1
|
Hu W, Xiong Z, Meng X, Wu Y, Tong P, Gao J, Li X, Chen H. Lipid matrix-specific pretreatment method for enhancing the extractability and allergenicity maintenance of bovine milk allergens in ELISA detection. Food Chem 2024; 452:139462. [PMID: 38723563 DOI: 10.1016/j.foodchem.2024.139462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
The presence of various components in the food matrix makes allergen detection difficult and inaccurate, and pretreatment is an innovative breakthrough point. Food matrices were categorised based on their composition. Subsequently, a pretreatment method was established using a combination of ultrasound-assisted n-hexane degreasing and weakly alkaline extraction systems to enhance the detection accuracy of bovine milk allergens. Results showed that more allergens were obtained with less structural destruction, as demonstrated using immunological quantification and spectral analysis. Concurrently, allergenicity preservation was confirmed through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, a KU812 cell degranulation model, and western blotting. The method exhibited good accuracy (bias, 8.47%), repeatability (RSDr, 1.52%), and stability (RSDR, 5.65%). In foods with high lipid content, such as chocolate, the allergen content was 2.29-fold higher than that of commercial kits. Laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) analyses revealed a significant decrease in fat content after post-pretreatment using our method. In addition, colloidal stability surpassed that achieved using commercial kits, as indicated through the PSA and zeta potential results. The results demonstrated the superiority of the extractability and allergenicity maintenance of lipid matrix-specific pretreatment methods for improving the accuracy of ELISA based allergen detection in real food.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Ziyi Xiong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Han R, Zhu D, Sha J, Zhao B, Jin P, Meng C. Decoding the role of DNA methylation in allergic diseases: from pathogenesis to therapy. Cell Biosci 2024; 14:89. [PMID: 38965641 PMCID: PMC11225420 DOI: 10.1186/s13578-024-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.
Collapse
Affiliation(s)
- Ruiming Han
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Boning Zhao
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael ST NE, Atlanta, GA, 30322, USA.
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China.
| |
Collapse
|
3
|
Chong AC, Navarro-Triviño FJ, Su M, Park CO. Fungal Head and Neck Dermatitis: Current Understanding and Management. Clin Rev Allergy Immunol 2024; 66:363-375. [PMID: 39031274 PMCID: PMC11422441 DOI: 10.1007/s12016-024-09000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Head and neck dermatitis (HND) is a form of atopic dermatitis (AD) that affects the seborrheic areas of the body and causes greater quality of life detriments than other types of AD. HND can be challenging to treat since first-line topical therapies may be ineffective or intolerable for long-term use on areas affected by HND while dupilumab may cause dupilumab-associated HND (DAHND). Current evidence implicates fungi, particularly Malassezia spp., in the pathogenesis of HND. Penetration of fungal antigens through the defective AD skin barrier activates the innate and adaptive immune systems to cause cutaneous inflammation via the T helper (Th)17 and/or Th2 axes. Malassezia sensitization may distinguish HND from other forms of AD. Multiple double-blind, placebo-controlled trials have shown antifungals to benefit HND, yet the persistence of symptom relief with sustained use remains unclear. Oral antifungals appear more effective than topical antifungals but may be harmful with long-term use. DAHND may also be fungal-mediated given improvement with antifungals and evidence of an overactive immune response against Malassezia in these patients. Janus kinase inhibitors are effective for HND, including DAHND, but may cause significant side effects when administered systemically. OX40/OX40L inhibitors and tralokinumab may be promising options for HND on the horizon. Demographic and environmental factors influence the host mycobiome and should be considered in future precision-medicine approaches as microbiome composition and diversity are linked to severity of HND.
Collapse
Affiliation(s)
- Albert C Chong
- Department of Internal Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd., Scottsdale, AZ, 85259, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Francisco José Navarro-Triviño
- Department of Contact Eczema and Immunoallergic Diseases, Dermatology Service, Hospital Universitario San Cecilio, Granada, Spain
| | - Malcolm Su
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chang Ook Park
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Lin H, Del Rio Castillo AE, González VJ, Bonaccorso F, Vázquez E, Fadeel B, Bianco A. Cytotoxicity assessment of exfoliated MoS 2 using primary human mast cells and the progenitor cell-derived mast cell line LAD2. NANOSCALE ADVANCES 2024; 6:2419-2430. [PMID: 38694463 PMCID: PMC11059565 DOI: 10.1039/d3na00863k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Molybdenum disulfide is an emerging 2D material with several potential applications in medicine. Therefore, it is crucial to ascertain its biocompatibility. Mast cells are immune cells that are found in many organs and tissues in contact with the extracellular environment, and can be cultured from progenitor cells present in the bone marrow. Given the long period required for differentiation and proliferation of primary mast cells, human mast cell lines have emerged as a tractable model for biological and toxicological studies. Here, we compare two types of industrial MoS2 using CD34+-derived primary human mast cells and the LAD2 cell line. Minimal effects were observed on early-stage activation endpoints such as β-hexosaminidase release and expression of surface markers of mast cell activation. Transmission electron microscopy revealed limited uptake of the tested materials. Overall, MoS2 was found to be biocompatible, and the LAD2 cell line was validated as a useful in vitro model of mast cells.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS 67000 Strasbourg France
| | | | - Viviana Jehová González
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha Ciudad Real 13071 Spain
| | | | - Ester Vázquez
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha Ciudad Real 13071 Spain
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet 177 77 Stockholm Sweden
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS 67000 Strasbourg France
| |
Collapse
|
5
|
Chang YP, Tsai YH, Chen YM, Huang KT, Lee CP, Hsu PY, Chen HC, Lin MC, Chen YC. Upregulated microRNA-125b-5p in patients with asthma-COPD overlap mediates oxidative stress and late apoptosis via targeting IL6R/TRIAP1 signaling. Respir Res 2024; 25:64. [PMID: 38302925 PMCID: PMC10835813 DOI: 10.1186/s12931-024-02703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Among patients with chronic obstructive pulmonary disease (COPD), some have features of both asthma and COPD-a condition categorized as asthma-COPD overlap (ACO). Our aim was to determine whether asthma- or COPD-related microRNAs (miRNAs) play a role in the pathogenesis of ACO. METHODS A total of 22 healthy subjects and 27 patients with ACO were enrolled. We selected 6 miRNAs that were found to correlate with COPD and asthma. The expression of miRNAs and target genes was analyzed using quantitative reverse-transcriptase polymerase chain reaction. Cell apoptosis and intracellular reactive oxygen species production were evaluated using flow cytometry. In vitro human monocytic THP-1 cells and primary normal human bronchial epithelial (NHBE) cells under stimuli with cigarette smoke extract (CSE) or ovalbumin (OVA) allergen or both were used to verify the clinical findings. RESULTS We identified the upregulation of miR-125b-5p in patients with ACO and in THP-1 cells stimulated with CSE plus OVA allergen. We selected 16 genes related to the miR-125b-5p pathway and found that IL6R and TRIAP1 were both downregulated in patients with ACO and in THP-1 cells stimulated with CSE plus OVA. The percentage of late apoptotic cells increased in the THP-1 cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p small interfering RNA (siRNA). The percentage of reactive oxygen species-producing cells increased in the NHBE cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p siRNA. In NHBE cells, siRNA transfection reversed the upregulation of STAT3 under CSE+OVA stimulation. CONCLUSIONS Our study revealed that upregulation of miR-125b-5p in patients with ACO mediated late apoptosis in THP-1 cells and oxidative stress in NHBE cells via targeting IL6R and TRIAP1. STAT3 expression was also regulated by miR-125b-5p.
Collapse
Affiliation(s)
- Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Yi-Hsuan Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Yu-Mu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Hung-Chen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
| | - Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
| |
Collapse
|
6
|
Avey AM, Devos F, Roberts AG, Essawy ESE, Baar K. Inhibiting JAK1, not NF-κB, reverses the effect of pro-inflammatory cytokines on engineered human ligament function. Matrix Biol 2024; 125:100-112. [PMID: 38151137 DOI: 10.1016/j.matbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The role of inflammation in chronic tendon/ligament injury is hotly debated. There is less debate about inflammation following acute injury. To better understand the effect of acute inflammation, in this study we developed a multi-cytokine model of inflammatory tendinitis. The combined treatment with TNF-α, IL-1β, and IL-6, at dosages well below what are routinely used in vitro, decreased the mechanical properties and collagen content of engineered human ligaments. Treatment with this cytokine mixture resulted in an increase in phospho-NF-κB and MMP-1, did not affect procollagen production, and decreased STAT3 phosphorylation relative to controls. Using this more physiologically relevant model of acute inflammation, we inhibited NF-κB or JAK1 signaling in an attempt to reverse the negative effects of the cytokine mixture. Surprisingly, NF-κB inhibition led to an even greater decrease in mechanical function and collagen content. By contrast, inhibiting JAK1 led to an increase in mechanical properties, collagen content and thermal stability concomitant with a decrease in MMP-1. Our results suggest that inhibition of JAK1, not NF-κB, reverses the negative effects of pro-inflammatory cytokines on collagen content and mechanics in engineered human ligaments.
