV-2 infection, shares clinical features with toxic shock syndrome, which is triggered by bacterial superantigens. Superantigen specificity for different Vβ chains results in Vβ skewing, whereby T cells with specific Vβ chains and diverse antigen specificity are overrepresented in the T cell receptor (TCR) repertoire. Here, we characterized the TCR repertoire of MIS-C patients and found a profound expansion of TCRβ variable gene 11-2 (TRBV11-2), with up to 24% of clonal T cell space occupied by TRBV11-2 T cells, which correlated with MIS-C severity and serum cytokine levels. Analysis of TRBJ gene usage and complementarity-determining region 3 (CDR3) length distribution of MIS-C expanded TRBV11-2 clones revealed extensive junctional diversity. Patients with TRBV11-2 expansion shared HLA class I alleles A02, B35, and C04, indicating what we believe is a novel mechanism for CDR3-independent T cell expansion. In silico modeling indicated that polyacidic residues in the Vβ chain encoded by TRBV11-2 (Vβ21.3) strongly interact with the superantigen-like motif of SARS-CoV-2 spike glycoprotein, suggesting that unprocessed SARS-CoV-2 spike may directly mediate TRBV11-2 expansion. Overall, our data indicate that a CDR3-independent interaction between SARS-CoV-2 spike and TCR leads to T cell expansion and possibly activation, which may account for the clinical presentation of MIS-C.
Collapse
Affiliation(s)
- Rebecca A. Porritt
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Magali Noval Rivas
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lael M. Yonker
- Mucosal Immunology and Biology Research Center and Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harsha Chandnani
- Department of Pediatrics, Loma Linda University Hospital, Loma Linda, California, USA
| | - Merrick Lopez
- Department of Pediatrics, Loma Linda University Hospital, Loma Linda, California, USA
| | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Jennifer Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center and Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Moshe Arditi
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Turner SJ, Bennett TJ, Gruta NLL. CD8 + T-Cell Memory: The Why, the When, and the How. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038661. [PMID: 33648987 PMCID: PMC8091951 DOI: 10.1101/cshperspect.a038661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of effective adaptive T-cell memory is a cardinal feature of the adaptive immune system. The establishment of protective T-cell immunity requires the differentiation of CD8+ T cells from a naive state to one where pathogen-specific memory CD8+ T cells are capable of responding to a secondary infection more rapidly and robustly without the need for further differentiation. The study of factors that determine the fate of activated CD8+ T cells into either effector or memory subsets has a long history. The advent of new technologies is now providing new insights into how epigenetic regulation not only impacts acquisition and maintenance of effector function, but also the maintenance of the quiescent yet primed memory state. There is growing appreciation that rather than distinct subsets, memory T-cell populations may reflect different points on a spectrum between the starting naive T-cell population and a terminally differentiated effector CD8+ T-cell population. Interestingly, there is growing evidence that the molecular mechanisms that underpin the rapid effector function of memory T cells are also observed in innate immune cells such as macrophages and natural killer (NK) cells. This raises an interesting hypothesis that the memory/effector T-cell state represents a default innate-like response to antigen recognition, and that it is the naive state that is the defining feature of adaptive immunity. These issues are discussed.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Taylah J Bennett
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
In chronic infection, HIV gag-specific CD4+ T cell receptor diversity is higher than CD8+ T cell receptor diversity and is associated with less HIV quasispecies diversity. J Virol 2021; 95:JVI.02380-20. [PMID: 33536169 PMCID: PMC8103689 DOI: 10.1128/jvi.02380-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cellular immune responses to Gag correlate with improved HIV viral control. The full extent of cellular immune responses comprise both the number of epitopes recognized by CD4+ and CD8+ T cells, as well as the diversity of the T cell receptor (TCR) repertoire directed against each epitope. The optimal diversity of the responsive TCR repertoire is unclear. Therefore, we evaluated the TCR diversity of CD4+ and CD8+ T cells responding to HIV-1 Gag to determine if TCR diversity correlates with clinical or virologic metrics. Previous studies of TCR repertoires have been limited primarily to CD8+ T cell responses directed against a small number of well-characterized T cell epitopes restricted by specific human leucocyte antigens. We stimulated peripheral blood mononuclear cells from 21chronic HIV-infected individuals overnight with a pool of HIV-1 Gag peptides, followed by sorting of activated CD4+ and CD8+ T cells and TCR deep sequencing. We found Gag-reactive CD8+ T cells to be more oligoclonal, with a few dominant TCRs comprising the bulk of the repertoire, compared to the highly diverse TCR repertoires of Gag-reactive CD4+ T cells. HIV viral sequencing of the same donors revealed that high CD4+ T cell TCR diversity was strongly associated with lower HIV Gag genetic diversity. We conclude that the TCR repertoire of Gag-reactive CD4+ T helper cells display substantial diversity without a clearly dominant circulating TCR clonotype, in contrast to a hierarchy of dominant TCR clonotypes in the Gag-reactive CD8+ T cells, and may serve to limit HIV diversity during chronic infection.IMPORTANCE Human T cells recognize portions of viral proteins bound to host molecules (human leucocyte antigens) on the surface of infected cells. T cells recognize these foreign proteins through their T cell receptors (TCRs), which are formed by the assortment of several available V, D and J genes to create millions of combinations of unique TCRs. We measured the diversity of T cells responding to the HIV Gag protein. We found the CD8+ T cell response is primarily made up of a few dominant unique TCRs whereas the CD4+ T cell subset has a much more diverse repertoire of TCRs. We also found there was less change in the virus sequences in subjects with more diverse TCR repertoires. HIV has a high mutation rate, which allows it to evade the immune response. Our findings describe the characteristics of a virus-specific T cell response that may allow it to limit viral evolution.
