1
|
Michel M, Crickx E, Fattizzo B, Barcellini W. Autoimmune haemolytic anaemias. Nat Rev Dis Primers 2024; 10:82. [PMID: 39487134 DOI: 10.1038/s41572-024-00566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 11/04/2024]
Abstract
Adult autoimmune haemolytic anaemias (AIHAs) include different subtypes of a rare autoimmune disease in which autoantibodies targeting autoantigens expressed on the membrane of autologous red blood cells (RBCs) are produced, leading to their accelerated destruction. In the presence of haemolytic anaemia, the direct antiglobulin test is the cornerstone of AIHA diagnosis. AIHAs are classified according to the isotype and the thermal optimum of the autoantibody into warm (wAIHAs), cold and mixed AIHAs. wAIHAs, the most frequent type of AIHAs, are associated with underlying conditions in ~50% of cases. In wAIHA, IgG autoantibody reacts with autologous RBCs at 37 °C, leading to antibody-dependent cell-mediated cytotoxicity and increased phagocytosis of RBCs in the spleen. Cold AIHAs include cold agglutinin disease (CAD) and cold agglutinin syndrome (CAS) when there is an underlying condition. CAD and cold agglutinin syndrome are IgM cold antibody-driven AIHAs characterized by classical complement pathway-mediated haemolysis. The management of wAIHAs has long been based around corticosteroids and splenectomy and on symptomatic measures and non-specific cytotoxic agents for CAD. Rituximab and the development of complement inhibitors, such as the anti-C1s antibody sutimlimab, have changed the therapeutic landscape of AIHAs, and new promising targeted therapies are under investigation.
Collapse
Affiliation(s)
- Marc Michel
- Department of Internal Medicine and Clinical Immunology, National Reference Centre for Adult Immune Cytopenias, Henri Mondor University Hospital, Assistance Publique Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France.
| | - Etienne Crickx
- Department of Internal Medicine and Clinical Immunology, National Reference Centre for Adult Immune Cytopenias, Henri Mondor University Hospital, Assistance Publique Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Özer M, Tekeli S, Doğan S, Çetin S, Selen R, Aytekin C. Assessment of autoantibodies associated with intravenous immunoglobulin replacement therapy in children with primary immunodeficiency. Scand J Immunol 2024; 100:e13396. [PMID: 38973103 DOI: 10.1111/sji.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/09/2024]
Abstract
While it is known that immunoglobulin replacement therapy (IgRT) used in the treatment of primary immunodeficiency disorders (PIDs) can lead to the passive transfer of autoantibodies, there is no data indicating that these antibodies can cause clinical symptoms in patients. This study aimed to investigate the presence of autoantibodies and their clinical correlation in patients diagnosed with PIDs receiving IgRT. Paediatric patients who were diagnosed with PIDs, and administered IgRT at our immunology clinic between 1 January 2012 and 31 December 2021, were included in the study. The medical records of these patients were retrospectively analysed, and autoantibodies were screened. Autoantibody screening was conducted at least once in 48 cases. Among these cases, 29 cases (60.4%) demonstrated positivity for at least one of the autoantibodies screened in the study. Among these cases, 23 tested positive for anti-TPO, 9 for anti-TG and 2 for both anti-TPO and anti-TG. Only two of these patients were confirmed to have Hashimoto's thyroiditis. In 30 cases, autoantibodies related to Celiac disease (CD) were screened, with at least one being positive in five different cases; CD was not confirmed. The results of our study suggest that passive transfer of autoantibodies to patients with IgRT does not cause any significant clinical findings. In addition, in cases of PID, autoantibodies detected in the blood passed to patients with IgRT can lead to misdiagnosis. Screening for autoantibodies in patients with PID undergoing IgRT may not yield accurate results in terms of detecting autoimmune diseases.
Collapse
Affiliation(s)
- Murat Özer
- Department of Pediatric Immunology and Allergy, Dr. Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Seher Tekeli
- Department of Pediatric Immunology and Allergy, Dr. Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Selçuk Doğan
- Department of Pediatric Immunology and Allergy, Dr. Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Sema Çetin
- Department of Pediatric Immunology and Allergy, Dr. Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Rıdvan Selen
- Department of Pediatric Immunology and Allergy, Dr. Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Caner Aytekin
- Department of Pediatric Immunology and Allergy, Dr. Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
4
|
Zhang C, Liang D, Liu Z. Primary immunodeficiency as a cause of immune-mediated kidney diseases. Nephrol Dial Transplant 2024; 39:1772-1784. [PMID: 38772735 PMCID: PMC11522874 DOI: 10.1093/ndt/gfae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024] Open
Abstract
Primary immunodeficiency (PID) is no longer defined by infections alone, and autoimmunity is an accompanying manifestation of PID. Recurrent infections may trigger autoimmunity through molecular mimicry, bystander activation or superantigens. The diagnosis of PID is still challenging, but genetic analysis reveals the underlying link between PID and autoimmunity. Mutations in relevant genes affecting central and peripheral immune tolerance, regulatory T-cell function, expansion of autoreactive lymphocytes, antigen clearance, hyperactivation of type I interferon and nuclear factor-κB pathways have all been implicated in triggering autoimmunity in PID. Autoimmunity in PID leads to chronic inflammation, tissue damage and organ failure, and increases the mortality of patients with PID. The kidneys are inextricably linked with the immune system, and kidney diseases can be mediated by both infection and autoimmunity/inflammation in PID patients. The manifestations of kidney involvement in PID patients are very heterogeneous and include lupus nephritis, C3 glomerulopathy, kidney thrombotic microangiopathy, vasculitis and interstitial nephritis. Patients with PID-caused kidney diseases have defined immune function defects and may benefit from pathway-based biologics, stem cell transplantation or gene therapy. Early diagnosis and appropriate treatment of PID are crucial for reducing the mortality rate and improving organ function and quality of life.
Collapse
Affiliation(s)
- Changming Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Lamas A, Faria R, Marinho A, Vasconcelos C. The mosaic of systemic lupus erythematosus: From autoimmunity to autoinflammation and immunodeficiency and back. Autoimmun Rev 2024; 23:103675. [PMID: 39481623 DOI: 10.1016/j.autrev.2024.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The concept of an "immunological continuum model," introduced by McGonagle and McDermott in 2006, redefines the traditional dichotomy between autoimmunity and autoinflammation, proposing a spectrum where innate and adaptive immune dysregulation can co-occur, reflecting a more nuanced understanding of immune disorders. Systemic lupus erythematosus (SLE) exemplifies the complexity of this continuum, often displaying manifestations of autoimmunity, autoinflammation, and immunodeficiency. The interplay between genetic, epigenetic, hormonal, psychological, and environmental factors contributes to its distinctive immunopathological signatures. Historically recognized as a systemic disease with diverse clinical manifestations, SLE is primarily a polygenic autoimmune condition but can, however, present in monogenic forms. Examining SLE through the lens of the immunological continuum model allows for emphasis on the contributions of both innate and adaptive immunity. SLE and primary immunodeficiencies share genetic susceptibilities and clinical manifestations. Additionally, autoinflammatory mechanisms, such as inflammasome activation and interferonopathies, can play a role in SLE pathogenesis, illustrating the disease's position at the crossroads of immune dysregulation. Recognizing the diverse clinical expressions of SLE and its mimickers is critical for accurate diagnosis and targeted therapy. In conclusion, the immunological continuum model provides a comprehensive framework for understanding SLE, acknowledging its multifaceted nature and guiding future research and clinical practice toward more effective and individualized treatments. After the Mosaic of Autoimmunity, it is now the time to focus and attempt to solve the intricate mosaic of SLE.
