1
|
Liao SX, Wang YW, Sun PP, Xu Y, Wang TH. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances. Int Immunopharmacol 2025; 144:113634. [PMID: 39577220 DOI: 10.1016/j.intimp.2024.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory condition that affects the lungs globally. A key feature of this inflammatory response is the migration and aggregation of polymorphonuclear neutrophils (PMNs). The presence of neutrophilic inflammation within the airways is as distinguishing characteristic of COPD. As research advances, PMNs and their products emerge as central players in the airway inflammatory cascade of COPD patients. Their involvement in phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs) significantly contributes to the pathogenesis of COPD. Moreover, studies have shown that excessive biological activities of neutrophils in the lungs can result in airway epithelial injury, emphysema, and mucus hypersecretion. Currently, there is growing empirical support for the moderate targeting neutrophils in the clinical management of COPD. This article delves into the pivotal role of neutrophils in COPD, emphasizing the urgency for novel therapeutic approaches that specifically target neutrophils. Additionally, it explores the potential of utilizing single-cell RNA sequencing to further investigate neutrophils and relevant risk genes as potential biomarkers for COPD treatment. By elucidating these mechanisms, this review aims to pave the way for future strategies to modulate neutrophil function, thereby addressing the pressing need for more effective COPD therapies.
Collapse
Affiliation(s)
- Shi-Xia Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yan-Wen Wang
- West China Clinical Medical College, Sichuan University, Chengdu 610041, China
| | - Peng-Peng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yang Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Carrasco-Wong I, Sanchez JM, Gutierrez JA, Chiarello DI. Trained innate immunity as a potential link between preeclampsia and future cardiovascular disease. Front Endocrinol (Lausanne) 2024; 15:1500772. [PMID: 39741876 PMCID: PMC11685753 DOI: 10.3389/fendo.2024.1500772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Preeclampsia (PE) is a complex pregnancy syndrome characterized by hypertension with or without proteinuria, affecting 2-6% of pregnancies globally. PE is characterized by excessive release of damage-associated molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich milieu acts on innate immune cells, inducing a proinflammatory state characterized by elevated cytokines such as IL-1β and IL-18. This proinflammatory state in the mother and placenta results in the endothelial dysfunction strongly associated with cardiovascular disorders. While the immediate maternal and fetal risks of PE are well-documented, accumulating evidence indicates that PE also confers long-term cardiovascular risks to the mother, including hypertension, coronary heart disease, stroke, and heart failure. The underlying mechanisms connecting PE to these chronic cardiovascular conditions remain unclear. This article explores the potential role of trained innate immunity (TRIM) as a mechanistic link between PE and increased long-term cardiovascular risk. We propose that the persistent exposure to DAMPs during PE may epigenetically reprogram maternal innate immune cells and their progenitors, leading to TRIM. This reprogramming enhances the inflammatory response to subsequent stimuli, potentially contributing to endothelial dysfunction and chronic inflammation that predispose women to cardiovascular diseases later in life. Understanding the role of TRIM in PE could provide novel insights into the pathophysiology of PE-related cardiovascular complications and identify potential targets for therapeutic intervention. Further research is warranted to investigate the epigenetic and metabolic alterations in innate immune cells induced by PE and to determine how these changes may influence long-term maternal cardiovascular health.
Collapse
Affiliation(s)
| | | | - Jaime A. Gutierrez
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| | - Delia I. Chiarello
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
3
|
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P, di Masi A. Zebrafish ( Danio rerio) as a Model System to Investigate the Role of the Innate Immune Response in Human Infectious Diseases. Int J Mol Sci 2024; 25:12008. [PMID: 39596075 PMCID: PMC11593600 DOI: 10.3390/ijms252212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases. Notably, zebrafish larvae rely exclusively on innate immune responses during the early stages of development, as the adaptive immune system becomes fully functional only after 4-6 weeks post-fertilization. This window provides a unique opportunity to isolate and examine infection and inflammation mechanisms driven by the innate immune response without the confounding effects of adaptive immunity. In this review, we highlight the strengths and limitations of using zebrafish as a powerful vertebrate model to study innate immune responses in infectious diseases. We will particularly focus on host-pathogen interactions in human infections caused by various bacteria (Clostridioides difficile, Staphylococcus aureus, and Pseudomonas aeruginosa), viruses (herpes simplex virus 1, SARS-CoV-2), and fungi (Aspergillus fumigatus and Candida albicans).
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Romualdo Varricchio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giulia Alloisio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
4
|
Murre C, Patta I, Mishra S, Hu M. Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology. Trends Immunol 2024; 45:851-860. [PMID: 39438171 DOI: 10.1016/j.it.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.
Collapse
Affiliation(s)
- Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| | - Indumathi Patta
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
5
|
Alemifar A, Burnette K, Jandres B, Hurt S, Tse HM, Robinson JL. Electrospun Fiber Surface Roughness Modulates Human Monocyte-Derived Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610568. [PMID: 39282362 PMCID: PMC11398424 DOI: 10.1101/2024.08.30.610568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Injuries to fibrous connective tissues have very little capacity for self-renewal and exhibit poor healing after injury. Phenotypic shifts in macrophages play a vital role in mediating the healing response, creating an opportunity to design immunomodulatory biomaterials which control macrophage polarization and promote regeneration. In this study, electrospun poly(-caprolactone) fibers with increasing surface roughness (SR) were produced by increasing relative humidity and inducing vapor-induced phase separation during the electrospinning process. The impact of surface roughness on macrophage phenotype was assessed using human monocyte-derived macrophages in vitro and in vivo using B6.Cg-Tg(Csf1r-EGFP)1Hume/J (MacGreen) mice. In vitro experiments showed that macrophages cultured on mesh with increasing SR exhibited decreased release of both pro- and anti-inflammatory cytokines potentially driven by increased protein adsorption and biophysical impacts on the cells. Further, increasing SR led to an increase in the expression of the pro-regenerative cell surface marker CD206 relative to the pro-inflammatory marker CD80. Mesh with increasing SR were implanted subcutaneously in MacGreen mice, again showing an increase in the ratio of cells expressing CD206 to those expressing CD80 visualized by immunofluorescence. SR on implanted biomaterials is sufficient to drive macrophage polarization, demonstrating a simple feature to include in biomaterial design to control innate immunity.