Collapse
|
18
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Shomuradova AS, Vagida MS, Sheetikov SA, Zornikova KV, Kiryukhin D, Titov A, Peshkova IO, Khmelevskaya A, Dianov DV, Malasheva M, Shmelev A, Serdyuk Y, Bagaev DV, Pivnyuk A, Shcherbinin DS, Maleeva AV, Shakirova NT, Pilunov A, Malko DB, Khamaganova EG, Biderman B, Ivanov A, Shugay M, Efimov GA. SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity 2020; 53:1245-1257.e5. [PMID: 33326767 PMCID: PMC7664363 DOI: 10.1016/j.immuni.2020.11.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Understanding the hallmarks of the immune response to SARS-CoV-2 is critical for fighting the COVID-19 pandemic. We assessed antibody and T cell reactivity in convalescent COVID-19 patients and healthy donors sampled both prior to and during the pandemic. Healthy donors examined during the pandemic exhibited increased numbers of SARS-CoV-2-specific T cells, but no humoral response. Their probable exposure to the virus resulted in either asymptomatic infection without antibody secretion or activation of preexisting immunity. In convalescent patients, we observed a public and diverse T cell response to SARS-CoV-2 epitopes, revealing T cell receptor (TCR) motifs with germline-encoded features. Bulk CD4+ and CD8+ T cell responses to the spike protein were mediated by groups of homologous TCRs, some of them shared across multiple donors. Overall, our results demonstrate that the T cell response to SARS-CoV-2, including the identified set of TCRs, can serve as a useful biomarker for surveying antiviral immunity.
Collapse
Affiliation(s)
- Alina S Shomuradova
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Savely A Sheetikov
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ksenia V Zornikova
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Aleksei Titov
- National Research Center for Hematology, Moscow, Russia
| | | | - Alexandra Khmelevskaya
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry V Dianov
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Malasheva
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | - Dmitry V Bagaev
- Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anastasia Pivnyuk
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitrii S Shcherbinin
- Pirogov Russian Medical State University, Moscow, Russia; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Artem Pilunov
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Pirogov Russian Medical State University, Moscow, Russia; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | | |
Collapse
|
20
|
Lanfermeijer J, Borghans JAM, Baarle D. How age and infection history shape the antigen-specific CD8 + T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell 2020; 19:e13262. [PMID: 33078890 PMCID: PMC7681067 DOI: 10.1111/acel.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults often show signs of impaired CD8+ T‐cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T‐cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long‐term maintenance of the antigen‐specific T‐cell repertoire. Here, we review the literature on the maintenance of antigen‐experienced CD8+ T‐cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T‐cell repertoire, and the effects of age, infection history, and T‐cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - Debbie Baarle
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
- Virology & Immunology Research Department of Medical Microbiology and Infection prevention University Medical Center Groningen the Netherlands
| |
Collapse
|
21
|
Origin and fine-tuning of effector CD8 T cell subpopulations in chronic infection. Curr Opin Virol 2020; 46:27-35. [PMID: 33137688 DOI: 10.1016/j.coviro.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 12/31/2022]
Abstract
Persisting stimulation can skew CD8 T cells towards a hypofunctional state commonly referred to as T cell exhaustion. This functional attenuation likely constitutes a mechanism which evolved to balance T cell mediated viral control versus overwhelming immunopathology. Here, we highlight the recent progress in defining the genetic mechanisms and factors shaping the differentiation of exhausted CD8 T cells. We review how the transcription factor Tox imposes an exhausted phenotype in the Tcf1+ progenitors and how CD4 help fine-tunes the effector subsets that emerge from this progenitor population. Both processes critically shape the spectrum of effector function performed by CD8 T cells and the level of resulting virus control. Finally, we discuss how these insights can be exploited to boost the immune response in chronic infection and cancer.
Collapse
|
22
|
Starke CE, Vinton CL, Ladell K, McLaren JE, Ortiz AM, Mudd JC, Flynn JK, Lai SH, Wu F, Hirsch VM, Darko S, Douek DC, Price DA, Brenchley JM. SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues. J Clin Invest 2020; 130:789-798. [PMID: 31661461 DOI: 10.1172/jci129161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.