Collapse
Affiliation(s)
- António Lamas
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Raquel Faria
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - António Marinho
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Carlos Vasconcelos
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
6
|
Neth O, Mahlaoui N, Cunningham-Rundles C. Protecting children and adults with primary antibody deficiencies against common and emergent pathogens and non-infectious complications. Clin Exp Immunol 2024; 218:136-150. [PMID: 39011978 PMCID: PMC11482499 DOI: 10.1093/cei/uxae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Prevention and treatment of infections are primary goals of treatment of children and adults with primary immune deficiencies due to decreased antibody production. Approaches to these goals include immunoglobulin replacement therapy, vaccination, and prophylactic treatment with antimicrobials. In this review, the infectious and non-infectious complications of antibody deficiencies will be discussed along with the limited number of studies that support the effective use of the available therapies and to drive the development of new therapies. Some illustrative case studies will be presented and the outlook for additional controlled clinical trials and potential for therapies driven by the underlying disease genetics will be considered.
Collapse
Affiliation(s)
- Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBiS), Sevilla, Spain
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immunodeficiencies (CEREDIH), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount-Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount-Sinai, New York, NY, USA
| |
Collapse
|
7
|
Lozano Chinga MM, Bussel JB, Fluchel MN, Wilkes J, Zhang C, Meeks H, Meznarich JA. Familial autoimmunity and risk of developing immune thrombocytopenia and Evans syndrome. Pediatr Blood Cancer 2024; 71:e31239. [PMID: 39096193 PMCID: PMC11398880 DOI: 10.1002/pbc.31239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/06/2024] [Accepted: 07/21/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) and Evans syndrome (ES) are manifestations of immune dysregulation. Genetic variants in immune-related genes have been identified in patients with ITP and especially ES. We aimed to explore familial autoimmunity in patients with ITP and ES to understand possible contributions to chronicity. PROCEDURE We assessed family history in two ways: via patient report for ITP and ES and by population-based analysis using the Utah Population Database (UPDB) for ITP. A total of 266 patients with ITP and 21 patients with ES were identified via chart review, and 252 of the 266 patients with ITP were also identified in the UPDB. RESULTS Chart review showed familial autoimmunity in 29/182 (15.9%) and 25/84 (29.8%) of patients with newly diagnosed+persistent (nd+p) ITP and chronic ITP (cITP), respectively, (p = .009). The UPDB analysis revealed that autoimmunity in relatives of patients with nd+pITP was higher than in relatives of controls (odds ratio [OR]: 1.69 [1.19-2.41], p = .004), but was not significantly increased in relatives of patients with cITP (OR 1.10 [0.63-1.92], p = .734). Incomplete family history in medical records likely contributed to the observed discrepancy. CONCLUSIONS The findings suggest that familial autoimmunity may have a stronger association with the development of ITP rather than its duration. Twelve (57.1%) patients with ES reported autoimmunity in their relatives. UPDB analysis was omitted due to the small number of patients with ES. The use of population databases offers a unique opportunity to assess familial health and may provide clues about contributors to immune dysregulation features within families.
Collapse
MESH Headings
- Humans
- Anemia, Hemolytic, Autoimmune/immunology
- Anemia, Hemolytic, Autoimmune/epidemiology
- Anemia, Hemolytic, Autoimmune/genetics
- Female
- Male
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/epidemiology
- Child
- Autoimmunity
- Child, Preschool
- Thrombocytopenia/immunology
- Thrombocytopenia/genetics
- Adolescent
- Infant
- Adult
- Young Adult
- Risk Factors
- Middle Aged
Collapse
Affiliation(s)
- Michell M Lozano Chinga
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Department of Pediatrics, Creighton University, Phoenix, Arizona, USA
- Department of Medicine, Mayo Clinic College of Medicine and Science, Scottsdale, Arizona, USA
| | | | - Mark N Fluchel
- Seattle Children's Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jacob Wilkes
- Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Chong Zhang
- Division of Epidemiology, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, Utah, USA
| | - Huong Meeks
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Jessica A Meznarich
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
- Intermountain Healthcare, Primary Children's Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Gilton M, Fernandes H, Martinez C, Leverger G, Abou Chahla W, Li Thiao Te V, Deparis M, Armari Alla C, Garnier N, Benadiba J, Marie-Cardine A, Rieux-Laucat F, Picard C, Aladjidi N, Leblanc T. Association of paediatric autoimmune cytopenia and inflammatory bowel disease suggests a common genetic origin. Br J Haematol 2024; 205:1508-1515. [PMID: 39155467 DOI: 10.1111/bjh.19701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
The association of autoimmune cytopenia (AIC) and inflammatory bowel disease (IBD) has been reported in small series, but the incidence of and risk factors for IBD in children with AIC are not known. One thousand six hundred nine children with chronic immune thrombocytopenic purpura, autoimmune haemolytic anaemia or Evans syndrome from the prospective OBS'CEREVANCE cohort are included in this study. Overall, 15 children were diagnosed with IBD, including 14 who developed IBD after AIC diagnosis (median delay: 21 months). The only risk factor for IBD development is age at AIC over 10 years. Out of 10 children genetically tested, germline variants associated with autoimmune disorders were identified in three (CTLA4: two, DOCK11: one). In children and adolescents monitored for AIC or past history of AIC, especially children over 10 years, gastro-intestinal (GI) symptoms (recurrent abdominal pains, GI bleeding, chronic diarrhoea, weight loss) should suggest IBD and deserve specific work-up and genetic studies. Identification of a causal germline variant will allow targeted therapy.
