1
|
Guo Y, Wang Z, Li G, Zhan M, Xiao T, Wang J, van Hest JC, Shi X, Shen M. A polymer nanogel-based therapeutic nanovaccine for prophylaxis and direct treatment of tumors via a full-cycle immunomodulation. Bioact Mater 2025; 43:129-144. [PMID: 39386218 PMCID: PMC11462154 DOI: 10.1016/j.bioactmat.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Construction of a cancer nanovaccine that can simultaneously activate immune cells and exert efficient tumor treatment still remains a challenge. Herein, we showcase a proof-of-concept demonstration of an advanced therapeutic nanovaccine formulation based on poly(N-vinylcaprolactam) nanogels (NGs) which were loaded with manganese dioxide (MnO2), the sonosensitizer chlorin e6 (Ce6), and the immune adjuvant cyclic GMP-AMP (cGAMP). The gels were furthermore coated with apoptotic cancer cell membranes (AM). On the one hand, the AM promoted the recognition of NGs by antigen presenting cells (APCs) in lymph nodes due to their enhanced immunogenicity, then the loaded Mn and cGAMP could mature APCs via stimulator of interferon genes (STING) activation for triggering immunity to prevent tumor growth. On the other hand, the NGs could selectively release Mn2+ for hydroxyl radical production and Ce6 to generate single oxygen under ultrasound irradiation of tumors, respectively, thereby exerting local chemodynamic/sonodynamic therapy to induce immunogenic cell death (ICD). Moreover, the Mn2+ could also activate STING in tumors to synergize with ICD for potentiated immune responses. Overall, the biomimetic NG-based therapeutic nanovaccine could directly evoke immune system, and also conduct local tumor treatment to further activate ICD, thus realizing a full-cycle immunomodulation (tumor killing for ICD/antigen production, and tumor cells/APCs immune activation) to tackle bilateral tumor growth.
Collapse
Affiliation(s)
- Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Tingting Xiao
- Institute of Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600, MB, the Netherlands
| | - Jan C.M. van Hest
- Bio-Organic Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600, MB, the Netherlands
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
2
|
Sharma O, Kaur Grewal A, Khan H, Gurjeet Singh T. Exploring the nexus of cGAS STING pathway in neurodegenerative terrain: A therapeutic odyssey. Int Immunopharmacol 2024; 142:113205. [PMID: 39332091 DOI: 10.1016/j.intimp.2024.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
By detecting and responding to cytosolic DNA, the cGAS STING pathway regulates the innate immune responses bymediatinginflammatory reactions and antiviral defense. Thederegulation and modification of this system have been linked to variousneurodegenerative diseases like AD, PD and ALS. Accumulation of tau protein and Aβ aggregates to activate the pathway and releases neuroinflammatory cytokines which accelerates neuronal dysfunction and cognitive impairment as the symptom of AD. Similarly, in PD Alpha-synuclein aggregates activate the cGAS STING pathway and regulate the neuroinflammation and oxidative stress. In ALS, mutation of the genes causes the activation of the pathway which leads to motor neuron degeneration. Alteration of the cGAS STING pathway also leads to mitochondrial dysfunction and impaired autophagy. Preclinical investigations of AD, PD, and ALS animal models showed that STING pathway inhibitors reduced inflammation and improved neurological outcomes and modulators of the cGAS STING pathway may treat these neurodegenerative disorders. In this review we focus on the fact thatneuroinflammation, neuronal dysfunction, and various disease progressions can be treated byaltering the cGAS STING pathway. Understanding the processes and creating specific interventions for this route may offer new treatments for these terrible illnesses.
Collapse
Affiliation(s)
- Ojashvi Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
3
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Tu W, Yu B, Zhang Y, Li L. Discovery of orally bioavailable phosphonate prodrugs of potent ENPP1 inhibitors for cancer treatment. Eur J Med Chem 2024; 279:116853. [PMID: 39270452 DOI: 10.1016/j.ejmech.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is the dominant hydrolase of 2',3'-cyclic GMP-AMP (cGAMP). Inhibition of ENPP1 contributes to increased cGAMP concentration and stimulator of interferon gene (STING) activation, with the potential to boost immune response against cancer. ENPP1 is a promising therapeutic target in tumor immunotherapy. To date, orally bioavailable ENPP1 inhibitors with highly potent activity under physiological conditions have been rarely reported. Herein, we report our effort in the design and synthesis of two different series of ENPP1 inhibitors, and in the identification of a highly potent ENPP1 inhibitor 27 (IC50 = 1.2 nM at pH 7.5), which significantly enhanced the cGAMP-mediated STING activity in THP-1 cells. Phosphonate compound 27 has good preclinical pharmacokinetic profiles with low plasma clearance rate in mouse, rat, and dog. It has been developed as bis-POM prodrug 36 which successfully improves the oral bioavailability of 27. In the Pan02 syngeneic mouse model of pancreatic cancer, orally administered 36 showed synergistic effect in combination with radiotherapy.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| |
Collapse
|
4
|
Zhang Y, Wang S, Rha H, Xu C, Pei Y, Ji X, Zhang J, Lu R, Zhang S, Xie Z, Kim JS. Bifunctional black phosphorus quantum dots platform: Delivery and remarkable immunotherapy enhancement of STING agonist. Biomaterials 2024; 311:122696. [PMID: 38971121 DOI: 10.1016/j.biomaterials.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-β. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.
Collapse
Affiliation(s)
- Yujun Zhang
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China; International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Chang Xu
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Pei
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518109, PR China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China.
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
5
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Oh KS, Nam AR, Bang JH, Jeong Y, Choo SY, Kim HJ, Lee SI, Kim JM, Yoon J, Kim TY, Oh DY. Immunomodulatory effects of trastuzumab deruxtecan through the cGAS-STING pathway in gastric cancer cells. Cell Commun Signal 2024; 22:518. [PMID: 39449023 PMCID: PMC11515331 DOI: 10.1186/s12964-024-01893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Although the efficacy of trastuzumab deruxtecan (T-DXd) against HER2-positive gastric cancers (GCs) has driven its clinical application, the precise mechanisms governing its immunomodulatory role remain unclear. In this study, we examined the immune-related mechanisms of action of T-DXd in GC cells. T-DXd exhibited potent antitumor effects in GC cells across diverse HER2 expression levels by inducing DNA damage and apoptosis. Activation of the DNA damage response by T-DXd led to increased PD-L1 expression. RNA-Seq analysis revealed that T-DXd modulated immune-related pathways, resulting in the upregulation of genes associated with inflammation and IFN signaling. Importantly, T-DXd activated the cGAS-STING pathway, inducing an IFN-I response in HER2-positive GC cells. Furthermore, T-DXd activated dendritic cells via the cancer cell-intrinsic cGAS-STING-IFN axis and enhanced PBMC-mediated tumor cell killing by activating CD8+ T cells. These findings provide valuable insights into the role of the cytosolic DNA sensing pathway in the action of T-DXd and offer a compelling rationale for combining T-DXd with immune checkpoint blockade therapies in GC treatment.
Collapse
Affiliation(s)
- Kyoung-Seok Oh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Yoojin Jeong
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Sea Young Choo
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Hyo Jung Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Su In Lee
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Jae-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
8
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Kobayashi Y, Bustos MA, Hayashi Y, Yu Q, Hoon D. Interferon-induced factor 16 is essential in metastatic melanoma to maintain STING levels and the immune responses upon IFN-γ response pathway activation. J Immunother Cancer 2024; 12:e009590. [PMID: 39424359 PMCID: PMC11492949 DOI: 10.1136/jitc-2024-009590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICIs)-based therapies are the standard of care treatment for patients with metastatic melanoma (MM). The stimulator of interferon genes (STING) signaling pathway is critical in controlling immune responses to ICIs. Interferon (IFN)-γ-inducible protein 16 (IFI16) is a cytosolic DNA sensor that activates the STING signaling pathway. The link between IFI16 and STING signaling pathway on IFN-γ stimulation and the connection to ICIs response remains not completely understood. METHODS Deconvolution analyses were performed using the TCGA-SKCM, GSE91061, and PRJEB23709 public RNA sequencing (RNA-seq) data sets that contained RNA-seq for patients with MM. Functional assays combined with cytokine arrays were performed using MM cell lines to validate in silico data. Multiplex immunofluorescence was performed on untreated or pretreatment tumor samples from patients with MM. RESULTS Deconvolution analysis showed that high-IFI16 levels in melanoma cells were associated with a good prognosis in patients with MM and positively correlated with M1-macrophage infiltration. Functional assays using MM cell lines demonstrated that IFI16 is a key molecule to sense cytosolic DNA and activate STING and nuclear factor kappa B (NF-κB) signaling pathways, independent of cyclic GMP-AMP synthase or absent in melanoma 2, on IFN-γ stimulation. IFI16 knockdown significantly decreased CXCL10 and ICAM1 secretion. EZH2 inhibitor reversed the repressive epigenetic control on IFI16 to promote STING and NF-κB signaling pathways on IFN-γ stimulation. Increased IFI16, ICAM1, and CXCL10 levels in tumor samples from patients with MM were positively correlated with M1-macrophage infiltration and a significantly better response to ICIs. CONCLUSIONS This study identifies IFI16 as a key sensor during IFN-γ stimulation associated with ICI response, and it proposes the epigenetic EZH2 inhibitor as an alternative treatment strategy to overcome ICI resistance in patients with MM.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Matias A Bustos
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Yoshinori Hayashi
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Qiang Yu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Dave Hoon
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| |
Collapse
|
10
|
Bergman M, Goshtchevsky U, Atlan T, Astre G, Halabi R, El H, Moses E, Lemus AJJ, Benayoun BA, Tzfati Y, Ben-Ami I, Harel I. The cGAS-STING pathway is an in vivo modifier of genomic instability syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618655. [PMID: 39464159 PMCID: PMC11508313 DOI: 10.1101/2024.10.16.618655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in genes involved in DNA damage repair (DDR) often lead to premature aging syndromes. While recent evidence suggests that inflammation, alongside mutation accumulation and cell death, may drive disease phenotypes, its precise contribution to in vivo pathophysiology remains unclear. Here, by modeling Ataxia Telangiectasia (A-T) and Bloom Syndrome in the African turquoise killifish ( N. furzeri ), we replicate key phenotypes of DDR syndromes, including infertility, cytoplasmic DNA fragments, and reduced lifespan. The link between DDR defects and inflammation is attributed to the activation of the cGAS-STING pathway and interferon signaling by cytoplasmic DNA. Accordingly, mutating cGAS partially rescues germline defects and senescence in A-T fish. Double mutants also display reversal of telomere abnormalities and suppression of transposable elements, underscoring cGAS's non-canonical role as a DDR inhibitor. Our findings emphasize the role of interferon signaling in A-T pathology and identify the cGAS-STING pathway as a potential therapeutic target for genomic instability syndromes.
