1
|
Nakahara T, Fujimoto S, Jinzaki M. Molecular imaging of cardiovascular disease: Current status and future perspective. J Cardiol 2025:S0914-5087(25)00017-6. [PMID: 39922562 DOI: 10.1016/j.jjcc.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Advancements in knowledge of cardiovascular disease, pharmacology, and chemistry have led to the development of newer radiopharmaceuticals and targets for new and more suitable molecules. Molecular imaging encompasses multiple imaging techniques for identifying the characteristics of key components involved in disease. Despite its limitations in spatial resolution, the affinity for key molecules compensates for disadvantages in diagnosing diseases and elucidating their pathophysiology. This review introduce established molecular tracers involved in clinical practice and emerging tracers already applied in clinical studies, classifying the key component in A: artery, specifically those vulnerable plaque (A-I) inflammatory cells [18F-FDG]; A-II) lipid/fatty acid; A-III) hypoxia; A-IV) angiogenesis; A-V) protease [18F/68Ga-FAPI]; A-VI) thrombus/hemorrhage; A-VII) apoptosis and A-VIII) microcalcification [18F-NaF]) and B: myocardium, including myocardial ischemia, infarction and myocardiopathy (B-I) myocardial ischemia; B-II) myocardial infarction (myocardial damage and fibrosis); B-III) myocarditis and endocarditis; B-IV) sarcoidosis; B-V) amyloidosis; B-VI) metabolism; B-VII) innervation imaging). In addition to cardiovascular-specific tracers tested in animal models, many radiotracers may have been developed in other areas, such as oncology imaging or neuroimaging. While this review does not cover all available tracers, some of them hold potential for future use assessing cardiovascular disease. Advances in molecular biology, pharmaceuticals, and imaging sciences will facilitate the identification of precise disease mechanisms, enabling precise diagnoses, better assessment of disease status, and enhanced therapeutic evaluation in this multi-modality era.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Rankin S, Fountain C, Gemmell AJ, Quinn D, Henderson A, McClure J, Small S, Venugopal B, McKay P, Slomka PJ, Colville D, Petrie MC, Meléndez GC, Lang NN. Arterial effects of anthracycline: structural and inflammatory assessments in non-human primates and lymphoma patients. Clin Sci (Lond) 2025; 139:29-41. [PMID: 39680089 DOI: 10.1042/cs20241529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Anthracyclines, such as doxorubicin, are important anti-cancer therapies but are associated with arterial injury. Histopathological insights have been limited to small animal models, and the role of inflammation in the arterial toxic effects of anthracycline is unclear in humans. Our aims were (1) to evaluate aortic media fibrosis and injury in non-human primates treated with anthracyclines; (2) to assess the effect of anthracycline on aortic inflammation in patients treated for lymphoma. African Green monkeys (AGMs) received doxorubicin (30-60 mg/m2/biweekly intravenously, cumulative dose: 240 mg/m2). Blinded histopathologic analyses of the ascending aorta were performed 15 weeks after the last doxorubicin dose and compared to five age- and gender-matched healthy, untreated AGMs. Analysis of the thoracic aorta of patients with diffuse large B-cell lymphoma (DLBCL), at baseline and after doxorubicin exposure, was performed using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in this observational study by maximal tissue-to-background ratio (TBRmax). In AGMs, doxorubicin exposure was associated with greater aortic fibrosis (collagen deposition: doxorubicin 6.23 ± 0.88% vs. controls 4.67 ± 0.54%; P=0.01) and intracellular vacuolization (doxorubicin 66.3 ± 10.1 vs. controls 11.5 ± 4.2 vacuoles/field, P<0.0001) than untreated controls. In 101 patients with DLBCL, there was no change in aortic TBRmax after anthracycline exposure (TBRmax 1.46 ± 0.16 vs. 1.44 ± 0.14, respectively, P=0.14). Univariate analyses yielded similar results. In a large animal model, anthracycline exposure was associated with aortic fibrosis. In patients with lymphoma, anthracycline exposure was not associated with aortic inflammation. Further research is required to elucidate the mechanisms of anthracycline-related vascular harm.
Collapse
MESH Headings
- Animals
- Humans
- Female
- Doxorubicin/adverse effects
- Male
- Middle Aged
- Fibrosis/chemically induced
- Antibiotics, Antineoplastic/adverse effects
- Antibiotics, Antineoplastic/toxicity
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/diagnostic imaging
- Positron Emission Tomography Computed Tomography
- Aged
- Anthracyclines/adverse effects
- Inflammation/pathology
- Inflammation/chemically induced
- Adult
- Aorta, Thoracic/pathology
- Aorta, Thoracic/diagnostic imaging
- Aorta, Thoracic/drug effects
- Aorta/pathology
- Aorta/diagnostic imaging
- Aorta/drug effects
Collapse
Affiliation(s)
- Stephen Rankin
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - Caitlin Fountain
- Departments of Internal Medicine, Section on Cardiology and Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, U.S.A
| | - Alastair J Gemmell
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Daire Quinn
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Alasdair Henderson
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - John McClure
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - Sandy Small
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Balaji Venugopal
- School of Medicine, Dentistry and Nursing, University of Glasgow
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Pamela McKay
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Piotr J Slomka
- Cedars-Sinai, Division of Artificial Intelligence in Medicine, Department of Medicine, Los Angeles, U.S.A
| | - David Colville
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Mark C Petrie
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - Giselle C Meléndez
- Departments of Internal Medicine, Section on Cardiology and Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, U.S.A
| | - Ninian N Lang
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| |
Collapse
|
3
|
Rubinstein G, Ilhan H, Bartenstein P, Lehner S, Hacker M, Todica A, Zacherl MJ, Fischer M. Peptide Receptor Radionuclide Therapy Using 90Y- and 177Lu-DOTATATE Modulating Atherosclerotic Plaque Inflammation: Longitudinal Monitoring by 68Ga-DOTATATE Positron Emissions Tomography/Computer Tomography. Diagnostics (Basel) 2024; 14:2486. [PMID: 39594152 PMCID: PMC11593158 DOI: 10.3390/diagnostics14222486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Atherosclerosis and its sequels, such as coronary artery disease and cerebrovascular stroke, still represent global health burdens. The pathogenesis of atherosclerosis consists of growing calcified plaques in the arterial wall and is accompanied by inflammatory processes, which are not entirely understood. This study aims to evaluate the effect of peptide receptor radionuclide therapy (PRRT) using 90Y- and 177Lu-DOTATATE on atherosclerotic plaque inflammation. Methods: Atherosclerotic plaques in 57 cancer patients receiving PRRT using 90Y- and 177Lu-DOTATATE were longitudinally monitored by 68Ga-DOTATATE PET/CT. The target-to-background ratio (TBR) and overall vessel uptake (OVU) were measured in eight distinct arterial regions (ascending aorta, aortic arch, descending aorta, abdominal aorta, both iliac arteries, and both carotid arteries) to monitor calcified plaques. Results: PET/CT analysis shows a positive correlation between calcified plaque scores and the 68Ga-DOTATATE overall vessel uptake (OVU) in cancer patients. After PRRT, an initially high OVU was observed to decrease in the therapy group compared to the control group. An excellent correlation could be shown for each target-to-background ratio (TBR) to the OVU, especially the ascending aorta. Conclusions: The ascending aorta could present a future reference for estimating generalized atherosclerotic inflammatory processes. PRRT might represent a therapeutic approach to modulating atherosclerotic plaques.
Collapse
Affiliation(s)
- German Rubinstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Sebastian Lehner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrei Todica
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Mathias Johannes Zacherl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
4
|
Wolny R, Geers J, Grodecki K, Kwiecinski J, Williams MC, Slomka PJ, Hasific S, Lin AK, Dey D. Noninvasive Atherosclerotic Phenotyping: The Next Frontier into Understanding the Pathobiology of Coronary Artery Disease. Curr Atheroscler Rep 2024; 26:305-315. [PMID: 38727963 DOI: 10.1007/s11883-024-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW Despite recent advances, coronary artery disease remains one of the leading causes of mortality worldwide. Noninvasive imaging allows atherosclerotic phenotyping by measurement of plaque burden, morphology, activity and inflammation, which has the potential to refine patient risk stratification and guide personalized therapy. This review describes the current and emerging roles of advanced noninvasive cardiovascular imaging methods for the assessment of coronary artery disease. RECENT FINDINGS Cardiac computed tomography enables comprehensive, noninvasive imaging of the coronary vasculature, and is used to assess luminal stenoses, coronary calcifications, and distinct adverse plaque characteristics, helping to identify patients prone to future events. Novel software tools, implementing artificial intelligence solutions, can automatically quantify and characterize atherosclerotic plaque from standard computed tomography datasets. These quantitative imaging biomarkers have been shown to improve patient risk stratification beyond clinical risk scores and current clinical interpretation of cardiac computed tomography. In addition, noninvasive molecular imaging in higher risk patients can be used to assess plaque activity and plaque thrombosis. Noninvasive imaging allows unique insight into the burden, morphology and activity of atherosclerotic coronary plaques. Such phenotyping of atherosclerosis can potentially improve individual patient risk prediction, and in the near future has the potential for clinical implementation.
Collapse
Affiliation(s)
- Rafal Wolny
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Selma Hasific
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Andrew K Lin
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Melbourne, VIC, Australia
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Rankin S, Fountain C, Gemmell AJ, Quinn D, Henderson A, McClure J, Small S, Venugopal B, McKay P, Slomka PJ, Colville D, Petrie MC, Meléndez GC, Lang NN. Arterial effects of anthracycline: structural and inflammatory assessments in non-human primates and lymphoma patients using 18F-FDG positron emission tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596741. [PMID: 38895275 PMCID: PMC11185566 DOI: 10.1101/2024.05.30.596741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Anthracyclines, such as doxorubicin, are important anti-cancer therapies but are associated with arterial injury. Histopathological insights have been limited to small animal models and the role of inflammation in the arterial toxic effects of anthracycline is unclear in humans. Our aims were: 1) To evaluate aortic media fibrosis and injury in non-human primates treated with anthracyclines; 2) To assess the effect of anthracycline on aortic inflammation in patients treated for lymphoma. Methods 1) African Green monkeys (AGM) received doxorubicin (30-60 mg/m2/biweekly IV, cumulative dose: 240 mg/m2). Blinded histopathologic analyses of collagen deposition and cell vacuolization in the ascending aorta were performed 15 weeks after the last doxorubicin dose and compared to 5 age- and gender-matched healthy, untreated AGMs. 2) Analysis of the thoracic aorta of patients with diffuse large B-cell lymphoma (DLBCL), at baseline and after doxorubicin exposure, was performed using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in this observational study. The primary outcome was change in maximal tissue-to-background ratio (TBRmax) of the thoracic aorta from baseline to their end-of-treatment clinical PET/CT. Results In AGMs, doxorubicin exposure was associated with greater aortic fibrosis (collagen deposition: doxorubicin cohort 6.23±0.88% vs. controls 4.67±0.54%; p=0.01) and increased intracellular vacuolization (doxorubicin 66.3 ± 10.1 vs controls 11.5 ± 4.2 vacuoles/field, p<0.0001) than untreated controls.In 101 patients with DLBCL, there was no change in aortic TBRmax after anthracycline exposure (pre-doxorubicin TBRmax 1.46±0.16 vs post-doxorubicin TBRmax 1.44±0.14, p=0.14). The absence of change in TBRmax was consistent across all univariate analyses. Conclusions In a large animal model, anthracycline exposure was associated with aortic fibrosis. In patients with lymphoma, anthracycline exposure was not associated with aortic inflammation.Further research is required to elucidate the mechanisms of anthracycline-related vascular harm.
