1
|
Kayyal H, Cruciani F, Chandran SK, Edry E, Schif-Zuck S, Koren T, Yiannakas A, Rolls A, Ariel A, Rosenblum K. Retrieval of conditioned immune response in male mice is mediated by an anterior-posterior insula circuit. Nat Neurosci 2025:10.1038/s41593-024-01864-4. [PMID: 39870921 DOI: 10.1038/s41593-024-01864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2024] [Indexed: 01/29/2025]
Abstract
To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown. Here, we demonstrated that a bidirectional circuit connecting the anterior and posterior (aIC-pIC) insula mediates the CIR in male mice. Retrieving the behavioral dimension of the association requires activity of aIC-to-pIC neurons, whereas modulating the anticipatory immunological dimension requires bidirectional projections. These results illuminate a mechanism by which experience shapes interactions between sensory internal representations and the immune system. Moreover, this newly described intrainsular circuit contributes to the preservation of brain-dependent immune homeostasis.
Collapse
Affiliation(s)
- Haneen Kayyal
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | - Federica Cruciani
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | | | - Efrat Edry
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Sagie Schif-Zuck
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adonis Yiannakas
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- European University of Cyprus Medical School, Frankfurt am Main, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Yoo SP, Yuan X, Engstrom C, Chang P, Li S, Lathrop L, Lagosh J, Seet C, Kohn DB, Crooks GM. Stage-specific CAR-mediated signaling generates naïve-like, TCR-null CAR T cells from induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624041. [PMID: 39651198 PMCID: PMC11623545 DOI: 10.1101/2024.11.25.624041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Genetically modified, induced pluripotent stem cells (iPSCs) offer a promising allogeneic source for the generation of functionally enhanced, chimeric antigen receptor (CAR) T cells. However, the signaling of CARs during early T cell development and the removal of the endogenous T cell receptor required to prevent alloreactivity pose significant challenges to the production of mature conventional CAR T cells from iPSCs. Here, we show that TCR-null, CD8αβ CAR T cells can be efficiently generated from iPSCs by engineering stage-specific onset of CAR expression and signaling to both permit conventional T cell development and to induce efficient positive selection. CAR T cells produced using this approach displayed a uniform, naïve T cell phenotype and demonstrated superior antigen-specific cytotoxicity compared to iPSC-derived effector memory CAR T cells. Multimodal sequencing revealed CAR-mediated positive selection induced the persistent upregulation of key transcription factors involved in naïve T cell development. Achieving precise control of CAR expression and signaling in developmentally sensitive T precursors will be critical to realizing the full potential for "off-the-shelf", iPSC-derived cellular therapies.
Collapse
|
3
|
Zack SR, Alzoubi O, Satoeya N, Singh KP, Deen S, Nijim W, Lewis MJ, Pitzalis C, Sweiss N, Ivashkiv LB, Shahrara S. Another Notch in the Belt of Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1475-1487. [PMID: 38961731 PMCID: PMC11421962 DOI: 10.1002/art.42937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Notch ligands and receptors, including JAG1/2, DLL1/4, and Notch1/3, are enriched on macrophages (MΦs), fibroblast-like synoviocytes (FLS), and/or endothelial cells in rheumatoid arthritis (RA) compared with normal synovial tissues (ST). Power Doppler ultrasound-guided ST studies reveal that the Notch family is highly involved in early active RA, especially during neovascularization. In contrast, the Notch family is not implicated during the erosive stage, evidenced by their lack of correlation with radiographic damage in RA ST. Toll-like receptors and tumor necrosis factor (TNF) are the common inducers of Notch expression in RA MΦs, FLS, and endothelial cells. Among Notch ligands, JAG1 and/or DLL4 are most inducible by inflammatory responses in RA MΦs or endothelial cells and transactivate their receptors on RA FLS. TNF plays a central role on Notch ligands, as anti-TNF good responders display JAG1/2 and DLL1/4 transcriptional downregulation in RA ST myeloid cells. In in vitro studies, TNF increases Notch3 expression in MΦs, which is further amplified by RA FLS addition. Specific disease-modifying antirheumatic drugs reduced JAG1 and Notch3 expression in MΦ and RA FLS cocultures. Organoids containing FLS and endothelial cells have increased expression of JAG1 and Notch3. Nonetheless, Methotrexate, interleukin-6 receptor (IL-6R) antibodies, and B cell blockers are mostly ineffective at decreasing Notch family expression. NF-κB, MAPK, and AKT pathways are involved in Notch signaling, whereas JAK/STATs are not. Although Notch blockade has been effective in RA preclinical studies, its small molecule inhibitors have failed in phase I and II studies, suggesting that alternative strategies may be required to intercept their function.
Collapse
Affiliation(s)
- Stephanie R Zack
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| | - Osama Alzoubi
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| | - Neha Satoeya
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| | - Kunwar P Singh
- The University of Illinois at Chicago, Chicago, Illinois
| | - Sania Deen
- The University of Illinois at Chicago, Chicago, Illinois
| | - Wes Nijim
- The University of Illinois at Chicago, Chicago, Illinois
| | - Myles J Lewis
- Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
| | - Costantino Pitzalis
- Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Nadera Sweiss
- The University of Illinois at Chicago, Chicago, Illinois
| | - Lionel B Ivashkiv
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Medical College, New York, New York
| | - Shiva Shahrara
- Jesse Brown VA Medical Center and The University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Qian J, Li Z, Wang J, Lin Y, Yu Y. 6-gingerol and its derivatives inhibit Helicobacter pylori-induced gastric mucosal inflammation and improve gastrin and somatostatin secretion. Front Microbiol 2024; 15:1451563. [PMID: 39234535 PMCID: PMC11371576 DOI: 10.3389/fmicb.2024.1451563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
The resistance of Helicobacter pylori (H. pylori) has increased in recent years, prompting a trend in the research and development of new drugs. In our study, three derivatives (JF-1, JF-2, and JF-3) were synthesized using 6-gingerol as the main component, while JF-4, containing both 6-gingerol and 6-shogaol as the main components, was extracted from dried ginger. The minimum inhibitory concentrations (MICs), determined using the ratio dilution method, were 80 μg/mL for JF-1, 40 μg/mL for JF-2, 30 μg/mL for JF-3, 40 μg/mL for JF-4, 60 μg/mL for 6-gingerol standard (SS), and 0.03 μg/mL for amoxicillin (AMX). After treating H. pylori-infected mice, the inflammation of the gastric mucosa was suppressed. The eradication rate of H. pylori was 16.7% of JF-3 low-dose treatment (LDT), 25.0% of JF-3 high-dose treatment (HDT), 16.7% of JF-4 LDT, 16.7% of JF-4 HDT, 30% of SS LDT, 50% of SS HDT, and 36.4% of the positive control group (PCG). The levels of gastrin, somatostatin (SST), IFN-γ, IL-4, and IL-8 were significantly recovered in the JF-3 and JF-4 administration groups, but the effect was stronger in the high-dose group. These results demonstrate that 6-gingerol and its derivatives have significant anti-Helicobacter pylori effects and are promising potential treatments for H. pylori infection.
Collapse
Affiliation(s)
- Jiali Qian
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhennan Li
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Jinhui Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxian Lin
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Yingcong Yu
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Medicine, Shanghai University, Shanghai, China
- The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
6
|
Yuwen Y, Wang X, Liu J, Liu Z, Zhu H. Delta- like ligand 4- expressing macrophages and human diseases: Insights into pathophysiology and therapeutic opportunities. Heliyon 2023; 9:e20777. [PMID: 37842562 PMCID: PMC10569996 DOI: 10.1016/j.heliyon.2023.e20777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages are key players in the immune response and have been implicated in various human diseases, including atherosclerosis, cancer, and chronic inflammatory disorders. While numerous studies have delved into the nuances of macrophage behavior in these conditions, there remains a gap in understanding the specific role of Delta-like ligand 4 (Dll4)-expressing macrophages and their overarching implications across these diseases. Among the plethora of factors expressed by macrophages, Dll4 has emerged as a molecule of particular interest. Recent studies have highlighted its unique role in modulating macrophage functions and its potential implications in various diseases. This review seeks to consolidate existing knowledge, address this gap, and present a comprehensive overview of Dll4-expressing macrophages in the context of these disorders and highlight their potential as therapeutic targets. We examined the involvement of Dll4-expressing macrophages in multiple human diseases such as atherosclerosis, cancer and chronic inflammatory diseases, emphasizing their influence on disease progression. We also discussed the challenges, limitations, and emerging research areas in targeting Dll4-expressing macrophages and provide an outlook on potential therapeutic strategies for the treatment of these diseases. By addressing the previously existing research gap, we've provided a roadmap that brings together fragmented insights, paving the way for more holistic research and potentially more effective therapeutic strategies centered on Dll4-expressing macrophages.
