1
|
Sanchez Santos A, Socorro Avila I, Galvan Fernandez H, Cazorla Rivero S, Lemes Castellano A, Cabrera Lopez C. Eosinophils: old cells, new directions. Front Med (Lausanne) 2025; 11:1470381. [PMID: 39886455 PMCID: PMC11780905 DOI: 10.3389/fmed.2024.1470381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Eosinophils are polymorphonuclear cells that have progressively gained attention due to their involvement in multiple diseases and, more recently, in various homeostatic processes. Their well-known roles range from asthma and parasitic infections to less prevalent diseases such as eosinophilic granulomatosis with polyangiitis, eosinophilic esophagitis, and hypereosinophilic syndrome. In recent years, various biological therapies targeting these cells have been developed, altering the course of eosinophilic pathologies. Recent research has demonstrated differences in eosinophil subtypes and their functions. The presence of distinct classes of eosinophils has led to the theory of resident eosinophils (rEos) and inflammatory eosinophils (iEos). Subtype differences are determined by the pattern of protein expression on the cell membrane and the localization of eosinophils. Most of this research has been conducted in murine models, but several studies confirm these findings in peripheral blood and tissue. The objective of this review is to provide a comprehensive analysis of eosinophils, by recent findings that divide this cell line into two distinct populations with different functions and purposes.
Collapse
Affiliation(s)
- Alejandra Sanchez Santos
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Iovanna Socorro Avila
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Helena Galvan Fernandez
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Sara Cazorla Rivero
- Hospital Universitario de Gran Canaria Dr. Negrín, Research Unit, Las Palmas de Gran Canaria, Spain
- Universidad de La Laguna, Research Unit, Santa Cruz de Tenerife, Spain
| | - Angelina Lemes Castellano
- Hospital Universitario de Gran Canaria Dr. Negrín, Hematology Service, Las Palmas de Gran Canaria, Spain
| | - Carlos Cabrera Lopez
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Greenman R, Weston CJ. CCL24 and Fibrosis: A Narrative Review of Existing Evidence and Mechanisms. Cells 2025; 14:105. [PMID: 39851534 PMCID: PMC11763828 DOI: 10.3390/cells14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Tissue fibrosis results from a dysregulated and chronic wound healing response accompanied by chronic inflammation and angiogenesis. Regardless of the affected organ, fibrosis shares the following common hallmarks: the recruitment of immune cells, fibroblast activation/proliferation, and excessive extracellular matrix deposition. Chemokines play a pivotal role in initiating and advancing these fibrotic processes. CCL24 (eotaxin-2) is a chemokine secreted by immune cells and epithelial cells, which promotes the trafficking of immune cells and the activation of profibrotic cells through CCR3 receptor binding. Higher levels of CCL24 and CCR3 were found in the tissue and sera of patients with fibro-inflammatory diseases, including primary sclerosing cholangitis (PSC), systemic sclerosis (SSc), and metabolic dysfunction-associated steatohepatitis (MASH). This review delves into the intricate role of CCL24 in fibrotic diseases, highlighting its impact on fibrotic, immune, and vascular pathways. We focus on the preclinical and clinical evidence supporting the therapeutic potential of blocking CCL24 in diseases that involve excessive inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Chris J. Weston
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Bawamia B, Gupta A, Omari M, Farag M, Spyridopoulos I, Alkhalil M. Eosinopenia in patients with acute myocardial infarction- longitudinal imaging insights from the CAPRI study. J Thromb Thrombolysis 2025; 58:136-144. [PMID: 39306654 DOI: 10.1007/s11239-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 01/27/2025]
Abstract
Eosinophils are recruited to the heart during acute myocardial infarction (MI) and are considered part of the inflammatory response associated with adverse clinical outcomes. We assessed the impact of eosinopenia on cardiac imaging biomarkers in patients presenting with ST-segment elevation MI. This is a post-hoc analysis of the Evaluating the effectiveness of intravenous Ciclosporin on reducing reperfusion injury in pAtients undergoing PRImary percutaneous coronary intervention (CAPRI) trial. Patients underwent cardiac MRI within 1 week and 12 weeks and low eosinophil was defined as less than 40 cells/ml. The study included 52 patients and 38% had low eosinophil. Ciclosporin administration was comparable between patients with low versus normal eosinophils. The ischaemia time was significantly longer in low eosinophil patients [262 (205-325) vs. 138 (102-195) minutes, P < 0.001]. At 12 weeks, patients with eosinopenia had larger infarct size [9.8% (5.7-18.4) vs. 7.4% (1.9-10.2), P = 0.045], larger left ventricle (LV) end systolic volume (89 ± 28 vs. 68 ± 23, P = 0.02), and lower LV ejection fraction (EF) (49 ± 9 vs. 58 ± 7, P < 0.001). After adjustments for significant predictors, including ischaemia time, low eosinophil count was an independent predictor of worse LVEF at 12 weeks [-5.78, 95% CI (-11.22 to -0.34), P = 0.038] but not infarct size [1.83, 95% CI (-2.77 to 6.43), P = 0.43]. Patients with low eosinophil count had larger infarct size and LV volumes and worse adverse remodeling compared to those with normal eosinophil count. At 12 weeks, eosinopenia was an independent predictor of worse LVEF but not infarct size.
Collapse
Affiliation(s)
- Bilal Bawamia
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Ashish Gupta
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Muntaser Omari
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Mohamed Farag
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Ioakim Spyridopoulos
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Mohammad Alkhalil
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
4
|
Menzella F, Marchi M, Caminati M, Romagnoli M, Micheletto C, Bonato M, Idotta G, Nizzetto M, D’Alba G, Cavenaghi M, Bortoli M, Beghè B, Pini L, Benoni R, Casoni G, Muzzolon R, Michieletto L, Bosi A, Mastrototaro A, Diamandi A, Nalin M, Senna G. Long-Term Eosinophil Depletion: A Real-World Perspective on the Safety and Durability of Benralizumab Treatment in Severe Eosinophilic Asthma. J Clin Med 2024; 14:191. [PMID: 39797273 PMCID: PMC11722057 DOI: 10.3390/jcm14010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Benralizumab is an anti-IL-5 receptor alpha monoclonal antibody that induces the near-complete depletion of eosinophils. This study aimed to evaluate the long-term safety and effectiveness of benralizumab in patients with severe eosinophilic asthma (SEA) over an extended 48-month follow-up period, offering one of the longest real-world perspectives available. Methods: This was a single-arm, retrospective, observational, multicenter study involving 123 SEA patients treated with benralizumab at a dosage of 30 mg every 4 weeks for the first 3 doses and then every 8 weeks. The safety endpoints focused on the frequency and nature of adverse events and the likelihood that they were induced by benralizumab. The efficacy endpoints focused on lung function, asthma exacerbations and control, and oral corticosteroid use. Results: Benralizumab, consistent with its mechanism of action, led to the rapid and nearly complete depletion of eosinophils. In total, 26 adverse events (21.1%) were observed, with 1.6% related to the treatment and 0.8% categorized as serious (vagal hypotension). Bronchitis was the most common unrelated adverse event (15.4%), occurring between months 36 and 38. Importantly, benralizumab effectiveness and safety were maintained consistently across the 48-month duration, resulting in significant improvements in lung function and reductions in oral corticosteroid use and exacerbation frequency. Conclusions: Benralizumab demonstrated a favorable safety profile, comparable to previously published studies, with perdurable effectiveness in controlling SEA and reducing oral corticosteroid use. Finally, this study provides evidence that near-complete eosinophil depletion does not increase long-term safety risks and supports benralizumab as a reliable treatment option for SEA patients.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Mariarita Marchi
- Respiratory Unit, Cittadella Hospital, AULSS6 Euganea, 35138 Padua, Italy; (M.M.); (M.B.)
| | - Marco Caminati
- UOC Allergologia-Asma Center, University of Verona, 37129 Verona, Italy; (M.C.); (A.M.); (G.S.)
| | - Micaela Romagnoli
- Pulmonology Unit, Cà Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.R.); (M.B.)
| | - Claudio Micheletto
- Pulmonology Unit, Verona Integrated University Hospital, 37134 Verona, Italy;
| | - Matteo Bonato
- Pulmonology Unit, Cà Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.R.); (M.B.)
| | - Giuseppe Idotta
- Pulmonology Unit, San Bortolo Hospital, AULSS6, 36100 Vicenza, Italy; (G.I.); (M.C.)
| | - Manuele Nizzetto
- Pulmonology Unit, Dolo-Mirano Hospital, AULSS3 Serenissima, 30122 Venice, Italy; (M.N.); (G.D.)
| | - Giuseppina D’Alba
- Pulmonology Unit, Dolo-Mirano Hospital, AULSS3 Serenissima, 30122 Venice, Italy; (M.N.); (G.D.)
| | | | - Michela Bortoli
- Respiratory Unit, Cittadella Hospital, AULSS6 Euganea, 35138 Padua, Italy; (M.M.); (M.B.)