Collapse
|
11
|
Islam S, Islam MM, Akhand MRN, Park BY, Akanda MR. Recent advancements in cGAS-STING activation, tumor immune evasion, and therapeutic implications. Med Oncol 2024; 41:291. [PMID: 39419913 DOI: 10.1007/s12032-024-02539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The cGAS-STING signaling pathway is indeed a pivotal component of the immune system and serve as a crucial link between innate and adaptive immune responses. STING is involved in the cellular response to pathogen invasion and DNA damage, and which has important consequences for host defense mechanisms and cancer regulation. Ongoing research aiming to modulate the cGAS-STING pathway for improved clinical outcomes in cancer and autoimmune diseases is underway. Indeed, the interaction between the cGAS-STING pathway and immune evasion mechanisms is a complex and critical aspect of cancer biology. Pathogens and various host factors can exploit this pathway to reduce the effectiveness of cancer therapies, particularly immunotherapies. Thus, immunotherapies or combination therapies may assist in overcoming the immune suppression and improving clinical outcomes. This review explores recent advancements in understanding the cGAS-STING signaling pathway, with particular emphasis on its activation mechanisms and role in tumor immune evasion. The dual role of the pathway in boosting immune responses while simultaneously enabling tumors to evade the immune system makes it a crucial target for innovative cancer treatment approaches.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 2 Given name: [Md Mazedul] Last name [Islam], Author 3 Given name: [Mst Rubaiat Nazneen] Last name [Akhand] and Author 5 Given name: [Md Rashedunnabi] Last name [Akanda]. Also, kindly confirm the details in the metadata are correct.AQ1: Here Author 4 given name: [Byung-Yong] Last name [Park] is missing. Metadata are correct.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mazedul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | | | - Byung-Yong Park
- Institute of Animal Transplantation, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
12
|
Wang J, Wang X, Xiong Q, Gao S, Wang S, Zhu S, Xiang S, Li M, Xie H, Li S. A dual-STING-activating nanosystem expands cancer immunotherapeutic temporal window. Cell Rep Med 2024:101797. [PMID: 39454571 DOI: 10.1016/j.xcrm.2024.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Stimulator of interferon genes (STING) is a promising antitumor target via bridging innate and adaptive immunity, yet the transient nature of immune signal transduction renders small-molecule agonists susceptible to short time effectiveness. Here, we report a dual-STING-activating micelle system (D-SAM) to dynamically program STING kinetics. Mechanistically, the natural ligand cGAMP encapsulated in D-SAM initiates STING signaling, while the pH-sensitive polymeric agonist PC7A disassembled from micelle shell buffers lysosomal protons and retards STING degradation. This prolonged STING activity facilitates dendritic cell (DC) antigen presentation and extends cytotoxic T lymphocyte priming. D-SAM improves efficacy over single soluble or delivered agonists against established, metastatic, and recurring murine tumors. Specific depletion of STING in DCs or blockade of CD8+ T cell infiltration abrogates therapeutic effects. The feasibility of immune modulation is further validated in resected human patient tissues. This work underscores the temporal rhythm of STING as crucial for mounting a potent and enduring antitumor immune response.
Collapse
Affiliation(s)
- Jian Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Xiaohu Wang
- Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241004, China
| | - Qingqing Xiong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Shan Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Shihao Wang
- Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Siqi Zhu
- Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuting Xiang
- Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mingxi Li
- Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241004, China.
| | - Suxin Li
- Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Pulliam T, Jani S, Goff PH, Bhakuni R, Tabachnick-Cherny S, Smythe K, Seaton BW, Tachiki L, Kulikauskas R, Church C, Koelle DM, Nghiem P, Bhatia S. Intratumoral STING agonist reverses immune evasion in PD-(L)1-refractory Merkel cell carcinoma: mechanistic insights from detailed biomarker analyses. J Immunother Cancer 2024; 12:e009803. [PMID: 39401968 PMCID: PMC11474899 DOI: 10.1136/jitc-2024-009803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Antibodies blocking programmed death (PD)-1 or its ligand (PD-L1) have revolutionized cancer care, but many patients do not experience durable benefits. Novel treatments to stimulate antitumor immunity are needed in the PD-(L)1 refractory setting. The stimulator of interferon genes (STING) protein, an innate sensor of cytoplasmic DNA, is a promising target with several agonists in development. However, response rates in most recent clinical trials have been low and mechanisms of response remain unclear. We report detailed biomarker analyses in a patient with anti-PD-L1 refractory, Merkel cell polyomavirus (MCPyV)-positive, metastatic Merkel cell carcinoma (MCC) who was treated with an intratumoral (IT) STING agonist (ADU-S100) plus intravenous anti-PD-1 antibody (spartalizumab) and experienced a durable objective response with regression of both injected and non-injected lesions. METHODS We analyzed pretreatment and post-treatment tumor and peripheral blood samples from our patient with single-cell RNA sequencing, 30-parameter flow cytometry, T cell receptor sequencing, and multiplexed immunohistochemistry. We analyzed cancer-specific CD8 T cells using human leukocyte antigen (HLA)-I tetramers loaded with MCPyV peptides. We also analyzed STING expression and signaling in the tumor microenvironment (TME) of 88 additional MCC tumor specimens and in MCC cell lines. RESULTS We observed high levels of MCPyV-specific T cells (12% of T cells) in our patient's tumor at baseline. These cancer-specific CD8 T cells exhibited characteristics of exhaustion including high TOX and low TCF1 proteins. Following treatment with STING-agonist plus anti-PD-1, IT CD8 T cells expanded threefold. We also observed evidence of likely improved antigen presentation in the MCC TME (greater than fourfold increase of HLA-I-positive cancer cells). STING expression was not detected in any cancer cells within our patient's tumor or in 88 other MCC tumors, however high STING expression was observed in immune and stromal cells within all 89 MCC tumors. CONCLUSIONS Our results suggest that STING agonists may be able to work indirectly in MCC via signaling through immune and stromal cells in the TME, and may not necessarily need STING expression in the cancer cells. This approach may be particularly effective in tumors that are already infiltrated by inflammatory cells in the TME but are evading immune detection via HLA-I downregulation.
Collapse
Affiliation(s)
- Thomas Pulliam
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Saumya Jani
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter H Goff
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Rashmi Bhakuni
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shira Tabachnick-Cherny
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | - Lisa Tachiki
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rima Kulikauskas
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Candice Church
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David M Koelle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shailender Bhatia
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
Nishimura S, Linares JF, L'Hermitte A, Duran A, Cid-Diaz T, Martinez-Ordoñez A, Ruiz-Martinez M, Kudo Y, Marzio A, Heikenwalder M, Roberts LR, Diaz-Meco MT, Moscat J. Opposing regulation of the STING pathway in hepatic stellate cells by NBR1 and p62 determines the progression of hepatocellular carcinoma. Mol Cell 2024:S1097-2765(24)00782-2. [PMID: 39423823 DOI: 10.1016/j.molcel.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Hepatocellular carcinoma (HCC) emerges from chronic inflammation, to which activation of hepatic stellate cells (HSCs) contributes by shaping a pro-tumorigenic microenvironment. Key to this process is p62, whose inactivation leads to enhanced hepatocarcinogenesis. Here, we show that p62 activates the interferon (IFN) cascade by promoting STING ubiquitination by tripartite motif protein 32 (TRIM32) in HSCs. p62, binding neighbor of BRCA1 gene 1 (NBR1) and STING, triggers the IFN cascade by displacing NBR1, which normally prevents the interaction of TRIM32 with STING and its subsequent activation. Furthermore, NBR1 also antagonizes STING by promoting its trafficking to the endosome-lysosomal compartment for degradation independent of autophagy. Of functional relevance, NBR1 deletion completely reverts the tumor-promoting function of p62-deficient HSCs by rescuing the inhibited STING-IFN pathway, thus enhancing anti-tumor responses mediated by CD8+ T cells. Therefore, NBR1 emerges as a synthetic vulnerability of p62 deficiency in HSCs by promoting the STING/IFN pathway, which boosts anti-tumor CD8+ T cell responses to restrain HCC progression.