Collapse
Affiliation(s)
- M Gilton
- Department of Paediatric Haematology-Oncology, Robert-Debré University Hospital, AP-HP, Pairs, France
| | - H Fernandes
- CEREVANCE, Paediatric Haemato-Immunology, CIC1401, INSERM CICP, Bordeaux University Hospital, Bordeaux, France
| | - C Martinez
- Department of Paediatric Gastroenterology, Robert-Debré University Hospital, AP-HP, Paris, France
| | - G Leverger
- CEREVANCE, Paediatric Oncology Immunology Haematology Unit, Armand-Trousseau University Hospital, AP-HP, Paris, France
| | - W Abou Chahla
- Department of Paediatric Haematology, Jeanne de Flandre Hospital, Lille University Hospital, Lille, France
| | - V Li Thiao Te
- Department of Paediatric Haematology/Oncology, Amiens University Hospital, Amiens, France
| | - M Deparis
- Paediatric Oncology-Haematology Unit Department, Caen University Hospital, Caen, France
| | - C Armari Alla
- Paediatric Haematology-Oncology Department, Grenoble University Hospital, Grenoble, France
| | - N Garnier
- Institute of Paediatric Haematology and Oncology, Hospices Civils de Lyon, Lyon, France
| | - J Benadiba
- Department of Haematology-Oncology Paediatrics, Nice University Hospital, Nice, France
| | - A Marie-Cardine
- Department of Paediatric Haematology and Oncology, Rouen University Hospital, Rouen, France
| | - F Rieux-Laucat
- Imagine Institute Laboratory of Immunogenetics Pediatric Auto-Immune Diseases, Necker Hospital for Sick Children, AP-HP, Paris University, Paris, France
| | - C Picard
- Study Center for Primary Immunodefiencies, Necker Hospital for Sick Children, AP-HP, Paris University, Paris, France
| | - N Aladjidi
- CEREVANCE, Paediatric Haemato-Immunology, CIC1401, INSERM CICP, Bordeaux University Hospital, Bordeaux, France
| | - T Leblanc
- CEREVANCE, Paediatric Haematology Unit, Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Cité, Paris, France
| |
Collapse
|
9
|
Szczawińska-Popłonyk A, Ciesielska W, Konarczak M, Opanowski J, Orska A, Wróblewska J, Szczepankiewicz A. Immunogenetic Landscape in Pediatric Common Variable Immunodeficiency. Int J Mol Sci 2024; 25:9999. [PMID: 39337487 PMCID: PMC11432681 DOI: 10.3390/ijms25189999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic antibody deficiency, characterized by heterogeneous genetic, immunological, and clinical phenotypes. It is no longer conceived as a sole disease but as an umbrella diagnosis comprising a spectrum of clinical conditions, with defects in antibody biosynthesis as their common denominator and complex pathways determining B and T cell developmental impairments due to genetic defects of many receptors and ligands, activating and co-stimulatory molecules, and intracellular signaling molecules. Consequently, these genetic variants may affect crucial immunological processes of antigen presentation, antibody class switch recombination, antibody affinity maturation, and somatic hypermutation. While infections are the most common features of pediatric CVID, variants in genes linked to antibody production defects play a role in pathomechanisms of immune dysregulation with autoimmunity, allergy, and lymphoproliferation reflecting the diversity of the immunogenetic underpinnings of CVID. Herein, we have reviewed the aspects of genetics in CVID, including the monogenic, digenic, and polygenic models of inheritance exemplified by a spectrum of genes relevant to CVID pathophysiology. We have also briefly discussed the epigenetic mechanisms associated with micro RNA, DNA methylation, chromatin reorganization, and histone protein modification processes as background for CVID development.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Wiktoria Ciesielska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Marta Konarczak
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Jakub Opanowski
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Orska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Julia Wróblewska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Szczepankiewicz
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| |
Collapse
|
10
|
Ochoa S, Waters P, Vieillard E, Soldatos A, Leite MI, Lionakis MS. Progressive Encephalomyelitis with Rigidity and Myoclonus (PERM) Associated with GlyR Antibody in an APECED Patient. J Clin Immunol 2024; 45:2. [PMID: 39264456 PMCID: PMC11393104 DOI: 10.1007/s10875-024-01802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Sebastian Ochoa
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Eléonore Vieillard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
Houen G. Auto-immuno-deficiency syndromes. Autoimmun Rev 2024; 23:103610. [PMID: 39209011 DOI: 10.1016/j.autrev.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases constitute a broad, heterogenous group with many diverse and often overlapping symptoms. Even so, they are traditionally classified as either systemic, rheumatic diseases or organ-directed diseases. Several theories exist about autoimmune diseases, including defective self-recognition, altered self, molecular mimicry, bystander activation and epitope spreading. While there is no consensus about these theories, it is generally accepted that genetic, pre-disposing factors in combination with environmental factors can result in autoimmune disease. The relative contribution of genetic and environmental factors varies between diseases, as does the significance of individual contributing factors within related diseases. Among the genetic factors, molecules involved in antigen (Ag) recognition, processing, and presentation stand out (e.g., MHC I and II) together with molecules involved in immune signaling and regulation of cellular interactions (i.e., immuno-phenotypes). Also, various immuno-deficiencies have been linked to development of autoimmune diseases. Among the environmental factors, infections (e.g., viruses) have attracted most attention, but factors modulating the immune system have also been the subject of much research (e.g., sunlight and vitamin D). Multiple sclerosis currently stands out due to a very strong and proven association with Epstein-Barr virus infection, notably in cases of late infection and in cases of EBV-associated mononucleosis. Thus, a common picture is emerging that both systemic and organ-directed autoimmune diseases may appropriately be described as auto-immuno-deficiency syndromes (AIdeSs), a concept that emphasizes and integrates existing knowledge on the role of immuno-deficiencies and chronic infections with development of overlapping disease syndromes with variable frequencies of autoantibodies and/or autoreactive T cells. This review integrates and exemplifies current knowledge on the interplay of genetically determined immuno-phenotypes and chronic infections in the development of AIdeSs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center (TRACE), Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
12
|
Gamboa Espíndola M, Martín-Nares E, Hernández Molina G. Autoimmunity in patients with inborn errors of immunity: A case series. REUMATOLOGIA CLINICA 2024; 20:398-400. [PMID: 38971706 DOI: 10.1016/j.reumae.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/10/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE To assess the prevalence of systemic and organ-specific autoimmunity among individuals with human inborn errors of immunity (IEI). METHODS Retrospective study. We recorded demographic variables, type of immunodeficiency, and systemic and organ specific autoimmunity. RESULTS We included 48 patients (54.1% men) with mean age of 32.1 years. The most common IEIs included combined immunodeficiency with syndromic features (31.2%) and predominantly antibody deficiency (20.1%). We observed autoimmunity in 15 patients (31.2%): 12 organ-specific autoimmunity and 5 systemic autoimmunity, not mutually exclusive groups. Organ-specific autoimmunity preceded the onset of IEI in 5 patients, was concurrent in one patient, and developed after the diagnosis of IEI in 6 cases. From the systemic autoimmunity group, we observed polyarteritis nodosa (n = 2), antiphospholipid syndrome (APS) (n = 2), and overlap of limited systemic sclerosis/APS/Sjögren's syndrome (n = 1), and in all cases, this occurred after the IEI diagnosis. CONCLUSION Our findings confirm the coexistence of autoimmunity and IEI. This overlap may be attributed to B and T cell disorders, as well as potential alterations in the microbiota in these patients.