| | - Bianca Beghè
- Department of Respiratory Diseases, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Laura Pini
- Department of Emergencies and High Specialties, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Roberto Benoni
- Public Health and Infectious Diseases Department, Sapienza University of Rome, 00185 Rome, Italy;
- National Center for Global Health, Italian National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
| | - Gianluca Casoni
- Pneumology Unit, Hospital of Rovigo, 45100 Rovigo, Italy; (G.C.); (M.N.)
| | - Rodolfo Muzzolon
- Pulmonology Unit, S. Martino Hospital, AULSS1 Dolomiti, 32100 Belluno, Italy;
| | - Lucio Michieletto
- Respiratory Disease Unit, Department of Cardiac Toracic and Vascular Sciences, Ospedale dell’Angelo, AULSS3 Serenissima, 30122 Venice, Italy; (L.M.); (A.D.)
| | - Annamaria Bosi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Andrea Mastrototaro
- UOC Allergologia-Asma Center, University of Verona, 37129 Verona, Italy; (M.C.); (A.M.); (G.S.)
| | - Adela Diamandi
- Respiratory Disease Unit, Department of Cardiac Toracic and Vascular Sciences, Ospedale dell’Angelo, AULSS3 Serenissima, 30122 Venice, Italy; (L.M.); (A.D.)
| | - Mara Nalin
- Pneumology Unit, Hospital of Rovigo, 45100 Rovigo, Italy; (G.C.); (M.N.)
| | - Gianenrico Senna
- UOC Allergologia-Asma Center, University of Verona, 37129 Verona, Italy; (M.C.); (A.M.); (G.S.)
| |
Collapse
|
5
|
Vinciguerra D, Rajalakshmi P S, Yang J, Georgiou PG, Snell K, Pesenti T, Collins J, Tamboline M, Xu S, van Dam RM, Messina KMM, Hevener AL, Maynard HD. A Glucose-Responsive Glucagon-Micelle for the Prevention of Hypoglycemia. ACS CENTRAL SCIENCE 2024; 10:2036-2047. [PMID: 39634211 PMCID: PMC11613347 DOI: 10.1021/acscentsci.4c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024]
Abstract
While glucose-responsive insulin delivery systems are in widespread clinical use to treat insulin insufficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains understudied. A self-regulated glucagon release material is highly desired to mitigate the potential risks of severe insulin-induced hypoglycemia. Here, we describe a glucose-responsive polymeric nanosystem with glucagon covalently grafted to the end-group. Under normoglycemic conditions, phenylboronic acid units in the polymer chain reversibly bind glucose, triggering self-assembly of the conjugate into micelles. During hypoglycemia, however, the micelle disassembles into its original, unimeric state, revealing the active glucagon conjugate. The formulation showed a 5-fold increase in activity compared to native glucagon when tested in vitro. Glucagon-loaded micelles injected into mice prevented or reversed deep hypoglycemia when administered prior to or during an insulin challenge. Glucagon release was only observed at or below the counterregulatory threshold and not during normoglycemia or moderate hypoglycemia. The in vivo acute and chronic toxicity analysis, along with μPET/μCT imaging, established the biosafety profile of this formulation and demonstrated no organ accumulation. This proof-of-concept work is the first step toward development of a translational, stimuli-responsive glucagon delivery platform to control glycemia.
Collapse
Affiliation(s)
- Daniele Vinciguerra
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Rajalakshmi P S
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Jane Yang
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Panagiotis G. Georgiou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Katherine Snell
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Théo Pesenti
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeffrey Collins
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
| | - Mikayla Tamboline
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
| | - Shili Xu
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United
States
| | - R. Michael van Dam
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United
States
| | - Kathryn M. M. Messina
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Andrea L. Hevener
- Department
of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr, Los Angeles, California 90095, United States
- VA
Greater
Los Angeles Healthcare System GRECC, Los Angeles, California 90073, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
6
|
Xie L, Zhang H, Xu L. The Role of Eosinophils in Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101413. [PMID: 39349246 PMCID: PMC11719855 DOI: 10.1016/j.jcmgh.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previously, eosinophils were primarily regarded as effector toxic cells involved in allergic diseases and parasitic infections. Nevertheless, new research has shown that eosinophils are diverse and essential for immune regulation and tissue homeostasis. Their functional plasticity has been observed in patients with inflammatory diseases, cancer, infections, and other disorders. Although eosinophils are infrequently observed within the liver during periods of homeostasis, they are recruited to the liver in various liver diseases, including liver parasitosis, acute liver injury, autoimmune liver disease, and hepatocellular carcinoma. Furthermore, eosinophils have demonstrated the capacity to promote liver regeneration. This article explores the multifaceted roles of eosinophils in liver diseases, aiming to provide insights that could lead to more effective clinical therapies for these conditions.
Collapse
Affiliation(s)
- Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
7
|
Kim J, Schanzer N, Singh RS, Zaman MI, Garcia-Medina JS, Proszynski J, Ganesan S, Dan Landau, Park CY, Melnick AM, Mason CE. DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:67-108. [PMID: 39864897 DOI: 10.1016/bs.ircmb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement. DOGMA-seq, however, builds on this foundation and has implications for examining epigenomic, transcriptomic, and proteomic interactions between various cell types. This technique has the potential to be particularly useful in the study of cancers such as AML. This is because the cellular mechanisms that drive AML are rather heterogeneous and require a more complete understanding of the interplay between the genetic mutations, disruptions in RNA transcription and translation, and surface protein expression that cause these cancers to develop and evolve. This technique will hopefully contribute to a more clear and complete understanding of the growth and progression of complex cancers.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Ruth Subhash Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohammed I Zaman
- Department of Biophysics and Physiology, Stony Brook University, Stony Brook, NY, United States
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Saravanan Ganesan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States; New York Genome Center, New York, NY, United States
| | - Dan Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | | | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
8
|
Mei Z, Khalil MA, Guo Y, Li D, Banerjee A, Taheri M, Kratzmeier CM, Chen K, Lau CL, Luzina IG, Atamas SP, Kandasamy S, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Stress-induced eosinophil activation contributes to postoperative morbidity and mortality after lung resection. Sci Transl Med 2024; 16:eadl4222. [PMID: 39167663 PMCID: PMC11636577 DOI: 10.1126/scitranslmed.adl4222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Respiratory failure occurs more frequently after thoracic surgery than abdominal surgery. Although the etiology for this complication is frequently attributed to underlying lung disease present in patients undergoing thoracic surgery, this notion is often unfounded because many patients with normal preoperative pulmonary function often require prolonged oxygen supplementation even after minimal resection of lung tissue. Using a murine model of pulmonary resection and peripheral blood samples from patients undergoing resection of the lung or abdominal organs, we demonstrated that lung surgery initiates a proinflammatory loop that results in damage to the remaining lung tissue, noncardiogenic pulmonary edema, hypoxia, and even death. Specifically, we demonstrated that resection of murine lung tissue increased concentrations of the homeostatic cytokine interleukin-7, which led to local and systemic activation of type 2 innate lymphoid cells. This process activated lung-resident eosinophils and facilitated stress-induced eosinophil maturation in the bone marrow in a granulocyte-macrophage colony-stimulating factor-dependent manner, resulting in systemic eosinophilia in both mice and humans. Up-regulation of inducible nitric oxide synthase in lung-resident eosinophils led to tissue nitrosylation, pulmonary edema, hypoxia, and, at times, death. Disrupting this activation cascade at any stage ameliorated deleterious outcomes and improved survival after lung resection in the mouse model. Our data suggest that repurposing US Food and Drug Administration-approved eosinophil-targeting strategies may potentially offer a therapeutic intervention to improve outcomes for patients who require lung resection for benign or malignant etiology.
