1
|
Islam S, Chauhan VM, Pantazes RJ. Analysis of how antigen mutations disrupt antibody binding interactions toward enabling rapid and reliable antibody repurposing. MAbs 2025; 17:2440586. [PMID: 39690439 DOI: 10.1080/19420862.2024.2440586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Antibody repurposing is the process of changing a known antibody so that it binds to a mutated antigen. One of the findings to emerge from the Coronavirus Disease 2019 (COVID-19) pandemic was that it was possible to repurpose neutralizing antibodies for Severe Acute Respiratory Syndrome, a related disease, to work for COVID-19. Thus, antibody repurposing is a possible pathway to prepare for and respond to future pandemics, as well as personalizing cancer therapies. For antibodies to be successfully repurposed, it is necessary to know both how antigen mutations disrupt their binding and how they should be mutated to recover binding, with this work describing an analysis to address the first of these topics. Every possible antigen point mutation in the interface of 246 antibody-protein complexes were analyzed using the Rosetta molecular mechanics force field. The results highlight a number of features of how antigen mutations affect antibody binding, including the effects of mutating critical hotspot residues versus other positions, how many mutations are necessary to be likely to disrupt binding, the prevalence of indirect effects of mutations on binding, and the relative importance of changing attractive versus repulsive energies. These data are expected to be useful in guiding future antibody repurposing experiments.
Collapse
Affiliation(s)
- Sumaiya Islam
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Varun M Chauhan
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Robert J Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Okesanya OJ, Amisu BO, Adigun OA, Ahmed MM, Agboola AO, Kab T, Eshun G, Ukoaka BM, Oso TA, Ogaya JB, Lucero-Prisno DE. Addressing the emerging threat of Oropouche virus: implications and public health responses for healthcare systems. Trop Dis Travel Med Vaccines 2025; 11:1. [PMID: 39748388 PMCID: PMC11694362 DOI: 10.1186/s40794-024-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Oropouche fever is an increasingly significant health concern in tropical and subtropical areas of South and Central America, and is primarily spread by midge vectors. The Oropouche virus (OROV) was first identified in 1955 and has been responsible for numerous outbreaks, particularly in urban environments. Despite its prevalence, the disease is often under-reported, making it difficult to fully understand its impact. OROV typically causes febrile illness characterized by symptoms such as headaches, muscle pain, and, occasionally, neurological issues such as meningitis. The ability of the virus to thrive in both forested and urban areas has raised concerns regarding its potential spread to new regions, particularly in the context of climate change. This paper delves into the epidemiology, clinical features, and transmission patterns of OROV, shedding light on the difficulties in diagnosing and managing the disease. The absence of specific treatments and vaccines highlights the urgent need for continued research and development of targeted public health strategies. Advancements in molecular diagnostics and vector control strategies can mitigate Oropouche fever's impact. However, a comprehensive public health approach involving increased surveillance, public education, and cross-border collaboration is needed, especially as the global climate crisis may expand vector habitats, posing risks to previously unaffected regions.
Collapse
Affiliation(s)
- Olalekan John Okesanya
- Faculty of Medicine, Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Abeokuta, Nigeria
| | | | | | | | | | - Tolga Kab
- Faculty of Medicine, Department of Medicine, Istinye University, Istanbul, Turkey
| | - Gilbert Eshun
- Seventh Day Adventist Hospital, Asamang, Ghana
- School of Veterinary Studies and the Roslin Institute, The Royal (Dick), University of Edinburgh, Midlothian, UK
| | | | - Tolutope Adebimpe Oso
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Abeokuta, Nigeria
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Institute of Health Sciences and Nursing, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati City, Philippines
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Leyte, Philippines
- Research and Development Office, Biliran Province State University, Biliran, Philippines
| |
Collapse
|
3
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2024:10.1007/s00239-024-10221-9. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
4
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. Methods: To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein–Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. Results: RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. Conclusions: The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
5
|
Rabdano SO, Ruzanova EA, Vertyachikh AE, Teplykh VA, Emelyanova AB, Rudakov GO, Arakelov SA, Pletyukhina IV, Saveliev NS, Lukovenko AA, Fakhretdinova LN, Safi AS, Zhirenkina EN, Polyakova IN, Belozerova NS, Klykov VV, Savelieva AP, Ekimov AA, Pokachalov KV, Merkulov VA, Yudin SM, Kruchko DS, Berzin IA, Skvortsova VI. N-protein vaccine is effective against COVID-19: Phase 3, randomized, double-blind, placebo-controlled clinical trial. J Infect 2024; 89:106288. [PMID: 39341405 DOI: 10.1016/j.jinf.2024.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Despite the success of first-generation COVID-19 vaccines targeting the spike (S) protein, emerging SARS-CoV-2 variants have led to immune escape, reducing the efficacy of these vaccines. Additionally, some individuals are unable to mount an effective immune response to S protein-based vaccines. This has created a need for alternative vaccine strategies that are less susceptible to mutations and capable of providing broad and durable protection. This study aimed to evaluate the efficacy and safety of a novel COVID-19 vaccine based on the full-length recombinant nucleocapsid (N) protein of SARS-CoV-2. METHODS We conducted a prospective, multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial (NCT05726084) in Russia. Participants (n = 5229) were adults aged 18 years and older, with a BMI of 18.5-30 kg/m², and without significant clinical abnormalities. They were randomized in a 2:1 ratio to receive a single intramuscular dose of either the N protein-based vaccine (50 µg) or placebo. Randomization was done through block randomization, and masking was ensured by providing visually identical formulations of vaccine and placebo. The primary outcome was the incidence of symptomatic COVID-19 confirmed by PCR more than 15 days after vaccination within a 180-day observation period, analyzed on an intention-to-treat basis. FINDINGS Between May 18, 2023, and August 9, 2023, 5229 participants were randomized, with 3486 receiving the vaccine and 1743 receiving the placebo. Eight cases of PCR-confirmed symptomatic COVID-19 occurred in the vaccine group (0.23%) compared to 27 cases in the placebo group (1.55%), yielding a vaccine efficacy of 85.2% (95% CI: 67.4-93.3; p < 0.0001). Adverse events were mostly mild and included local injection site reactions. There were no vaccine-related serious adverse events. INTERPRETATION The N protein-based COVID-19 vaccine demonstrated significant efficacy and a favorable safety profile, suggesting it could be a valuable addition to the global vaccination effort, particularly in addressing immune escape variants and offering an alternative for those unable to respond to S protein-based vaccines. These results support the continued development and potential deployment of N protein-based vaccines in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia.
| | - Ellina A Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Anastasiya E Vertyachikh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Valeriya A Teplykh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Alla B Emelyanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - German O Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Sergei A Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Iuliia V Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Nikita S Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Anna A Lukovenko
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Liliya N Fakhretdinova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Ariana S Safi
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Ekaterina N Zhirenkina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Irina N Polyakova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Natalia S Belozerova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Vladislav V Klykov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Arina P Savelieva
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Aleksey A Ekimov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Konstantin V Pokachalov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Vadim A Merkulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Evaluation and Control of Finished Pharmaceutical Products, Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergei M Yudin
- Centre for Strategic Planning of FMBA of Russia Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russia
| | | | - Igor A Berzin
- Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | |
Collapse
|
6
|
Chandra H, Yadav A, Prasad R, Sagar K, Bhardwaj N, Kumar Gupta K, Singh Thakur G, Nigam M, Pezzani R, Paulo Martins de Lima J, Douglas Melo Coutinho H, Prakash Mishra A. COVID 19: Prevention and treatment through the Indian perspective. Cytokine 2024; 183:156756. [PMID: 39284260 DOI: 10.1016/j.cyto.2024.156756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024]
Abstract
The most destructive period the world has experienced seems to be behind us. Not a single nation was spared by this disease, and many continue to struggle today. Even after recovering from COVID, patient may continue to experience some post-COVID effects, such as heart irregularities or a decline in lung vitality. In the past three years (2019-2022), the world has witnessed the power of a small entity, a single peculiar virus. Science initially appeared to be helpless in this regard, but due to the emergence of disease, pharmaceutics (the development of anti-covid drugs), immunology (the rapid antigen test), microbiology (the isolation of viruses from infected people), biotechnology (the development of recombinant vaccines), biochemistry (the blood profile, the D-dimer test), and biochemistry (blood profile, D-dimer test), biophysics (PCR, RT-PCR, CT Scan, MRI) had worked together to fight the disease. The results of these efforts are the development of new diagnostic techniques, possible treatment and finally the availability of vaccines against COVID-19. However, it is not proven that the treatment through the traditional medical system is directly active on SARS-CoV-2 but is instead indirectly acting on SARS-CoV-2 effects by improving symptoms derived from the viral disease. In India, the traditional system of medicine and tradition knowledge together worked in the pandemic and proved effective strategies in prevention and treatment of SARS-CoV-2. The use of effective masks, PPE kits, plasma therapy, yoga, lockdowns and social seclusion, use of modern antiviral drugs, monoclonal antibodies, herbal remedies, homoeopathy, hygienic practice, as well as the willpower of people, are all contributing to the fight against COVID. Which methods or practices will be effective against COVID nobody is aware since medical professionals who wear PPE kits do not live longer, and some people in India who remained unprotected and roamed freely were not susceptible to infection. The focus of this review is on the mode of transmission, diagnosis, preventive measures, vaccines currently under development, modern medicine developed against SARS-CoV-2, ayurvedic medicine used during pandemic, homoeopathic medicine used during pandemic, and specific yoga poses that can be used to lessen COVID-related symptoms.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India; School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Archana Yadav
- Department of Microbiology, Institute of Biosciences and Biotechnology, C.S.J.M. University, Kanpur 208024, Uttar Pradesh, India.