Collapse
Affiliation(s)
- Mariana Gamboa Espíndola
- Departamento de Medicina Interna, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Martín-Nares
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Mexico City, Mexico
| | - Gabriela Hernández Molina
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Mexico City, Mexico.
| |
Collapse
|
13
|
Adelon J, Abolhassani H, Esenboga S, Fouyssac F, Cagdas D, Tezcan I, Kuskonmaz B, Cetinkaya D, Suarez F, Mahdaviani SA, Plassart S, Mathieu AL, Fabien N, Malcus C, Morfin-Sherpa F, Billaud G, Tusseau M, Benezech S, Walzer T, De Villartay JP, Bertrand Y, Belot A. Human DNA-dependent protein kinase catalytic subunit deficiency: A comprehensive review and update. J Allergy Clin Immunol 2024:S0091-6749(24)00677-8. [PMID: 38977084 DOI: 10.1016/j.jaci.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.
Collapse
Affiliation(s)
- Jihane Adelon
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saliha Esenboga
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Fanny Fouyssac
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Deniz Cagdas
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Barıs Kuskonmaz
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Cetinkaya
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; INSERM UMR1163, Imagine Institut, Sorbonne Paris Cité, Paris, France; Department of Hematology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Plassart
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France
| | - Anne-Laure Mathieu
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Nicole Fabien
- Department of Immunology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Christophe Malcus
- Department of Immunology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France; Laboratoire Virologie et Pathologies humaines (VirPath),Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Geneviève Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Maud Tusseau
- Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Sarah Benezech
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jean-Pierre De Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Yves Bertrand
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Lyon, France; Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Department of Pediatrics Nephrology, Rheumatology, and Dermatology, Hôpital Femme-Mère-Enfant, Bron, France.
| |
Collapse
|
14
|
Brik-Simon D, Efros O, Levinsky Y, Amarilyo G, Tirosh I, Levy-Mendelovich S, Steinberg-Shemer O, Izraeli S, Yacobovich J, Gilad O. Excellent response to treatment with hydroxychloroquine in pediatric patients with SLE-related immune thrombocytopenia. Pediatr Blood Cancer 2024; 71:e30911. [PMID: 38348516 DOI: 10.1002/pbc.30911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Pediatric immune thrombocytopenia (ITP) may precede systemic autoimmune disorders. In adolescent patients with ITP, routine screening for systemic lupus erythematosus (SLE) may be performed by testing for antinuclear antibody (ANA) titer. Hydroxychloroquine (HCQ) is a safe and effective immunomodulatory drug in patients with SLE but rarely used in ITP. We analyzed the platelet count response and safety of HCQ in treating pediatric patients with SLE-related ITP. METHODS A retrospective study including pediatric patients with ITP and definite or incomplete SLE, who were treated with HCQ during 2010-2021. SLE was defined by ANA titer ≥ 1:160 as measured by immunofluorescence and ≥10 points according to the 2019 EULAR/ACR 2019 classification criteria, while patients with incomplete SLE achieved a score < 10. Complete response (CR) of the platelet count was defined as platelet count > 100 × 109/L; partial response (PR) as platelet count 30-100 × 109/L and exceeding ≥ twice baseline counts. RESULTS Of the 17 patients included (median age 15.5 years; IQR 3.6), 15 (88.2%) were female, 13 had definite SLE, and four had incomplete SLE. HCQ was initiated at a median of 17 months after ITP diagnosis with a median platelet count of 38 × 109/L (IQR 28). At 8 weeks, 8 (47.1%) patients responded, including 6 (35.3%) achieving CR. After one year, the overall response was 82.4%, with the remaining patients having stable platelet counts requiring no additional ITP therapy. The response was maintained at a median follow-up of 42 months. No adverse effects to HCQ were noted. CONCLUSION Pediatric patients with SLE-related ITP may benefit from treatment with HCQ.
Collapse
Affiliation(s)
- Dafna Brik-Simon
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orly Efros
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Ramat Gan, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoel Levinsky
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Gil Amarilyo
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Irit Tirosh
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sarina Levy-Mendelovich
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Ramat Gan, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sheba Talpiot Medical Leadership Program, Tel Hashomer, Israel
| | - Orna Steinberg-Shemer
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Shai Izraeli
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oded Gilad
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
15
|
Chen RJ, Nabila A, Gal Toth J, Stuhlmann H, Toth M. The chemokine XCL1 functions as a pregnancy hormone to program offspring innate anxiety. Brain Behav Immun 2024; 118:178-189. [PMID: 38428650 PMCID: PMC11044916 DOI: 10.1016/j.bbi.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Elevated levels of cytokines in maternal circulation increase the offspring's risk for neuropsychiatric disease. Because of their low homeostatic levels, circulating maternal cytokines during normal pregnancies have not been considered to play a role in fetal brain development and offspring behavior. Here we report that the T/NK cell chemotactic cytokine XCL1, a local paracrine immune signal, can function as a pregnancy hormone and is required for the proper development of placenta and male offspring approach-avoidance behavior. We found that circulating XCL1 levels were at a low pregestational level throughout pregnancy except for a midgestational rise and fall. Blunted elevation in maternal plasma XCL1 in dams with a genetic 5HT1A receptor deficit or following neutralization by anti-XCL1 antibodies increased the expression of tissue damage associated factors in WT fetal placenta and led to increased innate anxiety and stress reactivity in the WT male offspring. Therefore, chemokines like XCL1 may act as pregnancy hormones to regulate placenta development and offspring emotional behavior.