Collapse
Affiliation(s)
- Sadaaki Nishimura
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antoine L'Hermitte
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yotaro Kudo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Antonio Marzio
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University of Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen, Germany
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
15
|
Wang H, Yao Z, Kang K, Zhou L, Xiu W, Sun J, Xie C, Yu M, Li Y, Zhang Y, Zheng Y, Lin G, Pan X, Wu Y, Luo R, Wang L, Tang M, Liao S, Zhu J, Zhou X, Zhang X, Xu Y, Liu Y, Peng F, Wang J, Xiang L, Yin L, Deng L, Huang M, Gong Y, Zou B, Wang H, Wu L, Yuan Z, Bi N, Fan M, Xu Y, Tong R, Yi L, Gan L, Xue J, Mo X, Chen C, Na F, Lu Y. Preclinical study and phase II trial of adapting low-dose radiotherapy to immunotherapy in small cell lung cancer. MED 2024; 5:1237-1254.e9. [PMID: 38964333 DOI: 10.1016/j.medj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) provide modest but unsatisfactory benefits for extensive-stage small cell lung cancer (ES-SCLC). Developing strategies for treating ES-SCLC is critical. METHODS We preliminarily explored the outcomes of salvage low-dose radiotherapy (LDRT) plus ICI on refractory SCLC patients. Next, we evaluated the combinational efficacy in murine SCLC. The tumor immune microenvironment (TIME) was analyzed for mechanistic study. Subsequently, we conducted a multicenter, prospective phase II trial that administered concurrent thoracic LDRT plus chemoimmunotherapy to treatment-naive ES-SCLC patients (MATCH trial, NCT04622228). The primary endpoint was confirmed objective response rate (ORR), and the key secondary endpoints included progression-free survival (PFS) and safety. FINDINGS Fifteen refractory SCLC patients treated with LDRT plus ICI were retrospectively reviewed. The ORR was 73.3% (95% confidence interval [CI], 44.9-92.2). We identified a specific dose of LDRT (15 Gy/5 fractions) that exhibited growth retardation and improved survival in murine SCLC when combined with ICIs. This combination recruited a special T cell population, TCF1+ PD-1+ CD8+ stem-like T cells, from tumor-draining lymph nodes into the TIME. The MATCH trial showed a confirmed ORR of 87.5% (95% CI, 75.9-94.8). The median PFS was 6.9 months (95% CI, 5.4-9.3). CONCLUSIONS These findings verified that LDRT plus chemoimmunotherapy was safe, feasible, and effective for ES-SCLC, warranting further investigation. FUNDING This research was funded by West China Hospital (no. ZYJC21003), the National Natural Science Foundation of China (no. 82073336), and the MATCH trial was fully funded by Roche (China) Holding Ltd. (RCHL) and Shanghai Roche Pharmaceuticals Ltd. (SRPL).
Collapse
Affiliation(s)
- Hui Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weigang Xiu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanying Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Center of Lung Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Lin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Laduona Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangsi Liao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yongmei Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Peng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lisha Xiang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Deng
- University of Washington School of Medicine/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, China
| | - Lin Wu
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Nan Bi
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Front Immunol 2024; 15:1482738. [PMID: 39450170 PMCID: PMC11500076 DOI: 10.3389/fimmu.2024.1482738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the transformative impact of anti-PD-1/PD-L1 therapies, challenges such as low response rates persist. The stimulator of interferon genes (STING) pathway, a crucial element of innate immunity, emerges as a strategic target to overcome these limitations. Understanding its multifaceted functions in cancer, including antigen presentation and response to DNA damage, provides valuable insights. STING agonists, categorized into cyclic dinucleotides (CDNs) and non-CDNs, exhibit promising safety and efficacy profiles. Innovative delivery systems, including antibody-drug conjugates, nanocarriers, and exosome-based therapies, address challenges associated with systemic administration and enhance targeted tumor delivery. Personalized vaccines, such as DT-Exo-STING, showcase the adaptability of STING agonists for individualized treatment. These advancements not only offer new prospects for combination therapies but also pave the way for overcoming resistance mechanisms. This review focuses on the potential of targeting STING pathway to enhance cancer immunotherapy. The integration of STING agonists into cancer immunotherapy holds promise for more effective, personalized, and successful approaches against malignancies, presenting a beacon of hope for the future of cancer treatment.
Collapse
Affiliation(s)
| | - Ying Xiong
- Department of Obstetrics and Gynecology, Haiyan People’s Hospital,
Jiaxing, China
| |
Collapse
|
17
|
Li R, Liu H, Liu Y. The cGAS-STING pathway and female reproductive system diseases. Front Immunol 2024; 15:1447719. [PMID: 39445027 PMCID: PMC11496054 DOI: 10.3389/fimmu.2024.1447719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The cGAS-STING pathway has become a crucial role in the detection of cytosolic DNA and the initiation of immune responses. The cGAS-STING pathway not only mediates protective immune defense against various DNA-containing pathogens but also detects tumor-derived DNA to generate intrinsic anti-tumor immunity. However, abnormal activation of the cGAS-STING pathway by self-DNA can also lead to autoimmune diseases and inflammatory disorders. This article reviews the mechanisms and functions of the cGAS-STING pathway, as well as the latest research progress in female reproductive-related diseases. We focus on the regulatory mechanisms and roles of this pathway in common female reproductive disorders, discuss the clinical potential of the cGAS-STING pathway as biomarkers and therapeutic agents for female reproductive diseases, as well as the research controversies, technical issues, and biological knowledge gaps that need to be resolved. Furthermore, we provide new ideas for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Ruijie Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Bie J, Li Y, Song C, Weng Q, Zhao L, Su L, Zhao Z, Ye Y, Shen Z, Ji J, Luo J. LAMTOR1 ablation impedes cGAS degradation caused by chemotherapy and promotes antitumor immunity. Proc Natl Acad Sci U S A 2024; 121:e2320591121. [PMID: 39361643 PMCID: PMC11474068 DOI: 10.1073/pnas.2320591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024] Open
Abstract
Chemotherapy resistance remains a significant obstacle that limits the long-term efficacy of cancer therapy, necessitating further investigations into the underlying mechanisms. Here, we find that DNA fragments induced by chemotherapeutic agents trigger the degradation of cGAS, a potent double-strand DNA (dsDNA) sensor, by lysosomes. Mechanically, the lysosome-localized protein LAMTOR1 is up-regulated, and the interaction between LAMTOR1 and cGAS is enhanced upon exposure to DNA fragments, boosting the accumulation and digestion of cGAS in lysosomes through the receptor protein p62. LAMTOR1 deficiency increases cGAS abundance and promotes activation of the cGAS-STING pathway, leading to subsequent production of type I interferons induced by cytosolic DNA stimulation. Loss of LAMTOR1 synergizes with immunotherapy and chemotherapy to inhibit tumor growth and prolong the survival time of tumor-bearing mice by promoting the infiltration of effective T lymphocytes. Thus, our study reveals a regulation of cGAS abundance and provides a potential strategy to overcome chemotherapy resistance by targeting LAMTOR1.
Collapse
Affiliation(s)
- Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
- Medical Innovation Center (Taizhou) of Peking University, Taizhou225316, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| | - Qiaoyou Weng
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui323000, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing100044, China
| | - Li Su
- Peking University Medical and Health Analysis Center, Beijing100191, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui323000, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing100044, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui323000, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
- Medical Innovation Center (Taizhou) of Peking University, Taizhou225316, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| |
Collapse
|
19
|
Wang Q, Ren Z, Zhao J, Zheng T, Tong L, Liu J, Dai Z, Tang S. Mechanism and Application Prospects of NLRC3 Regulating cGAS-STING Pathway in Lung Cancer Immunotherapy. Int J Med Sci 2024; 21:2613-2622. [PMID: 39439455 PMCID: PMC11492878 DOI: 10.7150/ijms.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
NLRC3, a negative regulator, exhibits considerable potential in the realm of lung cancer immunotherapy by virtue of its profound impact on the immune response intensity, primarily through its regulatory effects on the cGAS-STING pathway. The inhibition of NLRC3 has been found to augment the activity of the aforementioned pathway, thereby enhancing the anti-tumor immune response. This comprehensive review endeavors to elucidate the molecular and genetic structures of NLRC3, its role within the immune system, and its interaction with the cGAS-STING pathway, with a particular emphasis on its potential applications in lung cancer immunotherapy. Existing research underscores NLRC3's capacity to mitigate excessive immune responses via the negative regulation of the cGAS-STING pathway, thus underscoring its significant regulatory role in lung cancer immunotherapy. The development of pharmaceutical interventions and gene therapy strategies targeting NLRC3 presents a promising avenue for the creation of novel therapeutic options for individuals afflicted with lung cancer. Nonetheless, the clinical application of these therapies is confronted with both technical and biological challenges. This review aims to provide a theoretical foundation for related research endeavors and delineate future research directions in this field.