Collapse
Affiliation(s)
- Stephen Rankin
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow UK
| | - Caitlin Fountain
- Departments of Internal Medicine, Section on Cardiology and Pathology, Section on Comparative Medicine. Wake Forest University School of Medicine, Winston-Salem, USA
| | - Alastair J Gemmell
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Daire Quinn
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Alasdair Henderson
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow UK
| | - John McClure
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow UK
| | - Sandy Small
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Balaji Venugopal
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Pamela McKay
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Piotr J Slomka
- Cedars-Sinai, Division of Artificial Intelligence in Medicine, Department of Medicine, Los Angeles, USA
| | - David Colville
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow UK
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - Mark C Petrie
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow UK
| | - Giselle C. Meléndez
- Departments of Internal Medicine, Section on Cardiology and Pathology, Section on Comparative Medicine. Wake Forest University School of Medicine, Winston-Salem, USA
| | - Ninian N Lang
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow UK
| |
Collapse
|
6
|
Perez KA, Deppe DW, Filas A, Singh SA, Aikawa E. Multimodal Analytical Tools to Enhance Mechanistic Understanding of Aortic Valve Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:539-550. [PMID: 37517686 PMCID: PMC10988764 DOI: 10.1016/j.ajpath.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
This review focuses on technologies at the core of calcific aortic valve disease (CAVD) and drug target research advancement, including transcriptomics, proteomics, and molecular imaging. We examine how bulk RNA sequencing and single-cell RNA sequencing have engendered organismal genomes and transcriptomes, promoting the analysis of tissue gene expression profiles and cell subpopulations, respectively. We bring into focus how the field is also largely influenced by increasingly accessible proteome profiling techniques. In unison, global transcriptional and protein expression analyses allow for increased understanding of cellular behavior and pathogenic pathways under pathologic stimuli including stress, inflammation, low-density lipoprotein accumulation, increased calcium and phosphate levels, and vascular injury. We also look at how direct investigation of protein signatures paves the way for identification of targetable pathways for pharmacologic intervention. Here, we note that imaging techniques, once a clinical diagnostic tool for late-stage CAVD, have since been refined to address a clinical need to identify microcalcifications using positron emission tomography/computed tomography and even detect in vivo cellular events indicative of early stage CAVD and map the expression of identified proteins in animal models. Together, these techniques generate a holistic approach to CAVD investigation, with the potential to identify additional novel regulatory pathways.
Collapse
Affiliation(s)
- Katelyn A Perez
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel W Deppe
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aidan Filas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Grandjean CE, Pedersen SF, Christensen C, Dibenedetto A, Eriksen T, Binderup T, Kjaer A. Imaging of atherosclerosis with [ 64Cu]Cu-DOTA-TATE in a translational head-to-head comparison study with [ 18F]FDG, and Na[ 18F]F in rabbits. Sci Rep 2023; 13:9249. [PMID: 37286582 DOI: 10.1038/s41598-023-35302-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the larger arteries that may lead to cardiovascular events. Identification of patients at highest risk of cardiovascular events is challenging, but molecular imaging using positron emission tomography (PET) may prove useful. The aim of this study was to evaluate and compare head-to-head three different PET tracers. Furthermore, tracer uptake is compared to gene expression alterations of the arterial vessel wall. Male New Zealand White rabbits (control group; n = 10, atherosclerotic group; n = 11) were used for the study. Vessel wall uptake was assessed with the three different PET tracers: [18F]FDG (inflammation), Na[18F]F (microcalcification), and [64Cu]Cu-DOTA-TATE (macrophages), using PET/computed tomography (CT). Tracer uptake was measured as standardized uptake value (SUV), and arteries from both groups were analyzed ex vivo by autoradiography, qPCR, histology, and immunohistochemistry. In rabbits, the atherosclerotic group showed significantly higher uptake of all three tracers compared to the control group [18F]FDG: SUVmean 1.50 ± 0.11 versus 1.23 ± 0.09, p = 0.025; Na[18F]F: SUVmean 1.54 ± 0.06 versus 1.18 ± 0.10, p = 0.006; and [64Cu]Cu-DOTA-TATE: SUVmean 2.30 ± 0.27 versus 1.65 ± 0.16; p = 0.047. Of the 102 genes analyzed, 52 were differentially expressed in the atherosclerotic group compared to the control group and several genes correlated with tracer uptake. In conclusion, we demonstrated the diagnostic value of [64Cu]Cu-DOTA-TATE and Na[18F]F for identifying atherosclerosis in rabbits. The two PET tracers provided information distinct from that obtained with [18F]FDG. None of the three tracers correlated significantly to each other, but [64Cu]Cu-DOTA-TATE and Na[18F]F uptake both correlated with markers of inflammation. [64Cu]Cu-DOTA-TATE was higher in atherosclerotic rabbits compared to [18F]FDG and Na[18F]F.
Collapse
Affiliation(s)
- Constance E Grandjean
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Sune F Pedersen
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Camilla Christensen
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Altea Dibenedetto
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas Eriksen
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Kitada R, Otsuka K, Fukuda D. Role of plaque imaging for identification of vulnerable patients beyond the stage of myocardial ischemia. Front Cardiovasc Med 2023; 10:1095806. [PMID: 37008333 PMCID: PMC10063905 DOI: 10.3389/fcvm.2023.1095806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic coronary syndrome (CCS) is a progressive disease, which often first manifests as acute coronary syndrome (ACS). Imaging modalities are clinically useful in making decisions about the management of patients with CCS. Accumulating evidence has demonstrated that myocardial ischemia is a surrogate marker for CCS management; however, its ability to predict cardiovascular death or nonfatal myocardial infarction is limited. Herein, we present a review that highlights the latest knowledge available on coronary syndromes and discuss the role and limitations of imaging modalities in the diagnosis and management of patients with coronary artery disease. This review covers the essential aspects of the role of imaging in assessing myocardial ischemia and coronary plaque burden and composition. Furthermore, recent clinical trials on lipid-lowering and anti-inflammatory therapies have been discussed. Additionally, it provides a comprehensive overview of intracoronary and noninvasive cardiovascular imaging modalities and an understanding of ACS and CCS, with a focus on histopathology and pathophysiology.
Collapse
|
9
|
Nakahara T, Strauss HW, Narula J, Jinzaki M. Vulnerable Plaque Imaging. Semin Nucl Med 2023; 53:230-240. [PMID: 36333157 DOI: 10.1053/j.semnuclmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
Atherosclerotic plaques progress as a result of inflammation. Both invasive and noninvasive imaging techniques have been developed to identify and characterize plaque as vulnerable (more likely to rupture and cause a clinical event). Imaging techniques to identify vulnerable include identifying vessels with focal subendothelial collections of I) inflammatory cells; II) lipid/ fatty acid; III) local regions of hypoxia; IV) local expression of angiogenesis factors; V) local expression of protease; VI) intravascular foci of thrombus; hemorrhage (most often seen in the aftermath of a clinical event); VII) apoptosis and VIII) microcalcification. This review provides an overview of atherosclerotic plaque progression and tracers which can visualize specific molecules associated with vulnerability.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - H William Strauss
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mahahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Sammartino AM, Falco R, Drera A, Dondi F, Bellini P, Bertagna F, Vizzardi E. "Vascular inflammation and cardiovascular disease: review about the role of PET imaging". Int J Cardiovasc Imaging 2023; 39:433-440. [PMID: 36255543 PMCID: PMC9870832 DOI: 10.1007/s10554-022-02730-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Inflammation characterizes all stages of atherothrombosis and provides a critical pathophysiological link between plaque formation and its acute rupture, leading to coronary occlusion and heart attack. In the last 20 years the possibility of quantifying the degree of inflammation of atherosclerotic plaques and, therefore, also of vascular inflammation aroused much interest. 18Fluoro-deoxy-glucose photon-emissions-tomography (18F-FDG-PET) is widely used in oncology for staging and searching metastases; in cardiology, the absorption of 18F-FDG into the arterial wall was observed for the first time incidentally in the aorta of patients undergoing PET imaging for cancer staging. PET/CT imaging with 18F-FDG and 18F-sodium fluoride (18F-NaF) has been shown to assess atherosclerotic disease in its molecular phase, when the process may still be reversible. This approach has several limitations in the clinical practice, due to lack of prospective data to justify their use routinely, but it's desirable to develop further scientific evidence to confirm this technique to detect high-risk patients for cardiovascular events.