Collapse
Affiliation(s)
- Rosa J Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Judit Gal Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heidi Stuhlmann
- Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
16
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
17
|
Seidel MG, Hauck F. Multilayer concept of autoimmune mechanisms and manifestations in inborn errors of immunity: Relevance for precision therapy. J Allergy Clin Immunol 2024; 153:615-628.e4. [PMID: 38185417 DOI: 10.1016/j.jaci.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Autoimmunity in inborn errors of immunity (IEIs) has a multifactorial pathogenesis and develops subsequent to a genetic predisposition in conjunction with gene regulation, environmental modifiers, and infectious triggers. On the basis of incremental data availability owing to upfront application of omics technologies, a more granular and dynamic view of mechanisms and manifestations is warranted. Here, we present a comprehensive novel concept of autoimmunity in IEIs that considers multiple layers of interdependent elements and connects 101 causative genes or deletions according to the quality of the allelic variants with 47 molecular pathways and 22 immune effector mechanisms. Furthermore, we list 50 resulting manifestations together with the corresponding Human Phenotype Ontology terms and review the types and frequencies of the most relevant clinical presentations. When all of its elements are taken together, this concept (1) extends the historical anatomic view of central versus peripheral tolerance toward multiple interdependent mechanisms of immune tolerance, (2) delineates the mechanisms underlying the protean clinical manifestations, and thereby, (3) points toward the most suitable precision therapy for autoimmunity in IEIs. The multilayer concept of autoimmune mechanisms and manifestations in IEIs will facilitate research design and provide clinical guidance on the use of precision medicine irrespective of the data depth available in each health care scenario.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
18
|
Ricci S, Sarli WM, Lodi L, Canessa C, Lippi F, Dini D, Ferrari M, Pisano L, Sieni E, Indolfi G, Resti M, Azzari C. HLH as an additional warning sign of inborn errors of immunity beyond familial-HLH in children: a systematic review. Front Immunol 2024; 15:1282804. [PMID: 38415256 PMCID: PMC10896843 DOI: 10.3389/fimmu.2024.1282804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background Hemophagocytic Lymphohistiocytosis (HLH) is a rare and life-threatening condition characterized by a severe impairment of the immune homeostasis. While Familial-HLH (FHL) is a known cause, the involvement of other Inborn Errors of Immunity (IEI) in pediatric-HLH remains understudied. Objective This systematic review aimed to assess the clinical features, triggers, laboratory data, treatment, and outcomes of pediatric HLH patients with IEI other than FHL (IEInotFHL), emphasizing the importance of accurate identification and management. Methods A systematic search for studies meeting inclusion criteria was conducted in PubMed, EMBASE, MEDLINE, and Cochrane Central. Quality assessment was performed through JBI criteria. Results A comprehensive search yielded 108 records meeting inclusion criteria, involving 178 patients. We identified 46 different IEI according to IUIS 2022 Classification. Combined immunodeficiencies, immune dysregulation disorders, and phagocyte defects were the IEI most frequently associated with HLH. In 75% of cases, HLH preceded the IEI diagnosis, often with an unrecognized history of severe infections. Triggers reflected the specific infection susceptibilities within IEI groups. Liver and central nervous system involvement were less common than in FHL cases. Treatment approaches and outcomes varied, with limited long-term follow-up data, limiting the assessment of therapeutic efficacy across IEI groups. Conclusion A comprehensive evaluation encompassing immunological, infectious, and genetic aspects is essential in pediatric-HLH. Relying solely on FHL or EBV susceptibility disorders tests is insufficient, as diverse other IEI can contribute to HLH. Early recognition of HLH as a potential warning sign can guide timely diagnostic investigations and facilitate tailored therapeutic interventions for improved outcomes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=371425, PROSPERO, CRD42022371425.
Collapse
Affiliation(s)
- Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Walter Maria Sarli
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Clementina Canessa
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesca Lippi
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Donata Dini
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Marta Ferrari
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Laura Pisano
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Pediatric Hematology-Oncology Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Giuseppe Indolfi
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department Neurofarba, University of Florence, Florence, Italy
| | - Massimo Resti
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
19
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
20
|
Franzblau LE, Fuleihan RL, Cunningham-Rundles C, Wysocki CA. CVID-Associated Intestinal Disorders in the USIDNET Registry: An Analysis of Disease Manifestations, Functional Status, Comorbidities, and Treatment. J Clin Immunol 2023; 44:32. [PMID: 38133694 DOI: 10.1007/s10875-023-01604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Common variable immunodeficiency (CVID) has been subdivided into five phenotypes, including one marked by non-infectious enteropathies that lead to significant morbidity and mortality. We examined a large national registry of patients with CVID to better characterize this population and understand how the presence of enteropathy influences nutritional status, patient function, and the risk of additional non-infectious disorders in CVID patients. We also sought to illustrate the range of treatment strategies for CVID-associated enteropathies. We extracted patient data from the United States Immunodeficiency Network (USIDNET) database, which included 1415 patients with CVID, and compared those with and without intestinal disorders. Demographic and genetic profiles, functional status, and treatments targeting intestinal disorders are reported. Intestinal disorders were present in 20% of patients with CVID, including chronic diarrhea, inflammatory bowel disease, malabsorption, and others. Compared to those without enteropathies, this patient subset exhibited significantly lower Karnofsky-Lansky functional scores, greater reliance on nutritional support, higher rates of vitamin deficiencies, and increased prevalence of hematologic disorders, liver disease, pulmonary disease, granulomatous disease, and lymphoma. Genetic data were reported for only 5% of the cohort. No mutations segregated significantly to patients with or without intestinal disease. Corticosteroids were most frequently used for treatment. Patients with CVID-associated intestinal disorders exhibit higher rates of autoimmune and inflammatory comorbidities, lymphoma, malnutrition, and debility. We review recent studies implicating specific pathways underlying this immune dysregulation. Further studies are needed to evaluate the role of targeted immunomodulatory therapies for CVID-associated intestinal disorders.
Collapse
Affiliation(s)
- Lauren E Franzblau
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern, Dallas, TX, USA
| | - Ramsay L Fuleihan
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian A Wysocki
- Departments of Internal Medicine and Pediatrics, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, F4.100B, Dallas, TX, 75390-8859, USA.
| |
Collapse
|
21
|
Jiang D, Rosenlind K, Baxter S, Gernsheimer T, Gulsuner S, Allenspach EJ, Keel SB. Evaluating the prevalence of inborn errors of immunity in adults with chronic immune thrombocytopenia or Evans syndrome. Blood Adv 2023; 7:7202-7208. [PMID: 37792884 PMCID: PMC10702780 DOI: 10.1182/bloodadvances.2023011042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are monogenic disorders that predispose patients to immune dysregulation, autoimmunity, and infection. Autoimmune cytopenias, such as immune thrombocytopenia (ITP) and Evans syndrome (a combination of ITP and autoimmune hemolytic anemia), are increasingly recognized phenotypes of IEI. Although recent findings suggest that IEIs may commonly underlie pediatric ITP and Evans syndrome, its prevalence in adult patients with these disorders remains undefined. This study sought to estimate the prevalence of underlying IEIs among adults with persistent or chronic ITP or Evans syndrome using a next-generation sequencing panel encompassing >370 genes implicated in IEIs. Forty-four subjects were enrolled from an outpatient adult hematology clinic at a tertiary referral center in the United States, with a median age of 49 years (range, 20-83). Fourteen subjects (31.8%) had secondary ITP, including 8 (18.2%) with Evans syndrome. No cases of IEI were identified despite a high representation of subjects with a personal history of autoimmunity (45.5%) and early onset of disease (median age at diagnosis of 40 years [range, 2-77]), including 20.5% who were initially diagnosed as children. Eight subjects (18.2%) were found to be carriers of pathogenic IEI variants, which, in their heterozygous state, are not disease-causing. One case of TUBB1-related congenital thrombocytopenia was identified. Although systematic screening for IEI has been proposed for pediatric patients with Evans syndrome, findings from this real-world study suggest that inclusion of genetic testing for IEI in the routine work-up of adults with ITP and Evans syndrome has a low diagnostic yield.