Collapse
Affiliation(s)
- Qichao Wang
- Dalian Medical University, Dalian 116044, Liaoning, China
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhen Ren
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Jianing Zhao
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Tianliang Zheng
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Lifei Tong
- Department of Radiotherapy, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Jing Liu
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhaoxia Dai
- Department of Thoracic Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning, China
| | - Shuhong Tang
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| |
Collapse
|
20
|
Masuda Y, Kondo N, Nakayama Y, Shimizu R, Konishi M. Neudesin regulates dendritic cell function and antitumor CD8 + T cell immunity. Clin Immunol 2024; 268:110376. [PMID: 39369973 DOI: 10.1016/j.clim.2024.110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Dendritic cells (DCs) are essential for antitumor T-cell responses to immune checkpoint inhibitor therapies. We have previously reported that the secreted protein neudesin suppresses DC function. In contrast, neudesin has been found to be abundantly expressed in human cancers. In this study, we evaluated the role of neudesin in cancer immunity. Cancer-related database analysis revealed that patients with melanoma with low neudesin expression exhibited increased infiltration of DCs and CD8+ T cells and improved outcomes of checkpoint inhibitor therapy. In mouse tumor models, neudesin deficiency delayed tumor growth and increased the proportions of Type 1 conventional DCs (cDC1s) and tumor antigen-specific CD8+ T cells in tumors and tumor-infiltrating lymph nodes. Neudesin-deficient antitumor cDC1 vaccine enhanced the systemic immunity more effectively than the wild-type cDC1 vaccine. Overall, our findings highlight the importance of neudesin in cancer immunity, providing a novel target for immunotherapy.
Collapse
Affiliation(s)
- Yuki Masuda
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University; 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoto Kondo
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University; 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University; 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Ryohei Shimizu
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University; 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University; 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
21
|
Chen J, Zhao B, Dong H, Li T, Cheng X, Gong W, Wang J, Zhang J, Xin G, Yu Y, Lei YL, Black JD, Li Z, Wen H. Inhibition of O-GlcNAc transferase activates type I interferon-dependent antitumor immunity by bridging cGAS-STING pathway. eLife 2024; 13:RP94849. [PMID: 39365288 PMCID: PMC11452177 DOI: 10.7554/elife.94849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The O-GlcNAc transferase (OGT) is an essential enzyme that mediates protein O-GlcNAcylation, a unique form of posttranslational modification of many nuclear and cytosolic proteins. Recent studies observed increased OGT and O-GlcNAcylation levels in a broad range of human cancer tissues compared to adjacent normal tissues, indicating a universal effect of OGT in promoting tumorigenesis. Here, we show that OGT is essential for tumor growth in immunocompetent mice by repressing the cyclic GMP-AMP synthase (cGAS)-dependent DNA sensing pathway. We found that deletion of OGT (Ogt-/-) caused a marked reduction in tumor growth in both syngeneic mice tumor models and a genetic mice colorectal cancer (CRC) model induced by mutation of the Apc gene (Apcmin). Pharmacological inhibition or genetic deletion of OGT induced a robust genomic instability (GIN), leading to cGAS-dependent production of the type I interferon (IFN-I) and IFN-stimulated genes (ISGs). As a result, deletion of Cgas or Sting from Ogt-/- cancer cells restored tumor growth, and this correlated with impaired CD8+ T-cell-mediated antitumor immunity. Mechanistically, we found that OGT-dependent cleavage of host cell factor C1 (HCF-1) is required for the avoidance of GIN and IFN-I production in tumors. In summary, our results identify OGT-mediated genomic stability and activate cGAS-STING pathway as an important tumor-cell-intrinsic mechanism to repress antitumor immunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Bao Zhao
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
| | - Tianliang Li
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
| | - Xiang Cheng
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Jing Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
- Department of Cancer Biology and Genetics, The Ohio State UniversityColumbusUnited States
| | - Junran Zhang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
- Department of Radiation Oncology, The Ohio State UniversityColumbusUnited States
| | - Gang Xin
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of DelawareNewarkUnited States
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
22
|
Chao PH, Chan V, Li SD. Nanomedicines modulate the tumor immune microenvironment for cancer therapy. Expert Opin Drug Deliv 2024:1-15. [PMID: 39354745 DOI: 10.1080/17425247.2024.2412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION In recent years, the evolution of immunotherapy as a means to trigger a robust antitumor immune response has revolutionized cancer treatment. Despite its potential, the effectiveness of cancer immunotherapy is hindered by low response rates and significant systemic side effects. Nanotechnology emerges as a promising frontier in shaping the future of cancer immunotherapy. AREAS COVERED This review elucidates the pivotal role of nanomedicine in reshaping the immune tumor microenvironment and explores innovative strategies pursued by diverse research groups to enhance the therapeutic efficacy of cancer immunotherapy. It discusses the hurdles encountered in cancer immunotherapy and the application of nanomedicine for small molecule immune modulators and nucleic acid therapeutics. It also highlights the advancements in DNA and mRNA vaccines facilitated by nanotechnology and outlines future trajectories in this evolving field. EXPERT OPINION Collectively, the integration of nanomedicine into cancer immunotherapy stands as a promising avenue to tackle the intricacies of the immune tumor microenvironment. Innovations such as immune checkpoint inhibitors and cancer vaccines have shown promise. Future developments will likely optimize nanoparticle design through artificial intelligence and create biocompatible, multifunctional nanoparticles, promising more effective, personalized, and durable cancer treatments, potentially transforming the field in the foreseeable future.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Szemere ZK, Murphy EA. Import of extracellular 2'-3'cGAMP by the folate transporter, SLC19A1, establishes an antiviral response that limits herpes simplex virus-1. Antiviral Res 2024; 230:105989. [PMID: 39154753 DOI: 10.1016/j.antiviral.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Recently it was discovered that extracellular 2'-3'cGAMP can activate the STING pathway in a cGAS-independent fashion by being transported across the cell membrane via the folate transporter, SLC19A1, the first identified extracellular antiporter of this critical signaling molecule in cancer cells. We hypothesized that this non-canonical activation of STING pathway would function to establish an antiviral state similar to that seen with the paracrine antiviral activities of interferon. Herein, we report that treatment of the monocytic cell line, THP-1 cells and SH-SY5Y neuronal cell line with exogenous 2'-3'cGAMP induces interferon production and establishes an antiviral state that limits herpes simplex virus-1 (HSV-1), a ubiquitous virus with high seropositivity in the human population. Using either pharmaceutical inhibition or genetic knockout of SLC19A1 blocks the 2'-3'cGAMP-induced inhibition of viral replication. Our data indicate SLC19A1 functions as a newly identified antiviral mediator for extracellular 2'-3'cGAMP. This work presents novel and important findings about an antiviral mechanism which information could aid in the development of better antiviral drugs in the future.
Collapse
Affiliation(s)
- Zsuzsa K Szemere
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA
| | - Eain A Murphy
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
24
|
Sun Y, Wu Y, Pang G, Huang J, Sheng M, Xie J, Chen P, Wang Y, Yin D, Zhao G, Bohlander SK, Huang J, Xu GL, Gao H, Zhou D, Shi Y. STING is crucial for the survival of RUNX1::RUNX1T1 leukemia cells. Leukemia 2024; 38:2102-2114. [PMID: 39179670 DOI: 10.1038/s41375-024-02383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Even though acute myeloid leukemia (AML) patients with a RUNX1::RUNX1T1 (AE) fusion have a relatively favorable prognosis, approximately 50% relapse within 2.5 years and develop resistance to subsequent chemotherapy [1]. It is therefore imperative to identify novel therapeutic targets for AE leukemia to improve outcomes. In this study, we unveil that targeting STING effectively suppresses the growth of AE leukemia cells. Both genetic and pharmacological inhibition of STING lead to the diminish of AE leukemia cells. Importantly, in a mouse primary AE leukemia model, STING deletion significantly attenuates leukemogenesis and prolongs the animals' lifespan. Blocking the downstream inflammatory pathway of STING yields similar effects to STING inhibition in AE leukemia cells, highlighting the pivotal role of STING-dependent inflammatory responses in sustaining the survival of AE leukemia cells. Moreover, through a genome-wide CRISPR screen, we identified fatty acid desaturase 2 (FADS2) as a non-canonical factor downstream of STING inhibition that mediates cell death. Inhibition of STING releases FADS2 activity, consequently inducing the synthesis of polyunsaturated fatty acids (PUFAs) and triggering lipid peroxidation-associated cell death [2]. Taken together, these findings reveal a critical function of STING in the survival of AE-positive AML cells and suggest STING to be a potential therapeutic target for clinical intervention in these patients.
Collapse
Affiliation(s)
- Yue Sun
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Yushuang Wu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Guozheng Pang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Jingru Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Mengyao Sheng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Jiaying Xie
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Pingyue Chen
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Dongrui Yin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Guangjie Zhao
- Huashan Hospital, Fudan University, Shanghai, 200024, China
| | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai Gao
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China.