Collapse
Affiliation(s)
- Antonio Maria Sammartino
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy.
| | - Raffaele Falco
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Andrea Drera
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Pietro Bellini
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy.
| |
Collapse
|
11
|
Taglieri N, Bonfiglioli R, Bon I, Malosso P, Corovic A, Bruno M, Le E, Granozzi B, Palmerini T, Ghetti G, Tamburello M, Bruno AG, Saia F, Tarkin JM, Rudd JHF, Calza L, Fanti S, Re MC, Galié N. Pattern of arterial inflammation and inflammatory markers in people living with HIV compared with uninfected people. J Nucl Cardiol 2022; 29:1566-1575. [PMID: 33569752 PMCID: PMC9345795 DOI: 10.1007/s12350-020-02522-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/25/2020] [Indexed: 11/03/2022]
Abstract
STUDY DESIGN To compare arterial inflammation (AI) between people living with HIV (PLWH) and uninfected people as assessed by 18F-Fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET). METHODS We prospectively enrolled 20 PLWH and 20 uninfected people with no known cardiovascular disease and at least 3 traditional cardiovascular risk factors. All patients underwent 18F-FDG-PET/computed tomography (CT) of the thorax and neck. Biomarkers linked to inflammation and atherosclerosis were also determined. The primary outcome was AI in ascending aorta (AA) measured as mean maximum target-to-background ratio (TBRmax). The independent relationships between HIV status and both TBRmax and biomarkers were evaluated by multivariable linear regression adjusted for body mass index, creatinine, statin therapy, and atherosclerotic cardiovascular 10-year estimated risk (ASCVD). RESULTS Unadjusted mean TBRmax in AA was slightly higher but not statistically different (P = .18) in PLWH (2.07; IQR 1.97, 2.32]) than uninfected people (2.01; IQR 1.85, 2.16]). On multivariable analysis, PLWH had an independent risk of increased mean log-TBRmax in AA (coef = 0.12; 95%CI 0.01,0.22; P = .032). HIV infection was independently associated with higher values of interleukin-10 (coef = 0.83; 95%CI 0.34, 1.32; P = .001), interferon-γ (coef. = 0.90; 95%CI 0.32, 1.47; P = .003), and vascular cell adhesion molecule-1 (VCAM-1) (coef. = 0.75; 95%CI: 0.42, 1.08, P < .001). CONCLUSIONS In patients with high cardiovascular risk, HIV status was an independent predictor of increased TBRmax in AA. PLWH also had an increased independent risk of IFN-γ, IL-10, and VCAM-1 levels.
Collapse
Affiliation(s)
- Nevio Taglieri
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Rachele Bonfiglioli
- Division of Nuclear Medicine, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Isabella Bon
- Division of Microbiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Pietro Malosso
- Department of Medical and Surgical Sciences, Clinics of Infectious Diseases, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrej Corovic
- Division of Cardiovascular Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Matteo Bruno
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Elizabeth Le
- Division of Cardiovascular Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Bianca Granozzi
- Department of Medical and Surgical Sciences, Clinics of Infectious Diseases, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Tullio Palmerini
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Gabriele Ghetti
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Martina Tamburello
- Division of Microbiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Antonio Giulio Bruno
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Francesco Saia
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Leonardo Calza
- Department of Medical and Surgical Sciences, Clinics of Infectious Diseases, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Division of Nuclear Medicine, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Division of Microbiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St. Orsola, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Nazzareno Galié
- Division of Cardiology, Department of Experimental Diagnostic and Specialty Medicine, IRCCS Policlinico di St.Orsola, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
12
|
Innate immune cells in the pathophysiology of calcific aortic valve disease: lessons to be learned from atherosclerotic cardiovascular disease? Basic Res Cardiol 2022; 117:28. [PMID: 35581364 PMCID: PMC9114076 DOI: 10.1007/s00395-022-00935-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 01/31/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular disease in the developed world with currently no effective pharmacological treatment available. CAVD results from a complex, multifactorial process, in which valvular inflammation and fibro-calcific remodelling lead to valve thickening and cardiac outflow obstruction. The exact underlying pathophysiology of CAVD is still not fully understood, yet the development of CAVD shows many similarities with the pathophysiology of atherosclerotic cardiovascular disease (ASCVD), such as coronary artery disease. Innate immune cells play a crucial role in ASCVD and might also play a pivotal role in the development of CAVD. This review summarizes the current knowledge on the role of innate immune cells, both in the circulation and in the aortic valve, in the development of CAVD and the similarities and differences with ASCVD. Trained immunity and clonal haematopoiesis of indeterminate potential are proposed as novel immunological mechanisms that possibly contribute to the pathophysiology of CAVD and new possible treatment targets are discussed.
Collapse
|
13
|
Bonati LH, Brown MM. Carotid Artery Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Sharma VK, Wong LK. Middle Cerebral Artery Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Schindler TH, Varney B, Jain S. Molecular imaging of active coronary micro-calcification with 18F-NaF and PET: emergence of a new biomarker of the vulnerable atherosclerotic plaque? Eur J Prev Cardiol 2021; 28:e6-e7. [PMID: 33611388 DOI: 10.1177/2047487320912627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, USA
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, USA
| | - Brittany Varney
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, USA
| | - Sudhir Jain
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, USA
| |
Collapse
|
16
|
Meester EJ, Krenning BJ, de Blois E, de Jong M, van der Steen AFW, Bernsen MR, van der Heiden K. Imaging inflammation in atherosclerotic plaques, targeting SST 2 with [ 111In]In-DOTA-JR11. J Nucl Cardiol 2021; 28:2506-2513. [PMID: 32026330 PMCID: PMC8709817 DOI: 10.1007/s12350-020-02046-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Imaging Somatostatin Subtype Receptor 2 (SST2) expressing macrophages by [DOTA,Tyr3]-octreotate (DOTATATE) has proven successful for plaque detection. DOTA-JR11 is a SST2 targeting ligand with a five times higher tumor uptake than DOTATATE, and holds promise to improve plaque imaging. The aim of this study was to evaluate the potential of DOTA-JR11 for plaque detection. METHODS AND RESULTS Atherosclerotic ApoE-/- mice (n = 22) fed an atherogenic diet were imaged by SPECT/CT two hours post injection of [111In]In-DOTA-JR11 (~ 200 pmol, ~ 50 MBq). In vivo plaque uptake of [111In]In-DOTA-JR11 was visible in all mice, with a target-to-background-ratio (TBR) of 2.23 ± 0.35. Post-mortem scans after thymectomy and ex vivo scans of the arteries after excision of the arteries confirmed plaque uptake of the radioligand with TBRs of 2.46 ± 0.52 and 3.43 ± 1.45 respectively. Oil red O lipid-staining and ex vivo autoradiography of excised arteries showed [111In]In-DOTA-JR11 uptake at plaque locations. Histological processing showed CD68 (macrophages) and SST2 expressing cells in plaques. SPECT/CT, in vitro autoradiography and immunohistochemistry performed on slices of a human carotid endarterectomy sample showed [111In]In-DOTA-JR11 uptake at plaque locations containing CD68 and SST2 expressing cells. CONCLUSIONS The results of this study indicate DOTA-JR11 as a promising ligand for visualization of atherosclerotic plaque inflammation.
Collapse
Affiliation(s)
- Eric J Meester
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Monique R Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: An observational study. Atherosclerosis 2021; 339:20-26. [PMID: 34808541 DOI: 10.1016/j.atherosclerosis.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Psoriasis is an immune-mediated inflammatory disease with increased risk of myocardial infarction. Preclinical studies in psoriasis models show an association between chronic inflammation and immune cell proliferation in the spleen and bone marrow (BM). We sought to test the hypothesis that splenic and BM 18F-fluorodeoxyglucose (18F-FDG) uptake is heightened in psoriasis and that higher uptake associates with systemic inflammation and subclinical atherosclerotic disease measures in this cohort. METHODS Multimodality imaging and biomarker assays were performed in 240 participants (210 with psoriasis and 30 healthy). Splenic and BM uptake was obtained using 18F-FDG positron emission tomography/computed tomography (PET/CT). Coronary artery plaque characteristics including non-calcified burden (NCB) and lipid rich necrotic core (LRNC) were quantified using a dedicated software for CT angiography. All analyses were performed with StataIC 16 (Stata Corp., College Station, TX, USA). RESULTS Splenic and BM 18F-FDG uptake was increased in psoriasis (vs. healthy volunteers) and significantly associated with proatherogenic lipids, immune cells and systemic inflammation. Higher splenic 18F-FDG uptake associated with higher total coronary burden (β = 0.37; p<0.001), NCB (β = 0.39; p<0.001), and LRNC (β = 0.32; p<0.001) in fully adjusted models. Similar associations were seen for BM 18F-FDG uptake in adjusted models (β = 0.38; β = 0.41; β = 0.24; respectively, all p<0.001). CONCLUSIONS Heightened splenic and BM uptake of 18F-FDG is associated with proatherogenic lipids, immune cells, inflammatory markers and coronary artery disease. These findings provide insights into atherogenic mechanisms in psoriasis and suggest that immune cell proliferation in the spleen and BM is associated with subclinical atherosclerosis.
Collapse
|
18
|
Zhou W, Dey A, Manyak G, Teklu M, Patel N, Teague H, Mehta NN. The application of molecular imaging to advance translational research in chronic inflammation. J Nucl Cardiol 2021; 28:2033-2045. [PMID: 33244675 PMCID: PMC8149483 DOI: 10.1007/s12350-020-02439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 01/23/2023]
Abstract
Over the past several decades, molecular imaging techniques to assess cellular processes in vivo have been integral in advancing our understanding of disease pathogenesis. 18F-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) imaging in particular has shaped the field of atherosclerosis research by highlighting the importance of underlying inflammatory processes that are responsible for driving disease progression. The ability to assess physiology using molecular imaging, combining it with anatomic delineation using cardiac coronary angiography (CCTA) and magnetic resonance imaging (MRI) and lab-based techniques, provides a powerful combination to advance both research and ultimately clinical care. In this review, we demonstrate how molecular imaging studies, specifically using 18-FDG PET, have revealed that early vascular disease is a systemic process with multiple, concurrent biological mechanisms using inflammatory diseases as a basis to understand early atherosclerotic mechanisms in humans.