| | - Rajendra Prasad
- School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kalpana Sagar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Ghanshyam Singh Thakur
- Department of Naturopathy & Yoga, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | | | | | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
7
|
Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, Yu M, Mumenthaler SM, Lee AS. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci 2024; 14:115. [PMID: 39238058 PMCID: PMC11378597 DOI: 10.1186/s13578-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, 34987, USA
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael E Doche
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Roy Lau
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariangela Russo
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Annalisa Lorenzato
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Yu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shannon M Mumenthaler
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Vlase CM, Stuparu Cretu M, Vasile MC, Popovici GC, Arbune M. Comparative Epidemiological and Clinical Outcomes on COVID-19 and Seasonal Influenza Hospitalized Patients during 2023. Infect Dis Rep 2024; 16:783-793. [PMID: 39311201 PMCID: PMC11417947 DOI: 10.3390/idr16050060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
COVID-19 and influenza are highly contagious respiratory viral diseases and priority global public health concerns. We conducted a retrospective observational study of COVID-19 and/or influenza hospitalized cases, during 2023. We identified 170 influenza cases, 150 COVID-19 cases and 3 co-infections. Overall, 29.10% of patients had at least one COVID-19 vaccine dose and 4.6% received the seasonal Flu vaccine. The demographic data found older patients in the COVID-19 group and a higher index of the comorbidities, mainly due to chronic heart diseases, hypertension, and diabetes. Fever, chills, and rhinorrhea were more frequently related to influenza, while cough was prevalent in COVID-19. Antibiotics were more used in influenza than COVID-19, either pre-hospital or in-hospital. The mortality rate within the first 30 days from the onset of the respiratory infection was higher in influenza compared to COVID-19. We concluded that the COVID-19 clinical picture in hospitalized patients is changing to influenza-like symptoms. The evolution is variable, related to chronic comorbidities, but influenza had more frequent severe forms. All through 2023, due to poor vaccination rates, COVID-19 and influenza have continued to cause numerous hospitalizations, and a new strategy for efficient vaccinations is required.
Collapse
Affiliation(s)
- Constantin-Marinel Vlase
- Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University Galati, 800008 Galati, Romania; (C.-M.V.); (M.-C.V.); (G.-C.P.)
- Military Hospital “Dr. Aristide Serfioti” Galați, 800008 Galati, Romania
| | - Mariana Stuparu Cretu
- Medical Department, “Dunarea de Jos” University Galati, 800008 Galati, Romania
- Clinic Emergency Children Hospital, 800487 Galati, Romania
| | - Mihaela-Camelia Vasile
- Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University Galati, 800008 Galati, Romania; (C.-M.V.); (M.-C.V.); (G.-C.P.)
- Infectious Diseases Clinic II, Infectious Diseases Clinic Hospital Galati, 800179 Galati, Romania
| | - George-Cosmin Popovici
- Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University Galati, 800008 Galati, Romania; (C.-M.V.); (M.-C.V.); (G.-C.P.)
- Pneumology Department II, Pneumophtisiology Hospital Galati, 800170 Galati, Romania
| | - Manuela Arbune
- Clinical Medical Department, “Dunarea de Jos” University Galati, 800008 Galati, Romania;
- Infectious Diseases Clinic I, Infectious Diseases Clinic Hospital Galati, 800179 Galati, Romania
| |
Collapse
|
9
|
Choi Y, Saron WA, O'Neill A, Senanayake M, Wilder-Smith A, Rathore AP, St John AL. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J Clin Invest 2024; 134:e169251. [PMID: 39088280 PMCID: PMC11405039 DOI: 10.1172/jci169251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made by cytotoxic cells including NKT cells, as linked to induction of Th1-associated antibodies during primary dengue virus (DENV) infection in humans. We examined the role of NKT cells in vivo using DENV-infected mice lacking CD1d-dependent (CD1ddep) NKT cells. In CD1d-KO mice, Th1-polarized immunity and infection resolution were impaired, which was dependent on intrinsic NKT cell production of IFN-γ, since it was restored by adoptive transfer of WT but not IFN-γ-KO NKT cells. Furthermore, NKT cell deficiency triggered immune bias, resulting in higher levels of Th2-associated IgG1 than Th1-associated IgG2a, which failed to protect against a homologous DENV rechallenge and promoted antibody-dependent enhanced disease during secondary heterologous infections. Similarly, Th2 immunity, typified by a higher IgG4/IgG3 ratio, was associated with worsened human disease severity during secondary infections. Thus, CD1ddep NKT cells establish Th1 polarity during the early innate response to DENV, which promotes infection resolution, memory formation, and long-term protection from secondary homologous and heterologous infections in mice, with consistent associations observed in humans. These observations illustrate how early innate immune responses during primary infections can influence secondary infection outcomes.
Collapse
Affiliation(s)
- Youngjoo Choi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Wilfried Aa Saron
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Aled O'Neill
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Manouri Senanayake
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Lady Ridgeway Children's Hospital, Colombo, Sri Lanka
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
10
|
Gong X, Peng L, Wang F, Liu J, Tang Y, Peng Y, Niu S, Yin J, Guo L, Lu H, Liu Y, Yang Y. Repeated Omicron infection dampens immune imprinting from previous vaccination and induces broad neutralizing antibodies against Omicron sub-variants. J Infect 2024; 89:106208. [PMID: 38908522 DOI: 10.1016/j.jinf.2024.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Similar with influenza virus, antigenic drift is highly relevant to SARS-CoV-2 evolution, and immune imprinting has been found to limit the performance of updated vaccines based on the emerging variants of SARS-CoV-2. We aimed to investigate whether repeated exposure to Omicron variant could reduce the immune imprinting from previous vaccination. METHODS A total of 194 participants with different status of vaccination (unvaccinated, regular vaccination and booster vaccination) confirmed for first infection and re-infection with BA.5, BF.7 and XBB variants were enrolled, and the neutralizing profiles against wild type (WT) SARS-CoV-2 and Omicron sub-variants were analyzed. RESULTS Neutralizing potency against the corresponding infected variant is significantly hampered along with the doses of vaccination during first infection. However, for the participants with first infection of BA.5/BF.7 variants and re-infection of XBB variant, immune imprinting was obviously alleviated, indicated as significantly increased ratio of the corresponding infected variant/WT ID50 titers and higher percentage of samples with high neutralizing activities (ID50 > 500) against BA.5, BF.7 and XBB variants. Moreover, repeated Omicron infection could induce strong neutralizing potency with broad neutralizing profiles against a series of other Omicron sub-variants, both in the vaccine naive and vaccine experienced individuals. CONCLUSIONS Our results demonstrate that repeated Omicron infection dampens immune imprinting from vaccination with WT SARS-CoV-2 and induces broad neutralizing profiles against Omicron sub-variants.
Collapse
Affiliation(s)
- Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Ling Peng
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Fuxiang Wang
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, China
| | - Yimin Tang
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China
| | - Juzhen Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China
| | - Liping Guo
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| |
Collapse
|
11
|
Tachibana K, Nakamura Y, Do TL, Kihara T, Kawada H, Yamamoto N, Ando K. Mutations in the SARS-CoV-2 spike proteins affected the ACE2-binding affinity during the development of Omicron pandemic variants. Biochem Biophys Res Commun 2024; 719:150120. [PMID: 38759524 DOI: 10.1016/j.bbrc.2024.150120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Mutations in SARS-CoV-2 caused multiple waves of pandemics. To identify the function of such mutations, we investigated the binding affinity of the S protein with its receptor, ACE2. Omicron BA.1 showed significantly lower binding affinity with human ACE2 than prototype SARS-CoV-2 and Alpha strain, indicating that pre-Omicron to Omicron transition was not mediated by increasing the ACE2-binding affinity. Meanwhile, the later Omicron variants, BA.5 and XBB.1.5, showed significantly higher ACE2-binding affinity, suggesting that the increased ACE2-binding could be involved in the variant transition within Omicron strains. Furthermore, Alpha and Omicron variants, but not prototype SARS-CoV-2, bound mouse ACE2, which lead to a hypothesis that early Omicron strains evolved from Alpha strain by acquiring multiple mutations in mice.
Collapse
Affiliation(s)
- Kouichi Tachibana
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Yoshihiko Nakamura
- Tokai University School of Medicine, Center for Regenerative Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Thi Ly Do
- The University of Kitakyusyu, Department of Life and Environment Engineering, 1-1 Hibikino, Wakamatu, Kitakyusyu, Fukuoka, Japan
| | - Takanori Kihara
- The University of Kitakyusyu, Department of Life and Environment Engineering, 1-1 Hibikino, Wakamatu, Kitakyusyu, Fukuoka, Japan
| | - Hiroshi Kawada
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Norio Yamamoto
- Tokai University School of Medicine, Department of Microbiology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
12
|
Hu Z, López-Muñoz AD, Kosik I, Li T, Callahan V, Brooks K, Yee DS, Holly J, Santos JJS, Castro Brant A, Johnson RF, Takeda K, Zheng ZM, Brenchley JM, Yewdell JW, Fox JM. Recombinant OC43 SARS-CoV-2 spike replacement virus: An improved BSL-2 proxy virus for SARS-CoV-2 neutralization assays. Proc Natl Acad Sci U S A 2024; 121:e2310421121. [PMID: 38976733 PMCID: PMC11260102 DOI: 10.1073/pnas.2310421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S. Single-dose immunization with rOC43-CoV2 S generates high levels of neutralizing antibodies against SARS-CoV-2 and fully protects human ACE2 transgenic mice from SARS-CoV-2 lethal challenge, despite nondetectable replication in respiratory and nonrespiratory organs. rOC43-CoV2 S induces S-specific serum and airway mucosal immunoglobulin A and IgG responses in rhesus macaques. rOC43-CoV2 S has enormous value as a BSL-2 agent to measure S-specific antibodies in the context of a bona fide CoV and is a candidate live attenuated SARS-CoV-2 mucosal vaccine that preferentially replicates in the upper airway.