Collapse
Affiliation(s)
- Zhongcheng Mei
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - May A. Khalil
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Yizhan Guo
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh Pennsylvania, 15213
| | - Dongge Li
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Anirban Banerjee
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Mojtaba Taheri
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | | | - Kelly Chen
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Christine L. Lau
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
| | - Irina G. Luzina
- Department of Medicine University of Maryland, Baltimore Maryland, 21201
| | - Sergei P. Atamas
- Department of Medicine University of Maryland, Baltimore Maryland, 21201
| | | | - Daniel Kreisel
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri, 63110
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri, 63110
| | - Andrew E. Gelman
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri, 63110
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri, 63110
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, 85054
| | - Alexander Sasha Krupnick
- Department of Surgery University of Maryland, Baltimore Maryland, 21201
- Department of Microbiology and Immunology, University of Maryland, Baltimore Maryland, 21201
| |
Collapse
|
9
|
Pilat JM, Jacobse J, Buendia MA, Choksi YA. Animal models of eosinophilic esophagitis. J Leukoc Biol 2024; 116:349-356. [PMID: 38507307 PMCID: PMC11518583 DOI: 10.1093/jleuko/qiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Eosinophilic esophagitis is a chronic inflammatory disorder of the esophagus. Over the past 25 yr, great strides have been made toward understanding its pathogenesis, in part due to studies in several types of animal models. The vast majority of these models have been characterized in mice. In this review, we summarize the histopathological features of eosinophilic esophagitis recapitulated by these animal models, as well as discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Jennifer M. Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
| | - Matthew A. Buendia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children’s Way, Nashville, TN 37232, United States
| | - Yash A. Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
- Program in Cancer Biology, School of Medicine, Vanderbilt University, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, 1030 Medical Research Building IV, 2215 Garland Ave, Nashville, TN 37232, United States
| |
Collapse
|
10
|
Ackerman SJ, Stacy NI. Considerations on the evolutionary biology and functions of eosinophils: what the "haeckel"? J Leukoc Biol 2024; 116:247-259. [PMID: 38736141 PMCID: PMC11288384 DOI: 10.1093/jleuko/qiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, MBRB2074, MC669, 900 S. Ashland Ave, Chicago, IL 60607, United States
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, United States
| |
Collapse
|
11
|
Jorssen J, Van Hulst G, Mollers K, Pujol J, Petrellis G, Baptista AP, Schetters S, Baron F, Caers J, Lambrecht BN, Dewals BG, Bureau F, Desmet CJ. Single-cell proteomics and transcriptomics capture eosinophil development and identify the role of IL-5 in their lineage transit amplification. Immunity 2024; 57:1549-1566.e8. [PMID: 38776917 DOI: 10.1016/j.immuni.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/07/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The activities, ontogeny, and mechanisms of lineage expansion of eosinophils are less well resolved than those of other immune cells, despite the use of biological therapies targeting the eosinophilia-promoting cytokine interleukin (IL)-5 or its receptor, IL-5Rα. We combined single-cell proteomics and transcriptomics and generated transgenic IL-5Rα reporter mice to revisit eosinophilopoiesis. We reconciled human and murine eosinophilopoiesis and provided extensive cell-surface immunophenotyping and transcriptomes at different stages along the continuum of eosinophil maturation. We used these resources to show that IL-5 promoted eosinophil-lineage expansion via transit amplification, while its deletion or neutralization did not compromise eosinophil maturation. Informed from our resources, we also showed that interferon response factor-8, considered an essential promoter of myelopoiesis, was not intrinsically required for eosinophilopoiesis. This work hence provides resources, methods, and insights for understanding eosinophil ontogeny, the effects of current precision therapeutics, and the regulation of eosinophil development and numbers in health and disease.
Collapse
Affiliation(s)
- Joseph Jorssen
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Glenn Van Hulst
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Kiréna Mollers
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Julien Pujol
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Georgios Petrellis
- Laboratory of Parasitology, FARAH Institute, University of Liege, Faculty of Veterinary Medicine, Avenue de Cureghem 10, 4000 Liege, Belgium
| | - Antonio P Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frédéric Baron
- Laboratory of Haematology, GIGA Institute, Faculty of Medicine, Liege University Hospital Centre, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Jo Caers
- Laboratory of Haematology, GIGA Institute, Faculty of Medicine, Liege University Hospital Centre, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH Institute, University of Liege, Faculty of Veterinary Medicine, Avenue de Cureghem 10, 4000 Liege, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium.
| |
Collapse
|
12
|
Febrero B, Ruiz-Manzanera JJ, Ros-Madrid I, Hernández AM, Orenes-Piñero E, Rodríguez JM. Tumor microenvironment in thyroid cancer: Immune cells, patterns, and novel treatments. Head Neck 2024; 46:1486-1499. [PMID: 38380767 DOI: 10.1002/hed.27695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The tumor immune microenvironment of thyroid cancer is the heterogeneous histological space in which tumor cells coexist with host cells. Published data from this review were identified by search and selection database of Pubmed, Elsevier, and Science Direct. Searching was made in two steps using different keywords. In thyroid pathology, the inflammatory response is very important, and might have a key role finding new diagnostic and therapeutic methods, particularly in thyroid cancer. Different immune cells may be more or less present in different types of thyroid cancer and may even have different functions, hence the importance of knowing their presence in different thyroid tumor pathologies. Cancer-related inflammation could be a useful target for new diagnostic and therapeutic strategies by analyzing peritumoral and intratumoral immune cells in different types of thyroid tumors. Moreover, novel strategies for thyroid cancer treatments, such as monoclonal antibodies targeting checkpoint inhibitors, are emerging as promising alternatives.
Collapse
Affiliation(s)
- Beatriz Febrero
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Juan José Ruiz-Manzanera
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Ros-Madrid
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Antonio Miguel Hernández
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - José Manuel Rodríguez
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
13
|
Borrelli C, Gurtner A, Arnold IC, Moor AE. Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils. Nat Protoc 2024; 19:1679-1709. [PMID: 38504138 DOI: 10.1038/s41596-024-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Eosinophils are a class of granulocytes with pleiotropic functions in homeostasis and various human diseases. Nevertheless, they are absent from conventional single-cell RNA sequencing atlases owing to technical difficulties preventing their transcriptomic interrogation. Consequently, eosinophil heterogeneity and the gene regulatory networks underpinning their diverse functions remain poorly understood. We have developed a stress-free protocol for single-cell RNA capture from murine tissue-resident eosinophils, which revealed distinct intestinal subsets and their roles in colitis. Here we describe in detail how to enrich eosinophils from multiple tissues of residence and how to capture high-quality single-cell transcriptomes by preventing transcript degradation. By combining magnetic eosinophil enrichment with microwell-based single-cell RNA capture (BD Rhapsody), our approach minimizes shear stress and processing time. Moreover, we report how to perform genome-wide CRISPR pooled genetic screening in ex vivo-conditioned bone marrow-derived eosinophils to functionally probe pathways required for their differentiation and intestinal maturation. These protocols can be performed by any researcher with basic skills in molecular biology and flow cytometry, and can be adapted to investigate other granulocytes, such as neutrophils and mast cells, thereby offering potential insights into their roles in both homeostasis and disease pathogenesis. Single-cell transcriptomics of eosinophils can be performed in 2-3 d, while functional genomics assays may require up to 1 month.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
14
|
Burger G, Adamou R, Kreuzmair R, Ndoumba WN, Mbassi DE, Mouima AMN, Tabopda CM, Adegnika RM, More A, Okwu DG, Mbadinga LBD, Calle CL, Veletzky L, Metzger WG, Mordmüller B, Ramharter M, Mombo-Ngoma G, Adegnika AA, Zoleko-Manego R, McCall MBB. Eosinophils, basophils and myeloid-derived suppressor cells in chronic Loa loa infection and its treatment in an endemic setting. PLoS Negl Trop Dis 2024; 18:e0012203. [PMID: 38771861 PMCID: PMC11147522 DOI: 10.1371/journal.pntd.0012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Chronic infection by Loa loa remains an unsolved immunological paradox. Despite harboring subcutaneously migrating adult worms and often high densities of microfilariae, most patients experience only relatively mild symptoms, yet microfilaricidal treatment can trigger life-threatening inflammation. Here, we investigated innate cell populations hypothesized to play a role in these two faces of the disease, in an endemic population in Gabon. METHODOLOGY/PRINCIPAL FINDINGS We analyzed numbers and activation of eosinophils and basophils, as well as myeloid-derived suppressor cell (MDSC) subsets and associated circulating cytokine levels by flow cytometry in sex- and age-matched L. loa-uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) individuals (n = 42), as well as microfilaraemic individuals treated with albendazole (n = 26). The percentage of eosinophils was lower in LL- (3.0%) than in the combined L. loa-infected population, but was similar in MF+ (13.1%) and MF- (12.3%). Upon treatment of MF+, eosinophilia increased from day 0 (17.2%) to day 14 (24.8%) and had decreased below baseline at day 168 (6.3%). Expression of the eosinophil activation marker CD123 followed the same pattern as the percentage of eosinophils, while the inverse was observed for CD193 and to some extent CD125. Circulating IL-5 levels after treatment followed the same pattern as eosinophil dynamics. Basophil numbers did not differ between infection states but increased after treatment of MF+. We did not observe differences in MDSC numbers between infection states or upon treatment. CONCLUSIONS/SIGNIFICANCE We demonstrate that both chronic infection and treatment of L. loa microfilaraemia are associated with eosinophil circulation and distinct phenotypical activation markers that might contribute to inflammatory pathways in this setting. In this first ever investigation into MDSC in L. loa infection, we found no evidence for their increased presence in chronic loiasis, suggesting that immunomodulation by L. loa is induced through other pathways.
Collapse
Affiliation(s)
- Gerrit Burger
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rafiou Adamou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Ruth Kreuzmair
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Wilfrid Ndzebe Ndoumba
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | - Dorothea Ekoka Mbassi
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Ayong More
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Dearie Glory Okwu
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | | | | | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen Germany
| | - Rella Zoleko-Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew B. B. McCall
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Day KS, Rempel L, Rossi FMV, Theret M. Origins and functions of eosinophils in two non-mucosal tissues. Front Immunol 2024; 15:1368142. [PMID: 38585275 PMCID: PMC10995313 DOI: 10.3389/fimmu.2024.1368142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Eosinophils are a type of granulocyte named after the presence of their eosin-stained granules. Traditionally, eosinophils have been best known to play prominent roles in anti-parasitic responses and mediating allergic reactions. Knowledge of their behaviour has expanded with time, and they are now recognized to play integral parts in the homeostasis of gastrointestinal, respiratory, skeletal muscle, adipose, and connective tissue systems. As such, they are implicated in a myriad of pathologies, and have been the target of several medical therapies. This review focuses on the lifespan of eosinophils, from their origins in the bone marrow, to their tissue-resident role. In particular, we wish to highlight the functions of eosinophils in non-mucosal tissues with skeletal muscle and the adipose tissues as examples, and to discuss the current understanding of their participation in diseased states in these tissues.