Collapse
Affiliation(s)
- Ya Yuwen
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Medical School, Xizang Minzu University, Xianyang, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Jing Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Haitao Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an, China
| |
Collapse
|
7
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
8
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
9
|
Teichman S, Wang H, Lee CR, Mohtashami M, Foerster E, Han J, Trotman-Grant AC, Winer S, Tsui H, Philpott DJ, Zúñiga-Pflücker JC. Recent Thymic Emigrants Require RBPJ-Dependent Notch Signaling to Transition into Functionally Mature Naive T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:81-90. [PMID: 37154711 PMCID: PMC10330261 DOI: 10.4049/jimmunol.2300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Recent thymic emigrant (RTE) cells are nascent T cells that continue their post-thymic maturation in the periphery and dominate T cell immune responses in early life and in adults having undergone lymphodepletion regimens. However, the events that govern their maturation and their functionality as they transition to mature naive T cells have not been clearly defined. Using RBPJind mice, we were able to identify different stages of RTE maturation and interrogate their immune function using a T cell transfer model of colitis. As CD45RBlo RTE cells mature, they transition through a CD45RBint immature naive T (INT) cell population that is more immunocompetent but shows a bias toward IL-17 production at the expense of IFN-γ. Additionally, the levels of IFN-γ and IL-17 produced in INT cells are highly dependent on whether Notch signals are received during INT cell maturation or during their effector function. IL-17 production by INT cells showed a total requirement for Notch signaling. Loss of Notch signaling at any stage of INT cells resulted in an impaired colitogenic effect of INT cells. RNA sequencing of INT cells that had matured in the absence of Notch signals showed a reduced inflammatory profile compared with Notch-responsive INT cells. Overall, we have elucidated a previously unknown INT cell stage, revealed its intrinsic bias toward IL-17 production, and demonstrated a role for Notch signaling in INT cell peripheral maturation and effector function in the context of a T cell transfer model of colitis.
Collapse
Affiliation(s)
- Sintia Teichman
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Helen Wang
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Jianxun Han
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ashton C. Trotman-Grant
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hubert Tsui
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Lucas CR, Halley PD, Chowdury AA, Harrington BK, Beaver L, Lapalombella R, Johnson AJ, Hertlein EK, Phelps MA, Byrd JC, Castro CE. DNA Origami Nanostructures Elicit Dose-Dependent Immunogenicity and Are Nontoxic up to High Doses In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108063. [PMID: 35633287 PMCID: PMC9250639 DOI: 10.1002/smll.202108063] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/21/2022] [Indexed: 05/03/2023]
Abstract
DNA origami (DO) nanotechnology enables the construction of precise nanostructures capable of functionalization with small molecule drugs, nucleic acids, and proteins, suggesting a promising platform for biomedical applications. Despite the potential for drug and vaccine delivery, the impact of DO vehicles on immunogenicity in vivo is not well understood. Here, two DO vehicles, a flat triangle and a nanorod, at varying concentrations are evaluated in vitro and with a repeated dosing regimen administered at a high dose in vivo to study early and late immunogenicity. The studies show normal CD11b+ myeloid cell populations preferentially internalize DO in vitro. DO structures distribute well systemically in vivo, elicit a modest pro-inflammatory immune response that diminishes over time and are nontoxic as shown by weight, histopathology, lack of cytokine storm, and a complete biochemistry panel at the day 10 end point. The results take critical steps to characterize the biological response to DO and suggest that DO vehicles represent a promising platform for drug delivery and vaccine development where immunogenicity should be a key consideration.
Collapse
Affiliation(s)
- Christopher R Lucas
- Department of Mechanical and Aerospace Engineering, Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Patrick D Halley
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Amjad A Chowdury
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Bonnie K Harrington
- Comprehensive Cancer Center, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Larry Beaver
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Rosa Lapalombella
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Amy J Johnson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Erin K Hertlein
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - John C Byrd
- Comprehensive Cancer Center, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, Biophysics Graduate Program, Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
11
|
Geng CL, Chen JY, Song TY, Jung JH, Long M, Song MF, Ji T, Min BS, Lee JG, Peng B, Pu YS, Fan HJ, Hao P, Zhou Q, Shin EC, Cang Y. Lenalidomide bypasses CD28 co-stimulation to reinstate PD-1 immunotherapy by activating Notch signaling. Cell Chem Biol 2022; 29:1260-1272.e8. [PMID: 35732177 DOI: 10.1016/j.chembiol.2022.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Programmed cell death protein 1 (PD-1) checkpoint blockade therapy requires the CD28 co-stimulatory receptor for CD8+ T cell expansion and cytotoxicity. However, CD28 expression is frequently lost in exhausted T cells and during immune senescence, limiting the clinical benefits of PD-1 immunotherapy in individuals with cancer. Here, using a cereblon knockin mouse model that regains in vivo T cell response to lenalidomide, an immunomodulatory imide drug, we show that lenalidomide reinstates the anti-tumor activity of CD28-deficient CD8+ T cells after PD-1 blockade. Lenalidomide redirects the CRL4Crbn ubiquitin ligase to degrade Ikzf1 and Ikzf3 in T cells and unleashes paracrine interleukin-2 (IL-2) and intracellular Notch signaling, which collectively bypass the CD28 requirement for activation of intratumoral CD8+ T cells and inhibition of tumor growth by PD-1 blockade. Our results suggest that PD-1 immunotherapy can benefit from a lenalidomide combination when treating solid tumors infiltrated with abundant CD28- T cells.
Collapse
Affiliation(s)
- Chen-Lu Geng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jun-Yi Chen
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian-Yu Song
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jae Hyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Long
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Min-Fang Song
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Byung Soh Min
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Peng
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yi-Sheng Pu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hong-Jie Fan
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Qi Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
12
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
13
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Gomez AH, Joshi S, Yang Y, Tune JD, Zhao MT, Yang H. Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration. J Cardiovasc Dev Dis 2021; 8:125. [PMID: 34677194 PMCID: PMC8541010 DOI: 10.3390/jcdd8100125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The Notch intercellular signaling pathways play significant roles in cardiovascular development, disease, and regeneration through modulating cardiovascular cell specification, proliferation, differentiation, and morphogenesis. The dysregulation of Notch signaling leads to malfunction and maldevelopment of the cardiovascular system. Currently, most findings on Notch signaling rely on animal models and a few clinical studies, which significantly bottleneck the understanding of Notch signaling-associated human cardiovascular development and disease. Recent advances in the bioengineering systems and human pluripotent stem cell-derived cardiovascular cells pave the way to decipher the role of Notch signaling in cardiovascular-related cells (endothelial cells, cardiomyocytes, smooth muscle cells, fibroblasts, and immune cells), and intercellular crosstalk in the physiological, pathological, and regenerative context of the complex human cardiovascular system. In this review, we first summarize the significant roles of Notch signaling in individual cardiac cell types. We then cover the bioengineering systems of microfluidics, hydrogel, spheroid, and 3D bioprinting, which are currently being used for modeling and studying Notch signaling in the cardiovascular system. At last, we provide insights into ancillary supports of bioengineering systems, varied types of cardiovascular cells, and advanced characterization approaches in further refining Notch signaling in cardiovascular development, disease, and regeneration.