Collapse
Affiliation(s)
- Aidan Alemifar
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Bioengineering Graduate Program, University of Kansas
| | - KaLia Burnette
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Bryan Jandres
- Department of Biochemistry, University of Washington
| | - Samuel Hurt
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Hubert M Tse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Jennifer L Robinson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Department of Mechanical Engineering, University of Washington
| |
Collapse
|
6
|
Yamamoto J, Deguchi H, Sumiyoshi T, Nakagami K, Saito A, Miyanishi H, Kondo M, Kono T, Sakai M, Kinoshita M, Hikima JI. Accumulation and Phagocytosis of Fluorescently Visualized Macrophages Against Edwardsiella piscicida Infection in Established mpeg1.1-Transgenic Japanese Medaka Oryzias latipes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:658-671. [PMID: 38888725 DOI: 10.1007/s10126-024-10333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Intracellular bacteria such as those belonging to the genus Edwardsiella can survive and proliferate within macrophages. However, the detailed mechanisms underlying the host macrophage immune response and pathogen evasion strategies remain unknown. To advance the field of host macrophage research, we successfully established transgenic (Tg) Japanese medaka Oryzias latipes that possesses fluorescently visualized macrophages. As a macrophage marker, the macrophage-expressed gene 1.1 (mpeg1.1) was selected because of its predominant expression across various tissues in medaka. To validate the macrophage characteristics of the fluorescently labeled cells, May-Grünwald Giemsa staining and peroxidase staining were conducted. The labeled cells exhibited morphological features consistent with those of monocyte/macrophage-like cells and tested negative for peroxidase activity. Through co-localization studies, the fluorescently labeled cells co-localized with E. piscicida in the intestines and kidneys of infected medaka larvae, confirming the ingestion of bacteria through phagocytosis. In addition, the labeled cells expressed macrophage markers but lacked a neutrophil marker. These results suggested that the fluorescently labeled cells of Tg[mpeg1.1:mCherry/mAG] medaka were monocytes/macrophages, which will be useful for future studies aimed at understanding the mechanisms of macrophage-mediated bacterial infections.
Collapse
Affiliation(s)
- Juna Yamamoto
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hana Deguchi
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Takechiyo Sumiyoshi
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kentaro Nakagami
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi, 759-6595, Japan
| | - Tomoya Kono
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jun-Ichi Hikima
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
7
|
Li X, Wu W, He H, Guan L, Chen G, Lin Z, Li H, Jiang J, Dong X, Guan Z, Chen P, Pan Z, Huang W, Yu R, Song W, Lu L, Yang Z, Chen Z, Wang L, Xian S, Chen J. Analysis and validation of hub genes in neutrophil extracellular traps for the long-term prognosis of myocardial infarction. Gene 2024; 914:148369. [PMID: 38485036 DOI: 10.1016/j.gene.2024.148369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION The study focuses on the long-term prognosis of myocardial infarction (MI) influenced by neutrophil extracellular traps (NETs). It also aims to analyze and validate relative hub genes in this process, in order to further explore new therapeutic targets that can improve the prognosis of MI. MATERIALS AND METHODS We established a MI model in mice by ligating the left anterior descending branch (LAD) and conducted an 8-week continuous observation to study the dynamic changes in the structure and function of the heart in these mice. Meanwhile, we administered Apocynin, an inhibitor of NADPH Oxidase, which has also been shown to inhibit the formation of NETs, to mice undergoing MI surgery in order to compare. This study employed hematoxylin-eosin (HE) staining, echocardiography, immunofluorescence, and real-time quantitative PCR (RT-qPCR) to examine the impact of NETs on the long-term prognosis of MI. Next, datasets related to MI and NETs were downloaded from the GEO database, respectively. The Limma package of R software was used to identify differentially expressed genes (DEGs). After analyzing the "Robust Rank Aggregation (RRA)" package, we conducted a screening for robust differentially expressed genes (DEGs) and performed pathway enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to determine the functional roles of these robust DEGs. The protein-protein interaction (PPI) network was visualized and hub genes were filtered using Cytoscape. RESULTS Immunofluorescence and qPCR results showed an increase in the expression of Myeloperoxidase (MPO) at week 1 and week 8 in the hearts of mice after MI. HE staining reveals a series of pathological manifestations in the heart of the MI group during 8 weeks, including enlarged size, disordered arrangement of cardiomyocytes, infiltration of inflammatory cells, and excessive deposition of collagen fibers, among others. The utilization of Apocynin could significantly improve these poor performances. The echocardiography displayed the cardiac function of the heart in mice. The MI group has a reduced range of heart movement and decreased ejection ability. Moreover, the ventricular systolic movement was found to be abnormal, and its wall thickening rate decreased over time, indicating a progressive worsening of myocardial ischemia. The Apocynin group, on the contrary, showed fewer abnormal changes in the aforementioned aspects. A total of 81 DEGs and 4 hub genes (FOS, EGR1, PTGS2, and HIST1H4H) were obtained. The results of RT-qPCR demonstrated abnormal expression of these four genes in the MI group, which could be reversed by treatment of Apocynin. CONCLUSION The NETs formation could be highly related to MI and the long-term prognosis of MI can be significantly influenced by the NETs formation. Four hub genes, namely FOS, EGR1, PTGS2, and HIST1H4H, have the potential to be key genes related to this process. They could also serve as biomarkers for predicting MI prognosis and as targets for gene therapy.
Collapse
Affiliation(s)
- Xuan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Wenyu Wu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huan He
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Lin Guan
- Shandong Province Hospital of Traditional Chinese Medicine, Jinan 250011, China
| | - Guancheng Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhijun Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Huan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Jialin Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Xin Dong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhuoji Guan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Pinliang Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zigang Pan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Weiwei Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Runjia Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Wenxin Song
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Lu Lu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhongqi Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zixin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Lingjun Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Shaoxiang Xian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Jie Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| |
Collapse
|
8
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
9
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
10
|
Wang M, Jin Z, Huang H, Cheng X, Zhang Q, Tang Y, Zhu X, Zong Z, Li H, Ning Z. Neutrophil hitchhiking: Riding the drug delivery wave to treat diseases. Drug Dev Res 2024; 85:e22169. [PMID: 38477422 DOI: 10.1002/ddr.22169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xifu Cheng
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Tang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoping Zhu
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhikun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
11
|
Shao JJ, Li WF, Sun JF, Zhuang ZS, Min JL, Long XH, Wu GJ, Xu HW, Liang G. Britannin as a novel NLRP3 inhibitor, suppresses inflammasome activation in macrophages and alleviates NLRP3-related diseases in mice. Acta Pharmacol Sin 2024; 45:803-814. [PMID: 38172305 PMCID: PMC10943196 DOI: 10.1038/s41401-023-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Overactivation of the NLRP3 inflammasomes induces production of pro-inflammatory cytokines and drives pathological processes. Pharmacological inhibition of NLRP3 is an explicit strategy for the treatment of inflammatory diseases. Thus far no drug specifically targeting NLRP3 has been approved by the FDA for clinical use. This study was aimed to discover novel NLRP3 inhibitors that could suppress NLRP3-mediated pyroptosis. We screened 95 natural products from our in-house library for their inhibitory activity on IL-1β secretion in LPS + ATP-challenged BMDMs, found that Britannin exerted the most potent inhibitory effect with an IC50 value of 3.630 µM. We showed that Britannin (1, 5, 10 µM) dose-dependently inhibited secretion of the cleaved Caspase-1 (p20) and the mature IL-1β, and suppressed NLRP3-mediated pyroptosis in both murine and human macrophages. We demonstrated that Britannin specifically inhibited the activation step of NLRP3 inflammasome in BMDMs via interrupting the assembly step, especially the interaction between NLRP3 and NEK7. We revealed that Britannin directly bound to NLRP3 NACHT domain at Arg335 and Gly271. Moreover, Britannin suppressed NLRP3 activation in an ATPase-independent way, suggesting it as a lead compound for design and development of novel NLRP3 inhibitors. In mouse models of MSU-induced gouty arthritis and LPS-induced acute lung injury (ALI), administration of Britannin (20 mg/kg, i.p.) significantly alleviated NLRP3-mediated inflammation; the therapeutic effects of Britannin were dismissed by NLRP3 knockout. In conclusion, Britannin is an effective natural NLRP3 inhibitor and a potential lead compound for the development of drugs targeting NLRP3.