Collapse
MESH Headings
- Humans
- Adult
- Child
- Young Adult
- Middle Aged
- Aged
- Aged, 80 and over
- Child, Preschool
- Adolescent
- Anemia, Hemolytic, Autoimmune/epidemiology
- Anemia, Hemolytic, Autoimmune/genetics
- Anemia, Hemolytic, Autoimmune/complications
- Purpura, Thrombocytopenic, Idiopathic/epidemiology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/complications
- Autoimmunity
- Prevalence
- Thrombocytopenia/epidemiology
- Thrombocytopenia/genetics
- Thrombocytopenia/complications
Collapse
Affiliation(s)
- Debbie Jiang
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology, Massachusetts General Hospital, Boston, MA
| | | | - Sarah Baxter
- Division of Rheumatology, Seattle Children’s Hospital, Seattle, WA
| | - Terry Gernsheimer
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Siobán B. Keel
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
22
|
Costagliola G, Legitimo A, Bertini V, Alberio AMQ, Valetto A, Consolini R. Distinct Immunophenotypic Features in Patients Affected by 22q11.2 Deletion Syndrome with Immune Dysregulation and Infectious Phenotype. J Clin Med 2023; 12:7579. [PMID: 38137647 PMCID: PMC10743584 DOI: 10.3390/jcm12247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical expression of 22q11.2 deletion syndrome (22q11.2 DS) is extremely variable, as patients can present with recurrent or severe infections, immune dysregulation, atopic diseases, or extra-immunological manifestations. The immunological background underlying the different disease manifestations is not completely elucidated. The aim of this study was to identify the immunophenotypic peculiarities of 22q11.2 DS patients presenting with different disease expressions. This study included 34 patients with 22q11.2 DS, divided into three groups according to the clinical phenotype: isolated extra-immunological manifestations (G1), infectious phenotype with increased/severe infections (G2), and immune dysregulation (G3). The patients underwent extended immunophenotyping of the T and B lymphocytes and analysis of the circulating dendritic cells (DCs). In patients with an infectious phenotype, a significant reduction in CD3+ and CD4+ cells and an expansion of CD8 naïve cells was evidenced. On the other hand, the immunophenotype of the patients with immune dysregulation showed a skewing toward memory T cell populations, and reduced levels of recent thymic emigrants (RTEs), while the highest levels of RTEs were detected in the patients with isolated extra-immunological manifestations. This study integrates the current literature, contributing to elucidating the variability in the immune status of patients with 22q11.2DS with different phenotypic expressions, particularly in those with infectious phenotype and immune dysregulation.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Annalisa Legitimo
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Veronica Bertini
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | | | - Angelo Valetto
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
23
|
Cabanero-Navalon MD, Garcia-Bustos V, Mira A, Moral Moral P, Salavert-Lleti M, Forner Giner MJ, Núñez Beltrán M, Todolí Parra J, Bracke C, Carda-Diéguez M. Dysimmunity in common variable immunodeficiency is associated with alterations in oral, respiratory, and intestinal microbiota. Clin Immunol 2023; 256:109796. [PMID: 37774905 DOI: 10.1016/j.clim.2023.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency characterized by decreased immunoglobulins and recurrent infections. Its aetiology remains unknown, and some patients present with severe non-infectious autoimmune or inflammatory complications with elevated associated morbimortality. Recently, intestinal dysbiosis has been proposed as a driver of immune dysregulation. In this study, we assessed the oral, respiratory, and gastrointestinal microbiota of 41 CVID patients (24 with dysimmune and 17 with infection complications) and 15 healthy volunteers using 16S rRNA gene sequencing to explore associations between microbiome profiles and CVID phenotypes. Profound differences in the composition of the microbiota in saliva, sputum, and stool were detected between dysimmune CVID patients and healthy individuals. Globally, respiratory species diversity and faecal bacterial richness were lower in CVID individuals with immune complications. Although a single species could not be identified as a robust predictor of dysimmunity, a combination of around 5-7 bacterial species in each type of sample could predict this severe phenotype with an accuracy of around 90% in the study population. Our study provides new insights into these previously unexplored but highly interrelated ecological niches among themselves and with patient profiles. Our data suggest that this disease-related systemic dysbiosis could be implicated in the immune dysregulation associated with severe cases of CVID.
Collapse
Affiliation(s)
- Marta Dafne Cabanero-Navalon
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Victor Garcia-Bustos
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain.
| | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Pedro Moral Moral
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Salavert-Lleti
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain; Unit of Infectious Diseases, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - María Núñez Beltrán
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - José Todolí Parra
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Carme Bracke
- Department of Infectious Diseases, Germans Trias i Pujol Hospital, Badalona, Spain
| | | |
Collapse
|
24
|
Novak W, Berner J, Svaton M, Jimenez-Heredia R, Segarra-Roca A, Frohne A, Guiliani S, Rouhani D, Eder SK, Rottal A, Trapin D, Scheuchenstuhl A, Pickl WF, Simonitsch-Klupp I, Kager L, Boztug K. Evans syndrome caused by a deleterious mutation affecting the adaptor protein SASH3. Br J Haematol 2023; 203:678-683. [PMID: 37646304 DOI: 10.1111/bjh.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Increasing evidence suggests multilineage cytopenias (also known as Evans syndrome) may be caused by inborn errors of immunity (IEI) with immune dysregulation. We studied a patient with autoimmune haemolytic anaemia and immune thrombocytopenia and identified a germline mutation in SASH3 (c.862C>T;p.Arg288Ter), indicating a recently identified IEI. Immunohistochemistry performed after clinically indicated splenectomy revealed severe hypoplasia/absence of germinal centres. The autoimmune phenotype was associated with an increased CD21low T-bet+ CD11c+ subset along with decreased regulatory T cells, impaired T-cell proliferation and T-cell exhaustion. The younger brother carries the same SASH3 mutation and shares immunophenotypic features but is currently clinical asymptomatic, indicating heterogeneity of SASH3 deficiency.
Collapse
Affiliation(s)
- Wolfgang Novak
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Jakob Berner
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Venerology and Allergology, Klinik Landstrasse, Vienna, Austria
| | - Michael Svaton
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez-Heredia
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anna Segarra-Roca
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Alexandra Frohne
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sarah Guiliani
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - David Rouhani
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Sebastian K Eder
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Anja Scheuchenstuhl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Leo Kager
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Kaan Boztug
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
25
|
Cagdas D, Ayasun R, Gulseren D, Sanal O, Tezcan I. Cutaneous Findings in Inborn Errors of Immunity: An Immunologist's Perspective. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3030-3039. [PMID: 37391021 DOI: 10.1016/j.jaip.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Cutaneous manifestations are common in patients with inborn errors of immunity (IEI)/primary immunodeficiency and could be due to infections, immune dysregulation, or lymphoproliferative/malign diseases. Immunologists accept some as warning signs for underlying IEI. Herein, we include noninfectious/infectious cutaneous manifestations that we come across in rare IEI cases in our clinic and provide a comprehensive literature review. For several skin diseases, the diagnosis is challenging and differential diagnosis is necessary. Detailed disease history and examination play a vital role in reaching a diagnosis, especially if there is a potential underlying IEI. A skin biopsy is sometimes necessary, especially if we need to rule out inflammatory, infectious, lymphoproliferative, and malignant conditions. Specific and immunohistochemical stainings are particularly important when diagnosing granuloma, amyloidosis, malignancies, and infections like human herpes virus-6, human herpes virus-8, human papillomavirus, and orf. Elucidation of mechanisms of IEIs has improved our understanding of their relation to cutaneous findings. In challenging cases, the immunological evaluation may lead the approach when there is a specific primary immunodeficiency diagnosis or at least help to reduce the number of differential diagnoses. Conversely, the response to therapy may provide conclusive evidence for some conditions. This review raises awareness of concomitant lesions and expands the scope of the differential diagnosis of IEI and the spectrum of skin disease therapy by highlighting frequent forms of IEI-associated cutaneous manifestations. The manifestations given here will guide clinicians to plan for alternative use of diverse therapeutics in a multidisciplinary way for skin diseases.