Collapse
Affiliation(s)
- Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alberto Domingo López-Muñoz
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Tiansheng Li
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Victoria Callahan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Debra S. Yee
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jefferson J. S. Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD21702
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD21702
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
13
|
Zhang X, Li S, Xue M. The potentiality of bacteria to drive SARS-CoV-2 mutation. mBio 2024; 15:e0053924. [PMID: 38591881 PMCID: PMC11077981 DOI: 10.1128/mbio.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
A recent study published in mBio by Cao et al. revealed the crucial roles of bacteria in benefitting SARS-CoV-2 mutations (B. Cao, X. Wang, W. Yin, Z. Gao, and B. Xia, mBio e3187-23, 2024, https://doi.org/10.1128/mbio.03187-23). Understanding the underlying mechanisms driving the evolution of SARS-CoV-2 is crucial for predicting the future trajectory of the COVID-19 pandemic and developing preventive and treatment strategies. This study provides important insights into the rapid and complex evolution of viruses facilitated by bacterial-virus interactions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Wills CP, Perez B, Moore J. Coronavirus Disease 2019: Past, Present, and Future. Emerg Med Clin North Am 2024; 42:415-442. [PMID: 38641397 DOI: 10.1016/j.emc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 is one of the most impactful diseases experienced in the past century. While the official national health emergency concluded in May of 2023, coronavirus disease 2019 (COVID-19) continues to mutate. As the summer of 2023, all countries were experiencing a new surge of cases from the EG.5 Omicron variant. Additionally, a new genetically distinct Omicron descendant BA2.86 had been detected in multiple countries including the United States. This article seeks to offer lessons learned from the pandemic, summarize best evidence for current management of patients with COVID-19, and give insights into future directions with this disease.
Collapse
Affiliation(s)
- Charlotte Page Wills
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, Oakland, California, 1411 East 31st Street, Oakland, CA 94602, USA.
| | - Berenice Perez
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, Oakland, California, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Justin Moore
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, Oakland, California, 1411 East 31st Street, Oakland, CA 94602, USA
| |
Collapse
|
15
|
Zhuang Z, Zhuo J, Yuan Y, Chen Z, Zhang S, Zhu A, Zhao J, Zhao J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines (Basel) 2024; 12:478. [PMID: 38793729 PMCID: PMC11125924 DOI: 10.3390/vaccines12050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
16
|
Mancino C, Pollet J, Zinger A, Jones KM, Villar MJ, Leao AC, Adhikari R, Versteeg L, Tyagi Kundu R, Strych U, Giordano F, Hotez PJ, Bottazzi ME, Taraballi F, Poveda C. Harnessing RNA Technology to Advance Therapeutic Vaccine Antigens against Chagas Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15832-15846. [PMID: 38518375 PMCID: PMC10996878 DOI: 10.1021/acsami.3c18830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.
Collapse
Affiliation(s)
- Chiara Mancino
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
| | - Jeroen Pollet
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Assaf Zinger
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Laboratory
for Bioinspired Nano Engineering and Translational Therapeutics, Department
of Chemical Engineering, Technion−Israel
Institute of Technology, Haifa 3200003, Israel
- Cardiovascular
Sciences Department, Houston Methodist Academic
Institute, Houston, Texas 77030, United States
- Neurosurgery
Department, Houston Methodist Academic Institute, Houston, Texas 77030, United States
| | - Kathryn M. Jones
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Department
of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Maria José Villar
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Ana Carolina Leao
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Rakesh Adhikari
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Leroy Versteeg
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Cell Biology
and Immunology Group, Wageningen University
& Research, Wageningen 6708 PB, The Netherlands
| | - Rakhi Tyagi Kundu
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Ulrich Strych
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Federica Giordano
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
| | - Peter J. Hotez
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Department
of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Biology, Baylor University, Waco, Texas 76798, United States
| | - Maria Elena Bottazzi
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Department
of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Biology, Baylor University, Waco, Texas 76798, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Cristina Poveda
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| |
Collapse
|
17
|
Jung SM, Loo SL, Howerton E, Contamin L, Smith CP, Carcelén EC, Yan K, Bents SJ, Levander J, Espino J, Lemaitre JC, Sato K, McKee CD, Hill AL, Chinazzi M, Davis JT, Mu K, Vespignani A, Rosenstrom ET, Rodriguez-Cartes SA, Ivy JS, Mayorga ME, Swann JL, España G, Cavany S, Moore SM, Perkins TA, Chen S, Paul R, Janies D, Thill JC, Srivastava A, Aawar MA, Bi K, Bandekar SR, Bouchnita A, Fox SJ, Meyers LA, Porebski P, Venkatramanan S, Adiga A, Hurt B, Klahn B, Outten J, Chen J, Mortveit H, Wilson A, Hoops S, Bhattacharya P, Machi D, Vullikanti A, Lewis B, Marathe M, Hochheiser H, Runge MC, Shea K, Truelove S, Viboud C, Lessler J. Potential impact of annual vaccination with reformulated COVID-19 vaccines: Lessons from the US COVID-19 scenario modeling hub. PLoS Med 2024; 21:e1004387. [PMID: 38630802 PMCID: PMC11062554 DOI: 10.1371/journal.pmed.1004387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/01/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.
Collapse
Affiliation(s)
- Sung-mok Jung
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara L. Loo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emily Howerton
- The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lucie Contamin
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Claire P. Smith
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erica C. Carcelén
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katie Yan
- The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Samantha J. Bents
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Levander
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jessi Espino
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph C. Lemaitre
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Koji Sato
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Clifton D. McKee
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alison L. Hill
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Matteo Chinazzi
- Northeastern University, Boston, Massachusetts, United States of America
| | - Jessica T. Davis
- Northeastern University, Boston, Massachusetts, United States of America
| | - Kunpeng Mu
- Northeastern University, Boston, Massachusetts, United States of America
| | | | - Erik T. Rosenstrom
- North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Julie S. Ivy
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Maria E. Mayorga
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Julie L. Swann
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Guido España
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean Cavany
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean M. Moore
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shi Chen
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Rajib Paul
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Jean-Claude Thill
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Ajitesh Srivastava
- University of Southern California, Los Angeles, California, United States of America
| | - Majd Al Aawar
- University of Southern California, Los Angeles, California, United States of America
| | - Kaiming Bi
- University of Texas at Austin, Austin, Texas, United States of America
| | | | - Anass Bouchnita
- University of Texas at El Paso, El Paso, Texas, United States of America
| | - Spencer J. Fox
- University of Georgia, Athens, Georgia, United States of America
| | | | | | | | - Aniruddha Adiga
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Benjamin Hurt
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Brian Klahn
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Joseph Outten
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Jiangzhuo Chen
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Henning Mortveit
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Amanda Wilson
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Stefan Hoops
- University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Dustin Machi
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Anil Vullikanti
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Bryan Lewis
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Madhav Marathe
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Harry Hochheiser
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael C. Runge
- U.S. Geological Survey, Laurel, Maryland, United States of America
| | - Katriona Shea
- The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shaun Truelove
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Justin Lessler
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
He X, Zhang X, Wu B, Deng J, Zhang Y, Zhu A, Yuan Y, Lin Y, Chen A, Feng J, Wang X, Wu S, Liu Y, Liu J, Wang Y, Li R, Liang C, Yuan Q, Liang Y, Fang Q, Xi Z, Li W, Liang L, Zhang Z, Tang H, Peng Y, Ke C, Ma X, Cai W, Pan T, Liu B, Deng K, Chen J, Zhao J, Wei X, Chen R, Zhang Y, Zhang H. The receptor binding domain of SARS-CoV-2 Omicron subvariants targets Siglec-9 to decrease its immunogenicity by preventing macrophage phagocytosis. Nat Immunol 2024; 25:622-632. [PMID: 38454157 DOI: 10.1038/s41590-024-01776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.
Collapse
Affiliation(s)
- Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiantao Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bolin Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Airu Zhu
- Guangzhou Laboratory, Bio-island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaochang Yuan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingtong Lin
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinzhu Feng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shijian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingying Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalin Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rong Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaofeng Liang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quyu Yuan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Liang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guanzhou, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guanzhou, China
| | - Wenjie Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liting Liang
- Qianyang Biomedical Research Institute, Guangzhou, China
| | | | - Hui Tang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Peng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiancai Ma
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - Weibin Cai
- Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Bingfeng Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jincun Zhao
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xuepeng Wei
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
19
|
Walter NG. Are non-protein coding RNAs junk or treasure?: An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. Bioessays 2024; 46:e2300201. [PMID: 38351661 DOI: 10.1002/bies.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is "junk", a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome "junk" often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their bases, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.