Collapse
Affiliation(s)
- Angello Huerta Gomez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
| | - Sanika Joshi
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76201, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
| | - Johnathan D. Tune
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
| |
Collapse
|
15
|
Wang Y, Qiu F, Xu Y, Hou X, Zhang Z, Huang L, Wang H, Xing H, Wu S. Stem cell-like memory T cells: The generation and application. J Leukoc Biol 2021; 110:1209-1223. [PMID: 34402104 DOI: 10.1002/jlb.5mr0321-145r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-like memory T cells (Tscm), are a newly defined memory T cell subset with characteristics of long life span, consistent self-renewing, rapid differentiation into effector T cells, and apoptosis resistance. These features indicate that Tscm have great therapeutic or preventive purposes, including being applied in chimeric Ag receptor-engineered T cells, TCR gene-modified T cells, and vaccines. However, the little knowledge about Tscm development restrains their applications. Strength and duration of TCR signaling, cytokines and metabolism in the T cells during activation all influence the Tscm development via regulating transcriptional factors and cell signaling pathways. Here, we summarize the molecular and cellular pathways involving Tscm differentiation, and its clinical application for cancer immunotherapy and prevention.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Yifan Xu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhili Zhang
- Clinical Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Huijun Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Allen F, Maillard I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front Cell Dev Biol 2021; 9:649205. [PMID: 34124039 PMCID: PMC8194077 DOI: 10.3389/fcell.2021.649205] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the Notch signaling pathway has been investigated as a therapeutic target for the treatment of cancers, and more recently in the context of immune and inflammatory disorders. Notch is an evolutionary conserved pathway found in all metazoans that is critical for proper embryonic development and for the postnatal maintenance of selected tissues. Through cell-to-cell contacts, Notch orchestrates cell fate decisions and differentiation in non-hematopoietic and hematopoietic cell types, regulates immune cell development, and is integral to shaping the amplitude as well as the quality of different types of immune responses. Depriving some cancer types of Notch signals has been shown in preclinical studies to stunt tumor growth, consistent with an oncogenic function of Notch signaling. In addition, therapeutically antagonizing Notch signals showed preclinical potential to prevent or reverse inflammatory disorders, including autoimmune diseases, allergic inflammation and immune complications of life-saving procedures such allogeneic bone marrow and solid organ transplantation (graft-versus-host disease and graft rejection). In this review, we discuss some of these unique approaches, along with the successes and challenges encountered so far to target Notch signaling in preclinical and early clinical studies. Our goal is to emphasize lessons learned to provide guidance about emerging strategies of Notch-based therapeutics that could be deployed safely and efficiently in patients with immune and inflammatory disorders.
Collapse
Affiliation(s)
- Frederick Allen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Tindemans I, van Schoonhoven A, KleinJan A, de Bruijn MJ, Lukkes M, van Nimwegen M, van den Branden A, Bergen IM, Corneth OB, van IJcken WF, Stadhouders R, Hendriks RW. Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress. J Clin Invest 2021; 130:3576-3591. [PMID: 32255764 DOI: 10.1172/jci128310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Allergic asthma is mediated by Th2 responses to inhaled allergens. Although previous experiments indicated that Notch signaling activates expression of the key Th2 transcription factor Gata3, it remains controversial how Notch promotes allergic airway inflammation. Here we show that T cell-specific Notch deficiency in mice prevented house dust mite-driven eosinophilic airway inflammation and significantly reduced Th2 cytokine production, serum IgE levels, and airway hyperreactivity. However, transgenic Gata3 overexpression in Notch-deficient T cells only partially rescued this phenotype. We found that Notch signaling was not required for T cell proliferation or Th2 polarization. Instead, Notch-deficient in vitro-polarized Th2 cells showed reduced accumulation in the lungs upon in vivo transfer and allergen challenge, as Notch-deficient Th2 cells were retained in the lung-draining lymph nodes. Transcriptome analyses and sequential adoptive transfer experiments revealed that while Notch-deficient lymph node Th2 cells established competence for lung migration, they failed to upregulate sphingosine-1-phosphate receptor 1 (S1PR1) and its critical upstream transcriptional activator Krüppel-like factor 2 (KLF2). As this KLF2/S1PR1 axis represents the essential cell-intrinsic regulator of T cell lymph node egress, we conclude that the druggable Notch signaling pathway licenses the Th2 response in allergic airway inflammation via promoting lymph node egress.
Collapse
|
18
|
Xie J, Wen J, Chen C, Luo M, Hu B, Wu D, Ye J, Lin Y, Ning L, Ning Y, Li Y. Notch 1 Is Involved in CD4 + T Cell Differentiation Into Th1 Subtype During Helicobacter pylori Infection. Front Cell Infect Microbiol 2020; 10:575271. [PMID: 33224898 PMCID: PMC7667190 DOI: 10.3389/fcimb.2020.575271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection induces CD4+ T differentiation cells into IFN-γ-producing Th1 cells. However, the details of mechanism underlying this process remain unclear. Notch signal pathway has been reported to regulate the differentiation of CD4+ T cells into Th1 subtype in many Th1-mediated inflammatory disorders but not yet in H. pylori infection. In the present study, the mRNA expression pattern of CD4+ T cells in H. pylori-infected patients differed from that of healthy control using Human Signal Transduction Pathway Finder RT2 Profiler PCR Array, and this alteration was associated with Notch signal pathway, as analyzed by Bioinformation. Quantitative real-time PCR showed that the mRNA expression of Notch1 and its target gene Hes-1 in CD4+ T cells of H. pylori-infected individuals increased compared with the healthy controls. In addition, the mRNA expression of Th1 master transcription factor T-bet and Th1 signature cytokine IFN-γ was both upregulated in H. pylori-infected individuals and positively correlated with Notch1 expression. The increased protein level of Notch1 and IFN-γ were also observed in H. pylori-infected individuals confirmed by flow cytometry and ELISA. In vitro, inhibition of Notch signaling decreased the mRNA expression of Notch1, Hes-1, T-bet, and IFN-γ, and reduced the protein levels of Notch1 and IFN-γ and the secretion of IFN-γ in CD4+ T cells stimulated by H. pylori. Collectively, this is the first evidence that Notch1 is upregulated and involved in the differentiation of Th1 cells during H. pylori infection, which will facilitate exploiting Notch1 as a therapeutic target for the control of H. pylori infection.
Collapse
Affiliation(s)
- Jinling Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Affiliated Xinhui People's Hospital, Southern Medical University, Jiangmen, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chuxi Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bingxin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danlin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanqing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Goruganthu MUL, Shanker A, Dikov MM, Carbone DP. Specific Targeting of Notch Ligand-Receptor Interactions to Modulate Immune Responses: A Review of Clinical and Preclinical Findings. Front Immunol 2020; 11:1958. [PMID: 32922403 PMCID: PMC7456812 DOI: 10.3389/fimmu.2020.01958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding and targeting Notch signaling effectively has long been valued in the field of cancer and other immune disorders. Here, we discuss key discoveries at the intersection of Notch signaling, cancer and immunology. While there is a plethora of Notch targeting agents tested in vitro, in vivo and in clinic, undesirable off-target effects and therapy-related toxicities have been significant obstacles. We make a case for the clinical application of ligand-derived and affinity modifying compounds as novel therapeutic agents and discuss major research findings with an emphasis on Notch ligand-specific modulation of immune responses.
Collapse
Affiliation(s)
- Mounika U. L. Goruganthu
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Mikhail M. Dikov
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - David P. Carbone
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
20
|
He Y, Xu L, Feng J, Wu K, Zhao Y, Huang H. HDAC Inhibitor LBH589 Suppresses the Proliferation but Enhances the Antileukemic Effect of Human γδT Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:623-630. [PMID: 33005729 PMCID: PMC7515977 DOI: 10.1016/j.omto.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
γδT cells have potent effects on hematological malignancies, and their functions can be regulated by anti-tumor agents. Histone deacetylase inhibitors (HDACis) not only have antileukemic activity on leukemia but also affect immune cells during therapeutic application. In this in vitro study, we showed that LBH589, a pan-HDACi, impaired the proliferation of human γδT cells, as well as their proportions in peripheral blood mononuclear cells (PBMCs). At the specific concentration, LBH589 induced significant antileukemic activity of γδT cells against the HL-60 cells and Kasumi cells in a dose-dependent manner. However, the expression levels of activating receptor and molecules, as well as interferon-γ (IFN-γ) expression on γδT cells, were not affected by LBH589. After treatment with LBH589 for indicated times, extracellular-regulated protein kinase (ERK), Akt, and c-Jun N-terminal kinase (JNK) signaling pathways in γδT cells were not activated. In contrast, a stronger expression of Notch was observed and sustained for 72 h. Inhibition of Notch signaling by FLI-06, the γ-secretase inhibitor, significantly reversed the enhanced antileukemic ability of γδT cells induced by LBH589. For the first time, our investigations demonstrate that LBH589 can inhibit proliferation of γδT cells but facilitate their antileukemic effects via activation of Notch signaling.