Collapse
Affiliation(s)
- Deniz Cagdas
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Ruveyda Ayasun
- Depatment of Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Duygu Gulseren
- Department of Dermatology, Hacettepe University Medical School, Ankara, Turkey
| | - Ozden Sanal
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
26
|
Venkatachari IV, Chougule A, Gowri V, Taur P, Bodhanwala M, Prabhu S, Madkaikar M, Desai M. Monogenic inborn errors of immunity in autoimmune disorders. Immunol Res 2023; 71:771-780. [PMID: 37199901 DOI: 10.1007/s12026-023-09391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
To estimate the prevalence of monogenic inborn errors of immunity in patients with autoimmune diseases (AID), the study included 56 subjects (male:female ratio: 1.07) with mean age of onset of autoimmunity 7 years (4 months-46 years). 21/56 had polyautoimmunity. 5/56 patients met the JMF criteria for PID. The different AID referred were hematological (42%) > gastrointestinal (GI) (16%) > skin (14%) > endocrine (10%) > rheumatological (8%) > renal (6%) > neurological (2%). 36/56 reported recurrent infections. 27/56 were on polyimmunotherapy. 18/52 (35%) had CD19 lymphopenia, 24/52 (46%) had CD4 lymphopenia, 11/52 (21%) had CD8 lymphopenia, and 14/48 (29%) had NK lymphopenia. 21/50 (42%) had hypogammaglobinemia; 3 of whom were given rituximab. 28/56 were found to have pathogenic variants among PIRD genes. These 28 patients had 42 AID among which hematological was most common (50%) > GI (14%) = skin (14%)> endocrine (9%) > rheumatological (7%) > renal and neurological (2%). Hematological AID was the most common AID (75%) in children with PIRD. Positive predictive value (PPV) of abnormal immunological tests was 50% and sensitivity of 70%. JMF criteria had specificity of 100% in identifying PIRD and sensitivity of 17%. Polyautoimmunity had a PPV of 35% and sensitivity of 40%. 11/28 of these children were offered transplant. 8/28 were started on sirolimus, 2/28 on abatacept, and 3/28 on baricitinib/ruxolitinib after diagnosis. In conclusion, 50% of children with AID have underlying PIRD. LRBA deficiency and STAT1 GOF were the most common PIRD. Age at presentation, number of autoimmunity, routine immunological tests, and JMF criteria are not predictive of underlying PIRD. Early diagnosis with exome sequencing alters the prognosis and opens new therapeutic avenue.
Collapse
Affiliation(s)
| | - Akshaya Chougule
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Minnie Bodhanwala
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Shakuntala Prabhu
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Manisha Madkaikar
- National Institute of Immunohematology, ICMR, KEM, Parel, Mumbai, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India.
| |
Collapse
|
27
|
Aladjidi N, Pincez T, Rieux-Laucat F, Nugent D. Paediatric-onset Evans syndrome: Breaking away from refractory immune thrombocytopenia. Br J Haematol 2023; 203:28-35. [PMID: 37735545 DOI: 10.1111/bjh.19073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023]
Abstract
Since its first description by Evans in 1951, this syndrome has been linked to chronic immune thrombocytopenia with the concurrent or delayed onset of autoimmune haemolytic anaemia or neutropenia. For decades, the evolution of Evans syndrome (ES) has carried a poor prognosis and often resulted in chronic steroid exposure, multiple immune suppressing medications directed against T or B lymphocytes, and splenectomy. This paper presents a new view of ES based on recent advances in genomics which begin to classify patients based on their underlying molecular variants in previously described primary immune disorders. This has opened up new avenues of targeted therapy or bone marrow transplant at rather than broad long-term immune suppression or splenectomy. Importantly, recent studies of the full lifespan of ES suggest that at least 80% of those paediatric patients will progress to various clinical or biological immunopathological manifestations with age despite the resolution of their cytopenias. Those patients merit long-term follow-up and monitoring in dedicated transition programs to improve outcome at the adult age.
Collapse
Affiliation(s)
- Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), Bordeaux, France
- Pediatric Hemato-Immunology, CIC1401, INSERM CICP, Bordeaux University Hospital, Bordeaux, France
| | - Thomas Pincez
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), Bordeaux, France
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Charles-Bruneau Cancer Center, Sainte-Justine University Hospital, Université de Montréal, Québec, Montréal, Canada
| | - Frédéric Rieux-Laucat
- Université Paris Cité, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Diane Nugent
- Division of Hematology, Childrens Hospital of ORange County (CHOC), University of California Irvine, Irvine, California, USA
| |
Collapse
|
28
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Clin Lab Med 2023; 43:467-483. [PMID: 37481324 DOI: 10.1016/j.cll.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
Fourgeaud J, Lecuit MM, Pérot P, Bruneau J, Regnault B, Da Rocha N, Bessaud M, Picard C, Jeziorski É, Fournier B, Levy R, Marçais A, Blanche S, Frange P, Fischer A, Cavazzana M, Ferroni A, Jamet A, Leruez-Ville M, Eloit M, Neven B. Chronic Aichi Virus Infection As a Cause of Long-Lasting Multiorgan Involvement in Patients With Primary Immune Deficiencies. Clin Infect Dis 2023; 77:620-628. [PMID: 37078608 DOI: 10.1093/cid/ciad237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) was used to assess patients with primary or secondary immune deficiencies (PIDs and SIDs) who presented with immunopathological conditions related to immunodysregulation. METHODS Thirty patients with PIDs or SIDs who presented with symptoms related to immunodysregulation and 59 asymptomatic patients with similar PIDs or SIDs were enrolled. mNGS was performed on organ biopsy. Specific Aichi virus (AiV) reverse-transcription polymerase chain reaction (RT-PCR) was used to confirm AiV infection and screen the other patients. In situ hybridization (ISH) assay was done on AiV-infected organs to identify infected cells. Virus genotype was determined by phylogenetic analysis. RESULTS AiV sequences were detected using mNGS in tissue samples of 5 patients and by RT-PCR in peripheral samples of another patient, all of whom presented with PID and long-lasting multiorgan involvement, including hepatitis, splenomegaly, and nephritis in 4 patients. CD8+ T-cell infiltration was a hallmark of the disease. RT-PCR detected intermittent low viral loads in urine and plasma from infected patients but not from uninfected patients. Viral detection stopped after immune reconstitution obtained by hematopoietic stem cell transplantation. ISH demonstrated the presence of AiV RNA in hepatocytes (n = 1) and spleen tissue (n = 2). AiV belonged to genotype A (n = 2) or B (n = 3). CONCLUSIONS The similarity of the clinical presentation, the detection of AiV in a subgroup of patients suffering from immunodysregulation, the absence of AiV in asymptomatic patients, the detection of viral genome in infected organs by ISH, and the reversibility of symptoms after treatment argue for AiV causality.