Collapse
Affiliation(s)
- Nils G Walter
- Center for RNA Biomedicine, Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Wang Y, Liu Y, Liu G, Sun X, Zhang Z, Shen J. Analysis of data from two influenza surveillance hospitals in Zhejiang province, China, for the period 2018-2022. PLoS One 2024; 19:e0299488. [PMID: 38416761 PMCID: PMC10901301 DOI: 10.1371/journal.pone.0299488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/11/2024] [Indexed: 03/01/2024] Open
Abstract
PURPOSE To assess the epidemiology of seasonal influenza in Huzhou City, Zhejiang Province, China, during 2018-2022 and provide insights for influenza prevention. METHODS Following the National Influenza Surveillance Program, we conducted pathogen surveillance by randomly sampling throat swabs from cases with influenza-like illness (ILI) at two sentinel hospitals. RESULTS From 2018 to 2022, a total of 3,813,471 cases were treated at two hospitals in Huzhou, China. Among them, there were 112,385 cases of Influenza-Like Illness (ILI), accounting for 2.95% of the total number of cases. A total of 11,686 ILI throat swab samples were tested for influenza viruses, with 1,602 cases testing positive for influenza virus nucleic acid, resulting in a positivity rate of 13.71%. Among the positive strains, there were 677 strains of A(H3N2) virus, 301 strains of A(H1N1) virus, 570 strains of B/Victoria virus, and 54 strains of B/Yamagata virus. The ILI percentage (ILI%) and influenza nucleic acid positivity rate showed winter-spring peaks in the years 2018, 2019, 2021, and 2022, with the peaks concentrated in January and February. Additionally, a small peak was observed in August 2022 during the summer season. No peak was observed during the winter-spring season of 2020. The highest proportion of ILI cases was observed in children aged 0-4 years, followed by school-age children aged 5-14 years. There was a positive correlation between ILI% and influenza virus nucleic acid positivity rate (r = 0.60, p < 0.05). CONCLUSIONS The influenza outbreak in Huzhou from 2020 to 2022 was to some extent influenced by the COVID-19 pandemic and public health measures. After the conclusion of the COVID-19 pandemic, the influenza outbreak in Huzhou may become more severe. Therefore, it is crucial to promptly assess the influenza outbreak trends based on the ILI% and the positivity rate of influenza virus nucleic acid tests.
Collapse
Affiliation(s)
- Yuda Wang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Yan Liu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Guangtao Liu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Xiuxiu Sun
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Zizhe Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Jianyong Shen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
21
|
Gupta S, Gupta D, Bhatnagar S. Analysis of SARS-CoV-2 genome evolutionary patterns. Microbiol Spectr 2024; 12:e0265423. [PMID: 38197644 PMCID: PMC10846092 DOI: 10.1128/spectrum.02654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
The spread of SARS-CoV-2 virus accompanied by public availability of abundant sequence data provides a window for the determination of viral evolutionary patterns. In this study, SARS-CoV-2 genome sequences were collected from seven countries in the period January 2020-December 2022. The sequences were classified into three phases, namely, pre-vaccination, post-vaccination, and recent period. Comparison was performed between these phases based on parameters like mutation rates, selection pressure (dN/dS ratio), and transition to transversion ratios (Ti/Tv). Similar comparisons were performed among SARS-CoV-2 variants. Statistical significance was tested using Graphpad unpaired t-test. The analysis showed an increase in the percent genomic mutation rates post-vaccination and in recent periods across all countries from the pre-vaccination sequences. Mutation rates were highest in NSP3, S, N, and NSP12b before and increased further after vaccination. NSP4 showed the largest change in mutation rates after vaccination. The dN/dS ratios showed purifying selection that shifted toward neutral selection after vaccination. N, ORF8, ORF3a, and ORF10 were under highest positive selection before vaccination. Shift toward neutral selection was driven by E, NSP3, and ORF7a in the after vaccination set. In recent sequences, the largest dN/dS change was observed in E, NSP1, and NSP13. The Ti/Tv ratios decreased with time. C→U and G→U were the most frequent transitions and transversions. However, U→G was the most frequent transversion in recent period. The Omicron variant had the highest genomic mutation rates, while Delta showed the highest dN/dS ratio. Protein-wise dN/dS ratio was also seen to vary across the different variants.IMPORTANCETo the best of our knowledge, there exists no other large-scale study of the genomic and protein-wise mutation patterns during the time course of evolution in different countries. Analyzing the SARS-CoV-2 evolutionary patterns in view of the varying spatial, temporal, and biological signals is important for diagnostics, therapeutics, and pharmacovigilance of SARS-CoV-2.
Collapse
Affiliation(s)
- Shubhangi Gupta
- Department of Biological Sciences and Engineering, Computational and Structural Biology Laboratory, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Deepanshu Gupta
- Division of Biotechnology, Computational and Structural Biology Laboratory, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Department of Biological Sciences and Engineering, Computational and Structural Biology Laboratory, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Division of Biotechnology, Computational and Structural Biology Laboratory, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
22
|
Adler JM, Martin Vidal R, Langner C, Vladimirova D, Abdelgawad A, Kunecova D, Lin X, Nouailles G, Voss A, Kunder S, Gruber AD, Wu H, Osterrieder N, Kunec D, Trimpert J. An intranasal live-attenuated SARS-CoV-2 vaccine limits virus transmission. Nat Commun 2024; 15:995. [PMID: 38307868 PMCID: PMC10837132 DOI: 10.1038/s41467-024-45348-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
The development of effective SARS-CoV-2 vaccines has been essential to control COVID-19, but significant challenges remain. One problem is intramuscular administration, which does not induce robust mucosal immune responses in the upper airways-the primary site of infection and virus shedding. Here we compare the efficacy of a mucosal, replication-competent yet fully attenuated virus vaccine, sCPD9-ΔFCS, and the monovalent mRNA vaccine BNT162b2 in preventing transmission of SARS-CoV-2 variants B.1 and Omicron BA.5 in two scenarios. Firstly, we assessed the protective efficacy of the vaccines by exposing vaccinated male Syrian hamsters to infected counterparts. Secondly, we evaluated transmission of the challenge virus from vaccinated and subsequently challenged male hamsters to naïve contacts. Our findings demonstrate that the live-attenuated vaccine (LAV) sCPD9-ΔFCS significantly outperformed the mRNA vaccine in preventing virus transmission in both scenarios. Our results provide evidence for the advantages of locally administered LAVs over intramuscularly administered mRNA vaccines in preventing infection and reducing virus transmission.
Collapse
Affiliation(s)
- Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Daniela Kunecova
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Xiaoyuan Lin
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Voss
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Sandra Kunder
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Rabdano S, Ruzanova E, Makarov D, Vertyachikh A, Teplykh V, Rudakov G, Pletyukhina I, Saveliev N, Zakharov K, Alpenidze D, Vasilyuk V, Arakelov S, Skvortsova V. Safety and Immunogenicity of the Convacell ® Recombinant N Protein COVID-19 Vaccine. Vaccines (Basel) 2024; 12:100. [PMID: 38276672 PMCID: PMC10821050 DOI: 10.3390/vaccines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
We have developed Convacell®-a COVID-19 vaccine based on the recombinant nucleocapsid (N) protein of SARS-CoV-2. This paper details Convacell's® combined phase I/II and IIb randomized, double-blind, interventional clinical trials. The primary endpoints were the frequency of adverse effects (AEs) and the titers of specific anti-N IgGs induced by the vaccination; secondary endpoints included the nature of the immune response. Convacell® demonstrated high safety in phase I with no severe AEs detected, 100% seroconversion by day 42 and high and sustained for 350 days anti-N IgG levels in phase II. Convacell® also demonstrated a fused cellular and humoral immune response. Phase IIb results showed significant post-vaccination increases in circulating anti-N IgG and N protein-specific IFNγ+-producing PBMC quantities among 438 volunteers. Convacell® showed same level of immunological efficacy for single and double dose vaccination regimens, including for elderly patients. The clinical studies indicate that Convacell® is safe and highly immunogenic.
Collapse
Affiliation(s)
- Sevastyan Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Ellina Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Denis Makarov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Anastasiya Vertyachikh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Valeriya Teplykh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - German Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Iuliia Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Nikita Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | | | - Diana Alpenidze
- State Budgetary Health Institution “City Polyclinic No. 117”, St. Petersburg 194358, Russia
| | - Vasiliy Vasilyuk
- Department of Toxicology, Extreme and Diving Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Sergei Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | | |
Collapse
|
24
|
Husain M. Influenza A Virus and Acetylation: The Picture Is Becoming Clearer. Viruses 2024; 16:131. [PMID: 38257831 PMCID: PMC10820114 DOI: 10.3390/v16010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Influenza A virus (IAV) is one of the most circulated human pathogens, and influenza disease, commonly known as the flu, remains one of the most recurring and prevalent infectious human diseases globally. IAV continues to challenge existing vaccines and antiviral drugs via its ability to evolve constantly. It is critical to identify the molecular determinants of IAV pathogenesis to understand the basis of flu severity in different populations and design improved antiviral strategies. In recent years, acetylation has been identified as one of the determinants of IAV pathogenesis. Acetylation was originally discovered as an epigenetic protein modification of histones. But, it is now known to be one of the ubiquitous protein modifications of both histones and non-histone proteins and a determinant of proteome complexity. Since our first observation in 2007, significant progress has been made in understanding the role of acetylation during IAV infection. Now, it is becoming clearer that acetylation plays a pro-IAV function via at least three mechanisms: (1) by reducing the host's sensing of IAV infection, (2) by dampening the host's innate antiviral response against IAV, and (3) by aiding the stability and function of viral and host proteins during IAV infection. In turn, IAV antagonizes the host deacetylases, which erase acetylation, to facilitate its replication. This review provides an overview of the research progress made on this subject so far and outlines research prospects for the significance of IAV-acetylation interplay.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
25
|
Harhala MA, Gembara K, Baniecki K, Pikies A, Nahorecki A, Jędruchniewicz N, Kaźmierczak Z, Rybicka I, Klimek T, Witkiewicz W, Barczyk K, Kłak M, Dąbrowska K. Experimental Identification of Cross-Reacting IgG Hotspots to Predict Existing Immunity Evasion of SARS-CoV-2 Variants by a New Biotechnological Application of Phage Display. Viruses 2023; 16:58. [PMID: 38257758 PMCID: PMC10820762 DOI: 10.3390/v16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Multiple pathogens are competing against the human immune response, leading to outbreaks that are increasingly difficult to control. For example, the SARS-CoV-2 virus continually evolves, giving rise to new variants. The ability to evade the immune system is a crucial factor contributing to the spread of these variants within the human population. With the continuous emergence of new variants, it is challenging to comprehend all the possible combinations of previous infections, various vaccination types, and potential exposure to new variants in an individual patient. Rather than conducting variant-to-variant comparisons, an efficient approach could involve identifying key protein regions associated with the immune evasion of existing immunity against the virus. In this study, we propose a new biotechnological application of bacteriophages, the phage display platform for experimental identification of regions (linear epitopes) that may function as cross-reacting IgG hotspots in SARS-CoV-2 structural proteins. A total of 34,949 epitopes derived from genomes of all SARS-CoV-2 variants deposited prior to our library design were tested in a single assay. Cross-reacting IgG hotspots are protein regions frequently recognized by cross-reacting antibodies in many variants. The assay facilitated the one-step identification of immunogenic regions of proteins that effectively induced specific IgG in SARS-CoV-2-infected patients. We identified four regions demonstrating both significant immunogenicity and the activity of a cross-reacting IgG hotspot in protein S (located at NTD, RBD, HR1, and HR2/TM domains) and two such regions in protein N (at 197-280 and 358-419 aa positions). This novel method for identifying cross-reacting IgG hotspots holds promise for informing vaccine design and serological diagnostics for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Marek Adam Harhala
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
- Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12 St., 53-114 Wrocław, Poland;
| | - Katarzyna Gembara
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
- Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12 St., 53-114 Wrocław, Poland;
| | - Krzysztof Baniecki
- Healthcare Centre in Bolesławiec, Jeleniogórska 4, 59-700 Bolesławiec, Poland; (K.B.); (A.P.); (A.N.); (K.B.)