Collapse
Affiliation(s)
- Ying He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Zhejiang Provincial People’s Hospital, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kangni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author: Yanmin Zhao, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author: He Huang, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
21
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Giladi A, Cohen M, Medaglia C, Baran Y, Li B, Zada M, Bost P, Blecher-Gonen R, Salame TM, Mayer JU, David E, Ronchese F, Tanay A, Amit I. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat Biotechnol 2020; 38:629-637. [PMID: 32152598 DOI: 10.1038/s41587-020-0442-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Crosstalk between neighboring cells underlies many biological processes, including cell signaling, proliferation and differentiation. Current single-cell genomic technologies profile each cell separately after tissue dissociation, losing information on cell-cell interactions. In the present study, we present an approach for sequencing physically interacting cells (PIC-seq), which combines cell sorting of physically interacting cells (PICs) with single-cell RNA-sequencing. Using computational modeling, PIC-seq systematically maps in situ cellular interactions and characterizes their molecular crosstalk. We apply PIC-seq to interrogate diverse interactions including immune-epithelial PICs in neonatal murine lungs. Focusing on interactions between T cells and dendritic cells (DCs) in vitro and in vivo, we map T cell-DC interaction preferences, and discover regulatory T cells as a major T cell subtype interacting with DCs in mouse draining lymph nodes. Analysis of T cell-DC pairs reveals an interaction-specific program between pathogen-presenting migratory DCs and T cells. PIC-seq provides a direct and broadly applicable technology to characterize intercellular interaction-specific pathways at high resolution.
Collapse
Affiliation(s)
- Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Precision Immunology Institute, Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Yael Baran
- Department of Computer Science and Applied Mathematics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Bost
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Systems Biology Group, Center for Bioinformatics, Biostatistics and Integrative Biology (C3BI) and USR 3756, Institut Pasteur CNRS, Paris, France.,Sorbonne Université, Complexité du vivant, Paris, France
| | - Ronnie Blecher-Gonen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Jin B, Liang Y, Liu Y, Zhang LX, Xi FY, Wu WJ, Li Y, Liu GH. Notch signaling pathway regulates T cell dysfunction in septic patients. Int Immunopharmacol 2019; 76:105907. [PMID: 31525636 DOI: 10.1016/j.intimp.2019.105907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/21/2023]
Abstract
Sepsis disrupts innate and adaptive immune response, and immune disorders may also impact clinical course of sepsis. Notch signaling pathway plays a vital role in T cell modulation and differentiation. The aim of current study was to investigate the immunoregulatory function of Notch signaling pathway to T cells in patients with sepsis and septic shock. Twenty-seven sepsis patients, twenty-five septic shock patients, and twenty-one normal controls (NCs) were enrolled. Notch receptors mRNA levels were semi-quantified by real-time PCR. The absolute numbers of CD3+, CD4+, and CD8+ T cells were measured by flow cytometry. Key transcriptional factors of CD4+ T cells, cytotoxic molecules in CD8+ T cells, and cytotoxicity of CD8+ T cells were investigated. The regulatory activities of Notch signaling inhibition by γ-secretase inhibitor (GSI) on purified CD4+ and CD8+ T cells from sepsis and septic shock patients were also assessed. Notch1 mRNA relative level was significantly elevated in sepsis and septic shock patients when compared with NCs. CD4+ and CD8+ T cells were dysfunctional in sepsis and septic shock, which presented as decreased cell accounts, down-regulation of Th1/Th17 transcriptional factors and cytotoxic molecules (perforin, granzyme B, and FasL), and reduced cytotoxicity of CD8+ T cells. Notch signaling inhibition by GSI increased Th1 and Th17 differentiation of CD4+ T cells. Moreover, GSI stimulation not only promoted perforin, granzyme B, and FasL mRNA expression in CD8+ T cells, but also elevated CD8+ T cell-induced target cell death and IFN-γ/TNF-α production in sepsis and septic shock. The current data suggest that Notch signaling pathway contributes to T cell dysfunction and limited immune response in sepsis.
Collapse
Affiliation(s)
- Bo Jin
- Department of Emergency Surgery, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yuan Liang
- Department of Anesthesiology, 964th Hospital of PLA, Changchun, Jilin Province 130000, China
| | - Ye Liu
- Intensive Care Unit, 964th Hospital of PLA, Changchun, Jilin Province 130000, China
| | - Li-Xia Zhang
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China
| | - Feng-Yu Xi
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China
| | - Wu-Jun Wu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China.
| | - Guo-Hui Liu
- Department of Emergency Surgery, First Hospital of Jilin University, Changchun, Jilin Province 130021, China.
| |
Collapse
|
25
|
LaLiah Thomas P, Shanker A. Notch as an Immunologic Basis of Cancer Disparities. CANCER HEALTH DISPARITIES 2019; 3:e1-e10. [PMID: 34268483 PMCID: PMC8278364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-individual differences due to racial/ethnic backgrounds may alter host immunity responsible for the cancer immunosurveillance and elimination, leading to disparate cancer incidence and relapse. One basis of disparity in tumor incidence, progression or therapeutic outcomes could lie in the components of Notch intercellular communication system, which provide instructive signals for a variety of pathways regulating cell commitment and differentiation including context-dependent lymphocyte polarization in tumor microenvironment. Notch signaling in hematopoietic cells is perturbed by tumor growth for its advantage, and there are indications that differences in Notch components could underlie poor cancer prognosis in certain populations. Here, we discuss the oncogenic and immunologic aspects of Notch, which should inform on cancer health disparities and therapeutic outcomes.
Collapse
Affiliation(s)
- Portia LaLiah Thomas
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
- Host–Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
26
|
Liu C, Xu B, Li Q, Li A, Li L, Yue J, Hu Q, Yu J. Smoking history influences the prognostic value of peripheral naïve CD4+ T cells in advanced non-small cell lung cancer. Cancer Cell Int 2019; 19:176. [PMID: 31320838 PMCID: PMC6617618 DOI: 10.1186/s12935-019-0899-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Considering the effect of smoking on tumor immunity, we attempted to investigate the impact of smoking history on the prognostic value of circulating naïve and memory CD4+ and CD8+ T cells in advanced non-small cell lung cancer (NSCLC) treated with chemo(radio)therapy. Methods Of 196 histologically confirmed advanced NSCLC, 98 eligible ones were enrolled. Naïve and memory CD4+ and CD8+ T cells from peripheral blood were measured by flow cytometry. Kaplan-Meier curves helped estimate patients' survival. The uni- and multivariate Cox proportional hazards regression model was employed in the assessment of the prognostic value of factors. Results Multivariate survival analyses showed that peripheral naïve CD4+ T cells independently predicted favorable overall survival (OS) in ever smokers with advanced NSCLC (P = 0.007), but unfavorable OS in never smokers with the same ailment (P = 0.012). Ever smokers presented a different distribution of naïve and memory T cells: low expression levels of naïve CD4+ T (P = 0.005), naïve CD8+ T (P = 0.031), CD4+ naïve/memory ratio (P = 0.020), and CD8+ naïve/memory ratio (P = 0.019), and high distributions of memory CD4 + T (P = 0.004), memory CD8 + T (P = 0.034), and naïve CD8/CD4 ratio (P = 0.020), when compared to never smokers. Conclusions We revealed the impact of cigarette-smoking on peripheral naïve CD4+ T cells' prognostic value in advanced NSCLC patients. These results could help in refining personalized treatment for advanced NSCLC patients.