Collapse
Affiliation(s)
- Alec M Avey
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Florence Devos
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Albany G Roberts
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - El Sayed El Essawy
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Sport Psychology, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, United States; VA Northern California Health Care System, Mather, CA 95655, United States.
| |
Collapse
|
7
|
Park S, Lim J, Kim S, Jeon M, Baek H, Park W, Park J, Kim SN, Kang NG, Park CG, Kim JW. Anti-Inflammatory Artificial Extracellular Vesicles with Notable Inhibition of Particulate Matter-Induced Skin Inflammation and Barrier Function Impairment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59199-59208. [PMID: 37983083 DOI: 10.1021/acsami.3c14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Particulate matter (PM) exposure disrupts the skin barrier, causing cutaneous inflammation that may eventually contribute to the development of various skin diseases. Herein, we introduce anti-inflammatory artificial extracellular vesicles (AEVs) fabricated through cell extrusion using the biosurfactant PEGylated mannosylerythritol lipid (P-MEL), hereafter named AEVP-MEL. The P-MEL has anti-inflammatory abilities with demonstrated efficacy in inhibiting the secretion of pro-inflammatory mediators. Mechanistically, AEVP-MEL enhanced anti-inflammatory response by inhibiting the mitogen-activated protein kinase (MAPK) pathway and decreasing the release of inflammatory mediators such as reactive oxygen species (ROS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in human keratinocytes. Moreover, AEVP-MEL promoted increased expression levels of skin barrier proteins (e.g., involucrin, IVL) and water-proteins (e.g., aquaporin 3, AQP3). In vivo studies revealed that repeated PM exposure to intact skin resulted in cutaneous inflammatory responses, including increased skin thickness (hyperkeratosis) and mast cell infiltration. Importantly, our data showed that the AEVP-MEL treatment significantly restored immune homeostasis in the skin affected by PM-induced inflammation and enhanced the intrinsic skin barrier function. This study highlights the potential of the AEVP-MEL in promoting skin health against PM exposure and its promising implications for the prevention and treatment of PM-related skin disorders.
Collapse
Affiliation(s)
- Simon Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minha Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu 96813, United States
| | - Se Na Kim
- Research and Development Center, MediArk Inc.,Cheongju 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nae-Gyu Kang
- R&D Campus, LG Household & Health Care, Seoul 07795, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Jafarzadeh A, Chauhan P, Nemati M, Jafarzadeh S, Yoshimura A. Aberrant expression of suppressor of cytokine signaling (SOCS) molecules contributes to the development of allergic diseases. Clin Exp Allergy 2023; 53:1147-1161. [PMID: 37641429 DOI: 10.1111/cea.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Chauhan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Conesa MPB, Blixt FW, Peesh P, Khan R, Korf J, Lee J, Jagadeesan G, Andersohn A, Das TK, Tan C, Di Gesu C, Colpo GD, Moruno-Manchón JF, McCullough LD, Bryan R, Ganesh BP. Stabilizing histamine release in gut mast cells mitigates peripheral and central inflammation after stroke. J Neuroinflammation 2023; 20:230. [PMID: 37805585 PMCID: PMC10560441 DOI: 10.1186/s12974-023-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 10/09/2023] Open
Abstract
Stroke is the most common cause of long-term disability and places a high economic burden on the global healthcare system. Functional outcomes from stroke are largely determined by the extent of ischemic injury, however, there is growing recognition that systemic inflammatory responses also contribute to outcomes. Mast cells (MCs) rapidly respond to injury and release histamine (HA), a pro-inflammatory neurotransmitter that enhances inflammation. The gut serves as a major reservoir of HA. We hypothesized that cromolyn, a mast cell stabilizer that prevents the release of inflammatory mediators, would decrease peripheral and central inflammation, reduce MC trafficking to the brain, and improve stroke outcomes. We used the transient middle cerebral artery occlusion (MCAO) model of ischemic stroke in aged (18 mo) male mice to investigate the role of MC in neuroinflammation post-stroke. After MCAO we treated mice with 25 mg/kg body weight of cromolyn (MC stabilizer) by oral gavage. Cromolyn was administered at 3 h, 10 h, 24 h and every 24 h for 3 days post-stroke. Three control groups were used. One group underwent a sham surgery and was treated with cromolyn, one received sham surgery with PBS vehicle and the third underwent MCAO with PBS vehicle. Mice were euthanized at 24 h and 3 days post-stroke. Cromolyn administration significantly reduced MC numbers in the brain at both 24 h and 3 days post-stroke. Infarct volume was not significantly different between groups, however improved functional outcomes were seen at 3 days post-stroke in mice that received cromolyn. Treatment with cromolyn reduced plasma histamine and IL-6 levels in both the 24-h and 3-day cohorts. Gut MCs numbers were significantly reduced after cromolyn treatment at 24 h and 3 days after stroke. To determine if MC trafficking from the gut to the brain occurred after injury, GFP+MCs were adoptively transferred to c-kit-/- MC knock-out animals prior to MCAO. 24 h after stroke, elevated MC recruitment was seen in the ischemic brain. Preventing MC histamine release by cromolyn improved gut barrier integrity and an improvement in stroke-induced dysbiosis was seen with treatment. Our results show that preventing MC histamine release possesses prevents post-stroke neuroinflammation and improves neurological and functional outcomes.
Collapse
Affiliation(s)
- Maria P Blasco Conesa
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Frank W Blixt
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Pedram Peesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Romeesa Khan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Janelle Korf
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gayathri Jagadeesan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Alexander Andersohn
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Tushar K Das
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Chunfeng Tan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudia Di Gesu
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | | | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Robert Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
11
|
Lyons JJ, Farkas H, Germenis AE, Rijavec M, Smith TD, Valent P. Genetic Variants Leading to Urticaria and Angioedema and Associated Biomarkers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2286-2301. [PMID: 37263349 DOI: 10.1016/j.jaip.2023.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Advances in next generation sequencing technologies, as well as their expanded accessibility and clinical use over the past 2 decades, have led to an exponential increase in the number of identified single gene disorders. Among these are primary atopic disorders-inborn errors of immunity resulting in severe allergic phenotypes as a primary presenting feature. Two cardinal aspects of type I immediate hypersensitivity allergic reactions are hives and angioedema. Mast cells (MCs) are frequent primary drivers of these symptoms, but other cells have also been implicated. Even where MC degranulation is believed to be the cause, mediator-induced symptoms may greatly vary among individuals. Angioedema-particularly in the absence of hives-may also be caused by hereditary angioedema conditions resulting from aberrant regulation of contact system activation and excessive bradykinin generation or impairment of vascular integrity. In these patients, swelling can affect unpredictable locations and fail to respond to MC-directed therapies. Genetic variants have helped delineate key pathways in the etiology of urticaria and nonatopic angioedema and led to the development of targeted therapies. Herein, we describe the currently known inherited and acquired genetic causes for these conditions, highlight specific features in their clinical presentations, and discuss the benefits and limitations of biomarkers that can help distinguish them.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, School of Medicine, University of Thessaly, Larissa, Greece
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tukisa D Smith
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Kocatürk E, Muñoz M, Elieh-Ali-Komi D, Criado PR, Peter J, Kolkhir P, Can P, Wedi B, Rudenko M, Gotua M, Ensina LF, Grattan C, Maurer M. How Infection and Vaccination Are Linked to Acute and Chronic Urticaria: A Special Focus on COVID-19. Viruses 2023; 15:1585. [PMID: 37515272 PMCID: PMC10386070 DOI: 10.3390/v15071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Since more than a century ago, there has been awareness of the connection between viral infections and the onset and exacerbation of urticaria. Our knowledge about the role of viral infection and vaccination in acute and chronic urticaria improved as a result of the COVID-19 pandemic but it has also highlighted knowledge gaps. Viral infections, especially respiratory tract infections like COVID-19, can trigger the onset of acute urticaria (AU) and the exacerbation of chronic urticaria (CU). Less frequently, vaccination against viruses including SARS-CoV-2 can also lead to new onset urticaria as well as worsening of CU in minority. Here, with a particular focus on COVID-19, we review what is known about the role of viral infections and vaccinations as triggers and causes of acute and chronic urticaria. We also discuss possible mechanistic pathways and outline the unmet needs in our knowledge. Although the underlying mechanisms are not clearly understood, it is believed that viral signals, medications, and stress can activate skin mast cells (MCs). Further studies are needed to fully understand the relevance of viral infections and vaccinations in acute and chronic urticaria and to better clarify causal pathways.