| | - Aleksandra Pikies
- Healthcare Centre in Bolesławiec, Jeleniogórska 4, 59-700 Bolesławiec, Poland; (K.B.); (A.P.); (A.N.); (K.B.)
| | - Artur Nahorecki
- Healthcare Centre in Bolesławiec, Jeleniogórska 4, 59-700 Bolesławiec, Poland; (K.B.); (A.P.); (A.N.); (K.B.)
| | - Natalia Jędruchniewicz
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
| | - Zuzanna Kaźmierczak
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
- Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12 St., 53-114 Wrocław, Poland;
| | - Izabela Rybicka
- Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12 St., 53-114 Wrocław, Poland;
| | - Tomasz Klimek
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
| | - Kamil Barczyk
- Healthcare Centre in Bolesławiec, Jeleniogórska 4, 59-700 Bolesławiec, Poland; (K.B.); (A.P.); (A.N.); (K.B.)
| | - Marlena Kłak
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
| | - Krystyna Dąbrowska
- Research and Development Center, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a St., 51-124 Wrocław, Poland; (M.A.H.); (K.G.); (N.J.); (Z.K.); (T.K.); (W.W.); (M.K.)
- Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12 St., 53-114 Wrocław, Poland;
| |
Collapse
|
26
|
Jiang M, Fang C, Ma Y. Deciphering the rule of antigen-antibody amino acid interaction. Front Immunol 2023; 14:1269916. [PMID: 38111576 PMCID: PMC10725943 DOI: 10.3389/fimmu.2023.1269916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Antigenic drift is the biggest challenge for mutagenic RNA virus vaccine development. The primary purpose is to determine the IEMM (immune escape mutation map) of 20 amino acids' replacement to reveal the rule of the viral immune escape. Methods To determine the relationship between epitope mutation and immune escape, we use universal protein tags as a linear epitope model. To describe and draw amino acid linkage diagrams, mutations of protein tags are classified into four categories: IEM (immune escape mutation), ADERM (antibody-dependent enhancement risk mutation), EQM (equivalent mutation), and IVM (invalid mutation). To overcome the data limitation, a general antigen-antibody (Ag-Ab) interaction map was constructed by analyzing the published three-dimensional (3D) Ag-Ab interaction patterns. Results (i) One residue interacts with multiple amino acids in antigen-antibody interaction. (ii) Most amino acid replacements are IVM and EQM. (iii) Once aromatic amino acids replace non-aromatic amino acids, the mutation is often IEM. (iv) Substituting residues with the same physical and chemical properties easily leads to IVM. Therefore, this study has important theoretical significance for future research on antigenic drift, antibody rescue, and vaccine renewal design. Conclusion The antigenic epitope mutations were typed into IEM, ADERM, EQM, and IVM types to describe and quantify the results of antigenic mutations. The antigen-antibody interaction rule was summarized as a one-to-many interaction rule. To sum up, the epitope mutation rules were defined as IVM and EQM predomination rules and the aryl mutation escape rule.
Collapse
Affiliation(s)
| | | | - Yongping Ma
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Basical Medical Collage, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Moreira-Soto A, Bruno A, de Mora D, Paez M, Garces J, Wulf B, Sander AL, Olmedo M, Basantes Mantilla MJ, Gonzalez Gonzalez M, Orlando SA, Salgado Cisneros S, Zevallos JC, Drexler JF. Virological evidence of the impact of non-pharmaceutical interventions against COVID-19 in Ecuador, a resource-limited setting. Emerg Microbes Infect 2023; 12:2259001. [PMID: 37698611 PMCID: PMC10563623 DOI: 10.1080/22221751.2023.2259001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/10/2023] [Indexed: 09/13/2023]
Abstract
Ecuador had substantial COVID-19-mortality during 2020 despite early implementation of non-pharmaceutical interventions (NPIs). Resource-limited settings like Ecuador have high proportions of informal labour which entail high human mobility, questioning efficacy of NPIs. We performed a retrospective observational study in Ecuador's national reference laboratory for viral respiratory infections during March 2020-February 2021 using stored respiratory specimens from 1950 patients, corresponding to 2.3% of all samples analysed within the Ecuadorian national surveillance system per week. During 2020, detection of SARS-CoV-2 (Pearson correlation; r = -0.74; p = 0.01) and other respiratory viruses (Pearson correlation; r = -0.68; p = 0.02) by real-time RT-PCR correlated negatively with NPIs stringency. Among respiratory viruses, adenoviruses (Fisher's exact-test; p = 0.026), parainfluenzaviruses (p = 0.04), enteroviruses (p < 0.0001) and metapneumoviruses (p < 0.0001) occurred significantly more frequently during months of absent or non-stringent NPIs (characterized by <55% stringency according to the Oxford stringency index data for Ecuador). Phylogenomic analyses of 632 newly characterized SARS-CoV-2 genomes revealed 100 near-parallel SARS-CoV-2 introductions during early 2020 in the absence of NPIs. NPI stringency correlated negatively with the number of circulating SARS-CoV-2 lineages during 2020 (r = -0.69; p = 0.02). Phylogeographic reconstructions showed differential SARS-CoV-2 dispersion patterns during 2020, with more short-distance transitions potentially associated with recreational activity during non-stringent NPIs. There were also fewer geographic transitions during strict NPIs (n = 450) than during non-stringent or absent NPIs (n = 580). Virological evidence supports that NPIs had an effect on virus spread and distribution in Ecuador, providing a template for future epidemics in resource-limited settings and contributing to a balanced assessment of societal costs entailed by strict NPIs.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Institute of Virology, Berlin, Germany
- Tropical Disease Research Program, School of Veterinary Medicine, Universidad Nacional, Costa Rica, Costa Rica
| | - Alfredo Bruno
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
- Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | - Doménica de Mora
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
| | - Michelle Paez
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
| | - Jimmy Garces
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
| | - Ben Wulf
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Maritza Olmedo
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
| | | | - Manuel Gonzalez Gonzalez
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
- Universidad ECOTEC, Km 13.5 Samborondon, Samborondon, EC092302, Ecuador
| | - Solon Alberto Orlando
- National Institute of Public Health Research (INSPI), Guayaquil, Ecuador
- Health Science Faculty, Universidad Espíritu Santo, Guayaquil, Ecuador
| | | | - Juan Carlos Zevallos
- Health Science Faculty, Universidad Espíritu Santo, Guayaquil, Ecuador
- Alianza para la Investigación de Enfermedades Emergentes (AIE), Quito, Ecuador
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Institute of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Berlin, Germany
| |
Collapse
|
28
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Waku J, Oshinubi K, Adam UM, Demongeot J. Forecasting the Endemic/Epidemic Transition in COVID-19 in Some Countries: Influence of the Vaccination. Diseases 2023; 11:135. [PMID: 37873779 PMCID: PMC10594474 DOI: 10.3390/diseases11040135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The objective of this article is to develop a robust method for forecasting the transition from endemic to epidemic phases in contagious diseases using COVID-19 as a case study. METHODS Seven indicators are proposed for detecting the endemic/epidemic transition: variation coefficient, entropy, dominant/subdominant spectral ratio, skewness, kurtosis, dispersion index and normality index. Then, principal component analysis (PCA) offers a score built from the seven proposed indicators as the first PCA component, and its forecasting performance is estimated from its ability to predict the entrance in the epidemic exponential growth phase. RESULTS This score is applied to the retro-prediction of endemic/epidemic transitions of COVID-19 outbreak in seven various countries for which the first PCA component has a good predicting power. CONCLUSION This research offers a valuable tool for early epidemic detection, aiding in effective public health responses.