Collapse
Affiliation(s)
- Katie S. Day
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Lucas Rempel
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Marine Theret
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
17
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
18
|
Kare AJ, Nichols L, Zermeno R, Raie MN, Tumbale SK, Ferrara KW. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues. Cytometry A 2023; 103:839-850. [PMID: 37768325 PMCID: PMC10843696 DOI: 10.1002/cyto.a.24788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.
Collapse
Affiliation(s)
- Aris J. Kare
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Marina N. Raie
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Diny NL, Wood MK, Won T, Talor MV, Lukban C, Bedja D, Wang N, Kalinoski H, Daoud A, Talbot CC, Leei Lin B, Čiháková D. Hypereosinophilia causes progressive cardiac pathologies in mice. iScience 2023; 26:107990. [PMID: 37829205 PMCID: PMC10565781 DOI: 10.1016/j.isci.2023.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
Hypereosinophilic syndrome is a progressive disease with extensive eosinophilia that results in organ damage. Cardiac pathologies are the main reason for its high mortality rate. A better understanding of the mechanisms of eosinophil-mediated tissue damage would benefit therapeutic development. Here, we describe the cardiac pathologies that developed in a mouse model of hypereosinophilic syndrome. These IL-5 transgenic mice exhibited decreased left ventricular function at a young age which worsened with age. Mechanistically, we demonstrated infiltration of activated eosinophils into the heart tissue that led to an inflammatory environment. Gene expression signatures showed tissue damage as well as repair and remodeling processes. Cardiomyocytes from IL-5Tg mice exhibited significantly reduced contractility relative to wild type (WT) controls. This impairment may result from the inflammatory stress experienced by the cardiomyocytes and suggest that dysregulation of contractility and Ca2+ reuptake in cardiomyocytes contributes to cardiac dysfunction at the whole organ level in hypereosinophilic mice.
Collapse
Affiliation(s)
- Nicola Laura Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Megan Kay Wood
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monica Vladut Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clarisse Lukban
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nadan Wang
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian Leei Lin
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Clemente-Suárez VJ, Mielgo-Ayuso J, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Navarro Jimenez E, Redondo-Flórez L, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Basis of preventive and non-pharmacological interventions in asthma. Front Public Health 2023; 11:1172391. [PMID: 37920579 PMCID: PMC10619920 DOI: 10.3389/fpubh.2023.1172391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Asthma is one of the most common atopic disorders in all stages of life. Its etiology is likely due to a complex interaction between genetic, environmental, and lifestyle factors. Due to this, different non-pharmacological interventions can be implemented to reduce or alleviate the symptoms caused by this disease. Thus, the present narrative review aimed to analyze the preventive and non-pharmacological interventions such as physical exercise, physiotherapy, nutritional, ergonutritional, and psychological strategies in asthma treatment. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Asthma is an immune-mediated inflammatory condition characterized by increased responsiveness to bronchoconstrictor stimuli. Different factors have been shown to play an important role in the pathogenesis of asthma, however, the treatments used to reduce its incidence are more controversial. Physical activity is focused on the benefits that aerobic training can provide, while physiotherapy interventions recommend breathing exercises to improve the quality of life of patients. Nutritional interventions are targeted on implement diets that prioritize the consumption of fruits and vegetables and supplementation with antioxidants. Psychological interventions have been proposed as an essential non-pharmacological tool to reduce the emotional problems associated with asthma.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, Universidad Camilo José Cela, Madrid, Spain
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| |
Collapse
|
21
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
22
|
Radtke D, Voehringer D. Granulocyte development, tissue recruitment, and function during allergic inflammation. Eur J Immunol 2023; 53:e2249977. [PMID: 36929502 DOI: 10.1002/eji.202249977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Granulocytes provide a fast innate response to pathogens and allergens. In allergy and anti-helminth immunity, epithelial cells of damaged barriers release alarmins like IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) but also chemokines like CXCL1 or CCL11 to promote cell recruitment and inflammation. In addition, mast cells positioned at barrier tissue sites also quickly release mediators upon specifically sensing antigens through IgE bound to FcεR1 on their surface. Released mediators induce the recruitment of different granulocytes in a timely ordered manner. First, neutrophils extravasate from the blood vasculature to the side of alarmin release and promote a potent inflammatory response. Alarmins and activated mast cells further promote activation of ILC2s and recruitment of basophils and eosinophils, which inhibit neutrophil recruitment and enhance tissue type 2 immunity. In addition to their potent pro-inflammatory effector functions, granulocytes can also contribute to termination and resolution of inflammation. Here, we summarize the development and tissue recruitment of granulocyte subsets, and describe general effector functions and aspects of their increasingly appreciated role in limiting tissue damage. We further discuss targeting approaches for therapeutic interventions in allergic disorders.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Shah M, Knights AJ, Vohralik EJ, Psaila AM, Quinlan KGR. Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. J Leukoc Biol 2023; 113:191-202. [PMID: 36822180 DOI: 10.1093/jleuko/qiac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
24
|
Aegerter H, Lambrecht BN. The Pathology of Asthma: What Is Obstructing Our View? ANNUAL REVIEW OF PATHOLOGY 2023; 18:387-409. [PMID: 36270294 DOI: 10.1146/annurev-pathol-042220-015902] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Jackson DJ, Pavord ID. Living without eosinophils: evidence from mouse and man. Eur Respir J 2023; 61:13993003.01217-2022. [PMID: 35953100 PMCID: PMC9834633 DOI: 10.1183/13993003.01217-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 01/19/2023]
Abstract
The enduring view of eosinophils, as immune effector cells whose primary function is host defence against infection by helminths and other microbial pathogens, sets the stage for a fundamental question regarding the safety of therapeutic eosinophil depletion. If eosinophils are significantly reduced or altogether depleted in an effort to alleviate the negative effects of tissue eosinophilia and eosinophilic inflammation in conditions such as asthma, COPD, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome, would these patients become susceptible to infection or another illness? Development of mouse models in which the eosinophil lineage has been ablated, observations in patients naturally lacking eosinophils and data from studies of eosinophil-depleting medical therapies indicate that the absence of eosinophils is not detrimental to health. The evidence available to date, as presented in this review, supports the conclusion that even if certain homeostatic roles for the eosinophil may be demonstrable in controlled animal models and human in vitro settings, the evolution of the human species appears to have provided sufficient immune redundancy such that one may be hale and hearty without eosinophils.
Collapse
Affiliation(s)
- David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Differential Activity of Human Leukocyte Extract on Systemic Immune Response and Cyst Growth in Mice with Echinococcus Multilocularis Infection After Oral, Subcutaneous and Intraperitoneal Routes of Administration. Helminthologia 2022; 59:341-356. [PMID: 36875680 PMCID: PMC9979067 DOI: 10.2478/helm-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/04/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar echinococcosis (AE) caused by the larval stage of Echinococcus multilocularis is serious parasitic diseases associated with the host´s immunosuppression. The effects of human non-immune dialyzable leukocyte extract (DLE) on immune cells in blood and spleen and parasitic cysts weight in Balb/c mice after oral (PO), subcutaneous (SC) and intraperitoneal administration (IP) were compared. The reduction in cysts weight (p < 0.01) was recorded after PO route, whereas moderate reduction was found after SC and IP routes. The elevation of lymphoid populations in blood and spleen was found after PO administration (p < 0.01) in parallel with reduced myeloid population. Infection-elicited decline in B220+B cells was partially abolished by PO route, but DLE routes did not influence the CD3+ T cells. The proportions of CD3+CD4+Th lymphocytes were moderately upregulated, whereas CD3+CD8+Tc populations were reduced after all DLE routes (p < 0.01). PO administration increased CD11b+MHCIIhigh blood monocytes, CD11b-SigleF+ cell, but not CD11b+Si-glecF+ eosinophils in the blood, stimulated after SC and IP routes. DLE induced downregulation of NO production by LPS-stimulated adherent splenocytes ex vivo. Con A-triggered T lymphocyte proliferation was associated with the elevated IFN-γ production and transcription factor Tbet mRNA expression. The alleviation of Th2 (IL-4) and Treg (TGF-β) cytokine production by lymphocytes ex vivo paralleled with downregulation of gene transcription for cytokines, GATA and FoxP3. Reduction of myeloid cells with suppressive activity was found. The SC and IP routes affected partially the cysts weights, diminished significantly gene transcription, NO levels and Th2 and Treg cytokines production. Results showed that PO route of DLE administration was the most effective in ameliorating immunosuppression via stimulation of Th1 type, reducing Th2 and Treg type of immunity and CD3+CD8+Tc lymphocytes in the blood and spleens during E. multilocularis infection in mice.