Collapse
Affiliation(s)
- Emek Kocatürk
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
- Department of Dermatology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Melba Muñoz
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
- Department of Dermatology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Daniel Elieh-Ali-Komi
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
- Department of Dermatology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Paulo Ricardo Criado
- Department of Dermatology, School of Medicine, Centro Universitário Faculdade de Medicina do ABC (CUFMABC), Santo André 09060-870, Brazil
| | - Jonny Peter
- Lung Institute, Division of Allergy and Clinical Immunology, Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Pavel Kolkhir
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
| | - Pelin Can
- Department of Dermatology, Bahçeşehir University, Istanbul 34070, Turkey;
| | - Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, 30625 Hannover, Germany
| | | | - Maia Gotua
- Center of Allergy and Immunology, David Tvildiani Medical University, Tbilisi 0159, Georgia
| | - Luis Felipe Ensina
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo 01308-000, Brazil
| | - Clive Grattan
- Guy’s Hospital, St John’s Institute of Dermatology, London SE1 7EP, UK
| | - Marcus Maurer
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
| |
Collapse
|
13
|
Liu J, Huang X, Chen C, Wang Z, Huang Z, Qin M, He F, Tang B, Long C, Hu H, Pan S, Wu J, Tang W. Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction. J Transl Med 2023; 21:373. [PMID: 37291572 PMCID: PMC10249256 DOI: 10.1186/s12967-023-04119-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/09/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE The relationship between intestinal microbiome and colorectal cancer (CRC) progression is unclear. This study aims to identify the intestinal microbiome associated with CRC progression and construct predictive labels to support the accurate assessment and treatment of CRC. METHOD The 192 patients included in the study were divided into stage I-II and stage III-IV CRC patients according to the pathological stages, and preoperative stools were collected from both groups for 16S rDNA sequencing of the intestinal microbiota. Pearson correlation and Spearman correlation coefficient analysis were used to analyze the differential intestinal microbiome and the correlation with tumor microenvironment and to predict the functional pathway. XGBoost model (XGB) and Random Forest model (RF) were used to construct the microbiome-based signature. The total RNA extraction from 17 CRC tumor simples was used for transcriptome sequencing. RESULT The Simpson index of intestinal microbiome in stage III-IV CRC were significantly lower than those in stage I-II CRC. Proteus, Parabacteroides, Alistipes and Ruminococcus etc. are significantly enriched genus in feces of CRC patients with stage III-IV. ko00514: Other types of O - glycan biosynthesis pathway is relevant with CRC progression. Alistipes indistinctus was positively correlated with mast cells, immune activators IL-6 and IL6R, and GOBP_PROTEIN_FOLDING_IN_ENDOPLASMIC_RETICULUM dominantly. The Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed with 42 CRC progression-associated differential bacteria were effective in distinguishing CRC patients between stage I-II and stage III-IV. CONCLUSIONS The abundance and diversity of intestinal microbiome may increase gradually with the occurrence and progression of CRC. Elevated fetal abundance of Proteus, Parabacteroides, Alistipes and Ruminococcus may contribute to CRC progression. Enhanced synthesis of O - glycans may result in CRC progression. Alistipes indistinctus may play a facilitated role in mast cell maturation by boosting IL-6 production. Alistipes indistinctus may work in the correct folding of endoplasmic reticulum proteins in CRC, reducing ER stress and prompting the survival and deterioration of CRC, which may owe to the enhanced PERK expression and activation of downstream UPR by Alistipes indistinctus. The CRC progression-associated differential intestinal microbiome identified in our study can be served as potential microbial markers for CRC staging prediction.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hong Hu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Shuibo Pan
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Junduan Wu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| |
Collapse
|
14
|
Gugliandolo E, Macrì F, Fusco R, Siracusa R, Cordaro M, D'amico R, Peritore AF, Impellizzeri D, Genovese T, Cuzzocrea S, Di Paola R, Crupi R. Inhibiting IL-6 in medicine: a new twist to sustain inhibition of his cytokine tin the therapy of Pulmonary Arterial Hypertension. Pharmacol Res 2023; 192:106750. [PMID: 37004831 DOI: 10.1016/j.phrs.2023.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, progressive disease characterized by an increase in blood pressure in the lungs' arteries. It can occur in a variety of species, including humans, dogs, cats, and horses. To date, PAH has a high mortality rate in both veterinary and human medicine, often due to complications such as heart failure. The complex pathological mechanisms of PAH involve multiple cellular signalling pathways at various levels. IL-6 is a powerful pleiotropic cytokine that regulates several phases of immune response, inflammation, and tissue remodelling. The hypothesis of this study was that the use of an IL-6 antagonist in PAH could interrupt or mitigate the cascade of events that leads to the progression of the disease and the worsening of clinical outcome, as well as tissue remodelling. In this study, we used two pharmacological protocols with an IL-6 receptor antagonist in a monocrotaline-induced PAH model in rats. Our results showed that the use of an IL-6 receptor antagonist had a significant protective effect, ameliorating both haemodynamic parameters, lung and cardiac function, tissue remodelling, and the inflammation associated with PAH. The results of this study suggest that the inhibition IL-6 could be a useful pharmacological strategy in PAH, in both human and veterinary medicine.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Ramona D'amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| |
Collapse
|
15
|
Liu R, Lv D, Cao L, Liu Y, Wen X, Jiang Y, Xu J, Qin J, Qin P. The hub genes and their potential regulatory mechanisms in chronic spontaneous urticaria revealed by integrated transcriptional expression analysis. Exp Dermatol 2023. [PMID: 36856573 DOI: 10.1111/exd.14785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Chronic spontaneous urticaria (CSU) is a recurrent disease characterized by wheals and or angioedema, and its pathogenesis is still unclear. The microarray datasets of skin tissue from CSU patients and healthy controls were integrated and analysed in Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified using the NetworkAnalyst tool. Then, the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Subsequently, a protein-protein interaction (PPI) network of DEGs was constructed by STRING and the related hub genes were identified through the MOCDE tool. The potential miRNAs targeting hub genes were predicted based on the intersection of three online databases, namely TargetScanHuman, TargetBase and miRNet. Differentially expressed lncRNAs (DElncRNAs) was performed using the GEO2R tool. The potential miRNAs targeting DElncRNAs were predicted through miRNet. Finally, the shared miRNAs targeting both hub genes and DElncRNAs were used to construct an mRNA/miRNA/lncRNA regulatory network. A total of 296 DEGs were obtained, which were mainly enriched in inflammatory and immune responses. Further, 14 hub genes were identified by the PPI network of DEGs. Clinical correlation analysis showed that the mRNA expressions of S100A7, S100A8, S100A9, S100A12, IL6 and SOCS3 in CSU were positively correlated with the 7-day urticaria activity score (UAS7), and their potential diagnostic value was supported by the receiver operating characteristic curve (ROC) analysis. Five up-regulated lncRNAs in the cytoplasm were obtained by DElncRNAs analysis. The ROC analysis showed that PVT1, SNHG3 and ZBTB20 - AS1 was of potential diagnostic value for CSU. Eight shared miRNAs targeting both hub genes and DElncRNAs were identified and used to construct a competing endogenous RNA (ceRNA) network. It was found that the IL-6/miR - 149 - 5p/ZBTB20 - AS1 axis might play an important role in the activation of mast cells in CSU. IL-6 and its related regulatory molecules may be used as potential diagnostic markers and therapeutic targets for CSU.
Collapse
Affiliation(s)
- Runqiu Liu
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Dong Lv
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Lihua Cao
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Yu Liu
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Xiaoting Wen
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Yannan Jiang
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Jiandan Xu
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| | - Jie Qin
- Department of Pediatrics, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Pediatrics, The First people's Hospital of Yancheng, Yancheng, China
| | - Pingping Qin
- Department of Dermatology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China.,Department of Dermatology, The First people's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
16
|
How an Immune-Factor-Based Formulation of Micro-Immunotherapy Could Interfere with the Physiological Processes Involved in the Atopic March. Int J Mol Sci 2023; 24:ijms24021483. [PMID: 36675006 PMCID: PMC9864899 DOI: 10.3390/ijms24021483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Allergic diseases consist of improper inflammatory reactions to antigens and are currently an important healthcare concern, especially considering their increasing worldwide development in recent decades. The "atopic march" defines the paradigm of allergic diseases occurring in chronological order and displaying specific spatial manifestations, as they usually start as atopic dermatitis (AD) and food allergies during infancy and progressively evolve into allergic asthma (AA) and allergic rhinitis (AR) or rhino-conjunctivitis in childhood. Many immune cell subtypes and inflammatory factors are involved in these hypersensitivity reactions. In particular, the T helpers 2 (Th2) subset, through its cytokine signatures made of interleukins (ILs), such as IL-4, IL-5, IL-10, and IL-13, as well as mast cells and their related histamine pathways, contribute greatly to the perpetuation and evolution of the atopic march. By providing low doses (LD) and ultra-low doses (ULD) of ILs and immune factors to the body, micro-immunotherapy (MI) constitutes an interesting therapeutic strategy for the management of the atopic march and its symptoms. One of the aims of this review is to shed light on the current concept of the atopic march and the underlying immune reactions occurring during the IgE-mediated responses. Moreover, the different classes of traditional and innovative treatments employed in allergic diseases will also be discussed, with a special emphasis on the potential benefits of the MI medicine 2LALERG® formulation in this context.
Collapse
|
17
|
Gregorius J, Brenner T. [Pathophysiology of sepsis]. Anasthesiol Intensivmed Notfallmed Schmerzther 2023; 58:13-27. [PMID: 36623527 DOI: 10.1055/a-1813-2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Up to now, sepsis is one of the most threatening diseases and its therapy remains challenging. Sepsis is currently defined as a severely dysregulated immune response to an infection resulting in organ dysfunction. The pathophysiology is mainly driven by exogenous PAMPs ("pathogen-associated molecular patterns") and endogenous DAMPs ("damage-associated molecular patterns"), which can activate PRRs ("pattern recognition receptors") on different cell types (mainly immune cells), leading to the initiation of manifold downstream pathways and a perpetuation of patients' immune response. Sepsis is neither an exclusive pro- nor an anti-inflammatory disease: both processes take place in parallel, resulting in an individual immunologic disease state depending on the severity of each component at different time points. Septic shock is a complex disorder of the macro- and microcirculation, provoking a severe lack of oxygenation further aggravating sepsis defining organ dysfunctions. An in-depth knowledge of the heterogeneity and the time-dependency of the septic immunopathology will be essential for the design of future sepsis trials and therapy planning in patients with sepsis. The big aim is to achieve a more individualized treatment strategy in patients suffering from sepsis or septic shock.