Collapse
Affiliation(s)
- Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Stephen H Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fan Wu
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Schultheiß C, Paschold L, Simnica D, Mohme M, Willscher E, von Wenserski L, Scholz R, Wieters I, Dahlke C, Tolosa E, Sedding DG, Ciesek S, Addo M, Binder M. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease. Immunity 2020; 53:442-455.e4. [PMID: 32668194 PMCID: PMC7324317 DOI: 10.1016/j.immuni.2020.06.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
We profiled adaptive immunity in COVID-19 patients with active infection or after recovery and created a repository of currently >14 million B and T cell receptor (BCR and TCR) sequences from the blood of these patients. The B cell response showed converging IGHV3-driven BCR clusters closely associated with SARS-CoV-2 antibodies. Clonality and skewing of TCR repertoires were associated with interferon type I and III responses, early CD4+ and CD8+ T cell activation, and counterregulation by the co-receptors BTLA, Tim-3, PD-1, TIGIT, and CD73. Tfh, Th17-like, and nonconventional (but not classical antiviral) Th1 cell polarizations were induced. SARS-CoV-2-specific T cell responses were driven by TCR clusters shared between patients with a characteristic trajectory of clonotypes and traceability over the disease course. Our data provide fundamental insight into adaptive immunity to SARS-CoV-2 with the actively updated repository providing a resource for the scientific community urgently needed to inform therapeutic concepts and vaccine development.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lisa von Wenserski
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Rebekka Scholz
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Imke Wieters
- Infectious Diseases, Department of Internal Medicine II, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| | - Christine Dahlke
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel G Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine und Pharmacology, 60596 Frankfurt am Main, Germany; German Center for Infection Research (DZIF), External partner site Frankfurt, 60596 Frankfurt am Main, Germany
| | - Marylyn Addo
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
24
|
Zhang F, Gan R, Zhen Z, Hu X, Li X, Zhou F, Liu Y, Chen C, Xie S, Zhang B, Wu X, Huang Z. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct Target Ther 2020; 5:156. [PMID: 32796814 PMCID: PMC7426596 DOI: 10.1038/s41392-020-00263-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022] Open
Abstract
The global Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has affected more than eight million people. There is an urgent need to investigate how the adaptive immunity is established in COVID-19 patients. In this study, we profiled adaptive immune cells of PBMCs from recovered COVID-19 patients with varying disease severity using single-cell RNA and TCR/BCR V(D)J sequencing. The sequencing data revealed SARS-CoV-2-specific shuffling of adaptive immune repertories and COVID-19-induced remodeling of peripheral lymphocytes. Characterization of variations in the peripheral T and B cells from the COVID-19 patients revealed a positive correlation of humoral immune response and T-cell immune memory with disease severity. Sequencing and functional data revealed SARS-CoV-2-specific T-cell immune memory in the convalescent COVID-19 patients. Furthermore, we also identified novel antigens that are responsive in the convalescent patients. Altogether, our study reveals adaptive immune repertories underlying pathogenesis and recovery in severe versus mild COVID-19 patients, providing valuable information for potential vaccine and therapeutic development against SARS-CoV-2 infection.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/classification
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- Case-Control Studies
- China
- Convalescence
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Disease Progression
- Gene Expression
- High-Throughput Nucleotide Sequencing
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunologic Memory
- Pandemics
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Receptors, Antigen, B-Cell/classification
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/classification
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- SARS-CoV-2
- Severity of Illness Index
- Single-Cell Analysis
- T-Lymphocytes/classification
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Rui Gan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Ziqi Zhen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiaoli Hu
- Department of Infectious Diseases, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, 150030, China
| | - Xiang Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Ying Liu
- Harbin Blood Center, Harbin, 150056, China
| | - Chuangeng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Shuangyu Xie
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Bailing Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiaoke Wu
- Centre for Reproductive Medicine, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, 150030, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
25
|
Gutierrez L, Beckford J, Alachkar H. Deciphering the TCR Repertoire to Solve the COVID-19 Mystery. Trends Pharmacol Sci 2020; 41:518-530. [PMID: 32576386 PMCID: PMC7305739 DOI: 10.1016/j.tips.2020.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected several millions and killed more than quarter of a million worldwide to date. Important questions have remained unanswered: why some patients develop severe disease, while others do not; and what roles do genetic variabilities play in the individual immune response to this viral infection. Here, we discuss the critical role T cells play in the orchestration of the antiviral response underlying the pathogenesis of the disease, COVID-19. We highlight the scientific rationale for comprehensive and longitudinal TCR analyses in COVID-19 and reason that analyzing TCR repertoire in COVID-19 patients would reveal important findings that may explain the outcome disparity observed in these patients. Finally, we provide a framework describing the different strategies, the advantages, and the challenges involved in obtaining useful TCR repertoire data to advance our fight against COVID-19.
Collapse
Affiliation(s)
- Lucas Gutierrez
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - John Beckford
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
26
|
Schober K, Müller TR, Busch DH. Orthotopic T-Cell Receptor Replacement-An "Enabler" for TCR-Based Therapies. Cells 2020; 9:E1367. [PMID: 32492858 PMCID: PMC7348731 DOI: 10.3390/cells9061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion, or tumor-infiltrating lymphocytes makes implementation in routine clinical care difficult. In principle, genetic engineering can be used to make T-cell therapies more broadly applicable, but so far it significantly alters the physiology of cells. We recently demonstrated that orthotopic T-cell receptor (TCR) replacement (OTR) by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) can be used to generate engineered T cells with preservation of near-physiological function. In this review, we present the current status of OTR technology development and discuss its potential for TCR-based therapies. By providing the means to combine the therapeutic efficacy and safety profile of physiological T cells with the versatility of cell engineering, OTR can serve as an "enabler" for TCR-based therapies.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| |
Collapse
|
27
|
Smith CJ, Venturi V, Quigley MF, Turula H, Gostick E, Ladell K, Hill BJ, Himelfarb D, Quinn KM, Greenaway HY, Dang THY, Seder RA, Douek DC, Hill AB, Davenport MP, Price DA, Snyder CM. Stochastic Expansions Maintain the Clonal Stability of CD8 + T Cell Populations Undergoing Memory Inflation Driven by Murine Cytomegalovirus. THE JOURNAL OF IMMUNOLOGY 2019; 204:112-121. [PMID: 31818981 PMCID: PMC6920548 DOI: 10.4049/jimmunol.1900455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Clonal stability is a feature of memory inflation. Stochastic expansions maintain clonal stability during memory inflation. Persistent clonotypes are often public in the context of memory inflation.
CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maire F Quigley
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Holly Turula
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle Himelfarb
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hui Yee Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Thurston H Y Dang
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Robert A Seder
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; .,Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
28
|
Determination of a T cell receptor of potent CD8 + T cells against simian immunodeficiency virus infection in Burmese rhesus macaques. Biochem Biophys Res Commun 2019; 521:894-899. [PMID: 31711644 DOI: 10.1016/j.bbrc.2019.10.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022]
Abstract
Cumulative studies on human immunodeficiency virus (HIV)-infected individuals have shown association of major histocompatibility complex class I (MHC-I) polymorphisms with lower viral load and delayed AIDS progression, suggesting that HIV replication can be controlled by potent CD8+ T-cell responses. We have previously established an AIDS model of simian immunodeficiency virus (SIV) infection in Burmese rhesus macaques and found a potent CD8+ T cell targeting the Mamu-A1*065:01-restricted Gag241-249 epitope, which is located in a region corresponding to the HIV Gag240-249 TW10 epitope restricted by a protective MHC-I allele, HLA-B*57. In the present study, we determined a T cell receptor (TCR) of this Gag241-249 epitope-specific CD8+ T cell. cDNA clones encoding TCR-α and TCR-β chains were obtained from a Gag241-249-specific CD8+ T-cell clone. Coexpression of these TCR-α and TCR-β cDNAs resulted in reconstitution of a functional TCR specifically detected by Gag241-249 epitope-Mamu-A1*065:01 tetramer. Two of three previously-reported CD8+ T-cell escape mutations reduced binding affinity of Gag241-249 peptide to Mamu-A1*065:01 but the remaining one not. This is consistent with the data obtained by molecular modeling of the epitope-MHC-I complex and TCR. These results would contribute to understanding how viral CD8+ T-cell escape mutations are selected under structural constraint of viral proteins.
Collapse
|
29
|
Kallies A, Zehn D, Utzschneider DT. Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol 2019; 20:128-136. [PMID: 31591533 DOI: 10.1038/s41577-019-0223-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
Cytotoxic T cell immunity in response to chronic infections and tumours is maintained by a specialized population of CD8+ T cells that exhibit hallmarks of both exhausted and memory cells and give rise to terminally differentiated exhausted effector cells that contribute to viral or tumour control. Importantly, recent work suggests these cells, which we refer to as 'precursor exhausted' T (TPEX) cells, are responsible for the proliferative burst that generates effector T cells in response to immune checkpoint blockade targeting programmed cell death 1 (PD1), and increased TPEX cell frequencies have recently been linked to increased patient survival. We believe the recent discovery of TPEX cells not only represents a paradigm shift in our understanding of the mechanisms that maintain CD8+ T cell responses in chronic infections and tumours but also opens up unexpected avenues for the development of new and innovative therapeutic approaches. In this Opinion article, we discuss the differentiation and function of TPEX cells and suggest that targeting these cells may be key for successful immunotherapy.
Collapse
Affiliation(s)
- Axel Kallies
- Department of Microbiology & Immunology Melbourne, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Daniel T Utzschneider
- Department of Microbiology & Immunology Melbourne, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
30
|
Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech EA, Sycheva AL, Koneva AE, Egorov ES, Eliseev AV, Van Dyk E, Dash P, Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB, Douek DC, Luciani F, van Baarle D, Kedzierska K, Kesmir C, Thomas PG, Price DA, Sewell AK, Chudakov DM. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res 2019; 46:D419-D427. [PMID: 28977646 PMCID: PMC5753233 DOI: 10.1093/nar/gkx760] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023] Open
Abstract
The ability to decode antigen specificities encapsulated in the sequences of rearranged T-cell receptor (TCR) genes is critical for our understanding of the adaptive immune system and promises significant advances in the field of translational medicine. Recent developments in high-throughput sequencing methods (immune repertoire sequencing technology, or RepSeq) and single-cell RNA sequencing technology have allowed us to obtain huge numbers of TCR sequences from donor samples and link them to T-cell phenotypes. However, our ability to annotate these TCR sequences still lags behind, owing to the enormous diversity of the TCR repertoire and the scarcity of available data on T-cell specificities. In this paper, we present VDJdb, a database that stores and aggregates the results of published T-cell specificity assays and provides a universal platform that couples antigen specificities with TCR sequences. We demonstrate that VDJdb is a versatile instrument for the annotation of TCR repertoire data, enabling a concatenated view of antigen-specific TCR sequence motifs. VDJdb can be accessed at https://vdjdb.cdr3.net and https://github.com/antigenomics/vdjdb-db.
Collapse
Affiliation(s)
- Mikhail Shugay
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Central European Institute of Technology, Brno 60177, Czech Republic.,Nizhny Novgorod State Medical Academy, Nizhny Novgorod 603950, Russia
| | - Dmitriy V Bagaev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Ivan V Zvyagin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Renske M Vroomans
- Theoretical Biology and Bioinformatics, Science Faculty, Utrecht University, Utrecht 3512 JE, The Netherlands
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude's Children's Research Hospital, Memphis, TN 38105, USA
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Ekaterina A Komech
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya L Sycheva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anna E Koneva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Evgeniy S Egorov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Nizhny Novgorod State Medical Academy, Nizhny Novgorod 603950, Russia
| | - Alexey V Eliseev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Ewald Van Dyk
- Theoretical Biology and Bioinformatics, Science Faculty, Utrecht University, Utrecht 3512 JE, The Netherlands
| | - Pradyot Dash
- Department of Immunology, St. Jude's Children's Research Hospital, Memphis, TN 38105, USA
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Katherine K Matthews
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabio Luciani
- Viral Immunology Systems Program, Kirby Institute, School of Medical Sciences, University of New South Wales, Kensington NSW 2052, Australia
| | - Debbie van Baarle
- Center for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Science Faculty, Utrecht University, Utrecht 3512 JE, The Netherlands
| | - Paul G Thomas