Collapse
Affiliation(s)
- Jules Waku
- IRD UMI 209 UMMISCO and LIRIMA, University of Yaounde I, Yaounde P.O. Box 337, Cameroon;
| | | | | | | |
Collapse
|
30
|
Bedi R, Bayless NL, Glanville J. Challenges and Progress in Designing Broad-Spectrum Vaccines Against Rapidly Mutating Viruses. Annu Rev Biomed Data Sci 2023; 6:419-441. [PMID: 37196356 DOI: 10.1146/annurev-biodatasci-020722-041304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)-three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.
Collapse
Affiliation(s)
- Rishi Bedi
- Centivax Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
31
|
Rouzine IM. Long-range linkage effects in adapting sexual populations. Sci Rep 2023; 13:12492. [PMID: 37528175 PMCID: PMC10393966 DOI: 10.1038/s41598-023-39392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
In sexual populations, closely-situated genes have linked evolutionary fates, while genes spaced far in genome are commonly thought to evolve independently due to recombination. In the case where evolution depends essentially on supply of new mutations, this assumption has been confirmed by mathematical modeling. Here I examine it in the case of pre-existing genetic variation, where mutation is not important. A haploid population with [Formula: see text] genomes, [Formula: see text] loci, a fixed selection coefficient, and a small initial frequency of beneficial alleles [Formula: see text] is simulated by a Monte-Carlo algorithm. When the number of loci, L, is larger than a critical value of [Formula: see text] simulation demonstrates a host of linkage effects that decrease neither with the distance between loci nor the number of recombination crossovers. Due to clonal interference, the beneficial alleles become extinct at a fraction of loci [Formula: see text]. Due to a genetic background effect, the substitution rate varies broadly between loci, with the fastest value exceeding the one-locus limit by the factor of [Formula: see text] Thus, the far-situated parts of a long genome in a sexual population do not evolve as independent blocks. A potential link between these findings and the emergence of new Variants of Concern of SARS-CoV-2 is discussed.
Collapse
Affiliation(s)
- Igor M Rouzine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia, 194223.
| |
Collapse
|
32
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Xiao Y, Zhang Z, Yin S, Ma X. Nanoplasmonic biosensors for precision medicine. Front Chem 2023; 11:1209744. [PMID: 37483272 PMCID: PMC10359043 DOI: 10.3389/fchem.2023.1209744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Nanoplasmonic biosensors have a huge boost for precision medicine, which allows doctors to better understand diseases at the molecular level and to improve the earlier diagnosis and develop treatment programs. Unlike traditional biosensors, nanoplasmonic biosensors meet the global health industry's need for low-cost, rapid and portable aspects, while offering multiplexing, high sensitivity and real-time detection. In this review, we describe the common detection schemes used based on localized plasmon resonance (LSPR) and highlight three sensing classes based on LSPR. Then, we present the recent applications of nanoplasmonic in other sensing methods such as isothermal amplification, CRISPR/Cas systems, lab on a chip and enzyme-linked immunosorbent assay. The advantages of nanoplasmonic-based integrated sensing for multiple methods are discussed. Finally, we review the current applications of nanoplasmonic biosensors in precision medicine, such as DNA mutation, vaccine evaluation and drug delivery. The obstacles faced by nanoplasmonic biosensors and the current countermeasures are discussed.
Collapse
Affiliation(s)
- Yiran Xiao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | | | - Shi Yin
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| | - Xingyi Ma
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
- Biosen International, Jinan, Shandong, China
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| |
Collapse
|
34
|
Stojcheva N, Gladman S, Soergel M, Zitt C, Drake R, Lockett T, Marchand C, Fustier P, Stavropoulou V, Fernandez E, Pettigiani NL, Watkins K, Puri A, Watson R, Legenne P, Stumpp MT, Boyce M. Ensovibep, a SARS-CoV-2 antiviral designed ankyrin repeat protein, is safe and well tolerated in healthy volunteers: Results of a first-in-human, ascending single-dose Phase 1 study. Br J Clin Pharmacol 2023; 89:2295-2303. [PMID: 37057679 DOI: 10.1111/bcp.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
AIMS This study aimed to assess safety, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) effects of ensovibep, a designed ankyrin repeat protein antiviral being evaluated as a COVID-19 treatment, in healthy volunteers in a first-in-human ascending single-dose study. METHODS Subjects were dosed intravenously, in a randomized double-blinded manner, with either ensovibep at 3, 9 or 20 mg/kg or with placebo, and followed until Day 100. PK and safety were assessed throughout the study duration. Immunogenicity and PD via viral neutralization in serum were also assessed. RESULTS All adverse events were of mild to moderate severity, and no serious adverse events were observed. One subject who received the 20-mg/kg dose presented with moderate hypersensitivity vasculitis 3 weeks after infusion, which fully resolved using standard procedures. In most subjects ensovibep showed expected mono-exponential decline with a half-life of around 2 weeks. Anti-drug antibodies were detected in 15 of 17 subjects, with the earliest onset detected on Day 29. Viral neutralization assays on subject serum showed effective viral neutralization over the first 3 weeks following dosing with titre values in a dose dependent manner. CONCLUSION Ensovibep proved safe in this first-in-human safety study and exhibited PK and PD parameters consistent with the expected treatment period required for acute COVID-19 infection.
Collapse
Affiliation(s)
| | | | | | - Christof Zitt
- Molecular Partners AG, Schlieren, Zurich, Switzerland
| | - Roxana Drake
- Molecular Partners AG, Schlieren, Zurich, Switzerland
| | - Tony Lockett
- CPMR, Center for Pharmaceutical Medicine and Research, Institute of Pharmaceutical Sciences, Kings College London, London, UK
| | | | | | | | | | | | | | - Adeep Puri
- HMR, Hammersmith Medicines Research, London, UK
| | | | | | | | | |
Collapse
|
35
|
Ferdous N, Reza MN, Hossain MU, Mahmud S, Napis S, Chowdhury K, Mohiuddin AKM. Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists. PLoS One 2023; 18:e0287179. [PMID: 37352252 PMCID: PMC10289339 DOI: 10.1371/journal.pone.0287179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged in 2019 and still requiring treatments with fast clinical translatability. Frequent occurrence of mutations in spike glycoprotein of SARS-CoV-2 led the consideration of an alternative therapeutic target to combat the ongoing pandemic. The main protease (Mpro) is such an attractive drug target due to its importance in maturating several polyproteins during the replication process. In the present study, we used a classification structure-activity relationship (CSAR) model to find substructures that leads to to anti-Mpro activities among 758 non-redundant compounds. A set of 12 fingerprints were used to describe Mpro inhibitors, and the random forest approach was used to build prediction models from 100 distinct data splits. The data set's modelability (MODI index) was found to be robust, with a value of 0.79 above the 0.65 threshold. The accuracy (89%), sensitivity (89%), specificity (73%), and Matthews correlation coefficient (79%) used to calculate the prediction performance, was also found to be statistically robust. An extensive analysis of the top significant descriptors unveiled the significance of methyl side chains, aromatic ring and halogen groups for Mpro inhibition. Finally, the predictive model is made publicly accessible as a web-app named Mpropred in order to allow users to predict the bioactivity of compounds against SARS-CoV-2 Mpro. Later, CMNPD, a marine compound database was screened by our app to predict bioactivity of all the compounds and results revealed significant correlation with their binding affinity to Mpro. Molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) analysis showed improved properties of the complexes. Thus, the knowledge and web-app shown herein can be used to develop more effective and specific inhibitors against the SARS-CoV-2 Mpro. The web-app can be accessed from https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py.
Collapse
Affiliation(s)
- Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mohammad Uzzal Hossain
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Ganakbari, Savar, Dhaka, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Suhami Napis
- Department of Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor D.E., Malaysia
| | - Kamal Chowdhury
- Biology Department, Claflin University, Orangeburg, SC, United States of America
| | - A. K. M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| |
Collapse
|
36
|
Rouzine IM, Rozhnova G. Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies. COMMUNICATIONS MEDICINE 2023; 3:86. [PMID: 37336956 PMCID: PMC10279745 DOI: 10.1038/s43856-023-00320-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Once the first SARS-CoV-2 vaccine became available, mass vaccination was the main pillar of the public health response to the COVID-19 pandemic. It was very effective in reducing hospitalizations and deaths. Here, we discuss the possibility that mass vaccination might accelerate SARS-CoV-2 evolution in antibody-binding regions compared to natural infection at the population level. Using the evidence of strong genetic variation in antibody-binding regions and taking advantage of the similarity between the envelope proteins of SARS-CoV-2 and influenza, we assume that immune selection pressure acting on these regions of the two viruses is similar. We discuss the consequences of this assumption for SARS-CoV-2 evolution in light of mathematical models developed previously for influenza. We further outline the implications of this phenomenon, if our assumptions are confirmed, for the future design of SARS-CoV-2 vaccination strategies.
Collapse
Affiliation(s)
- Igor M Rouzine
- Immunogenetics, Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
- Center for Complex Systems Studies (CCSS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Berry C, Pavot V, Anosova NG, Kishko M, Li L, Tibbitts T, Raillard A, Gautheron S, Cummings S, Bangari DS, Kar S, Atyeo C, Deng Y, Alter G, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Beta-containing bivalent SARS-CoV-2 protein vaccine elicits durable broad neutralization in macaques and protection in hamsters. COMMUNICATIONS MEDICINE 2023; 3:75. [PMID: 37237062 PMCID: PMC10212738 DOI: 10.1038/s43856-023-00302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. METHODS We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. RESULTS We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable (1 year) neutralizing antibody responses against VOC including Omicron BA.1 and BA.4/5, and SARS-CoV-1 as compared to the ancestral D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 prototype D614G strain as well as Alpha and Beta variant strains in hamsters. CONCLUSIONS Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and durable immunogenicity, as well as protection against VOC in naïve populations.