Collapse
|
18
|
Wang R, Zhao S, Chen X, Xiao Z, Wen X, Zhong X, Li S, Cheng H, Huang G. Molecular mechanisms involved in the IL-6-mediated upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) expression in the chorionic villi and decidua of women in early pregnancy. BMC Pregnancy Childbirth 2022; 22:983. [PMID: 36587196 PMCID: PMC9805015 DOI: 10.1186/s12884-022-05307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND IL-6 induces the upregulation of indoleamine 2,3-dioxygenase (IDO1) at the maternal-foetal interface, but the regulation mechanisms of IDO1 by IL-6 at this interface have not been fully understood. METHODS Western blotting, qRT-PCR and/or immunohistochemistry were employed to measure the expression of IDO1, IL-6, SHP-1/2, SOCS3 and STAT3/p (STAT3 and pSTAT3) in tissues of chorionic villi and decidua (TCVD) in vivo and in cultured TCVD that were treated with IL-6 in the presence or absence of an IL-6 inhibitor. RESULTS Mutually positive relationships among the protein levels of IL-6, IDO1, SHP-1/2 and STAT3/p was observed, and the expression of IDO1, SHP-1/2 and STAT3/p was increased in a dose-dependent manner in TCVD in vivo and in cultured TCVD treated with IL-6 at increasing concentrations (0-100 ng/ml). The level of IL-6 was negatively related to SOCS3 level in TCVD. The expression of SOCS3 was increased in a dose-dependent manner, and SOCS3 level was positively correlated with SHP-1, SHP-2 and STAT3/p level in cultured TCVD treated with 0-2 ng/ml IL-6; however, opposite results were observed after treatment with 2-100 ng/ml IL-6. The IL-6-induced upregulation of IDO1, SHP-1, SHP-2 and STAT3/p expression could be reversed, while the IL-6-induced upregulation of SOCS3 expression was exacerbated by Corylifol A. CONCLUSIONS In normal pregnancy, IL-6 upregulates the expression of IDO1 by promoting SHP-1/2 expression via STAT3/p and simultaneously negatively regulates the expression of SOCS3. High expression of IL-6 causes the upregulation of IDO1 expression and the downregulation of SOCS-3 expression, which may be beneficial for maintaining immunological tolerance.
Collapse
Affiliation(s)
- Rui Wang
- grid.452244.1Reproductive Medicine Center, Department of Obstetrics and Gynecology, The affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Shuyun Zhao
- grid.452244.1Reproductive Medicine Center, Department of Obstetrics and Gynecology, The affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Xiaojuan Chen
- grid.452244.1Department of Hyperbaric Oxygen Chamber, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Ziwen Xiao
- grid.452244.1Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Xinghui Wen
- grid.452244.1Reproductive Medicine Center, Department of Obstetrics and Gynecology, The affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Xingming Zhong
- Family Planning Research Institute of Guangdong, Guangzhou, 510600, Guangdong Province China
| | - Shixiang Li
- grid.452244.1Reproductive Medicine Center, Department of Obstetrics and Gynecology, The affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Hui Cheng
- grid.452244.1Reproductive Medicine Center, Department of Obstetrics and Gynecology, The affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| | - Guanyou Huang
- grid.452244.1Reproductive Medicine Center, Department of Obstetrics and Gynecology, The affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou Province China
| |
Collapse
|
19
|
Stakheev D, Taborska P, Kalkusova K, Bartunkova J, Smrz D. LL-37 as a Powerful Molecular Tool for Boosting the Performance of Ex Vivo-Produced Human Dendritic Cells for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122747. [PMID: 36559241 PMCID: PMC9780902 DOI: 10.3390/pharmaceutics14122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Ex vivo-produced dendritic cells (DCs) constitute the core of active cellular immunotherapy (ACI) for cancer treatment. After many disappointments in clinical trials, the current protocols for their preparation are attempting to boost their therapeutic efficacy by enhancing their functionality towards Th1 response and capability to induce the expansion of cytotoxic tumor-specific CD8+ T cells. LL-37 is an antimicrobial peptide with strong immunomodulatory potential. This potential was previously found to either enhance or suppress the desired anti-tumor DC functionality when used at different phases of their ex vivo production. In this work, we show that LL-37 can be implemented during the whole process of DC production in a way that allows LL-37 to enhance the anti-tumor functionality of produced DCs. We found that the supplementation of LL-37 during the differentiation of monocyte-derived DCs showed only a tendency to enhance their in vitro-induced lymphocyte enrichment with CD8+ T cells. The supplementation of LL-37 also during the process of DC antigen loading (pulsation) and maturation significantly enhanced the cell culture enrichment with CD8+ T cells. Moreover, this enrichment was also associated with the downregulated expression of PD-1 in CD8+ T cells, significantly higher frequency of tumor cell-reactive CD8+ T cells, and superior in vitro cytotoxicity against tumor cells. These data showed that LL-37 implementation into the whole process of the ex vivo production of DCs could significantly boost their anti-tumor performance in ACI.
Collapse
|
20
|
Sakita JY, Elias-Oliveira J, Carlos D, de Souza Santos E, Almeida LY, Malta TM, Brunaldi MO, Albuquerque S, Araújo Silva CL, Andrade MV, Bonato VLD, Garcia SB, Cunha FQ, Cebinelli GCM, Martins RB, Matthews J, Colli L, Martin FL, Uyemura SA, Kannen V. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer 2022; 10:jitc-2022-004653. [PMID: 36220303 PMCID: PMC9557261 DOI: 10.1136/jitc-2022-004653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high mortality rate and can develop in either colitis-dependent (colitis-associated (CA)-CRC) or colitis-independent (sporadic (s)CRC) manner. There has been a significant debate about whether mast cells (MCs) promote or inhibit the development of CRC. Herein we investigated MC activity throughout the multistepped development of CRC in both human patients and animal models. Methods We analyzed human patient matched samples of healthy colon vs CRC tissue alongside conducting a The Cancer Genome Atlas-based immunogenomic analysis and multiple experiments employing genetically engineered mouse (GEM) models. Results Analyzing human CRC samples revealed that MCs can be active or inactive in this disease. An activated MC population decreased the number of tumor-residing CD8 T cells. In mice, MC deficiency decreased the development of CA-CRC lesions, while it increased the density of tumor-based CD8 infiltration. Furthermore, co-culture experiments revealed that tumor-primed MCs promote apoptosis in CRC cells. In MC-deficient mice, we found that MCs inhibited the development of sCRC lesions. Further exploration of this with several GEM models confirmed that different immune responses alter and are altered by MC activity, which directly alters colon tumorigenesis. Since rescuing MC activity with bone marrow transplantation in MC-deficient mice or pharmacologically inhibiting MC effects impacts the development of sCRC lesions, we explored its therapeutic potential against CRC. MC activity promoted CRC cell engraftment by inhibiting CD8+ cell infiltration in tumors, pharmacologically blocking it inhibits the ability of allograft tumors to develop. This therapeutic strategy potentiated the cytotoxic activity of fluorouracil chemotherapy. Conclusion Therefore, we suggest that MCs have a dual role throughout CRC development and are potential druggable targets against this disease.
Collapse
Affiliation(s)
- Juliana Y Sakita
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Daniela Carlos
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Emerson de Souza Santos
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tathiane M Malta
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariângela O Brunaldi
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Albuquerque
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Marcus V Andrade
- Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vania L D Bonato
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Britto Garcia
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Ronaldo B Martins
- Department of Cell and Molecular Biology, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Nutrition, University of Oslo, Oslo, Norway
| | - Leandro Colli
- Medical Imaging, Hematology, and Oncology, University of Sao Paulo, Sao Paulo, Brazil
| | - Francis L Martin
- Biocel Ltd, Hull, UK,Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Kannen
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil,Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors. Int J Mol Sci 2022; 23:ijms231911080. [PMID: 36232398 PMCID: PMC9569882 DOI: 10.3390/ijms231911080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Sindija Smite
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Elea Darras
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: ; Tel.: +420-224-435-968; Fax: +420-224-435-962
| |
Collapse
|
22
|
Wu C, Boey D, Bril O, Grootens J, Vijayabaskar M, Sorini C, Ekoff M, Wilson NK, Ungerstedt JS, Nilsson G, Dahlin JS. Single-cell transcriptomics reveals the identity and regulators of human mast cell progenitors. Blood Adv 2022; 6:4439-4449. [PMID: 35500226 PMCID: PMC9636317 DOI: 10.1182/bloodadvances.2022006969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Mast cell accumulation is a hallmark of a number of diseases, including allergic asthma and systemic mastocytosis. Immunoglobulin E-mediated crosslinking of the FcεRI receptors causes mast cell activation and contributes to disease pathogenesis. The mast cell lineage is one of the least studied among the hematopoietic cell lineages, and controversies remain about whether FcεRI expression appears during the mast cell progenitor stage or during terminal mast cell maturation. Here, we used single-cell transcriptomics analysis to reveal a temporal association between the appearance of FcεRI and the mast cell gene signature in CD34+ hematopoietic progenitors in adult peripheral blood. In agreement with these data, the FcεRI+ hematopoietic progenitors formed morphologically, phenotypically, and functionally mature mast cells in long-term culture assays. Single-cell transcriptomics analysis further revealed the expression patterns of prospective cytokine receptors regulating development of mast cell progenitors. Culture assays showed that interleukin-3 (IL-3) and IL-5 promoted disparate effects on progenitor cell proliferation and survival, respectively, whereas IL-33 caused robust FcεRI downregulation. Taken together, we showed that FcεRI expression appears at the progenitor stage of mast cell differentiation in peripheral blood. We also showed that external stimuli regulate FcεRI expression of mast cell progenitors, providing a possible explanation for the variable FcεRI expression levels during mast cell development.