- Department of Immunology, St. Jude's Children's Research Hospital, Memphis, TN 38105, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Dmitriy M Chudakov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Central European Institute of Technology, Brno 60177, Czech Republic.,Nizhny Novgorod State Medical Academy, Nizhny Novgorod 603950, Russia
| |
Collapse
|
31
|
Schober K, Müller TR, Gökmen F, Grassmann S, Effenberger M, Poltorak M, Stemberger C, Schumann K, Roth TL, Marson A, Busch DH. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat Biomed Eng 2019; 3:974-984. [DOI: 10.1038/s41551-019-0409-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
|
32
|
Shwetank, Frost EL, Mockus TE, Ren HM, Toprak M, Lauver MD, Netherby-Winslow CS, Jin G, Cosby JM, Evavold BD, Lukacher AE. PD-1 Dynamically Regulates Inflammation and Development of Brain-Resident Memory CD8 T Cells During Persistent Viral Encephalitis. Front Immunol 2019; 10:783. [PMID: 31105690 PMCID: PMC6499176 DOI: 10.3389/fimmu.2019.00783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023] Open
Abstract
Programmed cell death-1 (PD-1) receptor signaling dampens the functionality of T cells faced with repetitive antigenic stimulation from chronic infections or tumors. Using intracerebral (i.c.) inoculation with mouse polyomavirus (MuPyV), we have shown that CD8 T cells establish a PD-1hi, tissue-resident memory population in the brains (bTRM) of mice with a low-level persistent infection. In MuPyV encephalitis, PD-L1 was expressed on infiltrating myeloid cells, microglia and astrocytes, but not on oligodendrocytes. Engagement of PD-1 on anti-MuPyV CD8 T cells limited their effector activity. NanoString gene expression analysis showed that neuroinflammation was higher in PD-L1-/- than wild type mice at day 8 post-infection, the peak of the MuPyV-specific CD8 response. During the persistent phase of infection, however, the absence of PD-1 signaling was found to be associated with a lower inflammatory response than in wild type mice. Genetic disruption and intracerebroventricular blockade of PD-1 signaling resulted in an increase in number of MuPyV-specific CD8 bTRM and the fraction of these cells expressing CD103, the αE integrin commonly used to define tissue-resident T cells. However, PD-L1-/- mice persistently infected with MuPyV showed impaired virus control upon i.c. re-infection with MuPyV. Collectively, these data reveal a temporal duality in PD-1-mediated regulation of MuPyV-associated neuroinflammation. PD-1 signaling limited the severity of neuroinflammation during acute infection but sustained a level of inflammation during persistent infection for maintaining control of virus re-infection.
Collapse
Affiliation(s)
- Shwetank
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | - Elizabeth L. Frost
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, United States
| | - Taryn E. Mockus
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | - Heather M. Ren
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | - Mesut Toprak
- Section of Neuropathology, Yale School of Medicine, New Haven, CT, United States
| | - Matthew D. Lauver
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | | | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | - Jennifer M. Cosby
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Brian D. Evavold
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States,*Correspondence: Aron E. Lukacher
| |
Collapse
|
33
|
Myers LM, Tal MC, Torrez Dulgeroff LB, Carmody AB, Messer RJ, Gulati G, Yiu YY, Staron MM, Angel CL, Sinha R, Markovic M, Pham EA, Fram B, Ahmed A, Newman AM, Glenn JS, Davis MM, Kaech SM, Weissman IL, Hasenkrug KJ. A functional subset of CD8 + T cells during chronic exhaustion is defined by SIRPα expression. Nat Commun 2019; 10:794. [PMID: 30770827 PMCID: PMC6377614 DOI: 10.1038/s41467-019-08637-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Prolonged exposure of CD8+ T cells to antigenic stimulation, as in chronic viral infections, leads to a state of diminished function termed exhaustion. We now demonstrate that even during exhaustion there is a subset of functional CD8+ T cells defined by surface expression of SIRPα, a protein not previously reported on lymphocytes. On SIRPα+ CD8+ T cells, expression of co-inhibitory receptors is counterbalanced by expression of co-stimulatory receptors and it is only SIRPα+ cells that actively proliferate, transcribe IFNγ and show cytolytic activity. Furthermore, target cells that express the ligand for SIRPα, CD47, are more susceptible to CD8+ T cell-killing in vivo. SIRPα+ CD8+ T cells are evident in mice infected with Friend retrovirus, LCMV Clone 13, and in patients with chronic HCV infections. Furthermore, therapeutic blockade of PD-L1 to reinvigorate CD8+ T cells during chronic infection expands the cytotoxic subset of SIRPα+ CD8+ T cells.
Collapse
Affiliation(s)
- Lara M Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Michal Caspi Tal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laughing Bear Torrez Dulgeroff
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ying Ying Yiu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew M Staron
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
- Foundational Immunology, AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | - Cesar Lopez Angel
- Deparment of Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maxim Markovic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Edward A Pham
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Benjamin Fram
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aijaz Ahmed
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jeffrey S Glenn
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Deparment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark M Davis
- Deparment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA, 92037, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
34
|
Wang Y, Hu J, Li Y, Xiao M, Wang H, Tian Q, Li Z, Tang J, Hu L, Tan Y, Zhou X, He R, Wu Y, Ye L, Yin Z, Huang Q, Xu L. The Transcription Factor TCF1 Preserves the Effector Function of Exhausted CD8 T Cells During Chronic Viral Infection. Front Immunol 2019; 10:169. [PMID: 30814995 PMCID: PMC6381939 DOI: 10.3389/fimmu.2019.00169] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
The long-term persistence of viral antigens drives virus-specific CD8 T cell exhaustion during chronic viral infection. Yet exhausted, CD8 T cells are still endowed with certain levels of effector function, by which they can keep viral replication in check in chronic infection. However, the regulatory factors involved in regulating the effector function of exhausted CD8 T cell are largely unknown. Using mouse model of chronic LCMV infection, we found that the deletion of transcription factor TCF-1 in LCMV-specific exhausted CD8 T cells led to the profound reduction in cytokine production and degranulation. Conversely, ectopic expression of TCF-1 or using agonist to activate TCF-1 activities promotes the effector function of exhausted CD8 T cells. Mechanistically, TCF-1 fuels the functionalities of exhausted CD8 T cells by promoting the expression of an array of key effector function-associated transcription regulators, including Foxo1, Zeb2, Id3, and Eomes. These results collectively indicate that targeting TCF-1 mediated transcriptional pathway may represent a promising immunotherapy strategy against chronic viral infections by reinvigorating the effector function of exhausted virus-specific CD8 T cells.