Collapse
|
27
|
Syeda MZ, Hong T, Zhang C, Ying S, Shen H. Eosinophils: A Friend or Foe in Human Health and Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 9:26-38. [PMID: 36756082 PMCID: PMC9900469 DOI: 10.1159/000528156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
Background Since their discovery, around 150 years, eosinophils research has been a field of changing perspective, and new directions are emerging since then. Summary Initially, eosinophils were perceived as terminally differentiated cytotoxic effector cells. Clearly, eosinophils are capable of playing functions other than immune responses, which is not surprising given their intricate interactions with pathogens as well as other circulating leukocytes. Attempts to comprehend the eosinophil biology and functions have yielded remarkable insights into their roles in human health and sickness. The use of FDA-approved eosinophils-targeting biologics has provided exciting opportunities to directly explore the contributions of eosinophils in disease etiology in humans. Key Messages In this review, we will focus on the eosinophils' lifecycle and discuss the current state of knowledge from mouse models and retrospective human studies demonstrating eosinophils' roles in the pathogenesis of human diseases such as asthma, cancer, and kidney disorders. Despite three recently approved anti-eosinophil agents, a number of key questions and challenges remain far from settled, thereby generating opportunity to further explore this enigmatic cell. A comprehensive understanding of eosinophils biology and function will surely aid in developing improved therapeutic strategies against eosinophils-associated disorders.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tu Hong
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China,*Songmin Ying,
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China,**Huahao Shen,
| |
Collapse
|
28
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
29
|
High stability of blood parameters during mouse lifespan: sex-specific effects of every-other-day fasting. Biogerontology 2022; 23:559-570. [PMID: 35915171 DOI: 10.1007/s10522-022-09982-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.
Collapse
|
30
|
Lynch CA, Guo Y, Mei A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Solving the Conundrum of Eosinophils in Alloimmunity. Transplantation 2022; 106:1538-1547. [PMID: 34966103 PMCID: PMC9234098 DOI: 10.1097/tp.0000000000004030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eosinophils are bone-marrow-derived granulocytes known for their ability to facilitate clearance of parasitic infections and their association with asthma and other inflammatory diseases. The purpose of this review is to discuss the currently available human observational and animal experimental data linking eosinophils to the immunologic response in solid organ transplantation. First, we present observational human studies that demonstrate a link between transplantation and eosinophils yet were unable to define the exact role of this cell population. Next, we describe published experimental models and demonstrate a defined mechanistic role of eosinophils in downregulating the alloimmune response to murine lung transplants. The overall summary of this data suggests that further studies are needed to define the role of eosinophils in multiple solid organ allografts and points to the possibility of manipulating this cell population to improve graft survival.
Collapse
Affiliation(s)
- Cherie Alissa Lynch
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Alex Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | | | | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | | |
Collapse
|
31
|
López-Sanz C, Jiménez-Saiz R, Esteban V, Delgado-Dolset MI, Perales-Chorda C, Villaseñor A, Barber D, Escribese MM. Mast Cell Desensitization in Allergen Immunotherapy. FRONTIERS IN ALLERGY 2022; 3:898494. [PMID: 35847161 PMCID: PMC9278139 DOI: 10.3389/falgy.2022.898494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only treatment with disease-transforming potential for allergic disorders. The immunological mechanisms associated with AIT can be divided along time in two phases: short-term, involving mast cell (MC) desensitization; and long-term, with a regulatory T cell (Treg) response with significant reduction of eosinophilia. This regulatory response is induced in about 70% of patients and lasts up to 3 years after AIT cessation. MC desensitization is characteristic of the initial phase of AIT and it is often related to its success. Yet, the molecular mechanisms involved in allergen-specific MC desensitization, or the connection between MC desensitization and the development of a Treg arm, are poorly understood. The major AIT challenges are its long duration, the development of allergic reactions during AIT, and the lack of efficacy in a considerable proportion of patients. Therefore, reaching a better understanding of the immunology of AIT will help to tackle these short-comings and, particularly, to predict responder-patients. In this regard, omics strategies are empowering the identification of predictive and follow-up biomarkers in AIT. Here, we review the immunological mechanisms underlying AIT with a focus on MC desensitization and AIT-induced adverse reactions. Also, we discuss the identification of novel biomarkers with predictive potential that could improve the rational use of AIT.
Collapse
Affiliation(s)
- Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- McMaster Immunology Research Centre (MIRC), Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - María Isabel Delgado-Dolset
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Carolina Perales-Chorda
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - María M. Escribese
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- *Correspondence: María M. Escribese
| |
Collapse
|
32
|
Bonjour K, Palazzi C, Silva TP, Malta KK, Neves VH, Oliveira-Barros EG, Neves I, Kersten VA, Fortuna BT, Samarasinghe AE, Weller PF, Bandeira-Melo C, Melo RCN. Mitochondrial Population in Mouse Eosinophils: Ultrastructural Dynamics in Cell Differentiation and Inflammatory Diseases. Front Cell Dev Biol 2022; 10:836755. [PMID: 35386204 PMCID: PMC8979069 DOI: 10.3389/fcell.2022.836755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are multifunctional organelles of which ultrastructure is tightly linked to cell physiology. Accumulating evidence shows that mitochondrial remodeling has an impact on immune responses, but our current understanding of the mitochondrial architecture, interactions, and morphological changes in immune cells, mainly in eosinophils, is still poorly known. Here, we applied transmission electron microscopy (TEM), single-cell imaging analysis, and electron tomography, a technique that provides three-dimensional (3D) views at high resolution, to investigate mitochondrial dynamics in mouse eosinophils developing in cultures as well as in the context of inflammatory diseases characterized by recruitment and activation of these cells (mouse models of asthma, H1N1 influenza A virus (IAV) infection, and schistosomiasis mansoni). First, quantitative analyses showed that the mitochondrial area decrease 70% during eosinophil development (from undifferentiated precursor cells to mature eosinophils). Mitophagy, a consistent process revealed by TEM in immature but not in mature eosinophils, is likely operating in mitochondrial clearance during eosinophilopoiesis. Events of mitochondria interaction (inter-organelle membrane contacts) were also detected and quantitated within developing eosinophils and included mitochondria-endoplasmic reticulum, mitochondria-mitochondria, and mitochondria-secretory granules, all of them significantly higher in numbers in immature compared to mature cells. Moreover, single-mitochondrion analyses revealed that as the eosinophil matures, mitochondria cristae significantly increase in number and reshape to lamellar morphology. Eosinophils did not change (asthma) or reduced (IAV and Schistosoma infections) their mitochondrial mass in response to inflammatory diseases. However, asthma and schistosomiasis, but not IAV infection, induced amplification of both cristae numbers and volume in individual mitochondria. Mitochondrial cristae remodeling occurred in all inflammatory conditions with the proportions of mitochondria containing only lamellar or tubular, or mixed cristae (an ultrastructural aspect seen just in tissue eosinophils) depending on the tissue/disease microenvironment. The ability of mitochondria to interact with granules, mainly mobilized ones, was remarkably captured by TEM in eosinophils participating in all inflammatory diseases. Altogether, we demonstrate that the processes of eosinophilopoiesis and inflammation-induced activation interfere with the mitochondrial dynamics within mouse eosinophils leading to cristae remodeling and inter-organelle contacts. The understanding of how mitochondrial dynamics contribute to eosinophil immune functions is an open interesting field to be explored.
Collapse
Affiliation(s)
- Kennedy Bonjour
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Eliane G Oliveira-Barros
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Igor Neves
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Victor A Kersten
- Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno T Fortuna
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Amali E Samarasinghe
- Division of Pulmonology, Allergy-Immunology and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Christianne Bandeira-Melo
- Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Clapacs Z, ONeill CL, Shrimali P, Lokhande G, Files M, Kim DD, Gaharwar AK, Rudra JS. Coiled Coil Crosslinked Alginate Hydrogels Dampen Macrophage-Driven Inflammation. Biomacromolecules 2022; 23:1183-1194. [PMID: 35170303 DOI: 10.1021/acs.biomac.1c01462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alginate hydrogels are widely used for tissue engineering and regenerative medicine due to their excellent biocompatibility. A facile and commonly used strategy to crosslink alginate is the addition of Ca2+ that leads to hydrogelation. However, extracellular Ca2+ is a secondary messenger in activating inflammasome pathways following physical injury or pathogenic insult, which carries the risk of persistent inflammation and scaffold rejection. Here, we present graft copolymers of charge complementary heterodimeric coiled coil (CC) peptides and alginate that undergo supramolecular self-assembly to form Ca2+ free alginate hydrogels. The formation of heterodimeric CCs was confirmed using circular dichroism spectroscopy, and scanning electron microscopy revealed a significant difference in crosslink density and homogeneity between Ca2+ and CC crosslinked gels. The resulting hydrogels were self-supporting and display shear-thinning and shear-recovery properties. In response to lipopolysaccharide (LPS) stimulation, peritoneal macrophages and bone marrow-derived dendritic cells cultured in the CC crosslinked gels exhibited a 10-fold reduction in secretion of the proinflammatory cytokine IL-1β compared to Ca2+ crosslinked gels. A similar response was also observed in vivo upon peritoneal delivery of Ca2+ or CC crosslinked gels. Analysis of peritoneal lavage showed that macrophages in mice injected with Ca2+ crosslinked gels display a more inflammatory phenotype compared to macrophages from mice injected with CC crosslinked gels. These results suggest that CC peptides by virtue of their tunable sequence-structure-function relationship and mild gelation conditions are promising alternative crosslinkers for alginate and other biopolymer scaffolds used in tissue engineering.