Collapse
Affiliation(s)
- Chao Liu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China.,2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China.,3Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071 China
| | - Bin Xu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Qian Li
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Aijie Li
- 4Weifang Medical University, Weifang, 261053 Shandong China
| | - Lan Li
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Jinbo Yue
- 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Qinyong Hu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Jinming Yu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China.,2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| |
Collapse
|
27
|
Chung J, Radojcic V, Perkey E, Parnell TJ, Niknafs Y, Jin X, Friedman A, Labrecque N, Blazar BR, Brennan TV, Siebel CW, Maillard I. Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4 + T Cells in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:557-568. [PMID: 31182480 DOI: 10.4049/jimmunol.1900192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) is the most serious complication of allogeneic hematopoietic cell transplantation. Notch signals delivered during the first 48 h after transplantation drive proinflammatory cytokine production in conventional T cells (Tconv) and inhibit the expansion of regulatory T cells (Tregs). Short-term Notch inhibition induces long-term GVHD protection. However, it remains unknown whether Notch blockade blunts GVHD through its effects on Tconv, Tregs, or both and what early Notch-regulated molecular events occur in alloantigen-specific T cells. To address these questions, we engineered T cell grafts to achieve selective Notch blockade in Tconv versus Tregs and evaluated their capacity to trigger GVHD in mice. Notch blockade in Tconv was essential for GVHD protection as GVHD severity was similar in the recipients of wild-type Tconv combined with Notch-deprived versus wild-type Tregs. To identify the impact of Notch signaling on the earliest steps of T cell activation in vivo, we established a new acute GVHD model mediated by clonal alloantigen-specific 4C CD4+ Tconv. Notch-deprived 4C T cells had preserved early steps of activation, IL-2 production, proliferation, and Th cell polarization. In contrast, Notch inhibition dampened IFN-γ and IL-17 production, diminished mTORC1 and ERK1/2 activation, and impaired transcription of a subset of Myc-regulated genes. The distinct Notch-regulated signature had minimal overlap with known Notch targets in T cell leukemia and developing T cells, highlighting the specific impact of Notch signaling in mature T cells. Our findings uncover a unique molecular program associated with the pathogenic effects of Notch in T cells at the earliest stages of GVHD.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Vedran Radojcic
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Timothy J Parnell
- Huntsman Cancer Institute Bioinformatic Analysis Shared Resource, University of Utah, Salt Lake City, UT 84112
| | - Yashar Niknafs
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xi Jin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nathalie Labrecque
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T IJ4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T IJ4, Canada
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Todd V Brennan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; .,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
28
|
Vieceli Dalla Sega F, Fortini F, Aquila G, Campo G, Vaccarezza M, Rizzo P. Notch Signaling Regulates Immune Responses in Atherosclerosis. Front Immunol 2019; 10:1130. [PMID: 31191522 PMCID: PMC6540611 DOI: 10.3389/fimmu.2019.01130] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis is a chronic autoimmune inflammatory disease that can cause coronary artery disease, stroke, peripheral artery disease, depending on which arteries are affected. At the beginning of atherosclerosis plasma lipoproteins accumulate in the sub-endothelial space. In response, monocytes migrate from the circulation through the endothelium into the intima where they differentiate into macrophages. These early events trigger a complex immune response that eventually involves many cellular subtypes of both innate and adaptive immunity. The Notch signaling pathway is an evolutionary conserved cell signaling system that mediates cell-to-cell communication. Recent studies have revealed that Notch modulate atherosclerosis by controlling macrophages polarization into M1 or M2 subtypes. Furthermore, it is known that Notch signaling controls differentiation and activity of T-helper and cytotoxic T-cells in inflammatory diseases. In this review, we will discuss the role of Notch in modulating immunity in the context of atherosclerosis and whether targeting Notch may represent a therapeutic strategy.
Collapse
Affiliation(s)
| | - Francesca Fortini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola, Italy.,Cardiovascular Center, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Mauro Vaccarezza
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Paola Rizzo
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola, Italy.,Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Tchekneva EE, Goruganthu MUL, Uzhachenko RV, Thomas PL, Antonucci A, Chekneva I, Koenig M, Piao L, Akhter A, de Aquino MTP, Ranganathan P, Long N, Magliery T, Valujskikh A, Evans JV, Arasada RR, Massion PP, Carbone DP, Shanker A, Dikov MM. Determinant roles of dendritic cell-expressed Notch Delta-like and Jagged ligands on anti-tumor T cell immunity. J Immunother Cancer 2019; 7:95. [PMID: 30940183 PMCID: PMC6446314 DOI: 10.1186/s40425-019-0566-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Background Notch intercellular communication instructs tissue-specific T-cell development and function. In this study, we explored the roles of dendritic cell (DC)-expressed Notch ligands in the regulation of T-cell effector function. Methods We generated mice with CD11c lineage-specific deletion of Notch Delta-like ligand (Dll)1 and Jagged (Jag)2. Using these genetically-ablated mice and engineered pharmacological Notch ligand constructs, the roles of various Delta-like and Jagged ligands in the regulation of T-cell-mediated immunity were investigated. We assessed tumor growth, mouse survival, cytokine production, immunophenotyping of myeloid and lymphoid populations infiltrating the tumors, expression of checkpoint molecules and T-cell function in the experimental settings of murine lung and pancreatic tumors and cardiac allograft rejection. Correlative studies were also performed for the expression of NOTCH ligands, NOTCH receptors and PD-1 on various subsets of myeloid and lymphoid cells in tumor-infiltrating immune cells analyzed from primary human lung cancers. Results Mice with CD11c lineage-specific deletion of Notch ligand gene Dll1, but not Jag2, exhibited accelerated growth of lung and pancreatic tumors concomitant with decreased antigen-specific CD8+T-cell functions and effector-memory (Tem) differentiation. Increased IL-4 but decreased IFN-γ production and elevated populations of T-regulatory and myeloid-derived suppressor cells were observed in Dll1-ablated mice. Multivalent clustered DLL1-triggered Notch signaling overcame DC Dll1 deficiency and improved anti-tumor T-cell responses, whereas the pharmacological interference by monomeric soluble DLL1 construct suppressed the rejection of mouse tumors and cardiac allograft. Moreover, monomeric soluble JAG1 treatment reduced T-regulatory cells and improved anti-tumor immune responses by decreasing the expression of PD-1 on CD8+Tem cells. A significant correlation was observed between DC-expressed Jagged and Delta-like ligands with Tem-expressed PD-1 and Notch receptors, respectively, in human lung tumor-infiltrates. Conclusion Our data show the importance of specific expression of Notch ligands on DCs in the regulation of T-cell effector function. Thus, strategies incorporating selectively engineered Notch ligands could provide a novel approach of therapeutics for modulating immunity in various immunosuppressive conditions including cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0566-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena E Tchekneva
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Mounika U L Goruganthu
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Roman V Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, 2005 Harold D. West Basic Sciences Building, 1023 21st Ave N, Nashville, 37208, TN, USA
| | - Portia L Thomas
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, 2005 Harold D. West Basic Sciences Building, 1023 21st Ave N, Nashville, 37208, TN, USA.,Department of Microbiology, Immunology and Physiology, Meharry Medical College School of Medicine, Nashville, USA.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Anneliese Antonucci
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Irina Chekneva
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Koenig
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Longzhu Piao
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Anwari Akhter
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Maria Teresa P de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, 2005 Harold D. West Basic Sciences Building, 1023 21st Ave N, Nashville, 37208, TN, USA
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nicholas Long
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Thomas Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Jason V Evans
- Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Rajeswara R Arasada
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Pierre P Massion
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, 2005 Harold D. West Basic Sciences Building, 1023 21st Ave N, Nashville, 37208, TN, USA. .,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA. .,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
| | - Mikhail M Dikov
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, 460 W 12th Ave, 484 BRT, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Li Q, He X, Yu Q, Wu Y, Du M, Chen J, Peng F, Zhang W, Chen J, Wang Y, Chen H, Wang H, He D, Wang Q. RETRACTED ARTICLE: The Notch signal mediates macrophage polarization by regulating miR-125a/miR-99b expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:833-843. [PMID: 30862190 DOI: 10.1080/21691401.2019.1576711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yuan Wu
- Department of Internal Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Mingyu Du
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jing Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Fanyu Peng
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Zhang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hanbo Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hairong Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Dan He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, PR China
| |
Collapse
|
31
|
The multifaceted role of Notch signal in regulating T cell fate. Immunol Lett 2019; 206:59-64. [PMID: 30629981 DOI: 10.1016/j.imlet.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/22/2022]
Abstract
Notch signaling pathway facilitates important cellular functions of the host. Notch signal is essential for the development of T cells, and the role of Notch in fine tuning of αβ versus γδ T cell lineage commitment is fundamentally different in mice and human. The Notch family of cell surface receptor likewise plays a critical role in regulating T cell activation, and influences T cell response both intrinsically and through the local environment. In this review, we take an overview of Notch signaling pathway and also emphasize the role of Notch signal in T cell lineage differentiation and activating effector function of peripheral T cells.
Collapse
|
32
|
Jung J, Zeng H, Horng T. Metabolism as a guiding force for immunity. Nat Cell Biol 2019; 21:85-93. [PMID: 30602764 DOI: 10.1038/s41556-018-0217-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
Recent studies indicate that cellular metabolism plays a key role in supporting immune cell maintenance and development. Here, we review how metabolism guides immune cell activation and differentiation to distinct cellular states, and how differential regulation of metabolism allows for context-dependent support during activation and lineage commitment. We discuss emerging principles of metabolic support of immune cell function in physiology and disease, as well as their general relevance to the field of cell biology.