Collapse
Affiliation(s)
| | | | | | | | - Lu Li
- Sanofi, Vaccines R&D, Cambridge, MA, USA
| | | | | | | | | | | | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
38
|
Tomris I, Unione L, Nguyen L, Zaree P, Bouwman KM, Liu L, Li Z, Fok JA, Ríos Carrasco M, van der Woude R, Kimpel ALM, Linthorst MW, Kilavuzoglu SE, Verpalen ECJM, Caniels TG, Sanders RW, Heesters BA, Pieters RJ, Jiménez-Barbero J, Klassen JS, Boons GJ, de Vries RP. SARS-CoV-2 Spike N-Terminal Domain Engages 9- O-Acetylated α2-8-Linked Sialic Acids. ACS Chem Biol 2023; 18:1180-1191. [PMID: 37104622 PMCID: PMC10178783 DOI: 10.1021/acschembio.3c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Luca Unione
- CICbioGUNE,
Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
| | - Linh Nguyen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Pouya Zaree
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kim M. Bouwman
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lin Liu
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Zeshi Li
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jelle A. Fok
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - María Ríos Carrasco
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anne L. M. Kimpel
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mirte W. Linthorst
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sinan E. Kilavuzoglu
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Enrico C. J. M. Verpalen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Tom G. Caniels
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Infectious Diseases, 1081 HZ Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Infectious Diseases, 1081 HZ Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
Center of Cornell University, 1300 York Avenue, New York, New York 10065, United States
| | - Balthasar A. Heesters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roland J. Pieters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jesús Jiménez-Barbero
- CICbioGUNE,
Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Department
of Microbiology and Immunology, Weill Medical
Center of Cornell University, 1300 York Avenue, New York, New York 10065, United States
- Department
of Organic Chemistry, II Faculty of Science
and Technology University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5. Pabellón
11. Planta 0, 28029 Madrid, Spain
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Geert-Jan Boons
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
39
|
Ghafoori SM, Petersen GF, Conrady DG, Calhoun BM, Stigliano MZZ, Baydo RO, Grice R, Abendroth J, Lorimer DD, Edwards TE, Forwood JK. Structural characterisation of hemagglutinin from seven Influenza A H1N1 strains reveal diversity in the C05 antibody recognition site. Sci Rep 2023; 13:6940. [PMID: 37117205 PMCID: PMC10140725 DOI: 10.1038/s41598-023-33529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Influenza virus (IV) causes several outbreaks of the flu each year resulting in an economic burden to the healthcare system in the billions of dollars. Several influenza pandemics have occurred during the last century and estimated to have caused 100 million deaths. There are four genera of IV, A (IVA), B (IVB), C (IVC), and D (IVD), with IVA being the most virulent to the human population. Hemagglutinin (HA) is an IVA surface protein that allows the virus to attach to host cell receptors and enter the cell. Here we have characterised the high-resolution structures of seven IVA HAs, with one in complex with the anti-influenza head-binding antibody C05. Our analysis revealed conserved receptor binding residues in all structures, as seen in previously characterised IV HAs. Amino acid conservation is more prevalent on the stalk than the receptor binding domain (RBD; also called the head domain), allowing the virus to escape from antibodies targeting the RBD. The equivalent site of C05 antibody binding to A/Denver/57 HA appears hypervariable in the other H1N1 IV HAs. Modifications within this region appear to disrupt binding of the C05 antibody, as these HAs no longer bind the C05 antibody by analytical SEC. Our study brings new insights into the structural and functional recognition of IV HA proteins and can contribute to further development of anti-influenza vaccines.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Deborah G Conrady
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Brandy M Calhoun
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Matthew Z Z Stigliano
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Ruth O Baydo
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Rena Grice
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Donald D Lorimer
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
40
|
Bonam SR, Hu H. Next-Generation Vaccines Against COVID-19 Variants: Beyond the Spike Protein. ZOONOSES (BURLINGTON, MASS.) 2023; 3:10.15212/zoonoses-2023-0003. [PMID: 38031548 PMCID: PMC10686570 DOI: 10.15212/zoonoses-2023-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Vaccines are among the most effective medical countermeasures against infectious diseases. The current Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred the scientific strategies to fight against the disease. Since 2020, a great number of vaccines based on different platforms have been in development in response to the pandemic, among which mRNA, adenoviral vector, and subunit vaccines have been clinically approved for use in humans. These first-generation COVID-19 vaccines largely target the viral spike (S) protein and aim for eliciting potent neutralizing antibodies. With the emergence of SARS-CoV-2 variants, especially the highly transmissible Omicron strains, the S-based vaccine strategies have been faced constant challenges due to strong immune escape by the variants. The coronavirus nucleocapsid (N) is one of the viral proteins that induces strong T-cell immunity and is more conserved across different SARS-CoV-2 variants. Inclusion of N in the development of COVID-19 vaccines has been reported. Here, we briefly reviewed and discussed COVID-19 disease, current S-based vaccine strategies, and focused on the immunobiology of N protein in SARS-CoV-2 host immunity, as well as the next-generation vaccine strategies involving N protein, to combat current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA 77555
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA 77555
| |
Collapse
|
41
|
Gutierrez MA, Gog JR. The importance of vaccinated individuals to population-level evolution of pathogens. J Theor Biol 2023; 567:111493. [PMID: 37054971 DOI: 10.1016/j.jtbi.2023.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Virus evolution shapes the epidemiological patterns of infectious disease, particularly via evasion of population immunity. At the individual level, host immunity itself may drive viral evolution towards antigenic escape. Using compartmental SIR-style models with imperfect vaccination, we allow the probability of immune escape to differ in vaccinated and unvaccinated hosts. As the relative contribution to selection in these different hosts varies, the overall effect of vaccination on the antigenic escape pressure at the population level changes. We find that this relative contribution to escape is important for understanding the effects of vaccination on the escape pressure and we draw out some fairly general patterns. If vaccinated hosts do not contribute much more than unvaccinated hosts to the escape pressure, then increasing vaccination always reduces the overall escape pressure. In contrast, if vaccinated hosts contribute significantly more than unvaccinated hosts to the population level escape pressure, then the escape pressure is maximised for intermediate vaccination levels. Past studies find only that the escape pressure is maximal for intermediate levels with fixed extreme assumptions about this relative contribution. Here we show that this result does not hold across the range of plausible assumptions for the relative contribution to escape from vaccinated and unvaccinated hosts. We also find that these results depend on the vaccine efficacy against transmission, particularly through the partial protection against infection. This work highlights the potential value of understanding better how the contribution to antigenic escape pressure depends on individual host immunity.
Collapse
Affiliation(s)
- Maria A Gutierrez
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, United Kingdom.
| | - Julia R Gog
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, United Kingdom; Joint UNIversities Pandemic and Epidemiological Research (JUNIPER) Consortium, United Kingdom.
| |
Collapse
|
42
|
Antibody Persistence After Primary SARS-CoV-2 Infection and Protection Against Future Variants Including Omicron in Adolescents: National, Prospective Cohort Study. Pediatr Infect Dis J 2023; 42:496-502. [PMID: 36916856 DOI: 10.1097/inf.0000000000003890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Antibodies are a measure of immunity after primary infection, which may help protect against further SARS-CoV-2 infections. They may also provide some cross-protection against SARS-CoV-2 variants. There are limited data on antibody persistence and, especially, cross-reactivity against different SARS-CoV-2 variants after primary infection in children. METHODS We initiated enhanced surveillance in 18 secondary schools to monitor SARS-CoV-2 infection and transmission in September 2020. Students and Staff provided longitudinal blood samples to test for variant-specific SARS-CoV-2 antibodies using in-house receptor binding domain assays. We recruited 1189 students and 1020 staff; 160 (97 students, 63 staff) were SARS-CoV-2 nucleocapsid-antibody positive at baseline and had sufficient serum for further analysis. RESULTS Most participants developed sustained antibodies against their infecting [wild-type (WT)] strain as well as cross-reactive antibodies against the Alpha, Beta and Delta variants but at lower titers than WT. Staff had significantly lower antibodies titers against WT as cross-reactive antibodies against the Alpha, Beta and Delta variants than students (all P < 0.01). In participants with sufficient sera, only 2.3% (1/43) students and 17.2% (5/29) staff had cross-reactive antibodies against the Omicron variant; they also had higher antibody titers against WT (3042.5; 95% confidence interval: 769.0-12,036.2) than those who did not have cross-reactive antibodies against the Omicron variant (680.7; 534.2-867.4). CONCLUSIONS We found very high rates of antibody persistence after primary infection with WT in students and staff. Infection with WT induced cross-reactive antibodies against Alpha, Beta and Delta variants, but not Omicron. Primary infection with WT may not be cross-protective against the Omicron variant.