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai, 201399, China.
| | - Yuheng Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Huang C, Tong T, Ren L, Wang H. STING-Activating Small Molecular Therapeutics for Cancer Immunotherapy. Chembiochem 2024; 25:e202400255. [PMID: 38980259 DOI: 10.1002/cbic.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
Immuno-oncology has become a revolutionary strategy for cancer treatment. Therapeutic interventions based on adaptive immunity through immune checkpoint therapy or chimeric antigen receptor (CAR) T cells have received clinical approval for monotherapy and combination treatment in various cancers. Although these treatments have achieved clinical successes, only a minority of cancer patients show a response, highlighting the urgent need to discover new therapeutic molecules that could be exploited to improve clinical outcomes and pave the way for the next generation of immunotherapy. Given the critical role of the innate immune system against infection and cancer, substantial efforts have been dedicated to developing novel anticancer therapeutics that target these pathways. Targeting the stimulator of interferon genes (STING) pathway is a powerful strategy to generate a durable antitumor response, and activation of the adaptor protein STING induces the initiation of transcriptional cascades, thereby producing type I interferons, pro-inflammatory cytokines and chemokines. Various STING agonists, including natural or synthetic cyclic dinucleotides (CDNs), have been developed as anticancer therapeutics. However, since most CDNs are confined to intratumoral administration, there has been a great interest in developing non-nucleotide agonists for systemic treatment. Here, we review the current development of STING-activating therapeutics in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Chuhan Huang
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tianrui Tong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, 250117, P. R. China
| |
Collapse
|
26
|
Wang MM, Zhao Y, Liu J, Fan RR, Tang YQ, Guo ZY, Li T. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol Sin 2024; 45:1997-2010. [PMID: 38822084 PMCID: PMC11420349 DOI: 10.1038/s41401-023-01185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/18/2023] [Indexed: 06/02/2024] Open
Abstract
Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Ming-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Rong-Rong Fan
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden
| | - Yan-Qing Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Zheng-Yang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
27
|
Peng Y, Liang S, Liu D, Ma K, Yun K, Zhou M, Hai L, Xu M, Chen Y, Wang Z. Multi-Metallic Nanosheets Reshaping Immunosuppressive Tumor Microenvironment through Augmenting cGAS-STING Innate Activation and Adaptive Immune Responses for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403347. [PMID: 39120546 PMCID: PMC11481177 DOI: 10.1002/advs.202403347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/14/2024] [Indexed: 08/10/2024]
Abstract
The highly immunosuppressive tumor microenvironment (TME) restricts the efficient activation of immune responses. To restore the surveillance of the immune system for robust activation, vast efforts are devoted to normalizing the TME. Here, a manganese-doped layered double hydroxide (Mn-LDH) is developed for potent anti-tumor immunity by reversing TME. Mn-LDH is synthesized via a one-step hydrothermal method. In addition to the inherent proton neutralization capacity of LDH, the introduction of manganese oxide endows LDH with an additional ability to produce oxygen. Mn-LDH effectively releases Mn2+ and Mg2+ upon exposure to TME with high levels of H+ and H2O2, which activates synthase-stimulator of interferon genes pathway and maintains the cytotoxicity of CD8+ T cells respectively, achieving a cascade-like role in innate and adaptive immunity. The locally administered Mn-LDH facilitated a "hot" network consisting of mature dendritic cells, M1-phenotype macrophages, as well as cytotoxic and helper T cells, significantly inhibiting the growth of primary and distal tumors. Moreover, the photothermal conversion capacity of Mn-LDH sparks more robust therapeutic effects in large established tumor models with a single administration and irradiation. Overall, this study guides the rational design of TME-modulating immunotherapeutics for robust immune activation, providing a clinical candidate for next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Linna Hai
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Mengdi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Yiyang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
28
|
O’Donoghue JC, Freeman FE. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol 2024; 15:1403538. [PMID: 39403376 PMCID: PMC11471590 DOI: 10.3389/fimmu.2024.1403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone cancer primarily affecting children, adolescents, and young adults. The current gold standard for treatment of osteosarcoma patients consists of two to three rounds of chemotherapy, followed by extensive surgical intervention from total limb reconstruction to amputation, followed by additional rounds of chemotherapy. Although chemotherapy has advanced the treatment of osteosarcoma significantly, the overall 5-year survival rate in resistant forms of osteosarcoma is still below 20%. The interaction between cancer and the immune system has long been recognized as a critical aspect of tumour growth. Tumour cells within the tumour microenvironment (TME) suppress antitumour immunity, and immunosuppressive cells and cytokines provide the extrinsic factors of tumour drug resistance. Emerging research demonstrates an immunostimulatory role for the cGAS/STING pathway in osteosarcoma, typically considered an immune-cold or immunosuppressed cancer type. cGAS/STING signalling appears to drive an innate immune response against tumours and potentiates the efficacy of other common therapies including chemo and radiotherapy. Nanotechnological delivery systems for improved therapy delivery for osteosarcoma have also been under investigation in recent years. This review provides an overview of cGAS/STING signalling, its divergent roles in the context of cancer, and collates current research which activates cGAS/STING as an adjuvant immunomodulatory target for the treatment of osteosarcoma. It will also discuss current nanotechnological delivery approaches that have been developed to stimulate cGAS/STING. Finally, it will highlight the future directions that we believe will be central to the development of this transformative field.
Collapse
Affiliation(s)
- Jordan C. O’Donoghue
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona E. Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- I-Form Centre, School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
29
|
Sheehy T, Kwiatkowski AJ, Arora K, Kimmel BR, Schulman JA, Gibson-Corley KN, Wilson JT. STING-Activating Polymer-Drug Conjugates for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:1765-1781. [PMID: 39345818 PMCID: PMC11428287 DOI: 10.1021/acscentsci.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
The stimulator of interferon genes (STING) pathway links innate and adaptive antitumor immunity and therefore plays an important role in cancer immune surveillance. This has prompted widespread development of STING agonists for cancer immunotherapy, but pharmacological barriers continue to limit the clinical impact of STING agonists and motivate the development of drug delivery systems to improve their efficacy and/or safety. We developed SAPCon, a STING-activating polymer-drug conjugate platform based on strain-promoted azide-alkyne cycloaddition of a novel dimeric amidobenzimidazole (diABZI) STING prodrug to hydrophilic poly(dimethylacrylamide-co-azido-ethylmethacrylate) polymer chains through a cathepsin B-responsive linker to increase circulation time and enable passive tumor accumulation. We found that intravenously administered SAPCon accumulated at tumor sites, where it was endocytosed by tumor-associated myeloid cells, resulting in increased STING activation in the tumor tissue. Consequently, SAPCon promoted an immunogenic tumor microenvironment characterized by increased frequency of activated macrophages and dendritic cells and improved infiltration of CD8+ T cells, resulting in inhibition of tumor growth, prolonged survival, and enhanced response to anti-PD-1 immune checkpoint blockade in orthotopic breast cancer models. Collectively, these studies position SAPCon as a modular and programmable platform for improving the efficacy of systemically administered STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Taylor
L. Sheehy
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Karan Arora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Blaise R. Kimmel
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
30
|
Li T, Yum S, Wu J, Li M, Deng Y, Sun L, Zuo X, Chen ZJ. cGAS activation in classical dendritic cells causes autoimmunity in TREX1-deficient mice. Proc Natl Acad Sci U S A 2024; 121:e2411747121. [PMID: 39254994 PMCID: PMC11420187 DOI: 10.1073/pnas.2411747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Detection of cytosolic DNA by the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway provides immune defense against pathogens and cancer but can also cause autoimmunity when overactivated. The exonuclease three prime repair exonuclease 1 (TREX1) degrades DNA in the cytosol and prevents cGAS activation by self-DNA. Loss-of-function mutations of the TREX1 gene are linked to autoimmune diseases such as Aicardi-Goutières syndrome, and mice deficient in TREX1 develop lethal inflammation in a cGAS-dependent manner. In order to determine the type of cells in which cGAS activation drives autoinflammation, we generated conditional cGAS knockout mice on the Trex1-/- background. Here, we show that genetic ablation of the cGAS gene in classical dendritic cells (cDCs), but not in macrophages, was sufficient to rescue Trex1-/- mice from all observed disease phenotypes including lethality, T cell activation, tissue inflammation, and production of antinuclear antibodies and interferon-stimulated genes. These results show that cGAS activation in cDC causes autoinflammation in response to self-DNA accumulated in the absence of TREX1.