Collapse
Affiliation(s)
- Chenyan Wu
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daryl Boey
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Oscar Bril
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jennine Grootens
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M.S. Vijayabaskar
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Sorini
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Maria Ekoff
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nicola K. Wilson
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Johanna S. Ungerstedt
- Hematology and Regenerative Medicine, HERM, Department of Medicine Huddinge, Karolinska Institutet and ME Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Nilsson
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim S. Dahlin
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
McCallion A, Nasirzadeh Y, Lingegowda H, Miller JE, Khalaj K, Ahn S, Monsanto SP, Bidarimath M, Sisnett DJ, Craig AW, Young SL, Lessey BA, Koti M, Tayade C. Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology. Front Immunol 2022; 13:961599. [PMID: 36016927 PMCID: PMC9396281 DOI: 10.3389/fimmu.2022.961599] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is an estrogen dependent, chronic inflammatory disease characterized by the growth of endometrial lining outside of the uterus. Mast cells have emerged as key players in regulating not only allergic responses but also other mechanisms such as angiogenesis, fibrosis, and pain. The influence of estrogen on mast cell function has also been recognized as a potential factor driving disease pathophysiology in number of allergic and chronic inflammatory conditions. However, precise information is lacking on the cross talk between endocrine and immune factors within the endometriotic lesions and whether that contributes to the involvement of mast cells with disease pathophysiology. In this study, we observed a significant increase in mast cell numbers within endometriotic lesions compared to matched eutopic endometrium from the same patients. Compared to eutopic endometrium, endometriotic lesions had significantly higher levels of stem cell factor (SCF), a potent growth factor critical for mast cell expansion, differentiation, and survival for tissue resident mast cells. Targeted mRNA Q-PCR array revealed that the endometriotic lesions harbour microenvironment (upregulation of CPA3, VCAM1, CCL2, CMA1, CCR1, and KITLG) that is conducive to mast cells recruitment and subsequent differentiation. To examine cross-talk of mast cells within the endometriotic lesion microenvironment, endometriotic epithelial cells (12Z) and endometrial stromal cells (hESC) incubated with mast cell-conditioned media showed significantly increased production of pro-inflammatory and chemokinetic cytokines. To further understand the impact of estrogen on mast cells in endometriosis, we induced endometriosis in C57BL/6 mice. Mature mast cells were significantly higher in peritoneal fluid of estrogen-treated mice compared to untreated mice within the sham operated groups. Mouse endometriotic lesion tissue revealed several genes (qRT-PCR) relevant in mast cell biology significantly upregulated in the estrogen treated, endometriosis-induced group compared to control endometrium. The endometriotic lesions from estrogen treated mice also had significantly higher density of Alcian blue stained mast cells compared to untreated lesions or control endometrium. Collectively, these findings suggest that endometriotic lesions provide a microenvironment necessary for recruitment and differentiation of mast cells. In turn, mast cells potentially release pro-inflammatory mediators that contribute to chronic pelvic pain and endometriosis disease progression.
Collapse
Affiliation(s)
- Alison McCallion
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Yasmin Nasirzadeh
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | | | - Jessica E. Miller
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - SooHyun Ahn
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Stephany P. Monsanto
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Danielle J. Sisnett
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Andrew W. Craig
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, Canada
| | - Steven L. Young
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, United States
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, United States
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Chandrakant Tayade,
| |
Collapse
|
24
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
25
|
Jiang L, Zeng Y, Ai L, Yan H, Yang X, Luo P, Yang B, Xu Z, He Q. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib. Biochem Pharmacol 2022; 201:115105. [PMID: 35617997 DOI: 10.1016/j.bcp.2022.115105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
The application of lapatinib, a widely used dual inhibitor of human epidermal growth factor receptor 1 (EGFR/ERBB1) and 2 (HER2/ERBB2), has been seriously limited due to cutaneous toxicity. However, the specific mechanism of lapatinib-induced cutaneous toxicity has not been clarified, leading to the lack of an effective strategy to improve clinical safety. Here, we found that lapatinib could induce mitochondrial dysfunction, lead to DNA damage and ultimately cause apoptosis of keratinocytes. In addition, we found that lapatinib could induce an aberrant immune response and promote the release of inflammatory factors in vitro and in vivo. Mechanistically, downregulated expression of the DNA repair protein HMGB1 played a critical role in these toxic reaction processes. Overexpression of HMGB1 inhibited keratinocyte apoptosis and inflammatory reactions. Therefore, restoring HMGB1 expression might be an effective remedy against lapatinib-induced cutaneous toxicity. Finally, we found that saikosaponin A could significantly rescue the reduced HMGB1 transcription, which could alleviate lapatinib-induced DNA damage, inhibit keratinocyte apoptosis and further prevent the toxicity of lapatinib in mice. Collectively, our study might bring new hope to clinicians and tumor patients and shed new light on the prevention of cutaneous adverse drug reactions induced by EGFR inhibitors.
Collapse
Affiliation(s)
- Liyu Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, P.R. China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Leilei Ai
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, P.R. China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, P.R. China.
| |
Collapse
|
26
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
27
|
Flow-based allergen testing: can mast cells beat basophils? Clin Chim Acta 2022; 532:64-71. [DOI: 10.1016/j.cca.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
|
28
|
Wechsler JB, Butuci M, Wong A, Kamboj AP, Youngblood BA. Mast cell activation is associated with post-acute COVID-19 syndrome. Allergy 2022; 77:1288-1291. [PMID: 34820848 PMCID: PMC9299596 DOI: 10.1111/all.15188] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Joshua B. Wechsler
- Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | | | - Alan Wong
- Allakos, Inc. Redwood City California USA
| | | | | |
Collapse
|
29
|
Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the Microbiome, Environment, and Genetics to Mucosal Type 2 Immunity and Anaphylaxis in a Murine Food Allergy Model. FRONTIERS IN ALLERGY 2022; 3:851993. [PMID: 35769569 PMCID: PMC9234882 DOI: 10.3389/falgy.2022.851993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
There is heterogeneity inherent in the immune responses of individual mice in murine models of food allergy, including anaphylaxis, similar to the clinical heterogeneity observed in humans with food allergies to a defined food. One major driver of this heterogeneity may be differences in the microbiome between sensitized individuals. Our laboratory and others have reported that disruption of the microbiome (dysbiosis) by broad spectrum antibiotics and/or yeast colonization can alter systemic immunity and favor the development of mucosal Type 2 immunity to aeroallergens. Our objective was to use a well-characterized murine model (Balb/c mice) of food allergies (chicken egg ovalbumin, OVA) and determine if antibiotic-mediated dysbiosis (including C. albicans colonization) could enhance the manifestation of food allergies. Furthermore, we sought to identify elements of the microbiome and host response that were associated with this heterogeneity in the anaphylactic reaction between individual food allergen-sensitized mice. In our dataset, the intensity of the anaphylactic reactions was most strongly associated with a disrupted microbiome that included colonization by C. albicans, loss of a specific Lachnoclostridium species (tentatively, Lachnoclostridium YL32), development of a highly polarized Type 2 response in the intestinal mucosa and underlying tissue, and activation of mucosal mast cells. Serum levels of allergen-specific IgE were not predictive of the response and a complete absence of a microbiome did not fully recapitulate the response. Conventionalization of germ-free mice resulted in Akkermansia muciniphila outgrowth and a higher degree of heterogeneity in the allergic response. C57BL/6 mice remained resistant even under the same dysbiosis-inducing antibiotic regimens, while changes in the microbiome markedly altered the reactivity of Balb/c mice to OVA, as noted above. Strikingly, we also observed that genetically identical mice from different rooms in our vivarium develop different levels of a Type 2 response, as well as anaphylactic reactions. The intestinal microbiome in these mice also differed between rooms. Thus, our data recapitulate the heterogeneity in anaphylactic reactions, ranging from severe to none, seen in patients that have circulating levels of food allergen-reactive IgE and support the concept that alterations in the microbiome can be one factor underlying this heterogeneity.