Collapse
Affiliation(s)
- Jonathan Jung
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Hu Zeng
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA. .,Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| | - Tiffany Horng
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,ShanghaiTech University, Shanghai, China.
| |
Collapse
|
33
|
Martín-Cófreces NB, Vicente-Manzanares M, Sánchez-Madrid F. Adhesive Interactions Delineate the Topography of the Immune Synapse. Front Cell Dev Biol 2018; 6:149. [PMID: 30425987 PMCID: PMC6218456 DOI: 10.3389/fcell.2018.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
T cells form adhesive contacts with antigen-presenting cells (APCs) as part of the normal surveillance process that occurs in lymph nodes and other tissues. Most of these adhesive interactions are formed by integrins that interact with ligands expressed on the surface of the APC. The interactive strength of integrins depends on their degree of membrane proximity as well as intracellular signals that dictate the conformation of the integrin. Integrins appear in different conformations that endow them with different affinities for their ligand(s). Integrin conformation and thus adhesive strength between the T cell and the APC is tuned by intracellular signals that are turned on by ligation of the T cell receptor (TCR) and chemokine receptors. During the different stages of the process, integrins, the TCR and chemokine receptors may be interconnected by the actin cytoskeleton underneath the plasma membrane, forming a chemical and physical network that facilitates the spatiotemporal dynamics, positioning, and function of these receptors and supports cell-cell adhesion during T cell activation, allowing it to perform its effector function.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
34
|
|
35
|
Janghorban M, Xin L, Rosen JM, Zhang XHF. Notch Signaling as a Regulator of the Tumor Immune Response: To Target or Not To Target? Front Immunol 2018; 9:1649. [PMID: 30061899 PMCID: PMC6055003 DOI: 10.3389/fimmu.2018.01649] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
The Notch signaling pathway regulates important cellular processes involved in stem cell maintenance, proliferation, development, survival, and inflammation. These responses to Notch signaling involving both canonical and non-canonical pathways can be spatially and temporally variable and are highly cell-type dependent. Notch signaling can elicit opposite effects in regulating tumorigenicity (tumor-promoting versus tumor-suppressing function) as well as controlling immune cell responses. In various cancer types, Notch signaling elicits a "cancer stem cell (CSC)" phenotype that results in decreased proliferation, but resistance to various therapies, hence potentially contributing to cell dormancy and relapse. CSCs can reshape their niche by releasing paracrine factors and inflammatory cytokines, and the niche in return can support their quiescence and resistance to therapies as well as the immune response. Moreover, Notch signaling is one of the key regulators of hematopoiesis, immune cell differentiation, and inflammation and is implicated in various autoimmune diseases, carcinogenesis (leukemia), and tumor-induced immunosuppression. Notch can control the fate of various T cell types, including Th1, Th2, and the regulatory T cells (Tregs), and myeloid cells including macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs). Both MDSCs and Tregs play an important role in supporting tumor cells (and CSCs) and in evading the immune response. In this review, we will discuss how Notch signaling regulates multiple aspects of the tumor-promoting environment by elucidating its role in CSCs, hematopoiesis, normal immune cell differentiation, and subsequently in tumor-supporting immunogenicity.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
36
|
Abstract
The immune system is characterized by the generation of structurally and functionally heterogeneous immune cells that constitute complex innate and adaptive immunity. This heterogeneity of immune cells results from changes in the expression of genes without altering DNA sequence. To achieve this heterogeneity, immune cells orchestrate the expression and functional status of transcription factor (TF) networks, which can be broadly categorized into 3 classes: pioneer TFs that facilitate initial commitment and differentiation of hematopoietic cells, subset-specific TFs that promote the generation of selected cell lineages, and immune-signaling TFs that regulate specialized function in differentiated cells. Epigenetic mechanisms are known to be critical for organizing the TF networks, thereby controlling immune cell lineage-fate decisions, plasticity, and function. The effects of epigenetic regulators can be heritable during cell mitosis, primarily through the modification of DNA and histone methylation patterns at gene loci. By doing so, the immune system is enabled to mount a selective but robust response to stimuli, such as pathogens, tumor cells, autoantigens, or allogeneic antigens in the setting of transplantation, while preserving the immune cell reservoir necessary for protecting the host against numerous other unexpected stimuli and limit detrimental effect of systemic inflammatory reactions.
Collapse
|
37
|
Gurczynski SJ, Zhou X, Flaherty M, Wilke CA, Moore BB. Bone marrow transplant-induced alterations in Notch signaling promote pathologic Th17 responses to γ-herpesvirus infection. Mucosal Immunol 2018; 11:881-893. [PMID: 29044226 PMCID: PMC5906203 DOI: 10.1038/mi.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
Idiopathic pneumonia syndrome (IPS) is a common, often fatal, complication following hematopoietic stem cell transplantation (HSCT) characterized by severe pneumonitis and interstitial fibrosis. Fully reconstituted syngeneic bone marrow transplant (BMT) mice infected with murine γ-herpesvirus-68 develop interleukin-17 (IL-17)-driven pneumonitis and fibrosis, which mimics clinical manifestations of IPS. We found CD103+ and CD11b+ dendritic cells (DCs) are selectively deficient for the Notch ligand, DLL4, following BMT and CD4+ T cells isolated from lungs and spleens of infected BMT mice display Notch signaling defects. Mice transplanted with CD4-Cre-driven dominant-negative Notch transcriptional regulator Mastermind-Like (CD4-Cre-DNMAML (CCD) mice) bone marrow displayed elevated IL-17 and transforming growth factor-β (TGF β) in the lungs, a further expansion of T-helper type 17 (Th17) cells, and developed more fibrosis than wild-type (WT)-BMT mice. Culture of BMT lung leukocytes with recombinant Notch ligand, DLL4, restored Notch signaling and decreased production of IL-17. Adoptive transfer of CD11c+ DCs could restore Th1 and limit Th17 in WT-BMT but not CCD-BMT mice, indicating that a specific DC/CD4+ T-cell Notch interaction modulates IL-17 production following reconstitution in syngeneic BMT mice. Given recent clinical observations showing that patients with pulmonary complications post-transplant harbor occult herpesvirus infections, these data provide mechanistic insight and suggest potential therapies for these devastating conditions.
Collapse
Affiliation(s)
- Stephen J. Gurczynski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhou
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Melanie Flaherty
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Carol A. Wilke
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Bethany B. Moore
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
38
|
Wen Z, Shen Y, Berry G, Shahram F, Li Y, Watanabe R, Liao YJ, Goronzy JJ, Weyand CM. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. Sci Transl Med 2018; 9:9/399/eaal3322. [PMID: 28724574 DOI: 10.1126/scitranslmed.aal3322] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/07/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Abstract
Microvascular networks in the adventitia of large arteries control access of inflammatory cells to the inner wall layers (media and intima) and thus protect the immune privilege of the aorta and its major branches. In autoimmune vasculitis giant cell arteritis (GCA), CD4 T helper 1 (TH1) and TH17 cells invade into the wall of the aorta and large elastic arteries to form tissue-destructive granulomas. Whether the disease microenvironment provides instructive cues for vasculitogenic T cells is unknown. We report that adventitial microvascular endothelial cells (mvECs) perform immunoregulatory functions by up-regulating the expression of the Notch ligand Jagged1. Vascular endothelial growth factor (VEGF), abundantly present in GCA patients' blood, induced Jagged1 expression, allowing mvECs to regulate effector T cell induction via the Notch-mTORC1 (mammalian target of rapamycin complex 1) pathway. We found that circulating CD4 T cells in GCA patients have left the quiescent state, actively signal through the Notch pathway, and differentiate into TH1 and TH17 effector cells. In an in vivo model of large vessel vasculitis, exogenous VEGF functioned as an effective amplifier to recruit and activate vasculitogenic T cells. Thus, systemic VEGF co-opts endothelial Jagged1 to trigger aberrant Notch signaling, biases responsiveness of CD4 T cells, and induces pathogenic effector functions. Adventitial microvascular networks function as an instructive tissue niche, which can be exploited to target vasculitogenic immunity in large vessel vasculitis.