Collapse
Affiliation(s)
- Wunan Zhou
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Cardiovascular Branch, NHLBI, 10 Center Drive, CRC, Room 5-5140, Bethesda, MD, 20892, USA
| | - Amit Dey
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Grigory Manyak
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Meron Teklu
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nidhi Patel
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Heather Teague
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
- Cardiovascular Branch, NHLBI, 10 Center Drive, CRC, Room 5-5140, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Giles JT, Rist PM, Liao KP, Tawakol A, Fayad ZA, Mani V, Paynter NP, Ridker PM, Glynn RJ, Lu F, Broderick R, Murray M, Vanni KMM, Solomon DH, Bathon JM. Testing the Effects of Disease-Modifying Antirheumatic Drugs on Vascular Inflammation in Rheumatoid Arthritis: Rationale and Design of the TARGET Trial. ACR Open Rheumatol 2021; 3:371-380. [PMID: 33932148 PMCID: PMC8207684 DOI: 10.1002/acr2.11256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
Individuals with rheumatoid arthritis (RA) are at increased risk for atherosclerotic cardiovascular disease (ASCVD) events relative to the general population, potentially mediated by atherosclerotic plaques that are more inflamed and rupture prone. We sought to address whether RA immunomodulators reduce vascular inflammation, thereby reducing ASCVD risk, and whether such reduction depends on the type of immunomodulator. The TARGET (Treatments Against RA and Effect on 18-Fluorodeoxyglucose [18 F-FDG] Positron Emission Tomography [PET]/Computed Tomography [CT]) trial (NCT02374021) will enroll 150 patients with RA with active disease and an inadequate response to methotrexate. Participants will be randomized to add either a tumor necrosis factor (TNF) inhibitor (etanercept or adalimumab) or sulfasalazine and hydroxychloroquine to their background methotrexate. Participants will undergo full-body 18 F-FDG-labelled PET scanning at baseline and after 6 months. Efficacy and safety evaluations will occur every 6 weeks, with therapy modified in a treat-to-target approach. The primary outcome is the comparison of change in arterial inflammation in the wall of the aorta and carotid arteries between the randomized treatment groups, specifically, the change in the mean of the maximum target-to-background ratio of arterial 18 F-FDG uptake in the most diseased segment of either the aorta and carotid arteries. A secondary analysis will compare the effects of achieving low disease activity or remission with those of moderate to high disease activity on vascular inflammation. The TARGET trial will test, for the first time, whether RA treatments reduce arterial inflammation and whether such reduction differs according to treatment strategy with either TNF inhibitors or a combination of nonbiologic disease-modifying antirheumatic drugs.
Collapse
Affiliation(s)
- Jon T. Giles
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| | - Pamela M. Rist
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Katherine P. Liao
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Ahmed Tawakol
- Massachusetts General Hospital and Harvard Medical SchoolBoston
| | - Zahi A. Fayad
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew York
| | - Venkatesh Mani
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew York
| | - Nina P. Paynter
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Paul M. Ridker
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Robert J. Glynn
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Fengxin Lu
- Brigham and Women's HospitalBostonMassachusetts
| | - Rachel Broderick
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| | | | | | - Daniel H. Solomon
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Joan M. Bathon
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| |
Collapse
|
20
|
Binder CJ, Borén J, Catapano A, Kronenberg F, Mallat Z, Negrini S, Öörni K, Raggi P, von Eckardstein A. The year 2020 in Atherosclerosis. Atherosclerosis 2021; 326:35-44. [PMID: 33958158 DOI: 10.1016/j.atherosclerosis.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Hong LZ, Xue Q, Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J Inflamm Res 2021; 14:379-392. [PMID: 33628042 PMCID: PMC7897977 DOI: 10.2147/jir.s294809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have linked a dysregulated inflammatory setting to the pathogenesis of atherosclerosis, which is a form of chronic vascular inflammation. Various inflammatory biomarkers have been associated with inflammation and are recognized as potential tools to monitor the progression of atherosclerosis. A well-studied inflammatory marker in the context of cardiovascular diseases is C-reactive protein (CRP) or, more accurately, highly sensitive-CRP (hs-CRP), which has been established as an inflammatory biomarker for atherosclerotic events. In addition, a growing body of investigations has attempted to disclose the potential of inflammatory cytokines, enzymes, and genetic polymorphisms related to innate and adaptive immunity as biomarkers for predicting the development of atherosclerosis. In this review article, we clarify both traditional and novel inflammatory biomarkers related to components of the innate and adaptive immune system that may mirror the progression or phases of atherosclerotic inflammation/lesions. Furthermore, the contribution of the inflammatory biomarkers in developing potential therapeutics against atherosclerotic treatment will be discussed.
Collapse
Affiliation(s)
- Ling-Zhi Hong
- Emergency Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, 311700, Zhejiang Province, People’s Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| |
Collapse
|
22
|
Henrich TJ, Jones T, Beckford-Vera D, Price PM, VanBrocklin HF. Total-Body PET Imaging in Infectious Diseases. PET Clin 2020; 16:89-97. [PMID: 33160926 DOI: 10.1016/j.cpet.2020.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Total-body PET enables high-sensitivity imaging with dramatically improved signal-to-noise ratio. These enhanced performance characteristics allow for decreased PET scanning times acquiring data "total-body wide" and can be leveraged to decrease the amount of radiotracer required, thereby permitting more frequent imaging or longer imaging periods during radiotracer decay. Novel approaches to PET imaging of infectious diseases are emerging, including those that directly visualize pathogens in vivo and characterize concomitant immune responses and inflammation. Efforts to develop these imaging approaches are hampered by challenges of traditional imaging platforms, which may be overcome by novel total-body PET strategies.
Collapse
Affiliation(s)
- Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue, Building 3, Room 525A, San Francisco, CA 94110, USA.
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Poels K, van Leent MM, Boutros C, Tissot H, Roy S, Meerwaldt AE, Toner YC, Reiche ME, Kusters PJ, Malinova T, Huveneers S, Kaufman AE, Mani V, Fayad ZA, de Winther MP, Marabelle A, Mulder WJ, Robert C, Seijkens TT, Lutgens E. Immune Checkpoint Inhibitor Therapy Aggravates T Cell-Driven Plaque Inflammation in Atherosclerosis. JACC CardioOncol 2020; 2:599-610. [PMID: 34396271 PMCID: PMC8352210 DOI: 10.1016/j.jaccao.2020.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immunotherapy has revolutionized cancer treatment. However, immune checkpoint inhibitors (ICIs) that target PD-1 (programmed cell death protein-1) and/or CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) are commonly associated with acute immune-related adverse events. Accumulating evidence also suggests that ICIs aggravate existing inflammatory diseases. OBJECTIVES As inflammation drives atherosclerotic cardiovascular disease, we studied the propensity of short-term ICI therapy to aggravate atherosclerosis. METHODS We used 18F-FDG (2-deoxy-2-[fluorine-18]fluoro-D-glucose) positron emission tomography-computed tomography to detect macrophage-driven vascular and systemic inflammation in pembrolizumab and nivolumab/ipilimumab-treated melanoma patients. In parallel, atherosclerotic Ldlr -/- mice were treated with CTLA-4 and PD-1 inhibition to study the proinflammatory consequences of immune checkpoint inhibition. RESULTS ICI treatment did not affect 18F-FDG uptake in the large arteries, spleen, and bone marrow of melanoma patients, nor myeloid cell activation in blood and lymphoid organs in hyperlipidemic mice. In contrast, we found marked changes in the adaptive immune response (i.e., increased CD4+ effector T cell and CD8+ cytotoxic T cell numbers in lymphoid organs and the arterial wall of our hyperlipidemic mice). Although plaque size was unaffected, plaques had progressed toward a lymphoid-based inflammatory phenotype, characterized by a 2.7-fold increase of CD8+ T cells and a 3.9-fold increase in necrotic core size. Increased endothelial activation was observed with a 2.2-fold and 1.6-fold increase in vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, respectively. CONCLUSIONS This study demonstrates that combination therapy with anti-CTLA-4 and anti-PD-1 antibodies does not affect myeloid-driven vascular and systemic inflammation in melanoma patients and hyperlipidemic mice. However, short-term ICI therapy in mice induces T cell-mediated plaque inflammation and drives plaque progression.
Collapse
Affiliation(s)
- Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Mandy M.T. van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celine Boutros
- Oncology Department, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Hubert Tissot
- Radiology Department, Institut de Cancérologie Gustave Roussy, Paris, France
| | - Séverine Roy
- Oncology Department, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Anu E. Meerwaldt
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Yohana C.A. Toner
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myrthe E. Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal J.H. Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Tsveta Malinova
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Audrey E. Kaufman
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Venkatesh Mani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aurelien Marabelle
- Oncology Department, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Willem J.M. Mulder
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Caroline Robert
- Oncology Department, Institut de Cancérologie Gustave Roussy, Villejuif, France
- Faculty of Medicine, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tom T.P. Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
24
|
Periodontal treatment and vascular inflammation in patients with advanced peripheral arterial disease: A randomized controlled trial. Atherosclerosis 2020; 313:60-69. [DOI: 10.1016/j.atherosclerosis.2020.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/04/2023]
|
25
|
Ahmed M, Tegnebratt T, Tran TA, Lu L, Damberg P, Gisterå A, Tarnawski L, Bone D, Hedin U, Eriksson P, Holmin S, Gustafsson B, Caidahl K. Molecular Imaging of Inflammation in a Mouse Model of Atherosclerosis Using a Zirconium-89-Labeled Probe. Int J Nanomedicine 2020; 15:6137-6152. [PMID: 32884268 PMCID: PMC7434576 DOI: 10.2147/ijn.s256395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Beyond clinical atherosclerosis imaging of vessel stenosis and plaque morphology, early detection of inflamed atherosclerotic lesions by molecular imaging could improve risk assessment and clinical management in high-risk patients. To identify inflamed atherosclerotic lesions by molecular imaging in vivo, we studied the specificity of our radiotracer based on maleylated (Mal) human serum albumin (HSA), which targets key features of unstable atherosclerotic lesions. Materials and Methods Mal-HSA was radiolabeled with a positron-emitting metal ion, zirconium-89 (89Zr4+). The targeting potential of this probe was compared with unspecific 89Zr-HSA and 18F-FDG in an experimental model of atherosclerosis (Apoe–/– mice, n=22), and compared with wild-type (WT) mice (C57BL/6J, n=21) as controls. Results PET/MRI, gamma counter measurements, and autoradiography showed the accumulation of 89Zr-Mal-HSA in the atherosclerotic lesions of Apoe–/– mice. The maximum standardized uptake values (SUVmax) for 89Zr-Mal-HSA at 16 and 20 weeks were 26% and 20% higher (P<0.05) in Apoe–/– mice than in control WT mice, whereas no difference in SUVmax was observed for 18F-FDG in the same animals. 89Zr-Mal-HSA uptake in the aorta, as evaluated by a gamma counter 48 h postinjection, was 32% higher (P<0.01) for Apoe–/– mice than in WT mice, and the aorta-to-blood ratio was 8-fold higher (P<0.001) for 89Zr-Mal-HSA compared with unspecific 89Zr-HSA. HSA-based probes were mainly distributed to the liver, spleen, kidneys, bone, and lymph nodes. The phosphor imaging autoradiography (PI-ARG) results corroborated the PET and gamma counter measurements, showing higher accumulation of 89Zr-Mal-HSA in the aortas of Apoe–/– mice than in WT mice (9.4±1.4 vs 0.8±0.3%; P<0.001). Conclusion 89Zr radiolabeling of Mal-HSA probes resulted in detectable activity in atherosclerotic lesions in aortas of Apoe–/– mice, as demonstrated by quantitative in vivo PET/MRI. 89Zr-Mal-HSA appears to be a promising diagnostic tool for the early identification of macrophage-rich areas of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Mona Ahmed