Collapse
Affiliation(s)
- Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher A. Brown
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute for Research on Innovation and Science (IRIS), Institute for Social Research (ISR), University of Michigan, Ann Arbor, MI, United States
| | - Roderick A. McDonald
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Gary B. Huffnagle
| |
Collapse
|
30
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Levi-Schaffer F, Gibbs BF, Hallgren J, Pucillo C, Redegeld F, Siebenhaar F, Vitte J, Mezouar S, Michel M, Puzzovio PG, Maurer M. Selected recent advances in understanding the role of human mast cells in health and disease. J Allergy Clin Immunol 2022; 149:1833-1844. [PMID: 35276243 DOI: 10.1016/j.jaci.2022.01.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Mast cells are highly granular tissue-resident cells and key drivers of inflammation, particularly in allergies as well as in other inflammatory diseases. Most mast cell research was initially conducted in rodents but has increasingly shifted to the human system, with the advancement of research technologies and methodologies. Today we can analyze primary human cells including rare subpopulations, we can produce and maintain mast cells isolated from human tissues, and there are several human mast cell lines. These tools have substantially facilitated our understanding of their role and function in different organs in both health and disease. We can now define more clearly where human mast cells originate from, how they develop, which mediators they store, produce de novo, and release, how they are activated and by which receptors, and which neighbouring cells they interact with and by which mechanisms. Considerable progress has also been made regarding the potential contribution of mast cells to disease, which, in turn, has led to the development of novel approaches for preventing key pathogenic effects of mast cells, heralding the era of mast cell-targeted therapeutics. In this review, we present and discuss a selection of some of the most significant advancements and remaining gaps in our understanding of human mast cells during the last 25 years, with a focus on clinical relevance.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Bernhard F Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, Italy
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank Siebenhaar
- Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP Allergology and Immunology, Berlin, Germany
| | - Joana Vitte
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France; IDESP, INSERM UA 11, Montpellier, France
| | | | - Moïse Michel
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France; Immunology Laboratory, CHU Nîmes, Nîmes, France
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marcus Maurer
- Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
32
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
33
|
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59:1850-1861. [PMID: 35028901 PMCID: PMC8757925 DOI: 10.1007/s12035-021-02696-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA.
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|
34
|
Vega-Hernández R, Ochoa SA, Valle-Rios R, Jaimes-Ortega GA, Arellano-Galindo J, Aparicio-Ozores G, Ibarra JA, Hernández-Castro R, Cruz-Córdova A, Xicohtencatl-Cortes J. Flagella, Type I Fimbriae and Curli of Uropathogenic Escherichia coli Promote the Release of Proinflammatory Cytokines in a Coculture System. Microorganisms 2021; 9:2233. [PMID: 34835359 PMCID: PMC8624364 DOI: 10.3390/microorganisms9112233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are a public health problem in Mexico, and uropathogenic Escherichia coli (UPEC) is one of the main etiological agents. Flagella, type I fimbriae, and curli promote the ability of these bacteria to successfully colonize its host. AIM This study aimed to determine whether flagella-, type I fimbriae-, and curli-expressing UPEC induces the release of proinflammatory cytokines in an established coculture system. METHODS The fliC, fimH, and csgA genes by UPEC strain were disrupted by allelic replacement. Flagella, type I fimbriae, and curli were visualized by transmission electron microscopy (TEM). HTB-5 (upper chamber) and HMC-1 (lower chamber) cells cocultured in Transwell® plates were infected with these UPEC strains and purified proteins. There was adherence to HTB-5 cells treated with different UPEC strains and they were quantified as colony-forming units (CFU)/mL. RESULTS High concentrations of IL-6 and IL-8 were induced by the FimH and FliC proteins; however, these cytokines were detected in low concentrations in presence of CsgA. Compared with UPEC CFT073, CFT073ΔfimH, CFT073ΔfimHΔfliC, and CFT073ΔcsgAΔfimH strains significantly reduced the adherence to HTB-5 cells. CONCLUSION The FimH and FliC proteins are involved in IL-6 and IL-8 release in a coculture model of HTB-5 and HMC-1 cells.
Collapse
Affiliation(s)
- Rubí Vega-Hernández
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 09340 Ciudad de México, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
| | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidadde Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico
| | - Gustavo A. Jaimes-Ortega
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidadde Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, 09340 Ciudad de México, Mexico
| | - José Arellano-Galindo
- Laboratorio de Virología Clínica y Experimental, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de Mexico Federico Gómez, 06720 Ciudad de México, Mexico;
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico; (G.A.-O.); (J.A.I.)
| | - José Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico; (G.A.-O.); (J.A.I.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, 4800 Ciudad de México, Mexico;
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
| |
Collapse
|
35
|
Qi Y, Zhang L, Yang X, Tang B, Xiao T. Genome-Wide DNA Methylation Profile in Whole Blood of Patients With Chronic Spontaneous Urticaria. Front Immunol 2021; 12:681714. [PMID: 34539625 PMCID: PMC8448194 DOI: 10.3389/fimmu.2021.681714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Chronic spontaneous urticaria (CSU) is a common autoimmune skin disease. Little is known about the role of epigenetics in the pathogenesis of CSU. This study aimed to investigate genome-wide DNA methylation profile in whole blood of patients with CSU. Patients and Methods Genome-wide DNA methylation levels in whole blood samples of 95 Chinese Han ethnicity adult CSU patients and 95 ethnicity-, age- and sex-matched healthy controls were analyzed using Illumina 850K methylation chip. The differentially methylated genes (DMGs) were screened out and then functionally annotated by the gene ontology and the Kyoto encyclopedia of genes and genomes databases. Results A total of 439 differentially methylated positions (DMPs) (p < 0.01 and |Δβ| ≥ 0.06) were identified with 380 hypomethylated and 59 hypermethylated. The average global DNA methylation levels of the 439 DMPs in the CSU patients were significantly lower than those in the healthy controls (p < 0.001). The distribution of the 439 DMPs was wide on chromosome 1 to 22 and chromosome X. Chromosome 6 embodied the largest number of DMPs (n = 51) and their annotated genes were predominantly related to autoimmunity. The 304 annotated DMGs were mainly enriched in autoimmune disease- and immune-related pathways. A total of 41 DMPs annotated to 28 DMGs were identified when p < 0.01 and |Δβ| ≥ 0.1. Of the 28 DMGs, HLA-DPB2, HLA-DRB1, PPP2R5C, and LTF were associated with autoimmunity. CSU cases with elevated total IgE, positive anti-thyroid peroxidase IgG autoantibodies, positive anti-thyroglobulin IgG autoantibodies, angioedema, UASday > 4, or recurrent CSU showed phenotype-specific DMPs as compared with cases with normal total IgE, negative anti-thyroid peroxidase IgG autoantibodies, negative anti-thyroglobulin IgG autoantibodies, no angioedema, UASday ≤ 4, or non-recurrent CSU respectively. Conclusion This study shows a distinct genome-wide DNA methylation profile in Chinese Han ethnicity adult CSU patients and indicates a role of epigenetics in the pathogenesis of CSU. The predominant enrichment of the CSU-associated DMGs in immunological pathways provides supportive evidence for the immunopathogenesis of CSU. Future research on the CSU-associated DMPs and DMGs will help discover potential therapeutic targets for CSU.
Collapse
Affiliation(s)
- Yumeng Qi
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, China
| | - Liming Zhang
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, China
| | | | - Biao Tang
- Sinotech Genomics Co., Ltd, Shanghai, China
| | - Ting Xiao
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, China
| |
Collapse
|
36
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
37
|
Ikeda T, Nakamura K, Morishita S, Sato T, Horie T, Kida T, Oku H, Takai S, Jin D. Decreased Presence of Mast Cells in the Bursa Premacularis of Proliferative Diabetic Retinopathy. Ophthalmic Res 2021; 64:1002-1012. [PMID: 34515200 DOI: 10.1159/000518438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | - Seita Morishita
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
38
|
Lafleur MA, Werner J, Fort M, Lobenhofer EK, Balazs M, Goyos A. MRGPRX2 activation as a rapid, high-throughput mechanistic-based approach for detecting peptide-mediated human mast cell degranulation liabilities. J Immunotoxicol 2021; 17:110-121. [PMID: 32525431 DOI: 10.1080/1547691x.2020.1757793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mast cells play key roles in allergy, anaphylaxis/anaphylactoid reactions, and defense against pathogens/toxins. These cells contain cytoplasmic granules with a wide spectrum of pleotropic mediators that are released upon activation. While mast cell degranulation (MCD) occurs upon clustering of the IgE receptor bound to IgE and antigen, MCD is also triggered through non-IgE-mediated mechanisms, one of which is via Mas-related G protein-coupled receptor X2 (MRGPRX2). MRGPRX2 can be activated by many basic biogenic amines and peptides. Consequently, MRGPRX2-mediated MCD is an important potential safety liability for peptide therapeutics. To facilitate peptide screening for this liability in early preclinical drug development, a rapid, high-throughput engineered CHO-K1 cell-based MRGPRX2 activation assay was evaluated and compared to histamine release in CD34+ stem cell-derived mature human mast cells as a reference assay, using 30 positive control and 29 negative control peptides for MCD. Both G protein-dependent (Ca2+ endpoint) and -independent (β-arrestin endpoint) pathways were assessed in the MRGPRX2 activation assay. The MRGPRX2 activation assay had a sensitivity of 100% for both Ca2+ and β-arrestin endpoints and a specificity of 93% (β-arrestin endpoint) and 83% (Ca2+ endpoint) compared to histamine release in CD34+ stem cell-derived mature human mast cells. These findings suggest that assessing MRGPRX2 activation in an engineered cell model can provide value as a rapid, high-throughput, economical mechanism-based screening tool for early MCD hazard identification during preclinical safety evaluation of peptide-based therapeutics.