Collapse
Affiliation(s)
- Zain Clapacs
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Conor L ONeill
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Paresh Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Giriraj Lokhande
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Megan Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Darren D Kim
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| |
Collapse
|
34
|
Human and Mouse Eosinophils Differ in Their Ability to Biosynthesize Eicosanoids, Docosanoids, the Endocannabinoid 2-Arachidonoyl-glycerol and Its Congeners. Cells 2022; 11:cells11010141. [PMID: 35011703 PMCID: PMC8750928 DOI: 10.3390/cells11010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
High eosinophil (EOS) counts are a key feature of eosinophilic asthma. EOS notably affect asthmatic response by generating several lipid mediators. Mice have been utilized in hopes of defining new pharmacological targets to treat asthma. However, many pinpointed targets in mice did not translate into clinics, underscoring that key differences exist between the two species. In this study, we compared the ability of human (h) and mouse (m) EOS to biosynthesize key bioactive lipids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). hEOS were isolated from the blood of healthy subjects and mild asthmatics, while mEOSs were differentiated from the bone marrow. EOSs were treated with fatty acids and lipid mediator biosynthesis assessed by LC-MS/MS. We found that hEOS biosynthesized leukotriene (LT) C4 and LTB4 in a 5:1 ratio while mEOS almost exclusively biosynthesized LTB4. The biosynthesis of the 15-lipoxygenase (LO) metabolites 15-HETE and 12-HETE also differed, with a 15-HETE:12-HETE ratio of 6.3 for hEOS and 0.727 for mEOS. EOS biosynthesized some specialized pro-resolving mediators, and the levels from mEOS were 9-times higher than those of hEOS. In contrast, hEOS produced important amounts of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and its congeners from EPA and DHA, a biosynthetic pathway that was up to ~100-fold less prominent in mEOS. Our data show that hEOS and mEOS biosynthesize the same lipid mediators but in different amounts. Compared to asthmatics, mouse models likely have an amplified involvement of LTB4 and specialized pro-resolving mediators and a diminished impact of the endocannabinoid 2-arachidonoyl-glycerol and its congeners.
Collapse
|
35
|
Dolitzky A, Shapira G, Grisaru-Tal S, Hazut I, Avlas S, Gordon Y, Itan M, Shomron N, Munitz A. Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Front Immunol 2022; 12:802839. [PMID: 34970274 PMCID: PMC8712732 DOI: 10.3389/fimmu.2021.802839] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct “Type 1” and “Type 2” phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.
Collapse
Affiliation(s)
- Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmulik Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Micahl Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Lauret S, Noel-Savina E, Prévot G, Guibert N, Reber L, Brouquières D, Didier A, Guilleminault L. Are serum immunoglobulin concentrations a predictive biomarker of response to anti-IL5/IL5Rα therapies? Respir Med Res 2022; 81:100882. [PMID: 34983012 DOI: 10.1016/j.resmer.2021.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Approval of biologics has recently revolutionized T2 severe asthma management. However, predictive biomarkers remain highly needed to improve patient's selection. OBJECTIVE This study aims to determine whether serum immunoglobulins (Igs) levels might be predictive biomarkers of response to anti-interleukin-5 (IL5)/IL5Rα therapies. METHODS Severe asthma patients eligible for mepolizumab or benralizumab were included herein. Serum immunoglobulin quantification was performed at baseline before mepolizumab or benralizumab initiation. After a 6-month treatment of mepolizumab or benralizumab, patients presented a second serum immunoglobulin quantification. The treatment response was evaluated by the GETE (Global Evaluation of Treatment Effectiveness) score at 6 months. RESULTS A total of 50 patients were included. Median age was 56 [IQR 48.8-65.3] and 50% were females. Compared to baseline, a significant increase in IgG was observed at 6 months (9.2 [7.8-10.2] g/l vs 10.1 [8.8-11.1] g/l, p = 0.04). The area under the ROC curve was 0.58 [95%IC 0.40-0.77] for blood eosinophil count (p = 0.37), 0.75 [95%IC: 0.58-0.92] for serum IgG concentration (p = 0.009) for predicting the treatment response. According to the Youden index, serum IgG concentration ≥ 9.2 g/l predicts the response to anti-IL5 therapies with a sensitivity of 76.9% and a specificity of 75.7%. CONCLUSION Baseline serum IgG concentrations may be a useful tool to predict the response to anti-IL5/IL5Rα therapies but should be confirmed in larger clinical trials. Interestingly, anti-IL5/IL5Rα therapies are associated with a significant increase in serum IgG concentrations at 6 months.
Collapse
Affiliation(s)
- Simon Lauret
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France
| | - Elise Noel-Savina
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France
| | - Grégoire Prévot
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France
| | - Nicolas Guibert
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France
| | - Laurent Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity),Inserm U1291, University of Toulouse, CNRS U5282
| | - Danièle Brouquières
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France
| | - Alain Didier
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France; Toulouse Institute for Infectious and Inflammatory Diseases (Infinity),Inserm U1291, University of Toulouse, CNRS U5282
| | - Laurent Guilleminault
- Department of respiratory medicine, Toulouse University Hospital Centre, Toulouse, France; Toulouse Institute for Infectious and Inflammatory Diseases (Infinity),Inserm U1291, University of Toulouse, CNRS U5282.
| |
Collapse
|
37
|
High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proc Natl Acad Sci U S A 2021; 118:2109123118. [PMID: 34548411 PMCID: PMC8501786 DOI: 10.1073/pnas.2109123118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence shows that granulocytes are key modulators of the immune response to SARS-CoV-2 infection, and their dysregulation could significantly impact COVID-19 severity and patient recovery after virus clearance. In the present study, we identify selected immune traits in neutrophil, eosinophil, and basophil subsets associated with severity of COVID-19 and with peripheral protein profiles. Moreover, computational modeling indicates that the combined use of phenotypic data and laboratory measurements can effectively predict key clinical outcomes in COVID-19 patients. Finally, patient-matched longitudinal analysis shows phenotypic normalization of granulocyte subsets 4 mo after hospitalization. Overall, in this work, we extend the current understanding of the distinct contribution of granulocyte subsets to COVID-19 pathogenesis. Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)−infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.
Collapse
|
38
|
Wechsler ME, Munitz A, Ackerman SJ, Drake MG, Jackson DJ, Wardlaw AJ, Dougan SK, Berdnikovs S, Schleich F, Matucci A, Chanez P, Prazma CM, Howarth P, Weller PF, Merkel PA. Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clin Proc 2021; 96:2694-2707. [PMID: 34538424 DOI: 10.1016/j.mayocp.2021.04.025] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Eosinophils play a homeostatic role in the body's immune responses. These cells are involved in combating some parasitic, bacterial, and viral infections and certain cancers and have pathologic roles in diseases including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic gastrointestinal disorders, and hypereosinophilic syndromes. Treatment of eosinophilic diseases has traditionally been through nonspecific eosinophil attenuation by use of glucocorticoids. However, several novel biologic therapies targeting eosinophil maturation factors, such as interleukin (IL)-5 and the IL-5 receptor or IL-4/IL-13, have recently been approved for clinical use. Despite the success of biologic therapies, some patients with eosinophilic inflammatory disease may not achieve adequate symptom control, underlining the need to further investigate the contribution of patient characteristics, such as comorbidities and other processes, in driving ongoing disease activity. New research has shown that eosinophils are also involved in several homeostatic processes, including metabolism, tissue remodeling and development, neuronal regulation, epithelial and microbiome regulation, and immunoregulation, indicating that these cells may play a crucial role in metabolic regulation and organ function in healthy humans. Consequently, further investigation is needed into the homeostatic roles of eosinophils and eosinophil-mediated processes across different tissues and their varied microenvironments. Such work may provide important insights into the role of eosinophils not only under disease conditions but also in health. This narrative review synthesizes relevant publications retrieved from PubMed informed by author expertise to provide new insights into the diverse roles of eosinophils in health and disease, with particular emphasis on the implications for current and future development of eosinophil-targeted therapies.