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Tetyana Tegnebratt
- Department of Clinical Neuroscience, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Radiopharmacy, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Radiopharmacy, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Li Lu
- Department of Clinical Neuroscience, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Radiopharmacy, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Peter Damberg
- Department of Clinical Neuroscience, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden
| | - Anton Gisterå
- Department of Medicine Solna, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden
| | - Laura Tarnawski
- Department of Medicine Solna, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden
| | - Dianna Bone
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Clinical Physiology, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Per Eriksson
- Department of Medicine Solna, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, SE 17176, Sweden
| | - Björn Gustafsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, BioClinicum, Karolinska Institutet, Stockholm, SE 17176, Sweden.,Department of Clinical Physiology, Karolinska University Hospital, Stockholm, SE 17176, Sweden.,Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, SE 41345, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE 41345, Sweden
| |
Collapse
|
26
|
De Dominicis C, Perrotta P, Dall’Angelo S, Wyffels L, Staelens S, De Meyer GRY, Zanda M. [ 18F]ZCDD083: A PFKFB3-Targeted PET Tracer for Atherosclerotic Plaque Imaging. ACS Med Chem Lett 2020; 11:933-939. [PMID: 32435408 DOI: 10.1021/acsmedchemlett.9b00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
PFKFB3, a glycolysis-related enzyme upregulated in inflammatory conditions and angiogenesis, is an emerging target for diagnosis and therapy of atherosclerosis. The fluorinated phenoxindazole [18F]ZCDD083 was synthesized, radiolabeled in 17 ± 5% radiochemical yield and >99% radiochemical purity, and formulated for preclinical PET/CT imaging in mice. In vivo stability analysis showed no significant metabolite formation. Biodistribution studies showed high blood pool activity and slow hepatobiliary clearance. Significant activity was detected in the lung 2 h postinjection (pi) (11.0 ± 1.5%ID/g), while at 6 h pi no pulmonary background was observed. Ex vivo autoradiography at 6 h pi showed significant high uptake of [18F]ZCDD083 in the arch region and brachiocephalic artery of atherosclerotic mice, and no uptake in control mice, matching plaques distribution seen by lipid staining along with PFKFB3 expression seen by immunofluorescent staining. In vivo PET scans showed higher aortic region uptake of [18F]ZCDD083 in atherosclerotic ApoE-/-Fbn1C1039G+/- than in control mice (0.78 ± 0.05 vs 0.44 ± 0.09%ID/g). [18F]ZCDD083 was detected in aortic arch and brachiocephalic artery of ApoE-/- (with moderate atherosclerosis) and ApoE-/-Fbn1C1039G+/- (with severe, advanced atherosclerosis) mice, suggesting this tracer may be useful for the noninvasive detection of atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Carlo De Dominicis
- Kosterlitz Centre for Therapeutics, University of Aberdeen, AB25 2ZD Foresterhill, Aberdeen, U.K
| | - Paola Perrotta
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium
| | - Sergio Dall’Angelo
- Kosterlitz Centre for Therapeutics, University of Aberdeen, AB25 2ZD Foresterhill, Aberdeen, U.K
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Antwerpen, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Antwerpen, Belgium
| | - G. R. Y. De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, University of Aberdeen, AB25 2ZD Foresterhill, Aberdeen, U.K
- CNR-ICRM, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
27
|
Reddy AS, Uceda DE, Al Najafi M, Dey AK, Mehta NN. PET Scan with Fludeoxyglucose/Computed Tomography in Low-Grade Vascular Inflammation. PET Clin 2020; 15:207-213. [PMID: 32145891 PMCID: PMC7668223 DOI: 10.1016/j.cpet.2019.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorodeoxyglucose-PET/computed tomography combines the high sensitivity of PET with the excellent spatial resolution provided by computed tomography, making it a potentially powerful tool for capturing and quantifying early vascular diseases. Patients with chronic inflammatory states have an increased risk of cardiovascular events; there is also increased vascular fluorodeoxyglucose uptake seen compared with healthy controls. This review examines the use of fluorodeoxyglucose-PET/computed tomography in assessing low-grade vascular inflammation in chronic inflammation and then reviews fluorodeoxyglucose-PET/computed tomography as a tool in monitoring the efficacy of various treatments known to modulate cardiovascular disease.
Collapse
Affiliation(s)
- Aarthi S Reddy
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, Clinical Research Center, 10 Center Drive, Room 5-5140, Bethesda, MD 20892, USA
| | - Domingo E Uceda
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, Clinical Research Center, 10 Center Drive, Room 5-5140, Bethesda, MD 20892, USA
| | - Mina Al Najafi
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, Clinical Research Center, 10 Center Drive, Room 5-5140, Bethesda, MD 20892, USA
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, Clinical Research Center, 10 Center Drive, Room 5-5140, Bethesda, MD 20892, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, Clinical Research Center, 10 Center Drive, Room 5-5140, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Jimba T, Hashikata T, Matsushita M, Yamasaki M. Repetitive restenosis in a biodegradable polymer sirolimus-eluting stent with hypersensitivity reaction: a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 4:1-5. [PMID: 32128478 PMCID: PMC7047045 DOI: 10.1093/ehjcr/ytaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/19/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Background Hypersensitivity reaction is a classic cause of in-stent restenosis (ISR) in coronary stents, typically reported in bare-metal stents and first-generation drug-eluting stents. Biodegradable polymer sirolimus-eluting stent (BP-SES) was developed with the concept of biocompatibility, and there has been no report of ISR of BP-SES with hypersensitivity reaction. Case summary An 81-year-old woman presented with ST-elevation acute inferior myocardial infarction. Primary percutaneous coronary intervention was performed for the culprit lesion in the left circumflex artery with a permanent polymer everolimus-eluting stent (PP-EES), followed by BP-SES implantation in the left anterior descending artery. Eight months later, coronary angiography showed total occlusion of the PP-EES and diffuse ISR in the BP-SES, treated with a paclitaxel-eluting balloon. Fluorodeoxyglucose with positron emission tomography showed increased uptake around the BP-SES, and cardiac magnetic resonance imaging revealed a late gadolinium-enhanced area around both stents. Four months later, she developed re-ISR in the BP-SES, and optical coherence tomography demonstrated diffuse-layered neointimal hyperplasia with microvascularization and peri-strut low-intensity area. She was successfully treated with coronary artery bypass grafting. Discussion Our case demonstrated repetitive short-term ISR of the BP-SES. Observation by both intravascular and non-invasive imaging modalities suggested the presence of hypersensitivity reaction localized in the stent. Hypersensitivity to the metal may be a possible mechanism because both stents are composed of L605 cobalt-chromium alloy. This is the first report of ISR of a BP-SES with hypersensitivity reaction. Non-invasive imaging can be useful to assess this critical condition.
Collapse
Affiliation(s)
- Takahiro Jimba
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Higashigotanda 5-9-22, Shinagawa-ku, Tokyo 141-0022, Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Higashigotanda 5-9-22, Shinagawa-ku, Tokyo 141-0022, Japan
| | - Masashiro Matsushita
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Higashigotanda 5-9-22, Shinagawa-ku, Tokyo 141-0022, Japan
| | - Masao Yamasaki
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Higashigotanda 5-9-22, Shinagawa-ku, Tokyo 141-0022, Japan
| |
Collapse
|
29
|
Flores AM, Hosseini-Nassab N, Jarr KU, Ye J, Zhu X, Wirka R, Koh AL, Tsantilas P, Wang Y, Nanda V, Kojima Y, Zeng Y, Lotfi M, Sinclair R, Weissman IL, Ingelsson E, Smith BR, Leeper NJ. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. NATURE NANOTECHNOLOGY 2020; 15:154-161. [PMID: 31988506 PMCID: PMC7254969 DOI: 10.1038/s41565-019-0619-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Atherosclerosis is the process that underlies heart attack and stroke. A characteristic feature of the atherosclerotic plaque is the accumulation of apoptotic cells in the necrotic core. Prophagocytic antibody-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells; however, these therapies can cause off-target clearance of healthy tissues, which leads to toxicities such as anaemia. Here we developed a macrophage-specific nanotherapy based on single-walled carbon nanotubes loaded with a chemical inhibitor of the antiphagocytic CD47-SIRPα signalling axis. We demonstrate that these single-walled carbon nanotubes accumulate within the atherosclerotic plaque, reactivate lesional phagocytosis and reduce the plaque burden in atheroprone apolipoprotein-E-deficient mice without compromising safety, and thereby overcome a key translational barrier for this class of drugs. Single-cell RNA sequencing analysis reveals that prophagocytic single-walled carbon nanotubes decrease the expression of inflammatory genes linked to cytokine and chemokine pathways in lesional macrophages, which demonstrates the potential of 'Trojan horse' nanoparticles to prevent atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Alyssa M Flores
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kai-Uwe Jarr
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jianqin Ye
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xingjun Zhu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Wirka
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ai Leen Koh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Pavlos Tsantilas
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ying Wang
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivek Nanda
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Mozhgan Lotfi
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Bryan Ronain Smith
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA.
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
30
|
18F-FDG uptake velocity but not uptake level is associated with progression of carotid plaque. Eur Radiol 2020; 30:2403-2411. [PMID: 31900697 DOI: 10.1007/s00330-019-06535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate whether baseline 18F-fluorodeoxyglucose (FDG) uptake is associated with carotid plaque progression. METHODS A total of 156 subjects with carotid plaque were enrolled and underwent carotid magnetic resonance imaging (MRI) (at baseline and the 12-month follow-up) and positron emission tomography-computed tomography (PET-CT) (baseline). Carotid plaque progression was evaluated by two indices (the incidence of plaque progression and percentage of plaque increase) with three-dimensional (3D) imaging, while the 18F-FDG uptake was evaluated by the 18F-FDG uptake levels and 18F-FDG uptake velocity. The association between plaque progression and 18F-FDG uptake was investigated by the trend test and multivariate logistic regression analysis. RESULTS Of the 156 subjects, 80 (51.3%) showed carotid plaque progression during the 12-month follow-up. Firstly, no association was found between 18F-FDG uptake levels and plaque progression. Secondly, significant differences in the incidence of plaque progression were observed among the groups with different uptake velocities, showing a significant decreasing trend ranging from high to intermediate to low (p = 0.002, trend test). After adjusting for covariates, an adequate prediction of the 18F-FDG uptake velocity for the incidence of plaque progression was revealed (OR = 0.682, p < 0.05). In addition, no association was found between the 18F-FDG uptake velocity and the percentage of plaque increase in the subjects with plaque progression (p = 0.757, trend test). CONCLUSIONS Our findings suggest 18F-FDG uptake velocity is independently associated with the incidence of carotid plaque progression. Additionally, the 18F-FDG uptake velocity, as another important parameter of PET-CT, warrants further study in future clinical research. KEY POINTS • The18F-FDG uptake levels were not associated with the carotid plaque progression. • The18F-FDG uptake velocity could predict the incidence of carotid plaque progression. • The18F-FDG uptake velocity with related factors warrants more attention in future clinical research.