Collapse
Affiliation(s)
- Tong Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junjiao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yafang Deng
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lijun Sun
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Zhijian J. Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
31
|
Zhuo SH, Wang TY, Zhao L, Su JY, Hu JJ, Zhao YF, Li YM. piSTING: A Pocket-Independent Agonist Based on Multivalency-Driven STING Oligomerization. Angew Chem Int Ed Engl 2024; 63:e202407037. [PMID: 38767062 DOI: 10.1002/anie.202407037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The stimulator of interferon genes (STING) pathway is a potent therapeutic target for innate immunity. Despite the efforts to develop pocket-dependent small-molecule STING agonists that mimic the endogenous STING ligand, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), most of these agonists showed disappointing results in clinical trials owing to the limitations of the STING pocket. In this study, we developed novel pocket-independent STING-activating agonists (piSTINGs), which act through multivalency-driven oligomerization to activate STING. Additionally, a piSTING-adjuvanted vaccine elicited a significant antibody response and inhibited tumour growth in therapeutic models. Moreover, a piSTING-based vaccine combination with aPD-1 showed remarkable potential to enhance the effectiveness of immune checkpoint blockade (ICB) immunotherapy. In particular, piSTING can strengthen the impact of STING pathway in immunotherapy and accelerate the clinical translation of STING agonists.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tian-Yang Wang
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lang Zhao
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing-Yun Su
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Jian Hu
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315221, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100069, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
32
|
Li W, Chen G, Peng H, Zhang Q, Nie D, Guo T, Zhu Y, Zhang Y, Lin M. Research Progress on Dendritic Cells in Hepatocellular Carcinoma Immune Microenvironments. Biomolecules 2024; 14:1161. [PMID: 39334927 PMCID: PMC11430656 DOI: 10.3390/biom14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that play a crucial role in initiating immune responses by cross-presenting relevant antigens to initial T cells. The activation of DCs is a crucial step in inducing anti-tumor immunity. Upon recognition and uptake of tumor antigens, activated DCs present these antigens to naive T cells, thereby stimulating T cell-mediated immune responses and enhancing their ability to attack tumors. It is particularly noted that DCs are able to cross-present foreign antigens to major histocompatibility complex class I (MHC-I) molecules, prompting CD8+ T cells to proliferate and differentiate into cytotoxic T cells. In the malignant progression of hepatocellular carcinoma (HCC), the inactivation of DCs plays an important role, and the activation of DCs is particularly important in anti-HCC immunotherapy. In this review, we summarize the mechanisms of DCs activation in HCC, the involved regulatory factors and strategies to activate DCs in HCC immunotherapy. It provides a basis for the study of HCC immunotherapy through DCs activation.
Collapse
Affiliation(s)
- Wenya Li
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guojie Chen
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Medical School, Nantong University, Nantong 226019, China
| | - Hailin Peng
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Qingfang Zhang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Dengyun Nie
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Guo
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinxing Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yuhan Zhang
- The First School of Clinical Medicine Southern Medical University, Guangzhou 510515, China
| | - Mei Lin
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
33
|
Gazal S, Gazal S, Kaur P, Bhan A, Olagnier D. Breaking Barriers: Animal viruses as oncolytic and immunotherapeutic agents for human cancers. Virology 2024; 600:110238. [PMID: 39293238 DOI: 10.1016/j.virol.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Oncolytic viruses, defined as viruses capable of lysing cancer cells, emerged as a groundbreaking class of therapeutic entities poised to revolutionize cancer treatment. Their mode of action encompasses both direct tumor cell lysis and the indirect enhancement of anti-tumor immune responses. Notably, four leading contenders in this domain, Rigvir® in Latvia, T-VEC in the United States, H101 in China and Teserpaturev (DELYTACT®) in Japan, have earned approval for treating metastatic melanoma (Rigvir and T-VEC), nasopharyngeal carcinoma and malignant glioma, respectively. Despite these notable advancements, the integration of oncolytic viruses into cancer therapy encounters several challenges. Foremost among these hurdles is the considerable variability observed in clinical responses to oncolytic virus interventions. Moreover, the adaptive immune system may inadvertently target the oncolytic viruses themselves, diverting immune resources away from tumor antigens and undermining therapeutic efficacy. Another significant limitation arises from the presence of preexisting immunity against oncolytic viruses in certain patient populations, hampering treatment outcomes. To circumvent this obstacle, researchers are investigating the utilization of animal viruses, for which humans lack preexisting immunity, as a compelling alternative to human-derived counterparts. In our comprehensive review, we delve into the intricate nuances of oncolytic virotherapy, elucidating the multifaceted mechanisms through which these viruses exert their anti-cancer effects. Furthermore, we provide a thorough examination of animal-derived oncolytic viruses, highlighting their respective strengths and limitations. Lastly, we explore the promising potential of leveraging animal viruses as potent oncolytic agents, offering new avenues for enhancing the efficacy and reach of human cancer therapeutics.
Collapse
Affiliation(s)
- Sabahat Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu, Jammu & Kashmir, India; Department of Biomedicine, Aarhus University, Denmark
| | - Sundus Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu, Jammu & Kashmir, India.
| | - Paviter Kaur
- Division of Veterinary Microbiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, India
| | - Anvesha Bhan
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu, Jammu & Kashmir, India
| | | |
Collapse
|
34
|
Shao C, Chen J, Qiang B, Ye J, Yan F, Zhu Y. The role of cGAS-STING signaling in the development and therapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1451305. [PMID: 39295867 PMCID: PMC11408205 DOI: 10.3389/fimmu.2024.1451305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
The cGAS-STING signaling pathway plays a critical role in innate immunity and defense against viral infections by orchestrating intracellular and adaptive immune responses to DNA. In the context of head and neck squamous cell carcinoma (HNSCC), this pathway has garnered significant attention due to its potential relevance in disease development and progression. HNSCC is strongly associated with risk factors such as smoking, heavy alcohol consumption, and human papillomavirus (HPV) infection. The presence or absence of HPV in HNSCC patients has been shown to have a profound impact on patient survival and prognosis, possibly due to the distinct biological characteristics of HPV-associated tumors. This review aims to provide a comprehensive overview of the current therapeutic approaches and challenges in HNSCC management, as well as the involvement of cGAS-STING signaling and its potential in the therapy of HNSCC. In addition, by advancing the present understanding of the mechanisms underlying this pathway, Activation of cGAS-STING-dependent inflammatory signaling downstream of chromosomal instability can exert both anti-tumoral and pro-tumoral effects in a cell-intrinsic manner, suggesting individualized therapy is of great importance. However, further exploration of the cGAS-STING signaling pathway is imperative for the effective management of HNSCC.
Collapse
Affiliation(s)
- Chengze Shao
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jiawen Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bi Qiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongbo Zhu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
35
|
Yang YT, Deng ZC, Zhang LJ, Fu XL, Fu C, Zhan XZ, Tian YB, Liu WJ. Novel goose parvovirus VP1 targets IRF7 protein to block the type I interferon upstream signaling pathway. Poult Sci 2024; 103:104065. [PMID: 39043024 PMCID: PMC11318561 DOI: 10.1016/j.psj.2024.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Outbreaks of short beak and dwarfism syndrome (SBDS), caused by a novel goose parvovirus (NGPV), have occurred in China since 2015. The NGPV, a single-stranded DNA virus, is thought to be vertically transmitted. However, the mechanism of NGPV immune evasion remains unclear. In this study, we investigated the impact of NGPV infection on the Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in duck embryonic fibroblast (DEF) cells. Our findings demonstrate that NGPV infection stimulates the mRNA expression of cGAS but results in weak IFN-β induction. NGPV impedes the expression of IFN-β and downstream interferon-stimulated genes, thereby reducing the secretion of IFN-β induced by interferon-stimulating DNA (ISD) and poly (I: C). RNA-seq results show that NGPV infection downregulates interferon mRNA expression while enhancing the mRNA expression of inflammatory factors. Additionally, the results of viral protein over-expression indicate that VP1 exhibits a remarkable ability to inhibit IFN-β expression compared to other viral proteins. Results indicated that only the intact VP1 protein could inhibit the expression of IFN-β, while the truncated proteins VP1U and VP2 do not possess such characteristics. The immunoprecipitation experiment showed that both VP1 and VP2 could interact with IRF7 protein, while VP1U does not. In summary, our findings indicate that NGPV infection impairs the host's innate immune response by potentially modulating the expression and secretion of interferons and interferon-stimulating factors via IRF7 molecules, which are regulated by the VP1 protein.