Collapse
Affiliation(s)
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Trust, London, United Kingdom; Asthma UK Centre, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Andrew J Wardlaw
- Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I(3), Research Group, University of Liege, Belgium
| | - Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, C2VN INSERM INRAE Aix-Marseille University, Marseille, France
| | | | - Peter Howarth
- Respiratory Medical Franchise, GSK, Brentford, United Kingdom
| | - Peter F Weller
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine, and Division of Clinical Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
| |
Collapse
|
39
|
Van Hulst G, Bureau F, Desmet CJ. Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity? Int J Mol Sci 2021; 22:10150. [PMID: 34576313 PMCID: PMC8467265 DOI: 10.3390/ijms221810150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Asthma is now recognized as a heterogeneous disease, encompassing different phenotypes driven by distinct pathophysiological mechanisms called endotypes. Common phenotypes of asthma, referred to as eosinophilic asthma, are characterized by the presence of eosinophilia. Eosinophils are usually considered invariant, terminally differentiated effector cells and have become a primary therapeutic target in severe eosinophilic asthma (SEA) and other eosinophil-associated diseases (EADs). Biological treatments that target eosinophils reveal an unexpectedly complex role of eosinophils in asthma, including in SEA, suggesting that "not all eosinophils are equal". In this review, we address our current understanding of the role of eosinophils in asthma with regard to asthma phenotypes and endotypes. We further address the possibility that different SEA phenotypes may involve differences in eosinophil biology. We discuss how these differences could arise through eosinophil "endotyping", viz. adaptations of eosinophil function imprinted during their development, or through tissue-induced plasticity, viz. local adaptations of eosinophil function through interaction with their lung tissue niches. In doing so, we also discuss opportunities, technical challenges, and open questions that, if addressed, might provide considerable benefits in guiding the choice of the most efficient precision therapies of SEA and, by extension, other EADs.
Collapse
Affiliation(s)
- Glenn Van Hulst
- Laboratory of Cellular and Molecular Immunology, B34, GIGA Institute and Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium; (G.V.H.); (F.B.)
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, B34, GIGA Institute and Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium; (G.V.H.); (F.B.)
- Walloon Excellence in Life Sciences and Biotechnology (Welbio), 1300 Wavres, Belgium
| | - Christophe J. Desmet
- Laboratory of Cellular and Molecular Immunology, B34, GIGA Institute and Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium; (G.V.H.); (F.B.)
| |
Collapse
|
40
|
Mair I, Wolfenden A, Lowe AE, Bennett A, Muir A, Smith H, Fenn J, Bradley JE, Else KJ. A lesson from the wild: The natural state of eosinophils is Ly6G hi. Immunology 2021; 164:766-776. [PMID: 34486729 PMCID: PMC8561109 DOI: 10.1111/imm.13413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
With a long history of promoting pathological inflammation, eosinophils are now emerging as important regulatory cells. Yet, findings from controlled laboratory experiments so far lack translation to animals, including humans, in their natural environment. In order to appreciate the breadth of eosinophil phenotype under non‐laboratory, uncontrolled conditions, we exploit a free‐living population of the model organism Mus musculus domesticus. Eosinophils were present at significantly higher proportions in the spleen and bone marrow of wild mice compared with laboratory mice. Strikingly, the majority of eosinophils of wild mice exhibited a unique Ly6Ghi phenotype seldom described in laboratory literature. Ly6G expression correlated with activation status in spleen and bone marrow, but not peritoneal exudate cells, and is therefore likely not an activation marker per se. Intermediate Ly6G expression was transiently induced in a small proportion of eosinophils from C57BL/6 laboratory mice during acute infection with the whipworm Trichuris muris, but not during low‐dose chronic infection, which better represents parasite exposure in the wild. We conclude that the natural state of the eosinophil is not adequately reflected in the standard laboratory mouse, which compromises our attempts to dissect their functional relevance. Our findings emphasize the importance of studying the immune system in its natural context – alongside more mechanistic laboratory experiments – in order to capture the entirety of immune phenotypes and functions.
Collapse
Affiliation(s)
- Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Wolfenden
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann E Lowe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alex Bennett
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Muir
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Fenn
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Kathryn J Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Yang D, Huang H, Weng Y, Ren J, Yang C, Wang J, Gao B, Zeng T, Hu J, Pan W, Sun F, Zhou X, Chen G. Dynamic Decrease in Eosinophil After Intravenous Thrombolysis Predicts Poor Prognosis of Acute Ischemic Stroke: A Longitudinal Study. Front Immunol 2021; 12:709289. [PMID: 34305951 PMCID: PMC8293745 DOI: 10.3389/fimmu.2021.709289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background and Purpose Blood eosinophil counts are thought to be associated with atherosclerosis in acute ischemic stroke (AIS) and AIS severity. We aimed to investigate 1): the temporal profile of eosinophil in AIS patients treated with recombinant tissue plasminogen activator (r-tPA); 2): The association between dynamic eosinophil and 3-month outcomes in different AIS etiologies; 3): incremental predictive ability of dynamic eosinophil adding to conventional model; and 4): the longitudinal change of neutrophil-to-lymphocyte ratio (NLR) and compared its prognostic value with eosinophils. Methods A total of 623 AIS patients with intravenous thrombolysis in two hospitals were included. Blood samples were obtained on admission, within 24 h after an intravenous thrombolysis and on the seventh day. A multivariate logistic regression model with restricted cubic spline was performed to explore the association between dynamic eosinophil and a 3-month poor outcome. C-statistic, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were adopted to explore the incremental predictive ability. Results Percent change in eosinophil counts after intravenous thrombolysis was median -25.00% (IQR -68.25%-+14.29%). Decrease in eosinophil >75% after intravenous thrombolysis was associated with 2.585 times risk for poor outcome and 13.836 times risk for death. However, the association were weak for patients outside of cardioembolic stroke. Adding eosinophil changes to a conventional model improved the discriminatory ability of poor outcome (NRI = 53.3%; IDI = 2.2%) and death (NRI = 101.0%; IDI = 6.9%). Conclusions Dynamic decrease in eosinophil after intravenous thrombolysis predicts a 3-month poor outcome and death in AIS patients with r-tPA treatment and improved the predictive ability of conventional model. However, this result needs to be interpreted carefully in non-cardioembolic AIS patients.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghao Huang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junli Ren
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenguang Yang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianing Wang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Beibei Gao
- Department of Internal Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tian Zeng
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Hu
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Pan
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyue Sun
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinbo Zhou
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Eosinophils and helminth infection: protective or pathogenic? Semin Immunopathol 2021; 43:363-381. [PMID: 34165616 DOI: 10.1007/s00281-021-00870-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Since the earliest descriptions of this enigmatic cell, eosinophils have been implicated in both protective and pathogenic immune responses to helminth infection. Nevertheless, despite substantial data from in vitro studies, human infections, and animal models, their precise role in helminth infection remains incompletely understood. This is due to a number of factors, including the heterogeneity of the many parasites included in the designation "helminth," the complexity and redundancy in the host immune response to helminths, and the pleiotropic functions of eosinophils themselves. This review examines the consequences of helminth-associated eosinophilia in the context of protective immunity, pathogenesis, and immunoregulation.
Collapse
|
43
|
Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, Akuthota P, Roufosse F, Rothenberg ME. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu Rev Immunol 2021; 39:719-757. [PMID: 33646859 PMCID: PMC8317994 DOI: 10.1146/annurev-immunol-093019-125918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| | - David J Jackson
- Guy's and St Thomas' Hospitals, London WC2R 2LS, United Kingdom;
- Department of Immunobiology, King's College London, London WC2R 2LS, United Kingdom
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy Unit, Humanitas Clinical and Research Center IRCCS, 20089 Milan, Italy;
| | - Sameer K Mathur
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792, USA;
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ian D Pavord
- Respiratory Medicine Unit, Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford OX3 9DU, United Kingdom;
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Florence Roufosse
- Médecine Interne, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA;
| |
Collapse
|
44
|
Lessons learned from targeting eosinophils in human disease. Semin Immunopathol 2021; 43:459-475. [PMID: 33891135 DOI: 10.1007/s00281-021-00849-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Eosinophils are a minor subset of the granulocyte lineage distinguished by their unique morphology, phenotype, cytoplasmic contents, and function. Evolutionarily, these are ancient cells whose existence has been conserved within vertebrates for millions of years, suggesting that their contribution to innate immunity and other pathologic and homeostatic responses are important to the host. Knowledge regarding the role of eosinophils in health and disease took a leap forward in 2004 with the creation of mouse strains deficient in eosinophils. This advance was paralleled in humans using pharmacology, namely, with the development of drugs capable of selectively reducing and sometimes even eliminating human eosinophils in those receiving these agents. As a result, a more definitive picture of what eosinophils do, and do not do, is emerging. This review will summarize recent advances in our understanding of the role of eosinophils in human disease by focusing mainly on data from clinical studies with anti-eosinophil therapies, even though the first of such agents, mepolizumab, was only approved in the USA in November 2015. Information regarding both efficacy and safety will be highlighted, and where relevant, intriguing data from animal models will also be mentioned, especially if there are conflicting effects seen in humans.