Collapse
|
31
|
Choi H, Uceda DE, Dey AK, Mehta NN. Application of Non-invasive Imaging in Inflammatory Disease Conditions to Evaluate Subclinical Coronary Artery Disease. Curr Rheumatol Rep 2019; 22:1. [PMID: 31832865 DOI: 10.1007/s11926-019-0875-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Traditional risk models, such as the Framingham risk score, fail to capture the increased cardiovascular disease risk seen in patients with chronic inflammatory diseases. This review will cover imaging modalities and their emerging applications in assessing subclinical cardiovascular disease for both research and clinical care in patients with chronic inflammatory diseases. RECENT FINDINGS Multiple imaging modalities have been studied to assess for subclinical cardiovascular disease via functional/physiologic, inflammatory, and anatomic assessment in patients with chronic inflammatory diseases. The use of imaging to evaluate subclinical cardiovascular disease in patients with chronic inflammatory diseases has the potential to capture early sub-clinical atherosclerosis, to improve risk stratification of future cardiovascular events, and to guide effective disease management.
Collapse
Affiliation(s)
- Harry Choi
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Domingo E Uceda
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amit K Dey
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Joshi AA, Lerman JB, Dey AK, Sajja AP, Belur AD, Elnabawi YA, Rodante JA, Aberra TM, Chung J, Salahuddin T, Natarajan B, Dave J, Goyal A, Groenendyk JW, Rivers JP, Baumer Y, Teague HL, Playford MP, Bluemke DA, Ahlman MA, Chen MY, Gelfand JM, Mehta NN. Association Between Aortic Vascular Inflammation and Coronary Artery Plaque Characteristics in Psoriasis. JAMA Cardiol 2019; 3:949-956. [PMID: 30208407 DOI: 10.1001/jamacardio.2018.2769] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Inflammation is critical to atherosclerosis. Psoriasis, a chronic inflammatory disease associated with early cardiovascular events and increased aortic vascular inflammation (VI), provides a model to study the process of early atherogenesis. Fludeoxyglucose F 18 positron emission tomography/computed tomography (18F-FDG PET/CT) helps quantify aortic VI, and coronary computed tomography angiography provides coronary artery disease (CAD) assessment through evaluation of total plaque burden (TB) and noncalcified coronary plaque burden (NCB), luminal stenosis, and high-risk plaques (HRP). To our knowledge, association between aortic VI and broad CAD indices has not yet been assessed in a chronic inflammatory disease state. Such a study may provide information regarding the utility of aortic VI in capturing early CAD. Objective To assess the association between aortic VI and CAD indices, including TB, NCB, luminal stenosis, and HRP prevalence, in psoriasis. Design, Setting, and Participants In a cross-sectional cohort study at the National Institutes of Health, 215 consecutive patients with psoriasis were recruited from surrounding outpatient dermatology practices. All patients underwent 18F-FDG PET/CT for aortic VI assessment, and 190 of 215 patients underwent coronary computed tomography angiography to characterize CAD. The study was conducted between January 1, 2013, and May 31, 2017. Data were analyzed in March 2018. Exposures Aortic VI assessed by 18F-FDG PET/CT. Main Outcomes and Measures Primary outcome: TB and NCB. Secondary outcomes: luminal stenosis and HRP. Results Among 215 patients with psoriasis (mean [SD] age, 50.4 [12.6] years; 126 men [59%]), patients with increased aortic VI had increased TB (standardized β = 0.48; P < .001), and higher prevalence of luminal stenosis (OR, 3.63; 95% CI, 1.71-7.70; P = .001) and HRP (OR, 3.05; 95% CI, 1.42-6.47; P = .004). The aortic VI and TB association was primarily driven by NCB (β = 0.49; P < .001), whereas the aortic VI and HRP association was driven by low-attenuation plaque (OR, 5.63; 95% CI, 1.96-16.19; P = .001). All associations of aortic VI remained significant after adjustment for cardiovascular risk factors: aortic VI and TB (β = 0.23; P < .001), NCB (β = 0.24; P < .001), luminal stenosis (OR, 3.40; 95% CI, 1.40-8.24; P = .007), and HRP (OR, 2.72; 95% CI, 1.08-6.83; P = .03). No association was found between aortic VI and dense-calcified coronary plaque burden. Conclusions and Relevance Aortic VI is associated with broad CAD indices, suggesting that aortic VI may be a surrogate for early CAD. Larger prospective studies need to assess these associations longitudinally and examine treatment effects on these outcomes.
Collapse
Affiliation(s)
- Aditya A Joshi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joseph B Lerman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Aparna P Sajja
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Agastya D Belur
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Youssef A Elnabawi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Justin A Rodante
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Tsion M Aberra
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan Chung
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Taufiq Salahuddin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Balaji Natarajan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jenny Dave
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Aditya Goyal
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jacob W Groenendyk
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua P Rivers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Baumer
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Heather L Teague
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin P Playford
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - David A Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison
| | - Mark A Ahlman
- Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Research Center, Bethesda, Maryland
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joel M Gelfand
- Department of Dermatology, University of Pennsylvania, Philadelphia.,The Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
Meester EJ, Krenning BJ, de Blois RH, Norenberg JP, de Jong M, Bernsen MR, Van der Heiden K. Imaging of atherosclerosis, targeting LFA-1 on inflammatory cells with 111In-DANBIRT. J Nucl Cardiol 2019; 26:1697-1704. [PMID: 29536351 PMCID: PMC6775031 DOI: 10.1007/s12350-018-1244-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND 111In-DOTA-butylamino-NorBIRT (DANBIRT) is a novel radioligand which binds to Leukocyte Function-associated Antigen-1 (LFA-1), expressed on inflammatory cells. This study evaluated 111In-DANBIRT for the visualization of atherosclerotic plaque inflammation in mice. METHODS AND RESULTS ApoE-/- mice, fed an atherogenic diet up to 20 weeks (n = 10), were imaged by SPECT/CT 3 hours post injection of 111In-DANBIRT (~ 200 pmol, ~ 40 MBq). Focal spots of 111In-DANBIRT were visible in the aortic arch of all animals, with an average Target-to-Background Ratio (TBR) of 1.7 ± 0.5. In vivo imaging results were validated by ex vivo SPECT/CT imaging, with a TBR up to 11.5 (range 2.6 to 11.5). Plaques, identified by Oil Red O lipid-staining on excised arteries, co-localized with 111In-DANBIRT uptake as determined by ex vivo autoradiography. Subsequent histological processing and in vitro autoradiography confirmed 111In-DANBIRT uptake at plaque areas containing CD68 expressing macrophages and LFA-1 expressing inflammatory cells. Ex vivo incubation of a human carotid endarterectomy specimen with 111In-DANBIRT (~ 950 nmol, ~ 190 MBq) for 2 hours showed heterogeneous plaque uptake on SPECT/CT, after which immunohistochemical analysis demonstrated co-localization of 111In-DANBIRT uptake and CD68 and LFA-1 expressing cells. CONCLUSIONS Our results indicate the potential of radiolabeled DANBIRT as a relevant imaging radioligand for non-invasive evaluation of atherosclerotic inflammation.
Collapse
Affiliation(s)
- E. J. Meester
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - B. J. Krenning
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R. H. de Blois
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J. P. Norenberg
- Radiopharmaceutical Sciences, University of New Mexico, Albuquerque, NM USA
| | - M. de Jong
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M. R. Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - K. Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
34
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
35
|
Henrich TJ, Hsue PY, VanBrocklin H. Seeing Is Believing: Nuclear Imaging of HIV Persistence. Front Immunol 2019; 10:2077. [PMID: 31572355 PMCID: PMC6751256 DOI: 10.3389/fimmu.2019.02077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
A major obstacle to HIV eradication is the presence of infected cells that persist despite suppressive antiretroviral therapy (ART). HIV largely resides outside of the peripheral circulation, and thus, numerous anatomical and lymphoid compartments that have the capacity to harbor HIV are inaccessible to routine sampling. As a result, there is a limited understanding of the tissue burden of HIV infection or anatomical distribution of HIV transcriptional and translational activity. Novel, non-invasive, in vivo methods are urgently needed to address this fundamental gap in knowledge. In this review, we discuss past and current nuclear imaging approaches that have been applied to HIV infection with an emphasis on current strategies to implement positron emission tomography (PET)-based imaging to directly visualize and characterize whole-body HIV burden. These imaging approaches have various limitations, such as the potential for limited PET sensitivity and specificity in the setting of ART suppression or low viral burden. However, recent advances in high-sensitivity, total-body PET imaging platforms and development of new radiotracer technologies that may enhance anatomical penetration of target-specific tracer molecules are discussed. Potential strategies to image non-viral markers of HIV tissue burden or focal immune perturbation are also addressed. Overall, emerging nuclear imaging techniques and platforms may play an important role in the development of novel therapeutic and HIV reservoir eradication strategies.