Collapse
Affiliation(s)
- Jing-Jing Shao
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Feng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jin-Feng Sun
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmaceutical Sciences, Yanbian University, Yanji, 133002, China
| | - Zai-Shou Zhuang
- Affiliated Cangnan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ju-Lian Min
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Hong Long
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Wen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Guang Liang
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
12
|
Rojas-Espinosa O, Arce-Mendoza AY, Islas-Trujillo S, Muñiz-Buenrostro A, Arce-Paredes P, Popoca-Galván O, Moreno-Altamirano B, Rivero Silva M. Necrosis, netosis, and apoptosis in pulmonary tuberculosis and type-2 diabetes mellitus. Clues from the patient's serum. Tuberculosis (Edinb) 2023; 143:102426. [PMID: 38180029 DOI: 10.1016/j.tube.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary tuberculosis (PTB) and type 2 diabetes mellitus (T2DM) are two inflammatory diseases whose pathology involves neutrophils (NEU) as key participants. Countless inflammatory elements produced at the lesion sites leak into the blood and are distributed systemically. The study aimed to investigate the effect of the serum of patients with PTB, T2DM, and PTB + T2DM on the cellular and nuclear morphology of healthy NEU. Monolayers of NEU were prepared and incubated with sera from PTB (n꓿ 10), T2DM (n꓿10), PTB + T2DM (n꓿ 10) patients, or sera from healthy people (n = 10). Monolayers were stained for histones, elastase, and myeloperoxidase for NETosis, annexin V for apoptosis, and Iris fuchsia for necrosis. Hoechst stain (DNA) was used to identify the nuclear alterations. Necrosis was the predominant alteration. Sera from PTB + T2DM were the most potent change inducers. Normal sera did not induce cell alterations. The blood of TBP and T2DM patients carries a myriad of abnormal elements that induce necrosis of NEU in normal people, thus reflecting what might occur in the neutrophils of the patients themselves. These findings reinforce the participation of NEU in the pathology of these diseases. Necrosis is expected to be the most frequent neutrophil-induced alteration in tuberculosis and diabetes mellitus.
Collapse
Affiliation(s)
- Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Alma Yolanda Arce-Mendoza
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Sergio Islas-Trujillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Antonio Muñiz-Buenrostro
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Patricia Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Omar Popoca-Galván
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Bertha Moreno-Altamirano
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Miguel Rivero Silva
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
14
|
Poli V, Di Gioia M, Zanoni I. Quantitative cytofluorimetric analysis of mouse neutrophil extracellular traps. STAR Protoc 2023; 4:102372. [PMID: 37352106 PMCID: PMC10331305 DOI: 10.1016/j.xpro.2023.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/25/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) has been involved in numerous infectious and non-infectious diseases. Nevertheless, quantitative analysis of NETs in vivo has been challenging. Here, we present a protocol for NET quantification by flow cytometry in the bronchoalveolar lavage fluid (BALF) of mice upon pulmonary infection with S. aureus. We describe steps for bacteria growth and instillation and BALF recovery. We then detail staining to quantify the release of NETs and neutrophils recruited to the site of infection. For complete information on the generation and use of this protocol, please refer to Poli et al. (2021)1 and Poli et al. (2022).2.
Collapse
Affiliation(s)
- Valentina Poli
- Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, Division of Immunology, Boston, MA 02115, USA
| | - Marco Di Gioia
- Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, Division of Immunology, Boston, MA 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, Division of Immunology, Boston, MA 02115, USA; Boston Children's Hospital, Division of Gastroenterology, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Wang Z, Zhu D, Zhang Y, Xia F, Zhu J, Dai J, Zhuge X. Extracellular vesicles produced by avian pathogenic Escherichia coli (APEC) activate macrophage proinflammatory response and neutrophil extracellular trap (NET) formation through TLR4 signaling. Microb Cell Fact 2023; 22:177. [PMID: 37689682 PMCID: PMC10492386 DOI: 10.1186/s12934-023-02171-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the major pathogen causing important avian diseases in poultry. As an important subtype of extraintestinal pathogenic E. coli, APEC has zoonotic potential and is considered a foodborne pathogen. APEC extracellular vesicles (EVs) may play vital roles in the interaction of the pathogen with its host cells. However, the precise roles played by APEC EVs are still not completely clear, especially in immune cells. RESULTS In this study, we investigated the relationships between APEC EVs and immune cells. The production and characteristics of the EVs of APEC isolate CT265 were identified. Toll like receptor 4 (TLR4) triggered the cellular immune responses when it interacted with APEC EVs. APEC EVs induced a significant release of proinflammatory cytokines in THP-1 macrophages. APEC EVs induced the macrophage inflammatory response via the TLR4/MYD88/NF-κB signaling pathway, which participated in the activation of the APEC-EV-induced NLRP3 inflammasome. However, the loss of lipopolysaccharide (LPS) from APEC EVs reduced the activation of the NLRP3 inflammasome mediated by TLR4/MYD88/NF-κB signaling. Because APEC EVs activated the macrophage inflammatory response and cytokines release, we speculated that the interaction between APEC EVs and macrophages activated and promoted neutrophil migration during APEC extraintestinal infection. This study is the first to report that APEC EVs induce the formation of neutrophil extracellular traps (NETs) and chicken heterophil extracellular traps. Treatment with APEC EVs induced SAPK/JNK activation in neutrophils. The inhibition of TLR4 signaling suppressed APEC-EV-induced NET formation. However, although APEC EVs activated the immune response of macrophages and initiated NET formation, they also damaged macrophages, causing their apoptosis. The loss of LPS from APEC EVs did not prevent this process. CONCLUSION APEC-derived EVs induced inflammatory responses in macrophages and NETs in neutrophils, and that TLR4 was involved in the APEC-EV-activated inflammatory response. These findings provided a basis for the further study of APEC pathogenesis.
Collapse
Affiliation(s)
- Zhongxing Wang
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Dongyu Zhu
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Fufang Xia
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China.
| |
Collapse
|
16
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|
17
|
Yuan C, Tan D, Meng Z, Jiang M, Lin M, Zhao G, Zhan K. The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows. Animals (Basel) 2023; 13:2721. [PMID: 37684984 PMCID: PMC10486917 DOI: 10.3390/ani13172721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Excessive lipid mobilization will snatch cell membrane lipids in postpartum dairy cows, which may impair the function of immune cells, including peripheral mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). Acetate, as a precursor and the energy source of milk fat synthesis, plays a key role in lipid synthesis and the energy supply of dairy cows. However, there is little information about the effect of sodium acetate (NaAc) on the immune function of PBMC and PMN in postpartum dairy cows. Therefore, this study aimed to evaluate the effects of NaAc on the immune functions of PBMCs and PMNs in postpartum dairy cows. In this experiment, twenty-four postpartum multiparous Holstein cows were randomly selected and divided into a NaAc treatment group and a control group. Our results demonstrated that the dietary addition of NaAc increased (p < 0.05) the number of monocytes and the monocyte ratio, suggesting that these postpartum cows fed with NaAc may have better immunity. These expressions of genes (LAP, XBP1, and TAP) involved in the antimicrobial activity in PBMCs were elevated (p < 0.05), suggesting that postpartum dairy cows supplemented with NaAc had the ability of antimicrobial activity. In addition, the mRNA expression of the monocarboxylate transporters MCT1 and MCT4 in PBMCs was increased (p < 0.05) in diets supplemented with NaAc in comparison to the control. Notably, the expression of the XBP1 gene related to antimicrobial activity in PMN was upregulated with the addition of NaAc. The mRNA expression of genes (TLN1, ITGB2, and SELL) involved in adhesion was profoundly increased (p < 0.05) in the NaAc groups. In conclusion, our study provided a novel resolution strategy in which the use of NaAc can contribute to immunity in postpartum dairy cows by enhancing the ability of antimicrobial and adhesion in PBMCs and PMNs.