Collapse
Affiliation(s)
- Zhenke Wen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gerald Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Farhad Shahram
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryu Watanabe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Chu F, Hu Y, Zhou Y, Guo M, Lu J, Zheng W, Xu H, Zhao J, Xu L. MicroRNA-126 deficiency enhanced the activation and function of CD4 + T cells by elevating IRS-1 pathway. Clin Exp Immunol 2018; 191:166-179. [PMID: 28987000 PMCID: PMC5758368 DOI: 10.1111/cei.13067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 01/01/2023] Open
Abstract
Recent evidence has shown that microRNA-126 (miR-126) has been involved in the development and function of immune cells, which contributed to the pathogenesis of related clinical diseases. However, the potential role of miR-126 in the development and function of CD4+ T cells remains largely unknown. Here we first found that the activation and proliferation, as well as the expression of interferon (IFN)-γ, of CD4+ T cells from miR-126 knock-down (KD) mice using the miRNA-sponge technique were enhanced significantly in vitro, compared with those in CD4+ T cells from wild-type (WT) mice. To monitor further the possible effect of miR-126 deficiency on the function of CD4+ T cells in vivo, we used dextran sulphate sodium (DSS)-induced murine model of acute autoimmune colitis and found that miR-126 deficiency could elevate the pathology of colitis. Importantly, the proportion of CD4+ T cells in splenocytes increased significantly in miR-126KD mice. Moreover, the expression levels of CD69 and CD44 on CD4+ T cells increased significantly and the expression level of CD62L decreased significantly. Of note, adoptive cell transfer assay showed that the pathology of colitis was more serious in carboxyfluorescein succinimidyl ester (CFSE)-labelled miR-126KD CD4+ T cell-transferred group, compared with that in the CFSE-labelled WT CD4+ T cells transferred group. Consistently, the expression levels of CD69 and CD44 on CFSE+ cells increased significantly. Furthermore, both the proliferation and IFN-γ secretion of CFSE+ cells also increased significantly in the CFSE-labelled miR-126KD CD4+ T cell-transferred group. Mechanistic evidence showed that the expression of insulin receptor substrate 1 (IRS-1), as a functional target of miR-126, was elevated in CD4+ T cells from miR-126KD mice, accompanied by altered transduction of the extracellular regulated kinase, protein B (AKT) and nuclear factor kappa B (NF-κB) pathway. Our data revealed a novel role in which miR-126 was an intrinsic regulator in the function of CD4+ T cells, which provided preliminary basis for exploring further the role of miR-126 in the development, function of CD4+ T cells and related clinical diseases.
Collapse
Affiliation(s)
- F. Chu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - Y. Hu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - Y. Zhou
- Department of Medical PhysicsZunyi Medical CollegeGuizhouChina
| | - M. Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - J. Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - W. Zheng
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - H. Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - J. Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - L. Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| |
Collapse
|
40
|
Backer RA, Hombrink P, Helbig C, Amsen D. The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability. Adv Immunol 2018; 137:43-82. [DOI: 10.1016/bs.ai.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Abstract
Notch drives critical decisions in a multitude of developmental decisions in many invertebrate and vertebrate organisms including flies, worms, fish, mice and humans. Therefore, it is not surprising that Notch family members also play a key role in cell fate choices in the vertebrate immune system. This review highlights the critical function of Notch in the development of mature T lymphocytes from hematopoietic precursors and describes the role of Notch in mature T cell activation, proliferation and differentiation.
Collapse
|
42
|
Perkey E, Maillard I. New Insights into Graft-Versus-Host Disease and Graft Rejection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:219-245. [PMID: 29099650 DOI: 10.1146/annurev-pathol-020117-043720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic transplantation of foreign organs or tissues has lifesaving potential, but can lead to serious complications. After solid organ transplantation, immune-mediated rejection mandates the use of prolonged global immunosuppression and limits the life span of transplanted allografts. After bone marrow transplantation, donor-derived immune cells can trigger life-threatening graft-versus-host disease. T cells are central mediators of alloimmune complications and the target of most existing therapeutic interventions. We review recent progress in identifying multiple cell types in addition to T cells and new molecular pathways that regulate pathogenic alloreactivity. Key discoveries include the cellular subsets that function as potential sources of alloantigens, the cross talk of innate lymphoid cells with damaged epithelia and with the recipient microbiome, the impact of the alarmin interleukin-33 on alloreactivity, and the role of Notch ligands expressed by fibroblastic stromal cells in alloimmunity. While refining our understanding of transplantation immunobiology, these findings identify new therapeutic targets and new areas of investigation.
Collapse
Affiliation(s)
- Eric Perkey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Department of Internal Medicine, Division of Hematology-Oncology, and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Medicine, Division of Hematology-Oncology, and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
43
|
KleinJan A, Tindemans I, Montgomery JE, Lukkes M, de Bruijn MJW, van Nimwegen M, Bergen I, Moellering RE, Hoogsteden HC, Boon L, Amsen D, Hendriks RW. The Notch pathway inhibitor stapled α-helical peptide derived from mastermind-like 1 (SAHM1) abrogates the hallmarks of allergic asthma. J Allergy Clin Immunol 2017; 142:76-85.e8. [PMID: 29111218 DOI: 10.1016/j.jaci.2017.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 07/12/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Notch signaling pathway has been implicated in the pathogenesis of allergic airway inflammation. Targeting the active Notch transactivation complex by using the cell-permeable, hydrocarbon-stapled synthetic peptide stapled α-helical peptide derived from mastermind-like 1 (SAHM1) resulted in genome-wide suppression of Notch-activated genes in leukemic cells and other models. However, the efficacy of SAHM1 in allergic asthma models has remained unexplored. OBJECTIVE We aimed to investigate the therapeutic efficacy of SAHM1 in a house dust mite (HDM)-driven asthma model. METHODS Topical therapeutic intervention with SAHM1 or a control peptide was performed during sensitization, challenge, or both with HDM in mice. Airway inflammation was assessed by using multicolor flow cytometry, and bronchial hyperreactivity was studied. Additionally, SAHM1 therapy was investigated in mice with established allergic airway inflammation and in a model in which we neutralized IFN-γ during HDM challenge to support the TH2 response and exacerbate asthma. RESULTS SAHM1 treatment during the challenge phase led to a marked reduction of eosinophil and T cell numbers in bronchoalveolar lavage fluid compared with those in diluent-treated or control peptide-treated mice. Likewise, T-cell cytokine content and bronchial hyperreactivity were reduced. SAHM1 treatment dampened TH2 inflammation during ongoing HDM challenge and enhanced recovery after established asthma. Additionally, in the presence of anti-IFN-γ antibodies, SAHM1 downregulated expression of the key TH2 transcription factor GATA3 and intracellular IL-4 in bronchoalveolar lavage fluid T cells, but expression of the TH17 transcription factor retinoic acid-related orphan receptor γt or intracellular IL-17 was not affected. SAHM1 therapy also reduced serum IgE levels. CONCLUSIONS Therapeutic intervention of Notch signaling by SAHM1 inhibits allergic airway inflammation in mice and is therefore an interesting new topical treatment opportunity in asthmatic patients.
Collapse
Affiliation(s)
- Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Jeffrey E Montgomery
- Department of Chemistry, University of Chicago, Chicago, Ill; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Ill
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid Bergen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, Chicago, Ill; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Ill
| | - Henk C Hoogsteden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Louis Boon
- Epirus Biopharmaceuticals Netherlands, Utrecht, The Netherlands
| | | | - R W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Gu XY, Chu X, Zeng XL, Bao HR, Liu XJ. Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:163-173. [PMID: 28431315 DOI: 10.1016/j.envpol.2017.03.070] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 05/17/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is associated with T lymphocytes subset (Th1/Th2, Th17/Treg) imbalance. Notch signaling pathway plays a key role in the development of the adaptive immunity. The immune disorder induced by fine particulate matter (PM2.5) is related to COPD. The aim of this study was to investigate the mechanism by which PM2.5 influences the Notch signaling pathway leading to worsening immune disorder and accelerating COPD development. A COPD mouse model was established by cigarette smoke exposure. PM2.5 exposure was performed by aerosol inhalation. γ-secretase inhibitor (GSI) was given using intraperitoneal injection. Splenic T lymphocytes were purified using a density gradient centrifugation method. CD4+ T lymphocyte subsets (Th1/Th2, Th17/Treg) were detected using flow cytometry. mRNA and proteins of Notch1/2/3/4, Hes1/5, and Hey1 were detected using RT-PCR and Western blot. Serum INF-γ, IL-4, IL-17 and IL-10 concentrations were measured using ELISA. The results showed that in COPD mice Th1% and Th17%, Th1/Th2 and Th17/Treg were increased, and the levels of mRNA and protein in Notch1/2/3/4, Hes1/5, and Hey1 and serum INF-γ and IL-17 concentrations were significantly increased, and Th2%, Treg%, and serum IL-4 and IL-10 concentrations were significantly decreased. COPD Mice have Th1- and Th17-mediated immune disorder, and the Notch signaling pathway is in an overactivated state. PM2.5 promotes the overactivation of the Notch signaling pathway and aggravates the immune disorder of COPD. GSI can partially inhibit the activation of the Notch signaling pathway and alleviate the immune disorder under basal state and the immune disorder of COPD caused by PM2.5. This result suggests that PM2.5 is involved in the immune disorder of mice with COPD by affecting the Notch signaling pathway and that PM2.5 aggravates COPD.