Collapse
Affiliation(s)
- Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of San Francisco, San Francisco, CA, United States
| | - Priscilla Y Hsue
- Division of Cardiology, Department of Medicine, University of San Francisco, San Francisco, CA, United States
| | - Henry VanBrocklin
- Radiopharmaceutical Research Program, Center for Molecular and Functional Imaging, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|
36
|
Farrah TE, Basu N, Dweck M, Calcagno C, Fayad ZA, Dhaun N. Advances in Therapies and Imaging for Systemic Vasculitis. Arterioscler Thromb Vasc Biol 2019; 39:1520-1541. [PMID: 31189432 DOI: 10.1161/atvbaha.118.310957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vasculitis is a systemic disease characterized by immune-mediated injury of blood vessels. Current treatments for vasculitis, such as glucocorticoids and alkylating agents, are associated with significant side effects. Furthermore, the management of both small and large vessel vasculitis is challenging because of a lack of robust markers of disease activity. Recent research has advanced our understanding of the pathogenesis of both small and large vessel vasculitis, and this has led to the development of novel biologic therapies capable of targeting key cytokine and cellular effectors of the inflammatory cascade. In parallel, a diverse range of imaging modalities with the potential to monitor vessel inflammation are emerging. Continued expansion of combined structural and molecular imaging using positron emission tomography with computed tomography or magnetic resonance imaging may soon provide reliable longitudinal tracking of vascular inflammation. In addition, the emergence of radiotracers able to assess macrophage activation and immune checkpoint activity represents an exciting new frontier in imaging vascular inflammation. In the near future, these advances will allow more precise imaging of disease activity enabling clinicians to offer more targeted and individualized patient management.
Collapse
Affiliation(s)
- Tariq E Farrah
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Scotland (T.E.F., M.D., N.D.)
| | - Neil Basu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland (N.B.)
| | - Marc Dweck
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Scotland (T.E.F., M.D., N.D.)
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., Z.A.F.)
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., Z.A.F.)
| | - Neeraj Dhaun
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Scotland (T.E.F., M.D., N.D.)
| |
Collapse
|
37
|
Bachi K, Mani V, Kaufman AE, Alie N, Goldstein RZ, Fayad ZA, Alia-Klein N. Imaging plaque inflammation in asymptomatic cocaine addicted individuals with simultaneous positron emission tomography/magnetic resonance imaging. World J Radiol 2019; 11:62-73. [PMID: 31205601 PMCID: PMC6556593 DOI: 10.4329/wjr.v11.i5.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic cocaine use is associated with stroke, coronary artery disease and myocardial infarction, resulting in severe impairments or sudden mortality. In the absence of clear cardiovascular symptoms, individuals with cocaine use disorder (iCUD) seeking addiction treatment receive mostly psychotherapy and psychiatric pharmacotherapy, with no attention to vascular disease (i.e., atherosclerosis). Little is known about the pre-clinical signs of cardiovascular risk in iCUD and early signs of vascular disease are undetected in this underserved population.
AIM To assess inflammation, plaque burden and plaque composition in iCUD aiming to detect markers of atherosclerosis and vascular disease.
METHODS The bilateral carotid arteries were imaged with positron emission tomography/magnetic resonance imaging (PET/MRI) in iCUD asymptomatic for cardiovascular disease, healthy controls, and individuals with cardiovascular risk. PET with 18F-fluorodeoxyglucose (18F-FDG) evaluated vascular inflammation and 3-D dark-blood MRI assessed plaque burden including wall area and thickness. Drug use and severity of addiction were assessed with standardized instruments.
RESULTS The majority of iCUD and controls had carotid FDG-PET signal greater than 1.6 but lower than 3, indicating the presence of mild to moderate inflammation. However, the MRI measure of wall structure was thicker in iCUD as compared to the controls and cardiovascular risk group, indicating greater carotid plaque burden. iCUD had larger wall area as compared to the healthy controls but not as compared to the cardiovascular risk group, indicating structural wall similarities between the non-control study groups. In iCUD, wall area correlated with greater cocaine withdrawal and craving.
CONCLUSION These preliminary results show markers of carotid artery disease burden in cardiovascular disease-asymptomatic iCUD. Broader trials are warranted to develop protocols for early detection of cardiovascular risk and preventive intervention in iCUD.
Collapse
Affiliation(s)
- Keren Bachi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Venkatesh Mani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Audrey E Kaufman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Nadia Alie
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
38
|
Macrophage-targeted, enzyme-triggered fluorescence switch-on system for detection of embolism-vulnerable atherosclerotic plaques. J Control Release 2019; 302:105-115. [DOI: 10.1016/j.jconrel.2019.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023]
|
39
|
Werner RA, Wakabayashi H, Bauer J, Schütz C, Zechmeister C, Hayakawa N, Javadi MS, Lapa C, Jahns R, Ergün S, Jahns V, Higuchi T. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur Heart J Cardiovasc Imaging 2019; 20:467-474. [PMID: 30102319 PMCID: PMC6429237 DOI: 10.1093/ehjci/jey119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/25/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-18F-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. METHODS AND RESULTS Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal 18F-FDG PET imaging. A correlative analysis between in- and ex vivo18F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal 18F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo18F-FDG PET signalling (R2 = 0.92) as well as with ex vivo18F-FDG autoradiography (R2 = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at 18F-FDG decrease). CONCLUSION 18F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.
Collapse
Affiliation(s)
- Rudolf A Werner
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, USA
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Else-Kröner-Forschungskolleg, Interdisciplinary Center for Clinical Research (IZKF), University of Würzburg, Josef-Schneider-Str. 2, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Jochen Bauer
- Institute for Anatomy and Cell Biology, University Würzburg, Koellikerstr. 6, Würzburg, Germany
| | - Claudia Schütz
- Department of Pharmacology, University Hospital Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Christina Zechmeister
- Department of Pharmacology, University Hospital Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Nobuyuki Hayakawa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Mehrbod S Javadi
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
| | - Roland Jahns
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
- Interdisciplinary Bank of Biomaterials and Data Würzburg (IBDW), University Hospital Würzburg, Straubmühlweg 2a, Würzburg, Germany
| | - Süleyman Ergün
- Institute for Anatomy and Cell Biology, University Würzburg, Koellikerstr. 6, Würzburg, Germany
| | - Valerie Jahns
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
- Department of Pharmacology, University Hospital Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
- Department of Biomedical Imaging, National Cerebral and Cardiovascular Research Center, 5 Chome-7-1 Fujishirodai, Suita, Osaka Prefecture, Japan
| |
Collapse
|
40
|
Yu M, Ortega CA, Si K, Molinaro R, Schoen FJ, Leitao RFC, Xu X, Mahmoudi M, Ahn S, Liu J, Saw PE, Lee IH, Brayner MMB, Lotfi A, Shi J, Libby P, Jon S, Farokhzad OC. Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Am J Cancer Res 2018; 8:6008-6024. [PMID: 30613278 PMCID: PMC6299428 DOI: 10.7150/thno.24365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Extra domain B of fibronectin (FN-EDB) is upregulated in the extracellular matrix during tissue remodeling and has been postulated as a potential biomarker for atherosclerosis, yet no systematic test for FN-EDB in plaques has been reported. We hypothesized that FN-EDB expression would intensify in advanced plaques. Furthermore, engineering of FN-EDB-targeted nanoparticles (NPs) could enable imaging/diagnosis and local delivery of payloads to plaques. Methods: The amount of FN-EDB in human atherosclerotic and normal arteries (ages: 40 to 85 years) was assessed by histological staining and quantification using an FN-EDB-specific aptide (APTFN-EDB). FN-EDB-specific NPs that could serve as MRI beacons were constructed by immobilizing APTFN-EDB on the NP surface containing DTPA[Gd]. MRI visualized APTFN-EDB-[Gd]NPs administered to atherosclerotic apolipoprotein E-deficient mice in the brachiocephalic arteries. Analysis of the ascending-to-descending thoracic aortas and the aortic roots of the mice permitted quantitation of Gd, FN-EDB, and APTFN-EDB-[Gd]NPs. Cyanine, a model small molecule drug, was used to study the biodistribution and pharmacokinetics of APTFN-EDB-NPs to evaluate their utility for drug delivery. Results: Atherosclerotic tissues had significantly greater FN-EDB-positive areas than normal arteries (P < 0.001). This signal pertained particularly to Type III (P < 0.01), IV (P < 0.01), and V lesions (P < 0.001) rather than Type I and II lesions (AHA classification). FN-EDB expression was positively correlated with macrophage accumulation and neoangiogenesis. Quantitative analysis of T1-weighted images of atherosclerotic mice revealed substantial APTFN-EDB-[Gd]NPs accumulation in plaques compared to control NPs, conventional MRI contrast agent (Gd-DTPA) or accumulation in wild-type C57BL/6J mice. Additionally, the APTFN-EDB-NPs significantly prolonged the blood-circulation time (t1/2: ~ 6 h) of a model drug and increased its accumulation in plaques (6.9-fold higher accumulation vs. free drug). Conclusions: Our findings demonstrate augmented FN-EDB expression in Type III, IV, and V atheromata and that APTFN-EDB-NPs could serve as a platform for identifying and/or delivering agents locally to a subset of atherosclerotic plaques.
Collapse
|
41
|
Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, Cho S, Zaidi H, Casey ME, Wahl RL. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging 2018; 46:501-518. [PMID: 30269154 DOI: 10.1007/s00259-018-4153-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE In this article, we discuss dynamic whole-body (DWB) positron emission tomography (PET) as an imaging tool with significant clinical potential, in relation to conventional standard uptake value (SUV) imaging. BACKGROUND DWB PET involves dynamic data acquisition over an extended axial range, capturing tracer kinetic information that is not available with conventional static acquisition protocols. The method can be performed within reasonable clinical imaging times, and enables generation of multiple types of PET images with complementary information in a single imaging session. Importantly, DWB PET can be used to produce multi-parametric images of (i) Patlak slope (influx rate) and (ii) intercept (referred to sometimes as "distribution volume"), while also providing (iii) a conventional 'SUV-equivalent' image for certain protocols. RESULTS We provide an overview of ongoing efforts (primarily focused on FDG PET) and discuss potential clinically relevant applications. CONCLUSION Overall, the framework of DWB imaging [applicable to both PET/CT(computed tomography) and PET/MRI (magnetic resonance imaging)] generates quantitative measures that may add significant value to conventional SUV image-derived measures, with limited pitfalls as we also discuss in this work.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, JHOC Building Room 3245, 601 N. Caroline St, Baltimore, MD, 21287, USA. .,Departments of Radiology and Physics & Astronomy, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| | - Martin A Lodge
- Department of Radiology and Radiological Science, Johns Hopkins University, JHOC Building Room 3245, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | | | | | - Yun Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University, JHOC Building Room 3245, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | - Alan McMillan
- Department of Radiology, University of Wisconsin, Madison, WI, 53705, USA
| | - Steve Cho
- Department of Radiology, University of Wisconsin, Madison, WI, 53705, USA
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | | | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
42
|
Comparison between visual and numerical metrics for the evaluation of patients with Takayasu arteritis with 18F-FDG-PET. Nucl Med Commun 2018; 39:779-788. [DOI: 10.1097/mnm.0000000000000867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Jung JJ, Jadbabaie F, Sadeghi MM. Molecular imaging of calcific aortic valve disease. J Nucl Cardiol 2018; 25:1148-1155. [PMID: 29359271 PMCID: PMC6054901 DOI: 10.1007/s12350-017-1158-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Calcific aortic valve disease (CAVD) can progress to symptomatic aortic stenosis in a subset of patients. The severity of aortic stenosis and the extent of valvular calcification can be evaluated readily by echocardiography, CT, and MRI using well-established imaging protocols. However, these techniques fail to address optimally other important aspects of CAVD, including the propensity for disease progression, risk of complications in asymptomatic patients, and the effect of therapeutic interventions on valvular biology. These gaps may be addressed by molecular imaging targeted at key biological processes such as inflammation, remodeling, and calcification that mediate the development and progression of CAVD. In this review, recent advances in valvular molecular imaging, including 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) PET, and matrix metalloproteinase-targeted SPECT imaging in the preclinical and clinical settings are presented and discussed.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA
- Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA
| | - Farid Jadbabaie
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA.