Collapse
Affiliation(s)
- Cong Yuan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Dejin Tan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Zitong Meng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Gómez-Gaviria M, Martínez-Duncker I, García-Carnero LC, Mora-Montes HM. Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells. Infect Drug Resist 2023; 16:4817-4834. [PMID: 37520448 PMCID: PMC10386844 DOI: 10.2147/idr.s419629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background Sporotrichosis is a mycosis frequently caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The cell wall is a species-specific fungal structure with a direct role in activating the host's immune response. The current knowledge about anti-Sporothrix immunity comes from studies using S. schenckii or S. brasiliensis and murine cells. Macrophages and dendritic cells detect and eliminate pathogens, and although the function of these cells links innate with adaptive immunity, little is known about their interaction with Sporothrix spp. Methods S. schenckii, S. brasiliensis, and S. globosa conidia or yeast-like cells were co-incubated with human monocyte-derived macrophages or dendritic cells, and the phagocytosis and cytokine stimulation were assessed. These interactions were also performed in the presence of specific blocking agents of immune receptors or fungal cells with altered walls to analyze the contribution of these molecules to the immune cell-fungus interaction. Results Both types of immune cells phagocytosed S. globosa conidia and yeast-like cells to a greater extent, followed by S. brasiliensis and S. schenckii. Furthermore, when the wall internal components were exposed, the phagocytosis level increased for S. schenckii and S. brasiliensis, in contrast to S. globosa. Thus, the cell wall components have different functions during the interaction with macrophages and dendritic cells. S. globosa stimulated an increased proinflammatory response when compared to the other species. In macrophages, this was a dectin-1-, mannose receptor-, and TLR2-dependent response, but dectin-1- and TLR2-dependent stimulation in dendritic cells. For S. schenckii and S. brasiliensis, cytokine production was dependent on the activation of TLR4, CR3, and DC-SIGN. Conclusion The results of this study indicate that these species are recognized by immune cells differently and that this may depend on both the structure and cell wall organization of the different morphologies.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| |
Collapse
|
19
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Kwiatkowski P, Rogulska K, Pruss A, Sienkiewicz M, Dołęgowska B, Wojciechowska-Koszko I. Immunomodulatory effects of trans-anethole-treated Staphylococcus aureus Newman strain. Sci Rep 2023; 13:6881. [PMID: 37106063 PMCID: PMC10140024 DOI: 10.1038/s41598-023-34138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
In our former studies based on a human whole-blood model infected with trans-anethole (TA)-treated Staphylococcus aureus Newman strain, we have observed that selected parameters/mechanisms of innate and acquired immune response were more enhanced in comparison to samples infected with non-treated bacteria. Due to this observation, the current study aimed to evaluate the concentration of selected proteins involved in both types of responses (IL-1α, IL-1β, IL-2, IL-6, IL-12, IL-17, TNF-α, IFN-γ, G-CSF, C5a, CCL1-CCL5, CXCL1, CXCL2, CXCL9-CXCL11, MMP-8, TLR2, and PGLYRP1) in healthy participants' plasma after blood stimulation of TA-treated S. aureus Newman strain. Determination of analyzed protein concentration was conducted using Luminex and ELISA assays. Based on the results, it has been proven that the immunomodulatory potential of TA-treated S. aureus Newman strain on increasing IL-1β, IL-6, TNF-α, IL-12, G-CSF, C5a, CCL2-CCL4, CXCL1, CXCL2, MMP-8 and PGLYRP1 levels in plasma. Moreover, it has been also demonstrated an association between TNF-α and CCL4 in a blood model infected with TA-treated cells. More research is warranted to find more underlying mechanisms involved in the effects of TA-treated S. aureus Newman in human blood, mainly whether the observed "immunity boost" can be regulated after bacteria elimination. Therefore, the potential of TA should be further explored to understand under which conditions it might help treat or prevent infections caused by S. aureus.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland.
| | - Karolina Rogulska
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151, Lodz, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| |
Collapse
|
21
|
Putative Role of Neutrophil Extracellular Trap Formation in Chronic Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054497. [PMID: 36901933 PMCID: PMC10003516 DOI: 10.3390/ijms24054497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by gene mutations that promote myeloproliferation and resistance to apoptosis via constitutively active signaling pathways, with Janus kinase 2-signal transducers and the activators of transcription (JAK-STAT) axis as a core part. Chronic inflammation has been described as a pivot for the development and advancement of MPNs from early stage cancer to pronounced bone marrow fibrosis, but there are still unresolved questions regarding this issue. The MPN neutrophils are characterized by upregulation of JAK target genes, they are in a state of activation and with deregulated apoptotic machinery. Deregulated neutrophil apoptotic cell death supports inflammation and steers them towards secondary necrosis or neutrophil extracellular trap (NET) formation, a trigger of inflammation both ways. NETs in proinflammatory bone marrow microenvironment induce hematopoietic precursor proliferation, which has an impact on hematopoietic disorders. In MPNs, neutrophils are primed for NET formation, and even though it seems obvious for NETs to intervene in the disease progression by supporting inflammation, no reliable data are available. We discuss in this review the potential pathophysiological relevance of NET formation in MPNs, with the intention of contributing to a better understanding of how neutrophils and neutrophil clonality can orchestrate the evolution of a pathological microenvironment in MPNs.
Collapse
|
22
|
Leal VNC, Pontillo A. Canonical Inflammasomes. Methods Mol Biol 2023; 2696:1-27. [PMID: 37578712 DOI: 10.1007/978-1-0716-3350-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell's ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called "canonical" inflammasomes.