Collapse
|
45
|
Du L, Chang H, Xu W, Zhang X, Yin L. Elevated chemokines and cytokines for eosinophils in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2021; 52:102940. [PMID: 33930716 DOI: 10.1016/j.msard.2021.102940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophil infiltration is one of the distinctive features in neuromyelitis optica spectrum disorders (NMOSD) but not in other demyelinating diseases including multiple sclerosis (MS). Eosinophils express the chemokine receptor CCR3, which is activated by eotaxins (eotaxin-1, -2, and -3) and monocyte chemoattractant protein (MCP)-4. We aimed to investigate the role of MCPs (MCP-1, -2, -3, and -4) and eotaxins in the acute phase of NMOSD. METHODS Levels of serum and cerebrospinal fluid (CSF) eotaxins, MCPs, interleukin (IL)-5, tumor necrosis factor (TNF)-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-6 were measured using the cytokine multiplex assay from 26 patients with NMOSD (13 with immunotherapy, 13 without immunotherapy), 9 patients with MS, and 9 patients with other noninflammatory neurological diseases (OND). Glial fibrillary acidic protein was assessed using ELISA. RESULTS Serum MCP-1 and CSF MCP-2 levels were significantly higher in patients with NMOSD than in OND. Moreover, serum MCP-4 and CSF eotaxin-2 and -3 levels were significantly higher in NMOSD patients compared to MS and OND. Serum MCP-1, -4 and CSF eotaxin-2, -3 levels were significantly correlated with the Expanded Disability Status Scale in NMOSD. TNF-α and GM-CSF, which stimulate the above chemokines, were higher in patients with NMOSD than those in OND. Moreover, serum MCP-1 and -4 were significantly increased by IL-5 and GM-CSF stimulation, but not by TNF-α and IL-6. Only CSF eotaxin-2 was significantly increased by GM-CSF. There were no significant differences in serum MCP-1 and -4 levels between NMOSD patients with and without immunotherapy. CONCLUSION These findings suggest that the elevated serum MCP-1, -4 and CSF eotaxin-2, -3 may be a key step in eosinophil recruitment in the acute phase of NMOSD.
Collapse
Affiliation(s)
- Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wangshu Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
46
|
Andreev D, Liu M, Kachler K, Llerins Perez M, Kirchner P, Kölle J, Gießl A, Rauber S, Song R, Aust O, Grüneboom A, Kleyer A, Cañete JD, Ekici A, Ramming A, Finotto S, Schett G, Bozec A. Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis. Ann Rheum Dis 2021; 80:451-468. [PMID: 33148700 DOI: 10.1136/annrheumdis-2020-218902] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Eosinophils possess pro-inflammatory functions in asthma. However, our recent studies have suggested that innate lymphoid cells type 2 (ILC2s) and eosinophils have proresolving properties in rheumatoid arthritis (RA). Nothing is known yet about the mechanisms determining the double-edged role of eosinophils. Therefore, we investigated whether asthma, a paradigm eosinophilic disease, can elicit resolution of chronic arthritis. METHODS Ovalbumin-triggered eosinophilic asthma was combined with K/BxN serum-induced arthritis, where lung and synovial eosinophil subsets were compared by single-cell RNA sequencing (scRNA-seq). To investigate the involvement of the ILC2-interleukin-5 (IL-5) axis, hydrodynamic injection (HDI) of IL-25 and IL-33 plasmids, IL-5 reporter mice and anti-IL-5 antibody treatment were used. In patients with RA, the presence of distinct eosinophil subsets was examined in peripheral blood and synovial tissue. Disease activity of patients with RA with concomitant asthma was monitored before and after mepolizumab (anti-IL-5 antibody) therapy. RESULTS The induction of eosinophilic asthma caused resolution of murine arthritis and joint tissue protection. ScRNA-seq revealed a specific subset of regulatory eosinophils (rEos) in the joints, distinct from inflammatory eosinophils in the lungs. Mechanistically, synovial rEos expanded on systemic upregulation of IL-5 released by lung ILC2s. Eosinophil depletion abolished the beneficial effect of asthma on arthritis. rEos were consistently present in the synovium of patients with RA in remission, but not in active stage. Remarkably, in patients with RA with concomitant asthma, mepolizumab treatment induced relapse of arthritis. CONCLUSION These findings point to a hitherto undiscovered proresolving signature in an eosinophil subset that stimulates arthritis resolution.
Collapse
Affiliation(s)
- Darja Andreev
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mengdan Liu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mireia Llerins Perez
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Kölle
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rui Song
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Aust
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Juan D Cañete
- Departamento de Reumatología, Hospital Clínic de Barcelona e IDIBAPS, Barcelona, Spain
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
47
|
Percopo CM, Limkar AR, Sek AC, Rosenberg HF. Detection of Mouse Eosinophils in Tissue by Flow Cytometry and Isolation by Fluorescence-Activated Cell Sorting (FACS). Methods Mol Biol 2021; 2241:49-58. [PMID: 33486727 DOI: 10.1007/978-1-0716-1095-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flow cytometry is a critical tool that can be employed to detect unique cells and to isolate cells from tissues based on their antigen profiles. While mouse eosinophils can be readily detected by one or more distinct antigen profiles, many of these strategies do not result in accurate eosinophil counts. We present here our basic protocol, which permits quantitative detection of eosinophils and isolation of eosinophils from bone marrow, spleen, and lung tissue of allergen-challenged wild-type and unchallenged IL5 transgenic mice. With small protocol variations, eosinophils can be isolated from small intestines and muscle tissue, the latter from infiltrates characteristic of muscular dystrophy (mdx) mice.
Collapse
Affiliation(s)
- Caroline M Percopo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ajinkya R Limkar
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Albert C Sek
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Gebremeskel S, Schanin J, Coyle KM, Butuci M, Luu T, Brock EC, Xu A, Wong A, Leung J, Korver W, Morin RD, Schleimer RP, Bochner BS, Youngblood BA. Mast Cell and Eosinophil Activation Are Associated With COVID-19 and TLR-Mediated Viral Inflammation: Implications for an Anti-Siglec-8 Antibody. Front Immunol 2021; 12:650331. [PMID: 33777047 PMCID: PMC7988091 DOI: 10.3389/fimmu.2021.650331] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production—effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.
Collapse
Affiliation(s)
| | | | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Research Centre, Simon Fraser University, Vancouver, BC, Canada
| | | | - Thuy Luu
- Allakos Inc., Redwood City, CA, United States
| | | | - Alan Xu
- Allakos Inc., Redwood City, CA, United States
| | - Alan Wong
- Allakos Inc., Redwood City, CA, United States
| | - John Leung
- Allakos Inc., Redwood City, CA, United States
| | | | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Research Centre, Simon Fraser University, Vancouver, BC, Canada
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | |
Collapse
|
49
|
Giotakis AI, Dudas J, Glueckert R, Dejaco D, Ingruber J, Fleischer F, Innerhofer V, Pinggera L, Bektic-Tadic L, Gabriel SAM, Riechelmann H. Characterization of epithelial cells, connective tissue cells and immune cells in human upper airway mucosa by immunofluorescence multichannel image cytometry: a pilot study. Histochem Cell Biol 2021; 155:405-421. [PMID: 33251550 PMCID: PMC8021535 DOI: 10.1007/s00418-020-01945-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Epithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of chronic rhinosinusitis (CRS). However, data of their distribution in upper airway mucosa are sparse. We aimed to provide quantitative, purely informative data on the distribution of these cell lineages and their coexpression patterns, which might help identifying, e.g., cells in the epithelium undergoing through epithelial-mesenchymal transition (EMT). For this purpose, we used immunofluorescence multichannel image cytometry (IMIC). We examined fixed paraffin-embedded tissue samples (FFPE) of six patients with chronic rhinosinusitis (CRS) and of three patients without CRS (controls). The direct-conjugated antibodies pancytokeratin, vimentin and CD45/CD18 were used for coexpression analysis in epithelial layer and lamina propria. Image acquisition and analysis were performed with TissueFAXS and StrataQuest, respectively. To distinguish positive from negative expression, a ratio between cell-specific immunostaining intensity and background was developed. Isotype controls were used as negative controls. Per patient, a 4.5-mm2 tissue area was scanned and a median of 14,875 cells was recognized. The most common cell types were cytokeratin-single-positive (26%), vimentin-single-positive (13%) and CD45/CD18-single-positive with CD45/CD18-vimentin-double-positive cells (29%). In the patients with CRS, CD45/CD18-single-positive cells were 3-6 times higher compared to the control patients. In the epithelial layer, cytokeratin-vimentin-double-positive EMT cells were observed 3-5 times higher in the patients with CRS than in the control patients. This study provided quantitative data for the distribution of crucial cell types in CRS. Future studies may focus on the distribution and coexpression patterns of different immune cells in CRS or even cancer tissue.
Collapse
Affiliation(s)
- Aris I Giotakis
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Ingruber
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Fleischer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Veronika Innerhofer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leyla Pinggera
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ljilja Bektic-Tadic
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A M Gabriel
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions. Blood 2021; 137:2958-2969. [PMID: 33598715 DOI: 10.1182/blood.2020010208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
Collapse
|