Collapse
Affiliation(s)
- You-Tian Yang
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China; Foshan University, School of Medicine, Guangdong Foshan, 528225, China
| | - Zhi-Chao Deng
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Liu-Jun Zhang
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Xin-Liang Fu
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Chen Fu
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Xiao-Zhi Zhan
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Yun-Bo Tian
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Wen-Jun Liu
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China.
| |
Collapse
|
36
|
Paulis A, Onali A, Vidalain PO, Lotteau V, Jaquemin C, Corona A, Distinto S, Delogu GL, Tramontano E. Identification of new benzofuran derivatives as STING agonists with broad-spectrum antiviral activity. Virus Res 2024; 347:199432. [PMID: 38969014 PMCID: PMC11294726 DOI: 10.1016/j.virusres.2024.199432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The Stimulator of Interferon Genes (STING) is involved in cytosolic DNA sensing and type I Interferons (IFN-I) induction. Aiming to identify new STING agonists with antiviral activity and given the known biological activity of benzothiazole and benzimidazole derivatives, a series of benzofuran derivatives were tested for their ability to act as STING agonists, induce IFN-I and inhibit viral replication. Compounds were firstly evaluated in a gene reporter assay measuring luciferase activity driven by the human IFN-β promoter in cells expressing exogenous STING (HEK293T). Seven of them were able to induce IFN-β transcription while no induction of the IFN promoter was observed in the presence of a mutated and inactive STING, showing specific protein-ligand interaction. Docking studies were performed to predict their putative binding mode. The best hit compounds were then tested on human coronavirus 229E replication in BEAS-2B and MRC-5 cells and three derivatives showed EC50 values in the μM range. Such compounds were also tested on SARS-CoV-2 replication in BEAS-2B cells and in Calu-3 showing they can inhibit SARS-CoV-2 replication at nanomolar concentrations. To further confirm their IFN-dependent antiviral activity, compounds were tested to verify their effect on phospho-IRF3 nuclear localization, that was found to be induced by benzofuran derivatives, and SARS-CoV-2 replication in Vero E6 cells, lacking IFN production, founding them to be inactive. In conclusion, we identified benzofurans as STING-dependent immunostimulatory compounds and host-targeting inhibitors of coronaviruses representing a novel chemical scaffold for the development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- A Paulis
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - A Onali
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - P O Vidalain
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - V Lotteau
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - C Jaquemin
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - A Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - S Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - G L Delogu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - E Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| |
Collapse
|
37
|
Ming Q, Liu J, Lv Z, Wang T, Fan R, Zhang Y, Chen M, Sun Y, Han W, Mei Q. Manganese boosts natural killer cell function via cGAS-STING mediated UTX expression. MedComm (Beijing) 2024; 5:e683. [PMID: 39206412 PMCID: PMC11351689 DOI: 10.1002/mco2.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in both innate immunity and the activation of adaptive immunity. The activating effect of Mn2+ on cyclic GMP-AMP(cGAS)-stimulator of interferon genes (STING signaling has been well known, but its effect on NK cells remains elusive. In this study, we identified the vital role of manganese (Mn2+) in NK cell activation. Mn2+ directly boosts cytotoxicity of NK cells and promotes the cytokine secretion by NK cells, thereby activating CD8+ T cells and enhancing their antitumor activity. Furthermore, Mn2+ can simultaneously activate NK-cell intrinsic cGAS and STING and consequently augment the expression of ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX to promote the responsiveness of NK cells. Our results contribute to a broader comprehension of how cGAS-STING regulates NK cells. As a potent agonist of cGAS-STING, Mn2+ provides a promising option for NK cell-based immunotherapy of cancers.
Collapse
Affiliation(s)
- Qianyi Ming
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Jiejie Liu
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Zijian Lv
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Tiance Wang
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Runjia Fan
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Yan Zhang
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Meixia Chen
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Yingli Sun
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| | - Qian Mei
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| |
Collapse
|
38
|
Lee S, Hong KH, Park H, Ha J, Lee SE, Park DJ, Jeong SD, Kim S, Kim D, Ahn J, Lee HW, Koh WG, Ha SJ, Kim YC. Tumor phagocytosis-driven STING activation invigorates antitumor immunity and reprograms the tumor micro-environment. J Control Release 2024; 373:55-69. [PMID: 38971428 DOI: 10.1016/j.jconrel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Immunogenic cell death (ICD) holds the potential for in situ tumor vaccination while concurrently eradicating tumors and stimulating adaptive immunity. Most ICD inducers, however, elicit insufficient immune responses due to negative feedback against ICD biomarkers, limited infiltration of antitumoral immune cells, and the immunosuppressive tumor micro-environment (TME). Recent findings highlight the pivotal roles of stimulators of interferon gene (STING) activation, particularly in stimulating antigen-presenting cells (APCs) and TME reprogramming, addressing ICD limitations. Herein, we introduced 'tumor phagocytosis-driven STING activation', which involves the activation of STING in APCs during the recognition of ICD-induced cancer cells. We developed a polypeptide-based nanocarrier encapsulating both doxorubicin (DOX) and diABZI STING agonist 3 (dSA3) to facilitate this hypothesis in vitro and in vivo. After systemic administration, nanoparticles predominantly accumulated in tumor tissue and significantly enhanced anticancer efficacy by activating tumor phagocytosis-driven STING activation in MC38 and TC1 tumor models. Immunological activation of APCs occurred within 12 h, subsequently leading to the activation of T cells within 7 days, observed in both the TME and spleen. Furthermore, surface modification of nanoparticles with cyclic RGD (cRGD) moieties, which actively target integrin αvβ3, enhances tumor accumulation and eradication, thereby verifying the establishment of systemic immune memory. Collectively, this study proposes the concept of tumor phagocytosis-driven STING activation and its effectiveness in generating short-term and long-term immune responses.
Collapse
Affiliation(s)
- Susam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kyeong Hee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - JongHoon Ha
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seohyeon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dahae Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - JiWon Ahn
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; GEMCRO, Inc., Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
39
|
Man SM, Kanneganti TD. Innate immune sensing of cell death in disease and therapeutics. Nat Cell Biol 2024; 26:1420-1433. [PMID: 39223376 DOI: 10.1038/s41556-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
40
|
Xiao A, Yin L, Chen T, Qian H. Lipo/TK-CDN/TPP/Y6 nanoparticles inhibit cutaneous melanoma formation. J Drug Target 2024; 32:931-940. [PMID: 38838039 DOI: 10.1080/1061186x.2024.2365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Stimulation of the innate immune stimulator of interferon genes (STING) pathway has been shown to boost anti-tumour immunity. Nevertheless, the systemic delivery of STING agonists to the tumour presents challenges. Therefore, we designed a cyclic dinucleotide (CDN)-based drug delivery system (DDS) combined photothermal therapy (PTT)/photodynamic therapy (PDT)/immunotherapy for cutaneous melanoma. We coencapsulated a reactive oxygen species (ROS)-responsive prodrug thioketone-linked CDN (TK-CDN), and photoresponsive agents chlorin E6 (Y6) within mitochondria-targeting reagent triphenylphosphonium (TPP)-modified liposomes (Lipo/TK-CDN/TPP/Y6). Lipo/TK-CDN/TPP/Y6 exhibited a photothermal effect similar to Y6, along with a superior cellular uptake rate. Upon endocytosis by B16F10 cells, Lipo/TK-CDN/TPP/Y6 generated large amounts of ROS under laser irradiation for PDT. Mice bearing B16F10 tumours were intravenously injected with Lipo/TK-CDN/TPP/Y6 and exposed to irradiation, resulting in a substantial inhibition of tumour growth. Exploration of the mechanism of anti-tumour action showed that Lipo/TK-CDN/TPP/Y6 had a stronger stimulation of STING activation and anti-tumour immune cell infiltration compared to other groups. Hence, the Lipo/TK-CDN/TPP/Y6 nanoparticles offer great potential as a DDS for targeted and on-demand drug release at tumour sites. These nanoparticles exhibit promise as a candidate for precise and controllable combination therapy in the treatment of tumours.
Collapse
Affiliation(s)
- Anju Xiao
- Department of Dermatology and Venereology, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| | - Li Yin
- Department of Pathology, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| | - Ting Chen
- Department of Clinical Medicine, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| | - Huiling Qian
- Department of Endocrinology, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| |
Collapse
|
41
|
Sun W, Wang H, Qi Y, Li M, Zhang R, Gao Z, Cui J, Yu D. Metal-Phenolic Vehicles Potentiate Cycle-Cascade Activation of Pyroptosis and cGAS-STING Pathway for Tumor Immunotherapy. ACS NANO 2024; 18:23727-23740. [PMID: 39155444 DOI: 10.1021/acsnano.4c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The treatment of triple-negative breast cancer (TNBC) faces challenges due to its limited immune response and weak tumor immunogenicity. A collaborative strategy involves combining the activation of pyroptosis and the stimulator of interferon genes (STING) pathway to enhance tumor immunogenicity and fortify the antitumor immune response, which may improve therapeutic outcomes in TNBC. In this study, we report the fabrication of a zinc-phenolic nanocapsule (RMP@Cap), which is loaded with mitoxantrone (MTO) and anti-PD-L1 antibodies (aPD-L1) and coated with erythrocyte membrane, for TNBC immunotherapy. The delivery of RMP@Cap can induce tumor cell pyroptosis and, therefore, trigger the release of mitochondrial DNA, which further combines with zinc agonists to intensify STING activation, resulting in a cascade amplification of the therapeutic effect on tumors. Additionally, the incorporation of aPD-L1 into the zinc-phenolic nanocapsule relieves the inhibitory effect of tumor cells on recruited cytotoxic T cells, thereby improving the tumor-killing capacity. Furthermore, the incorporation of a camouflaged erythrocyte membrane coating enables nanocapsules to achieve prolonged in vivo circulation, resulting in improved tumor accumulation for effective antitumor therapy. This study demonstrates a synergistic therapeutic modality involving pyroptosis, coupled with the simultaneous activation and cyclic amplification of the STING pathway in immunotherapy.