Collapse
Affiliation(s)
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
23
|
Dysregulated haemostasis in thrombo-inflammatory disease. Clin Sci (Lond) 2022; 136:1809-1829. [PMID: 36524413 PMCID: PMC9760580 DOI: 10.1042/cs20220208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory disease is often associated with an increased incidence of venous thromboembolism in affected patients, although in most instances, the mechanistic basis for this increased thrombogenicity remains poorly understood. Acute infection, as exemplified by sepsis, malaria and most recently, COVID-19, drives 'immunothrombosis', where the immune defence response to capture and neutralise invading pathogens causes concurrent activation of deleterious prothrombotic cellular and biological responses. Moreover, dysregulated innate and adaptive immune responses in patients with chronic inflammatory conditions, such as inflammatory bowel disease, allergies, and neurodegenerative disorders, are now recognised to occur in parallel with activation of coagulation. In this review, we describe the detailed cellular and biochemical mechanisms that cause inflammation-driven haemostatic dysregulation, including aberrant contact pathway activation, increased tissue factor activity and release, innate immune cell activation and programmed cell death, and T cell-mediated changes in thrombus resolution. In addition, we consider how lifestyle changes increasingly associated with modern life, such as circadian rhythm disruption, chronic stress and old age, are increasingly implicated in unbalancing haemostasis. Finally, we describe the emergence of potential therapies with broad-ranging immunothrombotic functions, and how drug development in this area is challenged by our nascent understanding of the key molecular and cellular parameters that control the shared nodes of proinflammatory and procoagulant pathways. Despite the increasing recognition and understanding of the prothrombotic nature of inflammatory disease, significant challenges remain in effectively managing affected patients, and new therapeutic approaches to curtail the key pathogenic steps in immune response-driven thrombosis are urgently required.
Collapse
|
24
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E. Crosslinking of membrane CD13 in human neutrophils mediates phagocytosis and production of reactive oxygen species, neutrophil extracellular traps and proinflammatory cytokines. Front Immunol 2022; 13:994496. [PMID: 36439182 PMCID: PMC9686367 DOI: 10.3389/fimmu.2022.994496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Aminopeptidase N, or CD13, is a cell membrane ectopeptidase highly expressed in myeloid cells. Through its enzymatic activity, CD13 regulates the activity of several bioactive peptides, such as endorphins and enkephalins, chemotactic peptides like MCP-1 and IL-8, angiotensin III, bradikinin, etc. In recent years, it has been appreciated that independently of its peptidase activity, CD13 can activate signal transduction pathways and mediate effector functions such as phagocytosis and cytokine secretion in monocytes and macrophages. Although neutrophils are known to express CD13 on its membrane, it is currently unknown if CD13 can mediate effector functions in these cells. Here, we show that in human neutrophils CD13 can mediate phagocytosis, which is dependent on a signaling pathway that involves Syk, and PI3-K. Phagocytosis mediated by CD13 is associated with production of reactive oxygen species (ROS). The level of phagocytosis and ROS production mediated by CD13 are similar to those through FcγRIII (CD16b), a widely studied receptor of human neutrophils. Also, CD13 ligation induces the release of neutrophil extracellular traps (NETs) as well as cytokine secretion from neutrophils. These results support the hypothesis that CD13 is a membrane receptor able to activate effector functions in human neutrophils.
Collapse
Affiliation(s)
| | | | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico, Mexico
| |
Collapse
|
25
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
26
|
Pan W, Zhao Z, Wu J, Fan Q, Huang H, He R, Shen H, Zhao Z, Feng S, Gan G, Chen Z, Ma M, Sun C, Zhang L. LACpG10-HL Functions Effectively in Antibiotic-Free and Healthy Husbandry by Improving the Innate Immunity. Int J Mol Sci 2022; 23:ijms231911466. [PMID: 36232768 PMCID: PMC9569488 DOI: 10.3390/ijms231911466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotics are broadly restricted in modern husbandry farming, necessitating the need for efficient and low-cost immunomodulatory preparations in antibiotic-free and healthful farming. As is known to all, CpG oligonucleotides (CpG-ODNs, an effective innate immunostimulatory agent) recognized by TLR9 in mammals (while TLR21 in avians) could collaborate with some united agent to induce stronger immune responses, but the cost is prohibitively expensive for farmers. Here, considering the coordination between TLR2 and TLR9/TLR21, we firstly proposed the idea that the well-fermented Lactococcus lactis could be utilized as a CpG-plasmid carrier (LACpG10) to enhance the host’s innate immunity against pathogenic invasion. In the present study, after obtaining LACpG10-HL from homogenized and lyophilized recombinant strain LACpG10, we treated primary chicken lymphocytes, two cell lines (HD11 and IPEC-J2), and chickens with LACpG10-HL, CpG plasmids (pNZ8148-CpG10), and other stimulants, and respectively confirmed the effects by conducting qRT-PCR, bacterial infection assays, and a zoological experiment. Our data showed that LACpG10-HL could induce excellent innate immunity by regulating autophagy reactions, cytokine expression, and motivating PRRs. Interestingly, despite having no direct antiseptic effect, LACpG10-HL improved the antibacterial capacities of lymphocytes and enterocytes at the first line of defense. Most importantly, water-supplied LACpG10-HL treatment reduced the average adverse event rates, demonstrating that LACpG10-HL maintained its excellent immunostimulatory and protective properties under farming conditions. Our research not only contributes to revealing the satisfactory effects of LACpG10-HL but also sheds new light on a cost-effective solution with optimal immune effects in green, antibiotic-free, and healthful husbandry farming.
Collapse
|
27
|
Piccinini A, Ferri G, Olivastri A, Rossi F, Festino AR, Vergara A. Intradiaphragmatic abscesses in a wild boar (<em>Sus scrofa</em>): Inspective implications based on anatomopathological evidences. Ital J Food Saf 2022; 11:10346. [PMID: 36204301 PMCID: PMC9531142 DOI: 10.4081/ijfs.2022.10346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
The intradiaphragmatic localization of an abscess is rarely described in humans and in other animal domestic and wild species, and can be caused by penetrative traumas (i.e., firearm injuries). Here we describe two intradiaphragmatic abscesses in a hunted adult male wild boar (Sus scrofa) pluck, associated with adhesion phenomena with the contiguous anatomical structures (pleural, phrenic, and glissonian serosas) and observed during the post mortem inspection, in accordance with the Reg. EU 627/2019. One of these lesions also presented a phreno-abdominal fistula. We found in cytopathological evaluation of the neoformations’ content the presence of spheroidal bacterial soma, characterized by linearly concatenated “Streptococcus-like” aggregation pattern. Furthermore, microbiological assays revealed a polymicrobial pattern characterized by the presence of telluric microorganisms, some of which have a marked pyogenic action (Streptococcus suis type I, Sphingomonas paucimobilis, Carnobacterium divergens, and Lactobacillus sakei). Our results and collected evidence demonstrate the pathogenetic hypothesis of bacterial contamination secondary to penetrative trauma caused by a not-mortal projectile’s wound, defining the inspective behaviour according to the cogent legislation. These lesions, in the reason of their potential relation to toxemia, bacteremia and septicemia phenomena, represent a sanitary risk that impose, from a normative point of view, the total condemnation of the carcass. These inspective implications, originating from the observation and interdisciplinary description of the anatomopathological and microbiological features of the lesions, are directly projected on the normative scenario, providing useful elements to guarantee the health of the consumer.