| |
Collapse
|
44
|
Abstract
Molecular imaging provides multiple imaging techniques to identify characteristics of vulnerable plaque including I) Inflammatory cells (the presence and metabolic activity of macrophages), II) synthesis of lipid and fatty acid in the plaque, III) the presence of hypoxia in severely inflamed lesions, IV) expression of factors stimulating angiogenesis, V) expression of protease enzymes in the lesion, VI) development of microthrombi in late-phase lesions, VII) apoptosis, and VIII) microcalcification.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY.; Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - H William Strauss
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
45
|
Pell VR, Baark F, Mota F, Clark JE, Southworth R. PET Imaging of Cardiac Hypoxia: Hitting Hypoxia Where It Hurts. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018. [PMID: 29515752 PMCID: PMC5830463 DOI: 10.1007/s12410-018-9447-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In this review, we outline the potential for hypoxia imaging as a diagnostic and prognostic tool in cardiology. We describe the lead hypoxia PET radiotracers currently in development and propose a rationale for how they should most appropriately be screened and validated. Recent Findings While the majority of hypoxia imaging agents has been developed for oncology, the requirements for hypoxia imaging in cardiology are different. Recent work suggests that the bis(thiosemicarbazone) family of compounds may be capable of detecting the subtle degrees of hypoxia associated with cardiovascular syndromes, and that they have the potential to be “tuned” to provide different tracers for different applications. Summary New tracers currently in development show significant promise for imaging evolving cardiovascular disease. Fundamental to their exploitation is their careful, considered validation and characterization so that the information they provide delivers the greatest prognostic insight achievable.
Collapse
Affiliation(s)
- Victoria R Pell
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Friedrich Baark
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Filipa Mota
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - James E Clark
- 2School of Cardiovascular Medicine and Sciences, BHF Centre, King's College London, London, UK
| | - Richard Southworth
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
46
|
Lavin Plaza B, Gebhardt P, Phinikaridou A, Botnar RM. Atherosclerotic Plaque Imaging. PROTOCOLS AND METHODOLOGIES IN BASIC SCIENCE AND CLINICAL CARDIAC MRI 2018:261-300. [DOI: 10.1007/978-3-319-53001-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Noguchi T, Nakao K, Asaumi Y, Morita Y, Otsuka F, Kataoka Y, Hosoda H, Miura H, Fukuda T, Yasuda S. Noninvasive Coronary Plaque Imaging. J Atheroscler Thromb 2017; 25:281-293. [PMID: 29225326 PMCID: PMC5906180 DOI: 10.5551/jat.rv17019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Early identification of high-risk or vulnerable atherosclerotic plaques prone to rupture and performing preemptive therapy prior to catastrophic cardiovascular events are optimal goals of plaque imaging. Despite the advances in imaging modalities to identify vulnerable characteristics, the predictive value of the imaging techniques in the clinical setting is still developing. In this regard, reliable and high-sensitive imaging modalities identifying vulnerable plaque characters that may lead to future cardiovascular events will be useful. In this review article, we describe a current non-invasive plaque imaging technique to identify high-risk coronary plaque features.
Collapse
Affiliation(s)
- Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kazuhiro Nakao
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hayato Hosoda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| |
Collapse
|
48
|
Pérez-Medina C, Hak S, Reiner T, Fayad ZA, Nahrendorf M, Mulder WJM. Integrating nanomedicine and imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0110. [PMID: 29038380 PMCID: PMC5647268 DOI: 10.1098/rsta.2017.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 05/05/2023]
Abstract
Biomedical engineering and its associated disciplines play a pivotal role in improving our understanding and management of disease. Motivated by past accomplishments, such as the clinical implementation of coronary stents, pacemakers or recent developments in antibody therapies, disease management now enters a new era in which precision imaging and nanotechnology-enabled therapeutics are maturing to clinical translation. Preclinical molecular imaging increasingly focuses on specific components of the immune system that drive disease progression and complications, allowing the in vivo study of potential therapeutic targets. The first multicentre trials highlight the potential of clinical multimodality imaging for more efficient drug development. In this perspective, the role of integrating engineering, nanotechnology, molecular imaging and immunology to yield precision medicine is discussed.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Carlos Pérez-Medina
- Department of Radiology, Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, Box 1234, New York, NY 10029, USA
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zahi A Fayad
- Department of Radiology, Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, Box 1234, New York, NY 10029, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Imaging, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Willem J M Mulder
- Department of Radiology, Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, Box 1234, New York, NY 10029, USA
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
49
|
Ahlman MA, Vigneault DM, Sandfort V, Maass-Moreno R, Dave J, Sadek A, Mallek MB, Selwaness MAF, Herscovitch P, Mehta NN, Bluemke DA. Internal tissue references for 18Fluorodeoxyglucose vascular inflammation imaging: Implications for cardiovascular risk stratification and clinical trials. PLoS One 2017; 12:e0187995. [PMID: 29131857 PMCID: PMC5683610 DOI: 10.1371/journal.pone.0187995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction 18Fluorodeoxyglucose (FDG) positron emission tomography (PET) uptake in the artery wall correlates with active inflammation. However, in part due to the low spatial resolution of PET, variation in the apparent arterial wall signal may be influenced by variation in blood FDG activity that cannot be fully corrected for using typical normalization strategies. The purpose of this study was to evaluate the ability of the current common methods to normalize for blood activity and to investigate alternative methods for more accurate quantification of vascular inflammation. Materials and methods The relationship between maximum FDG aorta wall activity and mean blood activity was evaluated in 37 prospectively enrolled subjects aged 55 years or more, treated for hyperlipidemia. Target maximum aorta standardized uptake value (SUV) and mean background reference tissue activity (blood, spleen, liver) were recorded. Target-to-background ratios (TBR) and arterial maximum activity minus blood activity were calculated. Multivariable regression was conducted, predicting uptake values based on variation in background reference and target tissue FDG uptake; adjusting for gender, age, lean body mass (LBM), blood glucose, blood pool activity, and glomerular filtration rate (GFR), where appropriate. Results Blood pool activity was positively associated with maximum artery wall SUV (β = 5.61, P<0.0001) as well as mean liver (β = 6.23, P<0.0001) and spleen SUV (β = 5.20, P<0.0001). Artery wall activity divided by blood activity (TBRBlood) or subtraction of blood activity did not remove the statistically significant relationship to blood activity. Blood pool activity was not related to TBRliver and TBRspleen (β = −0.36, P = NS and β = −0.58, P = NS, respectively) Conclusions In otherwise healthy individuals treated for hyperlipidemia, blood FDG activity is associated with artery wall activity. However, variation in blood activity may mask artery wall signal reflective of inflammation, which requires normalization. Blood-based TBR and subtraction do not sufficiently adjust for blood activity. Warranting further investigation, background reference tissues with cellular uptake such as the liver and spleen may better adjust for variation in blood activity to improve assessment of vascular activity.
Collapse
Affiliation(s)
- Mark A. Ahlman
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| | - Davis M. Vigneault
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
- Institute of Biomedical Engineering, Department of Engineering, University of Oxford, Oxford, United Kingdom
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Veit Sandfort
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Roberto Maass-Moreno
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Jenny Dave
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Ahmed Sadek
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Marissa B. Mallek
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Mariana A. F. Selwaness
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Peter Herscovitch
- PET Research Department, National Institutes of Health, Bethesda, MD, United States of America
| | - Nehal N. Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - David A. Bluemke
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
50
|
Liu T, Liu H, Feng L, Xiao B. Kinin B1 receptor as a novel, prognostic progression biomarker for carotid atherosclerotic plaques. Mol Med Rep 2017; 16:8930-8936. [PMID: 28990089 PMCID: PMC5779976 DOI: 10.3892/mmr.2017.7694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Stroke caused by atherosclerosis remains a leading cause of morbidity and mortality worldwide, associated with carotid plaque rupture and inflammation progression. However, the inflammatory biomarkers which aid in predicting the future course of plaques are less detailed. The present study investigated the association between plaque vulnerable and inflammatory biomarkers using blood and plaque specimens. Carotid plaque specimens were obtained from 80 patients following stroke, 14 patients suffering from transient ischaemic attack and 17 asymptomatic patients that underwent carotid endarterectomy. To assess changes in plaque characteristics at histological levels, plaques were categorized by the time between the latest ischemic stroke and surgical intervention within 30, 30‑90, 90‑180 and over 180 days following stroke. Serum levels of inflammatory biomarkers interleukin (IL)‑6, IL‑10 and kinin B1 receptor (B1R) were measured by ELISA. Histological assessment of plaque was used to evaluate the plaque stability, progression and the inflammatory biomarker levels. Comparisons of histological characteristics demonstrated that plaques revealed an unstable phenotype following stroke within 30, 30‑90 days and then remodeled into more stable plaques following stroke at 90‑180 and over 180 days. By comparing the serum levels of inflammatory biomarkers, it was observed that IL‑6 and B1R levels tended to decline whereas IL‑10 levels increased in stroke patients from <30 days to over 180 days. Immunohistochemical analysis of IL‑6, IL‑10 and B1R demonstrated similar alterations in serum levels. Correlation analyses revealed that only B1R serum level was significantly correlated with histological level in patients with carotid atherosclerosis. The findings revealed that serum B1R levels may provide prognostic information and currently act as potential indicators for progression in atherosclerosis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hengfang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|