Collapse
Affiliation(s)
- Yifei Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yiding Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Haoqiang Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qin Tian
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yan Tan
- Chengdu Military General Hospital, Chengdu, China
| | - Xinyuan Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China.,Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Qizhao Huang
- Chengdu Military General Hospital, Chengdu, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Liu YY, Yang QF, Yang JS, Cao RB, Liang JY, Liu YT, Zeng YL, Chen S, Xia XF, Zhang K, Liu L. Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int J Cancer 2019; 145:1423-1431. [PMID: 30664810 DOI: 10.1002/ijc.32145] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Lung cancer is one of the greatest threats to human health, and is initially detected and attacked by the immune system through tumor-reactive T cells. The aim of this study was to determine the basic characteristics and clinical significance of the peripheral blood T-cell receptor (TCR) repertoire in patients with advanced lung cancer. To comprehensively profile the TCR repertoire, high-throughput sequencing was used to identify hypervariable rearrangements of complementarity determining region 3 (CDR3) of the TCR β chain in peripheral blood samples from 64 advanced lung cancer patients and 31 healthy controls. We found that the TCR repertoire differed substantially between lung cancer patients and healthy controls in terms of CDR3 clonotype, diversity, V/J segment usage, and sequence. Specifically, baseline diversity correlated with several clinical characteristics, and high diversity reflected a better immune status. Dynamic detection of the TCR repertoire during anticancer treatment was useful for prognosis. Both increased diversity and high overlap rate between the pre- and post-treatment TCR repertoires indicated clinical benefit. Combination of the diversity and overlap rate was used to categorize patients into immune improved or immune worsened groups and demonstrated enhanced prognostic significance. In conclusion, TCR repertoire analysis served as a useful indicator of disease development and prognosis in advanced lung cancer and may be utilized to direct future immunotherapy.
Collapse
Affiliation(s)
- Yang-Yang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Fan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Song Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-Bo Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Lan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Geneplus-Beijing Institute, Beijing, China
| | | | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci U S A 2018; 115:E6817-E6825. [PMID: 29967140 DOI: 10.1073/pnas.1719451115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lifelong interactions between host and the ubiquitous and persistent cytomegalovirus (CMV) have been proposed to contribute to the age-related decline in immunity. Prior work from us and others found some support for that idea, yet evidence that this led to increased vulnerability to other infections was not obtained. Moreover, evidence has accumulated that CMV infection can be beneficial to immune defense in young/adult mice and humans, dominantly via enhanced innate immunity. Here, we describe an unexpected impact of murine CMV (MCMV) upon the T cell response of old mice to Listeria monocytogenes expressing the model antigen, OVA (Lm-OVA). Single-cell sequencing of the OVA-specific CD8 T cell receptor β (TCRβ) repertoire of old mice demonstrated that old MCMV-infected mice recruited many diverse clonotypes that afforded broad and often more efficient recognition of antigenic peptide variants. This stood in contrast to old control mice, which exhibited strong narrowing and homogenization of the elicited repertoire. High-throughput sequencing of the total naïve CD8 TCRβ repertoire showed that many of these diverse OVA-specific clonotypes were present in the naïve CD8 repertoire of mice in all groups (adult, old control, and old MCMV+) yet were only recruited into the Lm-OVA response in MCMV+ old mice. These results have profound implications for our understanding of T cell immunity over a life span and suggest that our coevolution with CMV may include surprising, potentially positive impacts on adaptive heterologous immunity in late life.
Collapse
|
37
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Ferrando-Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, McDermott AB, Palesch D, Paiardini M, Pavlakis GN, Brenchley JM, Douek D, Mascola JR, Petrovas C, Koup RA. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest 2018; 128:2089-2103. [PMID: 29664020 DOI: 10.1172/jci96207] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
LN follicles constitute major reservoir sites for HIV/SIV persistence. Cure strategies could benefit from the characterization of CD8+ T cells able to access and eliminate HIV-infected cells from these areas. In this study, we provide a comprehensive analysis of the phenotype, frequency, localization, and functionality of follicular CD8+ T cells (fCD8+) in SIV-infected nonhuman primates. Although disorganization of follicles was a major factor, significant accumulation of fCD8+ cells during chronic SIV infection was also observed in intact follicles, but only in pathogenic SIV infection. In line with this, tissue inflammatory mediators were strongly associated with the accumulation of fCD8+ cells, pointing to tissue inflammation as a major factor in this process. These fCD8+ cells have cytolytic potential and can be redirected to target and kill HIV-infected cells using bispecific antibodies. Altogether, our data support the use of SIV infection to better understand the dynamics of fCD8+ cells and to develop bispecific antibodies as a strategy for virus eradication.