Collapse
|
28
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
29
|
Mamais A, Kaganovich A, Harvey K. Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiol Dis 2022; 169:105721. [PMID: 35405260 DOI: 10.1016/j.nbd.2022.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022] Open
Abstract
In recent years progress in molecular biology and genetics have advanced our understanding of neurological disorders and highlighted synergistic relationships with inflammatory and age-related processes. Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Increasing extensive evidence supports the contribution of genetic risk variants and inflammation in the pathobiology of this disease. Functional and genetic studies demonstrate an overlap between genes linked to increased risk for PD and autoimmune diseases. Variants identified in loci adjacent to LRRK2, GBA, and HLA establish a crosstalk between the pathobiologies of the two disease spectra. Furthermore, common signalling pathways associated with the pathogenesis of genetic PD are also relevant to inflammatory signaling include MAPK, NF-κB, Wnt and inflammasome signaling. Importantly, post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines. In this review we will focus on the principal mechanisms of genetic, inflammatory and age-related risk that intersect in the pathogenesis of PD.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK..
| |
Collapse
|
30
|
Lajqi T, Frommhold D, Gille C, Hudalla H. Induction of memory-like adaptive responses in murine neutrophils in vitro. Cell Immunol 2022; 376:104535. [DOI: 10.1016/j.cellimm.2022.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/02/2023]
|
31
|
Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022; 111:1159-1173. [PMID: 35040189 PMCID: PMC9015493 DOI: 10.1002/jlb.1mr1221-345r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of ResearchNational Skin CentreSingaporeSingapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Microbiology, Infection and Immunity ProgramBiomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
- State Key Laboratory of Experimental HematologyInstitute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and ImmunologyImmunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of SingaporeSingaporeSingapore
- National Cancer Centre SingaporeSingaporeSingapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
| |
Collapse
|
32
|
Gu F, Jiang L, Wang D, Zhao F, Liu J. Supplementation with N-carbamoylglutamate during the transition period improves the function of neutrophils and reduces inflammation and oxidative stress in dairy cows. J Dairy Sci 2022; 105:5786-5795. [DOI: 10.3168/jds.2021-21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
|
33
|
Poposki JA, Klingler AI, Stevens WW, Suh LA, Tan BK, Peters AT, Abdala-Valencia H, Grammer LC, Welch KC, Smith SS, Conley DB, Kern RC, Schleimer RP, Kato A. Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2022; 149:1666-1674. [PMID: 34953792 PMCID: PMC9081139 DOI: 10.1016/j.jaci.2021.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is well characterized by type 2 (T2) inflammation characterized by eosinophilia in Western countries. However, the presence and roles of neutrophils in T2 CRSwNP are poorly understood. OBJECTIVE We sought to clarify accumulation and inflammatory roles of neutrophils in CRSwNP in a Western population. METHODS Sinonasal tissues and nasal lavage fluids were obtained from control patients and patients with CRS, and neutrophil markers were determined by ELISA. The presence of neutrophils in tissue was determined by flow cytometry. The gene expression profiles in neutrophils were determined by RNA sequencing. RESULTS A neutrophil marker elastase was selectively elevated in nasal polyp (NP) tissue, whereas eosinophilic cationic protein (an eosinophil marker) was elevated in both uncinate and NP tissues of CRSwNP patients. Nasal lavage fluid myeloperoxidase (another neutrophil marker) was also significantly elevated in CRSwNP compared to control patients. Neutrophil markers were more greatly elevated in CRSwNP patients with recurrent disease. Flow cytometric analysis confirmed that neutrophil numbers were significantly elevated in NPs compared to control tissues. RNA sequencing analysis found that 344 genes were >3-fold and significantly elevated in NP neutrophils compared to peripheral blood neutrophils. Gene Ontology analysis suggested that the elevated genes in NP neutrophils were significantly associated with activation. Results suggest that neutrophils are accumulated in T2 NP tissues and that accumulated neutrophils are highly activated and contribute to inflammation in NPs. CONCLUSIONS Neutrophils may play a heretofore unrecognized meaningful role in the pathogenesis of CRSwNP in Western countries and may be a potentially important therapeutic target in T2 CRSwNP.
Collapse
Affiliation(s)
- Julie A Poposki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Aiko I Klingler
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
34
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
35
|
Wu TH, Hsieh SC, Li TH, Lu CH, Liao HT, Shen CY, Li KJ, Wu CH, Kuo YM, Tsai CY, Yu CL. Molecular Basis for Paradoxical Activities of Polymorphonuclear Neutrophils in Inflammation/Anti-Inflammation, Bactericide/Autoimmunity, Pro-Cancer/Anticancer, and Antiviral Infection/SARS-CoV-II-Induced Immunothrombotic Dysregulation. Biomedicines 2022; 10:biomedicines10040773. [PMID: 35453523 PMCID: PMC9032061 DOI: 10.3390/biomedicines10040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cells in the circulation. These cells act as the fast and powerful defenders against environmental pathogenic microbes to protect the body. In addition, these innate inflammatory cells can produce a number of cytokines/chemokines/growth factors for actively participating in the immune network and immune homeostasis. Many novel biological functions including mitogen-induced cell-mediated cytotoxicity (MICC) and antibody-dependent cell-mediated cytotoxicity (ADCC), exocytosis of microvesicles (ectosomes and exosomes), trogocytosis (plasma membrane exchange) and release of neutrophil extracellular traps (NETs) have been successively discovered. Furthermore, recent investigations unveiled that PMNs act as a double-edged sword to exhibit paradoxical activities on pro-inflammation/anti-inflammation, antibacteria/autoimmunity, pro-cancer/anticancer, antiviral infection/COVID-19-induced immunothrombotic dysregulation. The NETs released from PMNs are believed to play a pivotal role in these paradoxical activities, especially in the cytokine storm and immunothrombotic dysregulation in the recent SARS-CoV-2 pandemic. In this review, we would like to discuss in detail the molecular basis for these strange activities of PMNs.
Collapse
Affiliation(s)
- Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Tsu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Shin Kong Wu Ho Shi Hospital, Taipei 11101, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
36
|
BTK Inhibitors Impair Platelet-Mediated Antifungal Activity. Cells 2022; 11:cells11061003. [PMID: 35326454 PMCID: PMC8947638 DOI: 10.3390/cells11061003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, the introduction of new drugs targeting Bruton’s tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an increasing number of reports have described the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA). BTK represents a crucial molecule in several signaling pathways depending on different immune receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils, monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the control of fungal growth, through granule-dependent mechanisms, was described in vitro almost two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the present study, we confirm the antifungal role of platelets, and we show, for the first time, that the exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients.
Collapse
|
37
|
Yow SJ, Yeap HW, Chen KW. Inflammasome and gasdermin signalling in neutrophils. Mol Microbiol 2022; 117:961-972. [PMID: 35244299 DOI: 10.1111/mmi.14891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022]
Abstract
Inflammasomes and gasdermins mount potent host defence pathways against invading microbial pathogens, however, dysregulation in these pathways can drive a variety of inflammatory disorders. Neutrophils, historically regarded as effector phagocytes that drive host defence via microbial killing, are now emerging as critical drivers of immunity in vivo. Here, we summarise the latest advancement in inflammasome, gasdermin and cell death signalling in neutrophils. We discuss the mechanisms by which neutrophils resist caspase-1-dependent pyroptosis, thsse lytic function of gasdermin D and E during NETosis and Yersinia infection, and the contribution of neutrophil inflammasomes to inflammatory disorders.