Collapse
Affiliation(s)
- Marc A Lafleur
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Jonathan Werner
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Madeline Fort
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Edward K Lobenhofer
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Mercedesz Balazs
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen, Inc., South San Francisco, CA, USA
| | - Ana Goyos
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen, Inc., South San Francisco, CA, USA
| |
Collapse
|
39
|
The Impact of DNA Methylation on IL6 mRNA Levels in Hematinic Deficiency and Atopy-Associated Recurrent Aphthous Stomatitis Patients. Int J Dent 2021; 2021:5560695. [PMID: 33936205 PMCID: PMC8055433 DOI: 10.1155/2021/5560695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the DNA methylation using pyrosequencing and its effects on the upregulation of IL6 mRNA in patients with recurrent aphthous stomatitis (RAS) in connection with hematinic deficiency and atopy. Material and Methods. This cross-sectional study was conducted at Dr. Hasan Sadikin Hospital, Bandung, from January–March 2019 and was approved by the Health Research Ethics Committee of Universitas Padjadjaran (Ethics No. 990/UN6.KEP/EC/2018). Furthermore, the subjects had RAS ulcers with a history of at least twice a year along with atopy and dietary imbalance with no history of recurrent intraoral herpes or any systemic diseases. This study was performed on 23 RAS patients and 21 healthy subjects, and the sampling was carried out consecutively. The blood samples were collected from all the subjects, and then, the DNA and RNA were extracted from the peripheral blood mononuclear cells (PBMCs). Consequently, the bisulfite-modified DNA was used to confirm the methylation status of the IL6 gene promoter through the pyrosequencing method. The methylation levels of the IL6 promoter were assessed by a reverse transcriptase-polymerase chain reaction technique. The gene expression of RAS and the control group was analyzed by the 2−ΔΔCT method. The statistical analysis using the Mann–Whitney U test was conducted to evaluate IL6 mRNA levels and DNA methylation with p value <0.05 considered to be statistically significant. Result The IL6 mRNA levels were approximately 1.88-fold in RAS patients, and there was a significant relationship between the expression of the IL6 gene and the increased risk of RAS (p < 0.001). It was reported that four out of six sites in the cytosine phosphate guanine (CpG) island IL6 promoter had a lower degree of methylation, and two other sites in patients with RAS had greater methylation compared with control, but not statistically significant. Conclusion This study showed the upregulation of IL6 mRNA levels in RAS patients compared to control. DNA methylation in the present study is at sites 566–658, whereas the location of the IL6 promoter is at sites 1–1684. Thus, it would be necessary conducting some research at other CpG sites of IL6 promoter islands to determine the status of DNA methylation.
Collapse
|
40
|
Giménez-Arnau AM, DeMontojoye L, Asero R, Cugno M, Kulthanan K, Yanase Y, Hide M, Kaplan AP. The Pathogenesis of Chronic Spontaneous Urticaria: The Role of Infiltrating Cells. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2195-2208. [PMID: 33823316 DOI: 10.1016/j.jaip.2021.03.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Chronic spontaneous urticaria is characterized by a perivascular non-necrotizing cellular infiltrate around small venules of the skin. It consists primarily of CD4(+) lymphocytes, a prominence of the T helper (Th)2 subtype but also Th1 cells, with Th17 cell-derived cytokines elevated in plasma. There are also neutrophils, eosinophils, basophils, and monocytes. Chemokines derived from mast cells and activated endothelial cells drive the process. Although the role of the cellular infiltrate has not previously been addressed, each constituent can contribute to the overall pathogenesis. It is of interest that CSU responds to corticosteroid, yet, short-term steroids do not affect autoimmunity or degranulation of mast cells, and act on margination of cells along the endothelium and chemotaxis to enter the surrounding dermis. In this review, we address each cell's contribution to the overall inflammatory response, as it is currently understood, with a view toward development of therapeutic options that impede the function of critical cells and/or their secretory products.
Collapse
Affiliation(s)
- Ana M Giménez-Arnau
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Universitat Autònoma, Barcelona, Spain
| | - Laurence DeMontojoye
- Department of Dermatology, Cliniques Universitaires Saint Luc and Institute of Experimental Clinical Research, Pneumology, ENT, and Dermatology Pole, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Massimo Cugno
- Medicina Interna, Dipartmento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Allen P Kaplan
- Divison of Pulmonary and Critical Care Medicine and Allergy and Immunology, Department of Medicine, The Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
41
|
Campanile G, Baruselli PS, Limone A, D'Occhio MJ. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation - Implications for embryo survival in cattle: A review. Theriogenology 2021; 167:1-12. [PMID: 33743503 DOI: 10.1016/j.theriogenology.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Early embryo development, implantation and pregnancy involve a complex dialogue between the embryo and mother. In cattle this dialogue starts as early as days 3-4 when the embryo is still in the oviduct, and it continues to implantation. Immunological processes involving cytokines, mast cells and macrophages form an important part of this dialogue. Amongst the cytokines, interleukin-6 (Il-6) and leukemia inhibitory factor (LIF) are secreted by both the embryo and uterine endometrium and form part of an ongoing and reciprocating dialogue. Mast cells and macrophages populate the uterine endometrium during embryo development and are involved in achieving the correct balance between inflammatory and anti-inflammatory reactions at the uterus that are associated with embryo attachment and implantation. Embryo loss is the major cause of reproductive wastage in cattle, and livestock generally. A deeper understanding of immunological processes during early embryo development will help to achieve the next step change in the efficiency of natural and assisted breeding.
Collapse
Affiliation(s)
- Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Antonio Limone
- Instituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
42
|
Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors 2021; 47:232-241. [PMID: 33847020 PMCID: PMC8250989 DOI: 10.1002/biof.1726] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 leads to severe respiratory problems, but also to long-COVID syndrome associated primarily with cognitive dysfunction and fatigue. Long-COVID syndrome symptoms, especially brain fog, are similar to those experienced by patients undertaking or following chemotherapy for cancer (chemofog or chemobrain), as well in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome (MCAS). The pathogenesis of brain fog in these illnesses is presently unknown but may involve neuroinflammation via mast cells stimulated by pathogenic and stress stimuli to release mediators that activate microglia and lead to inflammation in the hypothalamus. These processes could be mitigated by phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUSA
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUSA
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- Department of PsychiatryTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- BrainGateThessalonikiGreece
| | | | | | - Antonios Politis
- First Department of PsychiatryEginition Hospital, National and Kapodistrian UniversityAthensGreece
| |
Collapse
|
43
|
Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond. Int J Mol Sci 2021; 22:ijms22052458. [PMID: 33671092 PMCID: PMC7957558 DOI: 10.3390/ijms22052458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and stored in secretory granules together with other pre-formed mediators. MC activation, degranulation and mediator release contribute to various immunological processes, but also to several specific diseases, such as IgE-dependent allergies and clonal MC disorders. Biologically active tryptase tetramers primarily derive from the two genes TPSB2 (encoding β-tryptase) and TPSAB1 (encoding either α- or β-tryptase). Based on the most common gene copy numbers, three genotypes, 0α:4β, 1α:3β and 2α:2β, were defined as “canonical”. About 4–6% of the general population carry germline TPSAB1-α copy number gains (2α:3β, 3α:2β or more α-extra-copies), resulting in elevated basal serum tryptase levels. This condition has recently been termed hereditary alpha tryptasemia (HαT). Although many carriers of HαT appear to be asymptomatic, a number of more or less specific symptoms have been associated with HαT. Recent studies have revealed a significantly higher HαT prevalence in patients with systemic mastocytosis (SM) and an association with concomitant severe Hymenoptera venom-induced anaphylaxis. Moreover, HαT seems to be more common in idiopathic anaphylaxis and MC activation syndromes (MCAS). Therefore, TPSAB1 genotyping should be included in the diagnostic algorithm in patients with symptomatic SM, severe anaphylaxis or MCAS.
Collapse
|
44
|
Elst J, Sabato V, van der Poorten MLM, Faber M, Van Gasse AL, De Puysseleyr LP, Bridts CH, Mertens C, Van Houdt M, Maurer M, Hagendorens MM, Ebo DG. Peripheral blood cultured mast cells: Phenotypic and functional outcomes of different culture protocols. J Immunol Methods 2021; 492:113003. [PMID: 33647250 DOI: 10.1016/j.jim.2021.113003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mast cells (MCs) play a pivotal role in innate and adaptive immune responses. However, MCs are also involved in different pathologic conditions. Studies on the mechanisms that govern human MC functions are impeded by their limited and difficult recovery. Therefore, several research groups have developed protocols to culture human MCs from progenitor cells. These protocols vary with respect to culture duration and used maturation cytokines. How MCs obtained by different protocols differ in phenotype and functionality is currently unknown. OBJECTIVE To compare different protocols for the generation of human MCs from peripheral blood progenitors. METHODS Thirteen paired human MC cultures were investigated. MCs were cultured form CD34+ progenitors cells for 4 or 8 weeks and with or without the addition of IL-6. Phenotyping comprised staining for CD117, CD203c, FcεRI, MRGPRX2, CD300a and CD32. Functional studies included measurements of the up-regulation of CD63 and CD203c after allergen-specific cross-linking of sIgE/FcεRI complexes or ligation of MRGPRX2 with substance P and different drugs. RESULTS Cell cultures for 4 weeks in the presence of IL-6 consistently yielded the highest numbers of MCs. MCs cultured for 8 weeks with IL-6 showed more autofluorescence significantly impeding correct analyses of FcεRI and CD32. The density of FcεRI and CD32 was comparable between the different culture conditions. MRGPRX2 expression was significantly higher in the 8 week cultures. The density of CD300a was increased in the cultures with IL-6. Cells cultured for 8 weeks were more responsive to MRGPRX2 activation. In contrast, the 4-weeks cultures with IL-6 showed significantly higher allergen-specific activation. CONCLUSION Four weeks of culture with IL-6 are sufficient to generate sizeable numbers of human mast cells from blood progenitors, thereby enabling simultaneous exploration of allergen-specific sIgE/FcεRI cross-linking and non-specific activation via MRGPRX2.