Collapse
|
43
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
44
|
Maison DP. The Impact of Russia's War in Ukraine on the SARS-CoV-2 Evolution. Disaster Med Public Health Prep 2023; 17:e495. [PMID: 36776101 DOI: 10.1017/dmp.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- David P Maison
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
45
|
Broni E, Miller WA. Computational Analysis Predicts Correlations among Amino Acids in SARS-CoV-2 Proteomes. Biomedicines 2023; 11:512. [PMID: 36831052 PMCID: PMC9953644 DOI: 10.3390/biomedicines11020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious global challenge requiring urgent and permanent therapeutic solutions. These solutions can only be engineered if the patterns and rate of mutations of the virus can be elucidated. Predicting mutations and the structure of proteins based on these mutations have become necessary for early drug and vaccine design purposes in anticipation of future viral mutations. The amino acid composition (AAC) of proteomes and individual viral proteins provide avenues for exploitation since AACs have been previously used to predict structure, shape and evolutionary rates. Herein, the frequency of amino acid residues found in 1637 complete proteomes belonging to 11 SARS-CoV-2 variants/lineages were analyzed. Leucine is the most abundant amino acid residue in the SARS-CoV-2 with an average AAC of 9.658% while tryptophan had the least abundance of 1.11%. The AAC and ranking of lysine and glycine varied in the proteome. For some variants, glycine had higher frequency and AAC than lysine and vice versa in other variants. Tryptophan was also observed to be the most intolerant to mutation in the various proteomes for the variants used. A correlogram revealed a very strong correlation of 0.999992 between B.1.525 (Eta) and B.1.526 (Iota) variants. Furthermore, isoleucine and threonine were observed to have a very strong negative correlation of -0.912, while cysteine and isoleucine had a very strong positive correlation of 0.835 at p < 0.001. Shapiro-Wilk normality test revealed that AAC values for all the amino acid residues except methionine showed no evidence of non-normality at p < 0.05. Thus, AACs of SARS-CoV-2 variants can be predicted using probability and z-scores. AACs may be beneficial in classifying viral strains, predicting viral disease types, members of protein families, protein interactions and for diagnostic purposes. They may also be used as a feature along with other crucial factors in machine-learning based algorithms to predict viral mutations. These mutation-predicting algorithms may help in developing effective therapeutics and vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
46
|
Fidler S, Fox J, Tipoe T, Longet S, Tipton T, Abeywickrema M, Adele S, Alagaratnam J, Ali M, Aley PK, Aslam S, Balasubramanian A, Bara A, Bawa T, Brown A, Brown H, Cappuccini F, Davies S, Fowler J, Godfrey L, Goodman AL, Hilario K, Hackstein CP, Mathew M, Mujadidi YF, Packham A, Petersen C, Plested E, Pollock KM, Ramasamy MN, Robinson H, Robinson N, Rongkard P, Sanders H, Serafimova T, Spence N, Waters A, Woods D, Zacharopoulou P, Barnes E, Dunachie S, Goulder P, Klenerman P, Winston A, Hill AVS, Gilbert SC, Carroll M, Pollard AJ, Lambe T, Ogbe A, Frater J. Booster Vaccination Against SARS-CoV-2 Induces Potent Immune Responses in People With Human Immunodeficiency Virus. Clin Infect Dis 2023; 76:201-209. [PMID: 36196614 PMCID: PMC9619587 DOI: 10.1093/cid/ciac796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).
Collapse
Affiliation(s)
- Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Julie Fox
- NIHR Guy's and St Thomas’ Biomedical Research Centre, London, United Kingdom
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Timothy Tipoe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Movin Abeywickrema
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Sandra Adele
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Mohammad Ali
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Suhail Aslam
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anbhu Balasubramanian
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anna Bara
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Tanveer Bawa
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anthony Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sophie Davies
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jamie Fowler
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Leila Godfrey
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Anna L Goodman
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Kathrine Hilario
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Carl-Philipp Hackstein
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Moncy Mathew
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Yama F Mujadidi
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alice Packham
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Claire Petersen
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Emma Plested
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katrina M Pollock
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Patpong Rongkard
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Helen Sanders
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teona Serafimova
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Niamh Spence
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anele Waters
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Danielle Woods
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Panagiota Zacharopoulou
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susanna Dunachie
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Philip Goulder
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Andrew J Pollard
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
47
|
Mziray SR, van Zwetselaar M, Kayuki CC, Mbelele PM, Makubi AN, Magesa AS, Kisonga RM, Sonda TB, Kibiki GS, Githinji G, Heysell SK, Chilongola JO, Mpagama SG. Whole-genome sequencing of SARS-CoV-2 isolates from symptomatic and asymptomatic individuals in Tanzania. Front Med (Lausanne) 2023; 9:1034682. [PMID: 36687433 PMCID: PMC9846855 DOI: 10.3389/fmed.2022.1034682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Coronavirus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accounts for considerable morbidity and mortality globally. Paucity of SARS-CoV-2 genetic data from Tanzania challenges in-country tracking of the pandemic. We sequenced SARS-CoV-2 isolated in the country to determine circulating strains, mutations and phylogenies and finally enrich international genetic databases especially with sequences from Africa. Methods This cross-sectional study utilized nasopharyngeal swabs of symptomatic and asymptomatic adults with positive polymerase chain reaction tests for COVID-19 from January to May 2021. Viral genomic libraries were prepared using ARTIC nCoV-2019 sequencing protocol version three. Whole-genome sequencing (WGS) was performed using Oxford Nanopore Technologies MinION device. In silico genomic data analysis was done on ARTIC pipeline version 1.2.1 using ARTIC nCoV-2019 bioinformatics protocol version 1.1.0. Results Twenty-nine (42%) out of 69 samples qualified for sequencing based on gel electrophoretic band intensity of multiplex PCR amplicons. Out of 29 isolates, 26 were variants of concern [Beta (n = 22); and Delta (n = 4)]. Other variants included Eta (n = 2) and B.1.530 (n = 1). We found combination of mutations (S: D80A, S: D215G, S: K417N, ORF3a: Q57H, E: P71L) in all Beta variants and absent in other lineages. The B.1.530 lineage carried mutations with very low cumulative global prevalence, these were nsp13:M233I, nsp14:S434G, ORF3a:A99S, S: T22I and S: N164H. The B.1.530 lineage clustered phylogenetically with isolates first reported in south-east Kenya, suggesting regional evolution of SARS-CoV-2. Conclusion We provide evidence of existence of Beta, Delta, Eta variants and a locally evolving lineage (B.1.530) from samples collected in early 2021 in Tanzania. This work provides a model for ongoing WGS surveillance that will be required to inform on emerging and circulating SARS-CoV-2 diversity in Tanzania and East Africa.
Collapse
Affiliation(s)
- Shabani Ramadhani Mziray
- Department of Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kibong’oto Infectious Diseases Hospital, Sanya Juu, Tanzania
| | | | | | | | | | | | | | | | - Gibson S. Kibiki
- The Africa Research Excellence Fund (AREF), London, United Kingdom
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jaffu O. Chilongola
- Department of Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | |
Collapse
|
48
|
Furuse Y. Cartography of SARS-CoV-2 variants based on the susceptibility to therapeutic monoclonal antibodies. J Med Virol 2023; 95:e28275. [PMID: 36326059 PMCID: PMC9877944 DOI: 10.1002/jmv.28275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A comprehensive picture of a phenotypic relationship among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has been poorly studied. Here, this study presents cartography showing how the wild-type strain of SARS-CoV-2 and 14 variants are alike or different from the perspective of the susceptibility to 12 therapeutic monoclonal antibodies. The Alpha variant is close to the wild-type strain, whereas the Beta, Gamma, and Delta variants diverge from the wild-type. The map highlights the very unique property of the Omicron variant. Interestingly, sublineages of the Omicron variants, BA.1, BA.2, and BA.4/5, differ substantially in the cartography.
Collapse
Affiliation(s)
- Yuki Furuse
- Nagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Medical Education Development CenterNagasaki University HospitalNagasakiJapan
- Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
- Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| |
Collapse
|
49
|
Tripp RA. Understanding immunity to influenza: implications for future vaccine development. Expert Rev Vaccines 2023; 22:871-875. [PMID: 37794732 DOI: 10.1080/14760584.2023.2266033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Influenza virus changes its genotype through antigenic drift or shift making it difficult to develop immunity to infection or vaccination. Zoonotic influenza A virus (IAV) strains can become established in humans. Several impediments to human infection and transmission include sialic acid expression, host anti-viral factors (including interferons), and other elements that govern viral replication. Controlling influenza infection, replication, and transmission is important because IAVs cause annual epidemics and occasional pandemics. Effective seasonal influenza vaccines exist, but these vaccines do not fully protect against novel or pandemic strains. AREAS COVERED With new vaccine production technology, vaccines can be produced rapidly. Universal IAV vaccines are being developed to protect against seasonal, novel, and zoonotic IAVs. These efforts are being enhanced and accelerated by a better understanding the host immune response to influenza viruses. EXPERT OPINION This review discusses several implications for future influenza vaccine development. Host immune responses to influenza virus infection or vaccination can guide vaccine development as anti-influenza immunity is affected by responses influenced by the previous immune history including first and subsequent exposures to influenza virus infections and vaccinations.
Collapse
Affiliation(s)
- Ralph A Tripp
- College of Veterinary Medicine, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
50
|
Warger J, Gaudieri S. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. Viruses 2022; 15:70. [PMID: 36680110 PMCID: PMC9866609 DOI: 10.3390/v15010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Host immunity can exert a complex array of selective pressures on a pathogen, which can drive highly mutable RNA viruses towards viral escape. The plasticity of a virus depends on its rate of mutation, as well as the balance of fitness cost and benefit of mutations, including viral adaptations to the host's immune response. Since its emergence, SARS-CoV-2 has diversified into genetically distinct variants, which are characterised often by clusters of mutations that bolster its capacity to escape human innate and adaptive immunity. Such viral escape is well documented in the context of other pandemic RNA viruses such as the human immunodeficiency virus (HIV) and influenza virus. This review describes the selection pressures the host's antiviral immunity exerts on SARS-CoV-2 and other RNA viruses, resulting in divergence of viral strains into more adapted forms. As RNA viruses obscure themselves from host immunity, they uncover weak points in their own armoury that can inform more comprehensive, long-lasting, and potentially cross-protective vaccine coverage.
Collapse
Affiliation(s)
- Jacob Warger
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Mandurah, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|