Collapse
Affiliation(s)
| | | | | | | | - Krystelle Nganou Makamdop
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | - David Palesch
- Department of Pathology, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Department of Pathology, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - George N Pavlakis
- Human Retrovirus Section, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
39
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
40
|
Fontaine M, Vogel I, Van Eycke YR, Galuppo A, Ajouaou Y, Decaestecker C, Kassiotis G, Moser M, Leo O. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J 2018; 37:398-412. [PMID: 29263148 PMCID: PMC5793804 DOI: 10.15252/embj.201796881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
To analyze the potential role of Tregs in controlling the TCR repertoire breadth to a non-self-antigen, a TCRβ transgenic mouse model (EF4.1) expressing a limited, yet polyclonal naïve T-cell repertoire was used. The response of EF4.1 mice to an I-Ab-associated epitope of the F-MuLV envelope protein is dominated by clones expressing a Vα2 gene segment, thus allowing a comprehensive analysis of the TCRα repertoire in a relatively large cohort of mice. Control and Treg-depleted EF4.1 mice were immunized, and the extent of the Vα2-bearing, antigen-specific TCR repertoire was characterized by high-throughput sequencing and spectratyping analysis. In addition to increased clonal expansion and acquisition of effector functions, Treg depletion led to the expression of a more diverse TCR repertoire comprising several private clonotypes rarely observed in control mice or in the pre-immune repertoire. Injection of anti-CD86 antibodies in vivo led to a strong reduction in TCR diversity, suggesting that Tregs may influence TCR repertoire diversity by modulating costimulatory molecule availability. Collectively, these studies illustrate an additional mechanism whereby Tregs control the immune response to non-self-antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- B7-2 Antigen/immunology
- Cells, Cultured
- Friend murine leukemia virus/immunology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Martina Fontaine
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Isabel Vogel
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yves-Rémi Van Eycke
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Galuppo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yousra Ajouaou
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK
- Department of Medicine Faculty of Medicine, Imperial College London London, UK
| | - Muriel Moser
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
41
|
Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Proc Biol Sci 2018; 284:rspb.2016.2562. [PMID: 28356449 PMCID: PMC5378080 DOI: 10.1098/rspb.2016.2562] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
Why is drug resistance common and vaccine resistance rare? Drugs and vaccines both impose substantial pressure on pathogen populations to evolve resistance and indeed, drug resistance typically emerges soon after the introduction of a drug. But vaccine resistance has only rarely emerged. Using well-established principles of population genetics and evolutionary ecology, we argue that two key differences between vaccines and drugs explain why vaccines have so far proved more robust against evolution than drugs. First, vaccines tend to work prophylactically while drugs tend to work therapeutically. Second, vaccines tend to induce immune responses against multiple targets on a pathogen while drugs tend to target very few. Consequently, pathogen populations generate less variation for vaccine resistance than they do for drug resistance, and selection has fewer opportunities to act on that variation. When vaccine resistance has evolved, these generalities have been violated. With careful forethought, it may be possible to identify vaccines at risk of failure even before they are introduced.
Collapse
Affiliation(s)
- David A Kennedy
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
42
|
Weaker HLA Footprints on HIV in the Unique and Highly Genetically Admixed Host Population of Mexico. J Virol 2018; 92:JVI.01128-17. [PMID: 29093100 PMCID: PMC5752930 DOI: 10.1128/jvi.01128-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023] Open
Abstract
HIV circumvents HLA class I-restricted CD8+ T-cell responses through selection of escape mutations that leave characteristic mutational “footprints,” also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of <0.2, 358 HAPs (201 in Gag, 157 in PR-RT) were identified in Mexico, while 905 (534 in Gag and 371 in PR-RT) were identified in Canada/United States. HAPs identified in Mexico included both canonical HLA-associated escape pathways and novel associations, in particular with HLA alleles enriched in Amerindian and mestizo populations. Remarkably, HLA footprints on HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation. IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We compared HLA-associated footprints on HIV in two immunogenetically distinct North American populations, those of Mexico and Canada/United States. We identify both shared and population-specific pathways of HIV adaptation but also make the surprising observation that HLA footprints on HIV in Mexico overall are fewer and weaker than those in Canada/United States, raising the possibility that HLA-restricted antiviral immune responses in Mexico are weaker, and/or escape pathways somewhat less consistent, than those in other populations.
Collapse
|
43
|
A Minimum Epitope Overlap between Infections Strongly Narrows the Emerging T Cell Repertoire. Cell Rep 2017; 17:627-635. [PMID: 27732840 PMCID: PMC5081394 DOI: 10.1016/j.celrep.2016.09.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/19/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Many infections are caused by pathogens that are similar, but not identical, to previously encountered viruses, bacteria, or vaccines. In such re-infections, pathogens introduce known antigens, which are recognized by memory T cells and new antigens that activate naive T cells. How preexisting memory T cells impact the repertoire of T cells responding to new antigens is still largely unknown. We demonstrate that even a minimum epitope overlap between infections strongly increases the activation threshold and narrows the diversity of T cells recruited in response to new antigens. Thus, minimal cross-reactivity between infections can significantly impact the outcome of a subsequent immune response. Interestingly, we found that non-transferrable memory T cells are most effective in raising the activation threshold. Our findings have implications for designing vaccines and suggest that vaccines meant to target low-affinity T cells are less effective when they contain a strong CD8 T cell epitope that has previously been encountered.
Collapse
|
44
|
Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, Danilo M, Alfei F, Hofmann M, Wieland D, Pradervand S, Thimme R, Zehn D, Held W. T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections. Immunity 2017; 45:415-27. [PMID: 27533016 DOI: 10.1016/j.immuni.2016.07.021] [Citation(s) in RCA: 682] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/29/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022]
Abstract
Chronic infections promote the terminal differentiation (or "exhaustion") of T cells and are thought to preclude the formation of memory T cells. In contrast, we discovered a small subpopulation of virus-specific CD8(+) T cells that sustained the T cell response during chronic infections. These cells were defined by, and depended on, the expression of the transcription factor Tcf1. Transcriptome analysis revealed that this population shared key characteristics of central memory cells but lacked an effector signature. Unlike conventional memory cells, Tcf1-expressing T cells displayed hallmarks of an "exhausted" phenotype, including the expression of inhibitory receptors such as PD-1 and Lag-3. This population was crucial for the T cell expansion that occurred in response to inhibitory receptor blockade during chronic infection. These findings identify a memory-like T cell population that sustains T cell responses and is a prime target for therapeutic interventions to improve the immune response in chronic infections.