Collapse
Affiliation(s)
- Xing-Yu Gu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xu Chu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao-Li Zeng
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hai-Rong Bao
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
45
|
Abstract
Solid organ and allogeneic hematopoietic cell transplantation have become standard therapeutic interventions that save patient lives and improve quality of life. Our enhanced understanding of transplantation immunobiology has refined clinical management and improved outcomes. However, organ rejection and graft-versus-host disease remain major obstacles to the broader successful application of these therapeutic procedures. Notch signaling regulates multiple aspects of adaptive and innate immunity. Preclinical studies identified Notch signaling as a promising target in autoimmune diseases, as well as after allogeneic hematopoietic cell and solid organ transplantation. Notch was found to be a central regulator of alloreactivity across clinically relevant models of transplantation. Notch inhibition in T cells prevented graft-versus-host disease and organ rejection, establishing organ tolerance by skewing CD4 T helper polarization away from a proinflammatory response toward suppressive regulatory T cells. Notch ligand blockade also dampened alloantibody deposition and prevented chronic rejection through humoral mechanisms. Toxicities of systemic Notch blockade were observed with γ-secretase inhibitors in preclinical and early clinical trials across different indications, but they did not arise upon preclinical targeting of Delta-like Notch ligands, a strategy sufficient to confer full benefits of Notch ablation in T cell alloimmunity. Because multiple clinical grade reagents have been developed to target individual Notch ligands and receptors, the benefits of Notch blockade in transplantation are calling for translation of preclinical findings into human transplantation medicine.
Collapse
|
46
|
Kondo T, Morita R, Okuzono Y, Nakatsukasa H, Sekiya T, Chikuma S, Shichita T, Kanamori M, Kubo M, Koga K, Miyazaki T, Kassai Y, Yoshimura A. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat Commun 2017; 8:15338. [PMID: 28530241 PMCID: PMC5458121 DOI: 10.1038/ncomms15338] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
Adoptive T-cell immunotherapy is a promising approach to cancer therapy. Stem cell memory T (TSCM) cells have been proposed as a class of long-lived and highly proliferative memory T cells. CD8+ TSCM cells can be generated in vitro from naive CD8+ T cells via Wnt signalling; however, methods do not yet exist for inducing TSCM cells from activated or memory T cells. Here, we show a strategy for generating TSCM-like cells in vitro (iTSCM cells) from activated CD4+ and CD8+ T cells in mice and humans by coculturing with stromal cells that express a Notch ligand. iTSCM cells lose PD-1 and CTLA-4 expression, and produce a large number of tumour-specific effector cells after restimulation. This method could therefore be used to generate antigen-specific effector T cells for adoptive immunotherapy. Tumour-specific T cells can be expanded in vitro and adoptively transferred for therapy, but this strategy is limited by induction of short-lived T cell populations. Here the authors activate Notch signalling in cultured mouse or human T cells, resulting in the production of a long-lived stem cell memory T cell population that can fight tumours in mice.
Collapse
Affiliation(s)
- Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuumi Okuzono
- Inflammation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Shichita
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Kanamori
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.,Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Keiko Koga
- Inflammation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Takahiro Miyazaki
- Inflammation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Yoshiaki Kassai
- Inflammation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
47
|
Jain A, Pasare C. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3791-3800. [PMID: 28483987 PMCID: PMC5442885 DOI: 10.4049/jimmunol.1602000] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond TCR engagement, costimulation, and priming cytokine production but are critical for the generation of protective T cell immunity.
Collapse
Affiliation(s)
- Aakanksha Jain
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| |
Collapse
|
48
|
Tindemans I, Peeters MJW, Hendriks RW. Notch Signaling in T Helper Cell Subsets: Instructor or Unbiased Amplifier? Front Immunol 2017; 8:419. [PMID: 28458667 PMCID: PMC5394483 DOI: 10.3389/fimmu.2017.00419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
For protection against pathogens, it is essential that naïve CD4+ T cells differentiate into specific effector T helper (Th) cell subsets following activation by antigen presented by dendritic cells (DCs). Next to T cell receptor and cytokine signals, membrane-bound Notch ligands have an important role in orchestrating Th cell differentiation. Several studies provided evidence that DC activation is accompanied by surface expression of Notch ligands. Intriguingly, DCs that express the delta-like or Jagged Notch ligands gain the capacity to instruct Th1 or Th2 cell polarization, respectively. However, in contrast to this model it has also been hypothesized that Notch signaling acts as a general amplifier of Th cell responses rather than an instructive director of specific T cell fates. In this alternative model, Notch enhances proliferation, cytokine production, and anti-apoptotic signals or promotes co-stimulatory signals in T cells. An instructive role for Notch ligand expressing DCs in the induction of Th cell differentiation is further challenged by evidence for the involvement of Notch signaling in differentiation of Th9, Th17, regulatory T cells, and follicular Th cells. In this review, we will discuss the two opposing models, referred to as the “instructive” and the “unbiased amplifier” model. We highlight both the function of different Notch receptors on CD4+ T cells and the impact of Notch ligands on antigen-presenting cells.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
49
|
Marcel N, Perumalsamy LR, Shukla SK, Sarin A. The lysine deacetylase Sirtuin 1 modulates the localization and function of the Notch1 receptor in regulatory T cells. Sci Signal 2017; 10:10/473/eaah4679. [PMID: 28377411 DOI: 10.1126/scisignal.aah4679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to tune cellular functions in response to nutrient availability has important consequences for immune homeostasis. The activity of the receptor Notch in regulatory T (Treg) cells, which suppress the functions of effector T cells, is indispensable for Treg cell survival under conditions of diminished nutrient supply. Anti-apoptotic signaling induced by the Notch1 intracellular domain (NIC) originates from the cytoplasm and is spatially decoupled from the nuclear, largely transcriptional functions of NIC. We showed that Sirtuin 1 (Sirt1), which is an NAD+ (nicotinamide adenine dinucleotide)-dependent lysine deacetylase that inhibits NIC-dependent gene transcription, stabilized NIC proximal to the plasma membrane to promote the survival and function of activated Treg cells. Sirt1 was required for NIC-dependent protection from apoptosis in cell lines but not for the activity of the anti-apoptotic protein Bcl-xL. In addition, a variant NIC protein in which four lysines were mutated to arginines (NIC4KR) retained anti-apoptotic activity, but was not regulated by Sirt1, and reconstituted the functions of nonnuclear NIC in Notch1-deficient Treg cells. Loss of Sirt1 compromised Treg cell survival, resulting in antigen-induced T cell proliferation and inflammation in two mouse models. Thus, the Sirt1-Notch interaction may constitute an important checkpoint that tunes noncanonical Notch1 signaling.
Collapse
Affiliation(s)
- Nimi Marcel
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India.,Manipal University, Manipal, Karnataka, India
| | | | - Sanjay K Shukla
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India.,Manipal University, Manipal, Karnataka, India
| | - Apurva Sarin
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Bengaluru, Karnataka 560065, India
| |
Collapse
|
50
|
Chung J, Ebens CL, Perkey E, Radojcic V, Koch U, Scarpellino L, Tong A, Allen F, Wood S, Feng J, Friedman A, Granadier D, Tran IT, Chai Q, Onder L, Yan M, Reddy P, Blazar BR, Huang AY, Brennan TV, Bishop DK, Ludewig B, Siebel CW, Radtke F, Luther SA, Maillard I. Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. J Clin Invest 2017; 127:1574-1588. [PMID: 28319044 PMCID: PMC5373885 DOI: 10.1172/jci89535] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Christen L. Ebens
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Vedran Radojcic
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Alexander Tong
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Frederick Allen
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sherri Wood
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiane Feng
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Qian Chai
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Minhong Yan
- Genentech, South San Francisco, California, USA
| | - Pavan Reddy
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex Y. Huang
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Todd V. Brennan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - D. Keith Bishop
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ivan Maillard
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|