Collapse
Affiliation(s)
- See Jie Yow
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of Extracellular Trap Release During Bacterial and Viral Infection. Front Microbiol 2022; 13:798853. [PMID: 35154050 PMCID: PMC8825568 DOI: 10.3389/fmicb.2022.798853] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells that play an essential role during the clearance of pathogens that can release chromatin structures coated by several cytoplasmatic and granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-molecular structures are produced to kill or immobilize several types of microorganisms, including bacteria and viruses. The contribution of the NET release process (or NETosis) to acute inflammation or the prevention of pathogen spreading depends on the specific microorganism involved in triggering this response. Furthermore, studies highlight the role of innate cells different from neutrophils in triggering the release of extracellular traps during bacterial infection. This review summarizes the contribution of NETs during bacterial and viral infections, explaining the molecular mechanisms involved in their formation and the relationship with different components of such pathogens.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Ajendra J. Lessons in type 2 immunity: Neutrophils in Helminth infections. Semin Immunol 2021; 53:101531. [PMID: 34836773 DOI: 10.1016/j.smim.2021.101531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
41
|
Chen T, Li Y, Sun R, Hu H, Liu Y, Herrmann M, Zhao Y, Muñoz LE. Receptor-Mediated NETosis on Neutrophils. Front Immunol 2021; 12:775267. [PMID: 34804066 PMCID: PMC8600110 DOI: 10.3389/fimmu.2021.775267] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophil extracellular traps (NETs), a web-like structures containing chromatin, have a significant role in assisting the capture and killing of microorganisms by neutrophils during infection. The specific engagement of cell-surface receptors by extracellular signaling molecules activates diverse intracellular signaling cascades and regulates neutrophil effector functions, including phagocytosis, reactive oxygen species release, degranulation, and NET formation. However, overproduction of NETs is closely related to the occurrence of inflammation, autoimmune disorders, non-canonical thrombosis and tumor metastasis. Therefore, it is necessary to understand neutrophil activation signals and the subsequent formation of NETs, as well as the related immune regulation. In this review, we provide an overview of the immunoreceptor-mediated regulation of NETosis. The pathways involved in the release of NETs during infection or stimulation by noninfectious substances are discussed in detail. The mechanisms by which neutrophils undergo NETosis help to refine our views on the roles of NETs in immune protection and autoimmune diseases, providing a theoretical basis for research on the immune regulation of NETs.
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
42
|
Chan L, Karimi N, Morovati S, Alizadeh K, Kakish JE, Vanderkamp S, Fazel F, Napoleoni C, Alizadeh K, Mehrani Y, Minott JA, Bridle BW, Karimi K. The Roles of Neutrophils in Cytokine Storms. Viruses 2021; 13:v13112318. [PMID: 34835125 PMCID: PMC8624379 DOI: 10.3390/v13112318] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
A cytokine storm is an abnormal discharge of soluble mediators following an inappropriate inflammatory response that leads to immunopathological events. Cytokine storms can occur after severe infections as well as in non-infectious situations where inflammatory cytokine responses are initiated, then exaggerated, but fail to return to homeostasis. Neutrophils, macrophages, mast cells, and natural killer cells are among the innate leukocytes that contribute to the pathogenesis of cytokine storms. Neutrophils participate as mediators of inflammation and have roles in promoting homeostatic conditions following pathological inflammation. This review highlights the advances in understanding the mechanisms governing neutrophilic inflammation against viral and bacterial pathogens, in cancers, and in autoimmune diseases, and how neutrophils could influence the development of cytokine storm syndromes. Evidence for the destructive potential of neutrophils in their capacity to contribute to the onset of cytokine storm syndromes is presented across a multitude of clinical scenarios. Further, a variety of potential therapeutic strategies that target neutrophils are discussed in the context of suppressing multiple inflammatory conditions.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Kasra Alizadeh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Christina Napoleoni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Kimia Alizadeh
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Jessica A. Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-519-824-4120 (ext. 54657) (B.W.B.); +1-519-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-519-824-4120 (ext. 54657) (B.W.B.); +1-519-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
43
|
Helicobacter pylori Neutrophil-Activating Protein Directly Interacts with and Activates Toll-like Receptor 2 to Induce the Secretion of Interleukin-8 from Neutrophils and ATRA-Induced Differentiated HL-60 Cells. Int J Mol Sci 2021; 22:ijms222111560. [PMID: 34768994 PMCID: PMC8584237 DOI: 10.3390/ijms222111560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein (HP-NAP)-induced production of reactive oxygen species (ROS) by neutrophils and monocytes is regulated by pertussis toxin (PTX)-sensitive G proteins, whereas HP-NAP-induced cytokine secretion by monocytes is mediated by Toll-like receptor 2 (TLR2). However, it is unclear whether TLR2 participates in HP-NAP-induced cytokine secretion by neutrophils. Here, all-trans retinoic acid (ATRA)-induced differentiated HL-60 cells were first employed as a neutrophil model to investigate the molecular mechanisms underlying neutrophil responses to HP-NAP. HP-NAP-induced ROS production in ATRA-induced differentiated HL-60 cells is mediated by the PTX-sensitive heterotrimeric G protein-dependent activation of extracellular signal-regulated kinase 1/2 and p38-mitogen-activated protein kinase, which is consistent with the findings reported for human neutrophils. Next, whether TLR2 participated in HP-NAP-induced secretion of interleukin-8 (IL-8) was investigated in neutrophils and ATRA-induced differentiated HL-60 cells. In both cells, TLR2 participated in HP-NAP-induced IL-8 secretion but not HP-NAP-induced ROS production. Interestingly, PTX-sensitive G proteins also contributed to the HP-NAP-induced secretion of IL-8 from neutrophils and the differentiated HL-60 cells. Our ELISA-based binding assay further revealed the competitive binding of Pam3CSK4, a TLR2 agonist, and HP-NAP to TLR2, which suggests the presence of specific and direct interactions between HP-NAP and TLR2. Thus, HP-NAP directly interacts with and activates TLR2 to induce IL-8 secretion in neutrophils and ATRA-induced differentiated HL-60 cells.
Collapse
|
44
|
Effect of ORF7 of SARS-CoV-2 on the Chemotaxis of Monocytes and Neutrophils In Vitro. DISEASE MARKERS 2021; 2021:6803510. [PMID: 34603560 PMCID: PMC8483903 DOI: 10.1155/2021/6803510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most significant public health threat worldwide. Patients with severe COVID-19 usually have pneumonia concomitant with local inflammation and sometimes a cytokine storm. Specific components of the SARS-CoV-2 virus trigger lung inflammation, and recruitment of immune cells to the lungs exacerbates this process, although much remains unknown about the pathogenesis of COVID-19. Our study of lung type II pneumocyte cells (A549) demonstrated that ORF7, an open reading frame (ORF) in the genome of SARS-CoV-2, induced the production of CCL2, a chemokine that promotes the chemotaxis of monocytes, and decreased the expression of IL-8, a chemokine that recruits neutrophils. A549 cells also had an increased level of IL-6. The results of our chemotaxis Transwell assay suggested that ORF7 augmented monocyte infiltration and reduced the number of neutrophils. We conclude that the ORF7 of SARS-CoV-2 may have specific effects on the immunological changes in tissues after infection. These results suggest that the functions of other ORFs of SARS-CoV-2 should also be comprehensively examined.