Collapse
Affiliation(s)
- Daniel T Utzschneider
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Mélanie Charmoy
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Vijaykumar Chennupati
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Laurène Pousse
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Daniela Pais Ferreira
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Sandra Calderon-Copete
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Danilo
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Francesca Alfei
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Maike Hofmann
- Universitätsklinikum Freiburg, Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie und Infektiologie, University of Freiburg, 79106 Freiburg, Germany
| | - Dominik Wieland
- Universitätsklinikum Freiburg, Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie und Infektiologie, University of Freiburg, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Sylvain Pradervand
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, 1015 Lausanne, Switzerland
| | - Robert Thimme
- Universitätsklinikum Freiburg, Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie und Infektiologie, University of Freiburg, 79106 Freiburg, Germany
| | - Dietmar Zehn
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
45
|
|
46
|
Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8 + T cell epitope. Nat Struct Mol Biol 2017; 24:395-406. [PMID: 28250417 PMCID: PMC5383516 DOI: 10.1038/nsmb.3383] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
A keystone of antiviral immunity is CD8 T-cell recognition of viral peptides bound to MHC-I proteins. The recognition mode of individual T cell receptors (TCRs) has been studied in some detail, but how TCR variation functions in providing a robust response to viral antigen is unclear. The influenza M1 epitope is an immunodominant target of CD8 T cells helping to control influenza in HLA-A2+ individuals. Here, we show that many distinct TCRs are used by CD8 T cells to recognize HLA-A2/M1, encoding different structural solutions to the problem of specifically recognizing a relatively featureless peptide antigen. The vast majority of responding TCRs target small clefts between peptide and MHC. These broad repertoires lead to plasticity in antigen recognition and protection against T cell clonal loss and viral escape.
Collapse
|
47
|
DiNapoli SR, Ortiz AM, Wu F, Matsuda K, Twigg HL, Hirsch VM, Knox K, Brenchley JM. Tissue-resident macrophages can contain replication-competent virus in antiretroviral-naive, SIV-infected Asian macaques. JCI Insight 2017; 2:e91214. [PMID: 28239657 DOI: 10.1172/jci.insight.91214] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
SIV DNA can be detected in lymphoid tissue-resident macrophages of chronically SIV-infected Asian macaques. These macrophages also contain evidence of recently phagocytosed SIV-infected CD4+ T cells. Here, we examine whether these macrophages contain replication-competent virus, whether viral DNA can be detected in tissue-resident macrophages from antiretroviral (ARV) therapy-treated animals and humans, and how the viral sequences amplified from macrophages and contemporaneous CD4+ T cells compare. In ARV-naive animals, we find that lymphoid tissue-resident macrophages contain replication-competent virus if they also contain viral DNA in ARV-naive Asian macaques. The genetic sequence of the virus within these macrophages is similar to those within CD4+ T cells from the same anatomic sites. In ARV-treated animals, we find that viral DNA can be amplified from lymphoid tissue-resident macrophages of SIV-infected Asian macaques that were treated with ARVs for at least 5 months, but we could not detect replication-competent virus from macrophages of animals treated with ARVs. Finally, we could not detect viral DNA in alveolar macrophages from HIV-infected individuals who received ARVs for 3 years and had undetectable viral loads. These data demonstrate that macrophages can contain replication-competent virus, but may not represent a significant reservoir for HIV in vivo.
Collapse
Affiliation(s)
| | | | - Fan Wu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Homer L Twigg
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kenneth Knox
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
48
|
Qi Q, Cavanagh MM, Le Saux S, NamKoong H, Kim C, Turgano E, Liu Y, Wang C, Mackey S, Swan GE, Dekker CL, Olshen RA, Boyd SD, Weyand CM, Tian L, Goronzy JJ. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Sci Transl Med 2016; 8:332ra46. [PMID: 27030598 DOI: 10.1126/scitranslmed.aaf1725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/18/2016] [Indexed: 12/29/2022]
Abstract
Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood can escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. Although all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen-reactive TCRs, including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection that occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single-booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important readout to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection.
Collapse
Affiliation(s)
- Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Mary M Cavanagh
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Sabine Le Saux
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Hong NamKoong
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Emerson Turgano
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yi Liu
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Chen Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Sally Mackey
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, CA 94305, USA
| | - Cornelia L Dekker
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Richard A Olshen
- Department of Statistics, Stanford University, Stanford, CA 94305, USA. Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
49
|
Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Immunology 2016; 149:172-85. [PMID: 27317384 PMCID: PMC5011678 DOI: 10.1111/imm.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.
Collapse
Affiliation(s)
- Timothy K. Connelley
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Xiaoying Li
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
- Present address: School of Life Sciences and TechnologyXinxiang Medical UniversityLaboratory Building Room 232XinxiangHenanCN 453003China
| | - Niall MacHugh
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Simon P. Graham
- The International Livestock Research InstituteNairobiKenya
- Present address: The Pirbright InstituteAsh RoadPirbrightGU24 0NFUK
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Evans L. Taracha
- The International Livestock Research InstituteNairobiKenya
- Present address: Institute of Primate ResearchPO Box 24481‐00502KarenKenya
| | - Andy Gill
- Division of NeurobiologyThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - William Ivan Morrison
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| |
Collapse
|
50
|
Han Y, Li H, Guan Y, Huang J. Immune repertoire: A potential biomarker and therapeutic for hepatocellular carcinoma. Cancer Lett 2016; 379:206-12. [DOI: 10.1016/j.canlet.2015.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022]
|