Collapse
Affiliation(s)
- Weikai Sun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Hong Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yafei Qi
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ruyue Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- Research Institute of Shandong University: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform, Jinan, Shandong 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- Research Institute of Shandong University: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform, Jinan, Shandong 250012, China
| |
Collapse
|
42
|
Li J, Yang R, Dong F, Qiu Q, Jiang Z, Ren H, Zhang C, Liu G, Lovell JF, Zhang Y. Enzyme-Dynamic Extracellular Vesicles for Metalloimmunotherapy of Malignant Pleural Effusions. ACS NANO 2024; 18:21855-21872. [PMID: 39109520 DOI: 10.1021/acsnano.3c12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Malignant pleural effusions (MPEs) are hard to treat, and their onset usually signals terminal cancer. Immunotherapies hold promise but must overcome the immunosuppressive MPE microenvironment. Herein, we treat MPEs via synergistically combining two emerging cancer therapy modalities: enzyme-dynamic therapy (EDT) and metalloimmunotherapy. To do so, a nanoplatform termed "A-R-SOME" was developed which comprises MPE-targeted M1 type extracellular vesicles (EVs) loaded with (1) a manganese-based superoxide dismutase (SOD) enzyme, (2) stimulator of interferon genes (STING) agonist diABZI-2, and (3) signal transducer and an activator of transcription 3 (STAT3) small interfering RNA. Endogenous reactive oxygen species within tumors induced immunogenic cell death by EDT, along with STING activation by both Mn and diABZI-2, and suppression of the STAT3 pathway. Systemically administered A-R-SOME alleviated the MPE immunosuppressive microenvironment, triggered antitumor systemic immunity, and long-term immune memory, leading to the complete eradication of MPE and pleural tumors with 100% survival rate in an aggressive murine model. A-R-SOME-induced immune effects were also observed in human patient-derived MPE, pointing toward the translation potential of A-R-SOME as an experimental malignancy treatment.
Collapse
Affiliation(s)
- Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Ruiqi Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Fuqiang Dong
- Tianjin Key Laboratory of Ion and Molecular Function in Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 3000211, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
43
|
Gao C, Xiao C, Wang M, Liang X, Qin C, Zhang H, Bai R, Zhang R, Feng W, Yang J, Tang J. HIF-1 Transcriptionally Regulates Basal Expression of STING to Maintain Cellular Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:494-505. [PMID: 38967520 DOI: 10.4049/jimmunol.2400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.
Collapse
Affiliation(s)
- Chao Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenglu Xiao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengdong Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinxin Liang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Qin
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hang Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rulan Bai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinbo Yang
- Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
45
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
46
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
47
|
Yang H, Zhan X, Zhao J, Shi W, Liu T, Wei Z, Li H, Hou X, Mu W, Chen Y, Zheng C, Wang Z, Wei S, Xiao X, Bai Z. Schisandrin C enhances type I IFN response activation to reduce tumor growth and sensitize chemotherapy through antitumor immunity. Front Pharmacol 2024; 15:1369563. [PMID: 39170700 PMCID: PMC11337024 DOI: 10.3389/fphar.2024.1369563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 08/23/2024] Open
Abstract
With the advancing comprehension of immunology, an increasing number of immunotherapies are being explored and implemented in the field of cancer treatment. The cGAS-STING pathway, a crucial element of the innate immune response, has been identified as pivotal in cancer immunotherapy. We evaluated the antitumor effects of Schisandra chinensis lignan component Schisandrin C (SC) in 4T1 and MC38 tumor-bearing mice, and studied the enhancing effects of SC on the cGAS-STING pathway and antitumor immunity through RNA sequencing, qRT-PCR, and flow cytometry. Our findings revealed that SC significantly inhibited tumor growth in models of both breast and colon cancer. This suppression of tumor growth was attributed to the activation of type I IFN response and the augmented presence of T cells and NK cells within the tumor. Additionally, SC markedly promoted the cGAS-STING pathway activation induced by cisplatin. In comparison to cisplatin monotherapy, the combined treatment of SC and cisplatin exhibited a greater inhibitory effect on tumor growth. The amplified chemotherapeutic efficacy was associated with an enhanced type I IFN response and strengthened antitumor immunity. SC was shown to reduce tumor growth and increase chemotherapy sensitivity by enhancing the type I IFN response activation and boosting antitumor immunity, which enriched the research into the antitumor immunity of S. chinensis and laid a theoretical basis for its application in combating breast and colon cancer.
Collapse
Affiliation(s)
- Huijie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Jia Zhao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Wei Shi
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Ziying Wei
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenqing Mu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Congyang Zheng
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhongxia Wang
- Department of Nutrition, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
48
|
Wang B, Zhang F, Wu X, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Front Immunol 2024; 15:1433321. [PMID: 39161768 PMCID: PMC11330819 DOI: 10.3389/fimmu.2024.1433321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
TANK-binding kinase 1 (TBK1) is a member of the IKK family and plays a crucial role in the activation of non-canonical NF-κB signaling and type I interferon responses. The aberrant activation of TBK1 contributes to the proliferation and survival of various types of tumor cells, particularly in specific mutational or tumorous contexts. Inhibitors targeting TBK1 are under development and application in both in vivo and in vitro settings, yet their clinical efficacy remains limited. Numerous literatures have shown that TBK1 can exhibit both tumor promoting and tumor inhibiting effects. TBK1 acts as a pivotal node within the innate immune pathway, mediating anti-tumor immunity through the activation of innate immune responses. Facilitating interferon-I (IFN-I) production represents a critical mechanism through which TBK1 bridges these processes. IFN has been shown to exert both beneficial and detrimental effects on tumor progression. Hence, the paradoxical role of TBK1 in tumor development may necessitate acknowledgment in light of its downstream IFN-I signaling cascade. In this paper, we review the signaling pathways mediated by TBK1 in various tumor contexts and summarize the dual roles of TBK1 and the TBK1-IFN pathways in both promoting and inhibiting tumor progression. Additionally, we highlight the significance of the TBK1-IFN pathway in clinical therapy, particularly in the context of immune response. We anticipate further advancements in the development of TBK1 inhibitors as part of novel cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
49
|
Zhong Y, Zhang H, Wang P, Zhao J, Ge Y, Sun Z, Wang Z, Li J, Hu S. Auger emitter in combination with Olaparib suppresses tumor growth via promoting antitumor immune responses in pancreatic cancer. Invest New Drugs 2024; 42:442-453. [PMID: 38941055 DOI: 10.1007/s10637-024-01454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The present study aimed to clarify the hypothesis that auger emitter 125I particles in combination with PARP inhibitor Olaparib could inhibit pancreatic cancer progression by promoting antitumor immune response. Pancreatic cancer cell line (Panc02) and mice subcutaneously inoculated with Panc02 cells were employed for the in vitro and in vivo experiments, respectively, followed by 125I and Olaparib administrations. The apoptosis and CRT exposure of Panc02 cells were detected using flow cytometry assay. QRT-PCR, immunofluorescence, immunohistochemical analysis, and western blot were employed to examine mRNA and protein expression. Experimental results showed that 125I combined with Olaparib induced immunogenic cell death and affected antigen presentation in pancreatic cancer. 125I in combination with Olaparib influenced T cells and dendritic cells by up-regulating CD4, CD8, CD69, Caspase3, CD86, granzyme B, CD80, and type I interferon (IFN)-γ and down-regulating Ki67 in vivo. The combination also activated the cyclic GMP-AMP synthase stimulator of IFN genes (Sting) pathway in Panc02 cells. Moreover, Sting knockdown alleviated the effect of the combination of 125I and Olaparib on pancreatic cancer progression. In summary, 125I in combination with Olaparib inhibited pancreatic cancer progression through promoting antitumor immune responses, which may provide a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Heng Zhang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Peng Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Zongqiong Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Zi Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Jie Li
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China.
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China.
- Institute of Translational Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
50
|
Endo R, Ueda T, Nagaoki T, Shima N, Sato Y, Harashima H, Nakamura T. Impact of in vivo fate of STING agonist-loaded lipid nanoparticles on antitumor immunity. J Control Release 2024; 372:609-618. [PMID: 38942082 DOI: 10.1016/j.jconrel.2024.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Therapeutically manipulating the stimulator of interferon genes (STING) pathway has promising potential for enhancing antitumor immunity. Agonists of this pathway (STING agonists) are being evaluated in clinical trials. Loading the STING agonists into lipid nanoparticles (LNPs) increases their safety and efficacy. We previously developed STING agonists loaded LNPs consisting of the ionizable lipid YSK12-C4 (YSK12-LNPs), which showed significant antitumor effects. However, it is largely unclear how the in vivo fate of STING agonists loaded LNPs affects the antitumor immune responses. In this study, we compared the YSK12-LNPs with LNPs composed of DLin-MC3-DMA (MC3-LNPs) showing different in vivo fates. Biodistribution and flow cytometry analyses of mouse tissues revealed that the MC3-LNPs delivered higher amounts of STING agonists to the liver than the YSK12-LNPs. Additionally, significantly more liver leukocytes internalized the MC3-LNPs than the YSK12-LNPs. In contrast, the YSK12-LNPs delivered higher amounts of STING agonists to the liver leukocytes than the MC3-LNPs, leading to the effective induction of innate immunity and inflammation in the tumors. However, the antitumor effects in the B16-F10 lung metastasis and CT26 tumor models were comparable. Interestingly, flow cytometry analyses suggested that the YSK12-LNPs were more likely to activate natural killer cells and M1 macrophages, while the MC3-LNPs were more likely to activate CD8+ T cells. Our data suggest that different antitumor immune response mechanisms may operate depending on the characteristics and distribution of the LNPs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Natsumi Shima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|