Collapse
|
45
|
Biodata Mining of Differentially Expressed Genes between Acute Myocardial Infarction and Unstable Angina Based on Integrated Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5584681. [PMID: 34568491 PMCID: PMC8456013 DOI: 10.1155/2021/5584681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Acute coronary syndrome (ACS) is a complex syndrome of clinical symptoms. In order to accurately diagnose the type of disease in ACS patients, this study is aimed at exploring the differentially expressed genes (DEGs) and biological pathways between acute myocardial infarction (AMI) and unstable angina (UA). The GSE29111 and GSE60993 datasets containing microarray data from AMI and UA patients were downloaded from the Gene Expression Omnibus (GEO) database. DEG analysis of these 2 datasets is performed using the “limma” package in R software. DEGs were also analyzed using protein-protein interaction (PPI), Molecular Complex Detection (MCODE) algorithm, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Correlation analysis and “cytoHubba” were used to analyze the hub genes. A total of 286 DEGs were obtained from GSE29111 and GSE60993, including 132 upregulated genes and 154 downregulated genes. Subsequent comprehensive analysis identified 20 key genes that may be related to the occurrence and development of AMI and UA and were involved in the inflammatory response, interaction of neuroactive ligand-receptor, calcium signaling pathway, inflammatory mediator regulation of TRP channels, viral protein interaction with cytokine and cytokine receptor, human cytomegalovirus infection, and cytokine-cytokine receptor interaction pathway. The integrated bioinformatical analysis could improve our understanding of DEGs between AMI and UA. The results of this study might provide a new perspective and reference for the early diagnosis and treatment of ACS.
Collapse
|
46
|
Vanharen M, Durocher I, Saafane A, Girard D. Evaluating the Apoptotic Cell Death Modulatory Activity of Nanoparticles in Men and Women Neutrophils and Eosinophils. Inflammation 2021; 45:387-398. [PMID: 34536156 DOI: 10.1007/s10753-021-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022]
Abstract
Apoptosis is an important cell death mechanism for the resolution of inflammation. Neutrophil spontaneous apoptosis rates were reported to be slightly different in men and women and to be modulated by female sex hormones. The aim of this study was to determine whether different nanoparticles (NPs) will alter the neutrophil and eosinophil apoptotic rates differently in men and women. Using the antiapoptotic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) and the proapoptotic plant lectin Viscum album agglutinin-I (VAA-I) as controls, we found that these factors respectively delay and induce apoptosis in both neutrophils and eosinophils with apoptotic rates remarkably similar in both sexes. The polyamidoamine (PAMAM) dendrimers of generation 0 (G0) and G3 slightly, but not significantly, accelerate neutrophil apoptosis regardless of sex. Zinc oxide (ZnO), titanium dioxide (TiO2), cerium dioxide (CeO2), and palladium (Pd) but not platinum (Pt) NPs were found to significantly delay neutrophil apoptosis. When results were compared between men and women, only ZnO and Pd NPs were found to significantly delay neutrophil apoptosis in men while ZnO, TiO2, CeO2, and Pt NPs inhibit apoptosis in women neutrophils. In eosinophils, G3, but not G0 NPs, significantly accelerate apoptosis in women. ZnO, Pt, and Pd NPs significantly delay eosinophil apoptosis but only in women. Unlike neutrophils, TiO2 and CeO2 NPs did not significantly delay eosinophil apoptosis. We propose that future studies aiming at determining potential effect NPs on cellular biological processes should incorporate a sex-based analysis based on the differences reported here studying the impact of NPs on human granulocyte apoptosis.
Collapse
Affiliation(s)
- Marion Vanharen
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Isabelle Durocher
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Abdelaziz Saafane
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Denis Girard
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
47
|
Lajqi T, Braun M, Kranig SA, Frommhold D, Pöschl J, Hudalla H. LPS Induces Opposing Memory-like Inflammatory Responses in Mouse Bone Marrow Neutrophils. Int J Mol Sci 2021; 22:ijms22189803. [PMID: 34575963 PMCID: PMC8469609 DOI: 10.3390/ijms22189803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
A growing body of evidence suggests that innate immune cells can respond in a memory-like (adaptive) fashion, which is referred to as trained immunity. Only few in vivo studies have shown training effects in neutrophils; however, no in vitro setup has been established to study the induction of trained immunity or tolerance in neutrophils by microbial agents. In light of their short lifespan (up to 48 h), we suggest to use the term trained sensitivity for neutrophils in an in vitro setting. Here, we firstly describe a feasible two-hit model, using different doses of lipopolysaccharide (LPS) in bone marrow neutrophils. We found that low doses (10 pg/mL) induce pro-inflammatory activation (trained sensitivity), whereas priming with high doses (100 ng/mL) leads to suppression of pro-inflammatory mediators such as TNF-α or IL-6 (tolerance) (p < 0.05). On a functional level, trained neutrophils displayed increased phagocytic activity and LFA-1 expression as well as migrational capacity and CD11a expression, whereas tolerant neutrophils show contrasting effects in vitro. Mechanistically, TLR4/MyD88/PI3Ks regulate the activation of p65, which controls memory-like responses in mouse bone marrow neutrophils (p < 0.05). Our results open a new window for further in vitro studies on memory-like inflammatory responses of short-lived innate immune cells such as neutrophils.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Simon Alexander Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - David Frommhold
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
- Correspondence: ; Tel.: +49-6221-56-1983; Fax: +49-6221-56-5626
| |
Collapse
|
48
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Ricci E, Roselletti E, Gentili M, Sabbatini S, Perito S, Riccardi C, Migliorati G, Monari C, Ronchetti S. Glucocorticoid-Induced Leucine Zipper-Mediated TLR2 Downregulation Accounts for Reduced Neutrophil Activity Following Acute DEX Treatment. Cells 2021; 10:2228. [PMID: 34571877 PMCID: PMC8472062 DOI: 10.3390/cells10092228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are the most powerful anti-inflammatory and immunosuppressive pharmacological drugs available, despite their adverse effects. Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced gene that shares several anti-inflammatory properties with glucocorticoids. Although immunosuppressive effects of glucocorticoids on neutrophils remain poorly understood, we previously demonstrated that GILZ suppresses neutrophil activation under glucocorticoid treatment. Here, we sought to explore the regulation of Toll-like receptor 2 (TLR2) by the synthetic glucocorticoid dexamethasone (DEX) on neutrophils and the associated GILZ involvement. Peripheral blood neutrophils were isolated from wild type and GILZ-knock-out (KO) mice. TLR2 was found to be downregulated by the in vivo administration of glucocorticoids in wild type but not in GILZ-KO neutrophils, suggesting the involvement of GILZ in TLR2 downregulation. Accordingly, the TLR2-associated anti-fungal activity of neutrophils was reduced by DEX treatment in wild type but not GILZ-KO neutrophils. Furthermore, GILZ did not interact with NF-κB but was found to bind with STAT5, a pivotal factor in the regulation of TLR2 expression. A similar modulation of TLR2 expression, impaired phagocytosis, and killing activity was observed in circulating human neutrophils treated in vitro with DEX. These results demonstrate that glucocorticoids reduce the ability of neutrophils to respond to infections by downregulating TLR2 via GILZ, thereby reducing critical functions.
Collapse
Affiliation(s)
- Erika Ricci
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Elena Roselletti
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Stefano Perito
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| |
Collapse
|
50
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|