Collapse
Affiliation(s)
- Jessy Elst
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | - Marie-Line M van der Poorten
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Margaretha Faber
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Athina L Van Gasse
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Leander P De Puysseleyr
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Chris H Bridts
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Michel Van Houdt
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Margo M Hagendorens
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Didier G Ebo
- University of Antwerp, Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium; Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium.
| |
Collapse
|
45
|
Watanabe J, Shimamoto J, Kotani K. The Effects of Antibiotics for Helicobacter pylori Eradication or Dapsone on Chronic Spontaneous Urticaria: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10020156. [PMID: 33557074 PMCID: PMC7913800 DOI: 10.3390/antibiotics10020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Chronic spontaneous urticaria (CSU) is a disease with wheals and/or angioedema. Some drugs, especially antibiotics for Helicobacter pylori (H. pylori) eradication and the sulfone antibiotic dapsone, may be candidates for treating CSU. The present study assessed the efficacy of these antibiotic therapies for CSU. Methods: Databases (MEDLINE, the Cochrane Central Register of Controlled Trials, EMBASE, the World Health Organization International Clinical Trials Platform Search Portal and ClinicalTrials.gov) were searched until October 2020. Study selection, data abstraction and quality assessments were independently performed using the Grading of Recommendations Assessment, Development and Evaluation approach. The outcomes were the remission of CSU-related symptoms, activities and adverse events due to antibiotics for H. pylori eradication or dapsone. Results: Nine randomized controlled trials (RCTs; 361 patients) were included. The antibiotics for H. pylori eradication increased the remission rate (risk ratio (RR) = 3.99, 95% confidence interval (CI) = 1.31 to 12.14; I2 = 0%), but dapsone did not (RR = 1.15, 95% CI = 0.74 to 1.78). Antibiotics for H. pylori eradication (standard mean difference (SMD) = 1.49, 95% CI = 0.80 to 2.18; I2 = 69%) and dapsone (SMD = 7.00, 95% CI = 6.92 to 7.08; I2 = 0%) improved symptoms. The evidence of certainty was moderate. Dapsone was associated with mild adverse events, whereas H. pylori eradication was not. Conclusion: Antibiotics, especially those for H. pylori eradication, improved the remission rate and symptoms of CSU with few adverse events. Further studies are needed.
Collapse
Affiliation(s)
| | | | - Kazuhiko Kotani
- Correspondence: author: ; Tel.: +81-285-58-7394; Fax: +81-285-44-0628
| |
Collapse
|
46
|
|
47
|
Peng H, Liao B, Zhu X, Liu Y, Jiang Y, Wu S. CCR3-shRNA promotes apoptosis and inhibits chemotaxis and degranulation of mouse mast cells. Exp Ther Med 2020; 20:1030-1038. [PMID: 32742345 PMCID: PMC7388334 DOI: 10.3892/etm.2020.8737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
Mast cells (MCs) are the major effector cells of allergic rhinitis (AR). The present study aimed to investigate the effects of C-C chemokine receptor type 3 (CCR3) on the proliferation, apoptosis, chemotaxis and activated degranulation of mouse MCs. Mouse bone marrow-derived MCs were cultured in vitro, purified and identified using toluidine blue staining and flow cytometry. Three different CCR3-short hairpin (shRNA) lentiviral vectors were constructed and transfected into MCs, and the mRNA and protein expression levels of CCR3 were assessed by reverse transcription-quantitative PCR and western blotting. Proliferation and apoptosis of the MCs were measured using Cell Counting kit-8 (CCK-8) assays and flow cytometry, respectively. MC chemotaxis was assessed by Transwell assay and quantified using flow cytometry. The activation of MC degranulation was examined using ELISAs. The results demonstrated that MCs were appropriately isolated, and identified that CCR3-shRNA2 presented the higher knockdown effect among the three shRNAs tested. Following 96 h of transfection, the results of CCK-8 and flow cytometry assays demonstrated that CCR3-shRNA2 inhibited MC proliferation and promoted MC apoptosis. The results from the Transwell assay indicated that CCR3-shRNA2 restrained MC chemotaxis, whereas ELISA results demonstrated that CCR3-shRNA2 suppressed MC degranulation. In conclusion, CCR3-shRNA2 effectively downregulated CCR3 mRNA and protein expression levels in mouse MCs. In addition, CCR3-shRNA2 promoted MC apoptosis and suppressed the proliferation, chemotaxis and degranulation of mouse MCs, suggesting that CCR3-shRNA2 may serve as a therapeutic tool for the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Haisen Peng
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bing Liao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuehui Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yinli Jiang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuhong Wu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
48
|
Byakwaga H, Barbachano-Guerrero A, Wang D, McAllister S, Naphri K, Laker-Oketta M, Muzoora C, Hunt PW, Martin J, King CA. Association Between Immunoglobulin E Levels and Kaposi Sarcoma in African Adults With Human Immunodeficiency Virus Infection. J Infect Dis 2020; 223:101-108. [PMID: 32561934 PMCID: PMC7781465 DOI: 10.1093/infdis/jiaa340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/11/2020] [Indexed: 11/14/2022] Open
Abstract
It has been demonstrated that activated mast cells (MCs) are enriched in Kaposi sarcoma (KS) tumors and contribute to the inflammatory microenvironment. Mechanisms driving MC activation, however, are incompletely understood. We sought to understand whether immunoglobulin E (IgE), a potent activator of MCs, was associated with KS incidence and severity. In a cross-sectional study of untreated human immunodeficiency virus (HIV)-infected adults with or without KS in Uganda, we found that patients with KS had higher plasma IgE levels than those without KS. After adjustment for age, sex, CD4+ T-cell count, and HIV RNA levels, there was a dose-response relationship between plasma IgE levels and the presence and severity of KS. Higher eosinophil counts were also associated with IgE levels, and plasma interleukin 33 concentrations were higher in individuals with KS. These findings suggest that IgE-driven atopic inflammation may contribute the pathogenesis of KS. Therapies targeting IgE-mediated MC activation thus might represent a novel approach for treatment or prevention of KS.
Collapse
Affiliation(s)
- Helen Byakwaga
- Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Dongliang Wang
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Shane McAllister
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kamal Naphri
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Conrad Muzoora
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Peter W Hunt
- Department of Experimental Medicine, University of California, San Francisco, California, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA,Correspondence: Christine A. King, Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210 ()
| |
Collapse
|
49
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
50
|
Blasco MP, Chauhan A, Honarpisheh P, Ahnstedt H, d’Aigle J, Ganesan A, Ayyaswamy S, Blixt F, Venable S, Major A, Durgan D, Haag A, Kofler J, Bryan R, McCullough LD, Ganesh BP. Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. J Neuroinflammation 2020; 17:160. [PMID: 32429999 PMCID: PMC7236952 DOI: 10.1186/s12974-020-01833-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Risk of stroke-related morbidity and mortality increases significantly with age. Aging is associated with chronic, low-grade inflammation, which is thought to contribute to the poorer outcomes after stroke seen in the elderly. Histamine (HA) is a major molecular mediator of inflammation, and mast cells residing in the gut are a primary source of histamine. METHODS Stroke was induced in male C57BL/6 J mice at 3 months (young) and 20 months (aged) of age. Role of histamine after stroke was examined using young (Yg) and aged (Ag) mice; mice underwent MCAO surgery and were euthanized at 6 h, 24 h, and 7 days post-ischemia; sham mice received the same surgery but no MCAO. In this work, we evaluated whether worsened outcomes after experimental stroke in aged mice were associated with age-related changes in mast cells, histamine levels, and histamine receptor expression in the gut, brain, and plasma. RESULTS We found increased numbers of mast cells in the gut and the brain with aging. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we demonstrate that stroke leads to increased numbers of gut mast cells and gut histamine receptor expression levels. These gut-centric changes are associated with elevated levels of HA and other pro-inflammatory cytokines including IL-6, G-CSF, TNF-α, and IFN-γ in the peripheral circulation. Our data also shows that post-stroke gut inflammation led to a significant reduction of mucin-producing goblet cells and a loss of gut barrier integrity. Lastly, gut inflammation after stroke is associated with changes in the composition of the gut microbiota as early as 24-h post-stroke. CONCLUSION An important theme emerging from our results is that acute inflammatory events following ischemic insults in the brain persist longer in the aged mice when compared to younger animals. Taken together, our findings implicate mast cell activation and histamine signaling as a part of peripheral inflammatory response after ischemic stroke, which are profound in aged animals. Interfering with histamine signaling orally might provide translational value to improve stroke outcome.
Collapse
Affiliation(s)
- Maria Pilar Blasco
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Hilda Ahnstedt
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - John d’Aigle
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Arunkumar Ganesan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Sriram Ayyaswamy
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Frank Blixt
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - David Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Anthony Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburg, Pittsburgh, USA
| | - Robert Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Louise D. McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| |
Collapse
|