Collapse
Affiliation(s)
- Jacques Fourgeaud
- Université Paris Cité, Fédération pour l'Étude et évaluation des Thérapeutiques intra-Utérines, Paris, France
- Microbiology Department, AP-HP, Hôpital Necker Paris, France
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathilde M Lecuit
- Pediatric Hematology Immunology and Rheumatology Unit, AP-HP, Hôpital Necker Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Julie Bruneau
- Laboratory of Molecular Mechanisms of Hematologic Disorders and Therapeutic Implications, Université Paris Cité, Inserm, Institut Imagine Paris, France
- Department of Pathology, AP-HP, Hôpital Necker Paris, France
| | - Beatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Da Rocha
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mael Bessaud
- Laboratoire signalisation antivirale, Institut Pasteur, Université Paris Cité, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Université Paris Cité, Inserm, Institut Imagine Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Children's hospital, APHP Paris, France
| | - Éric Jeziorski
- Pediatric Hematology Immunology Unit, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Benjamin Fournier
- Pediatric Hematology Immunology and Rheumatology Unit, AP-HP, Hôpital Necker Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, Inserm, Institut Imagine Paris, France
| | - Romain Levy
- Pediatric Hematology Immunology and Rheumatology Unit, AP-HP, Hôpital Necker Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Université Paris Cité, Inserm, Institut Imagine Paris, France
| | - Ambroise Marçais
- Laboratory of Molecular Mechanisms of Hematologic Disorders and Therapeutic Implications, Université Paris Cité, Inserm, Institut Imagine Paris, France
- Hepatology Unit, AP-HP, Hôpital Necker Paris, France
| | - Stéphane Blanche
- Pediatric Hematology Immunology and Rheumatology Unit, AP-HP, Hôpital Necker Paris, France
| | - Pierre Frange
- Université Paris Cité, Fédération pour l'Étude et évaluation des Thérapeutiques intra-Utérines, Paris, France
- Microbiology Department, AP-HP, Hôpital Necker Paris, France
| | - Alain Fischer
- Pediatric Hematology Immunology and Rheumatology Unit, AP-HP, Hôpital Necker Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, Inserm, Institut Imagine Paris, France
- Médecine expérimentale, Collège de France, Paris, France
| | - Marina Cavazzana
- Laboratory of Human Lympho-Hematopoiesis, Université Paris Cité, Inserm, Institut Imagine Paris, France
- Department of Biotherapy, Hôpital Necker, AP-HP Paris, France
| | - Agnès Ferroni
- Microbiology Department, AP-HP, Hôpital Necker Paris, France
| | - Anne Jamet
- Microbiology Department, AP-HP, Hôpital Necker Paris, France
- Department of Pathogenesis of systemic infections, Université Paris Cité, CNRS, Inserm, Institut Necker-Enfants Malades, Paris, France
| | - Marianne Leruez-Ville
- Université Paris Cité, Fédération pour l'Étude et évaluation des Thérapeutiques intra-Utérines, Paris, France
- Microbiology Department, AP-HP, Hôpital Necker Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Département des Sciences biologiques et Pharmaceutiques, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Bénédicte Neven
- Pediatric Hematology Immunology and Rheumatology Unit, AP-HP, Hôpital Necker Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, Inserm, Institut Imagine Paris, France
| |
Collapse
|
31
|
Lui VG, Ghosh T, Rymaszewski A, Chen S, Baxter RM, Kong DS, Ghosh D, Routes JM, Verbsky JW, Hsieh EWY. Dysregulated Lymphocyte Antigen Receptor Signaling in Common Variable Immunodeficiency with Granulomatous Lymphocytic Interstitial Lung Disease. J Clin Immunol 2023; 43:1311-1325. [PMID: 37093407 PMCID: PMC10524976 DOI: 10.1007/s10875-023-01485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A subset of common variable immunodeficiency (CVID) patients either presents with or develops autoimmune and lymphoproliferative complications, such as granulomatous lymphocytic interstitial lung disease (GLILD), a major cause of morbidity and mortality in CVID. While a myriad of phenotypic lymphocyte derangements has been associated with and described in GLILD, defects in T and B cell antigen receptor (TCR/BCR) signaling in CVID and CVID with GLILD (CVID/GLILD) remain undefined, hindering discovery of biomarkers for disease monitoring, prognostic prediction, and personalized medicine approaches. METHODS To identify perturbations of immune cell subsets and TCR/BCR signal transduction, we applied mass cytometry analysis to peripheral blood mononuclear cells (PBMCs) from healthy control participants (HC), CVID, and CVID/GLILD patients. RESULTS Patients with CVID, regardless of GLILD status, had increased frequency of HLADR+CD4+ T cells, CD57+CD8+ T cells, and CD21lo B cells when compared to healthy controls. Within these cellular populations in CVID/GLILD patients only, engagement of T or B cell antigen receptors resulted in discordant downstream signaling responses compared to CVID. In CVID/GLILD patients, CD21lo B cells showed perturbed BCR-mediated phospholipase C gamma and extracellular signal-regulated kinase activation, while HLADR+CD4+ T cells and CD57+CD8+ T cells displayed disrupted TCR-mediated activation of kinases most proximal to the receptor. CONCLUSION Both CVID and CVID/GLILD patients demonstrate an activated T and B cell phenotype compared to HC. However, only CVID/GLILD patients exhibit altered TCR/BCR signaling in the activated lymphocyte subsets. These findings contribute to our understanding of the mechanisms of immune dysregulation in CVID with GLILD.
Collapse
Affiliation(s)
- Victor G Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, USA
| | - Amy Rymaszewski
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shaoying Chen
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Asthma, Allergy, and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ryan M Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Daniel S Kong
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, USA
| | - John M Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James W Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA.
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Aurora, CO, USA.
- Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
32
|
Leonardi L, Testa A, Feleppa M, Paparella R, Conti F, Marzollo A, Spalice A, Giona F, Gnazzo M, Andreoli GM, Costantino F, Tarani L. Immune dysregulation in Kabuki syndrome: a case report of Evans syndrome and hypogammaglobulinemia. Front Pediatr 2023; 11:1087002. [PMID: 37360370 PMCID: PMC10288106 DOI: 10.3389/fped.2023.1087002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Kabuki syndrome (KS) is a rare multisystemic disease due to mutations in the KMT2D or KDM6A genes, which act as epigenetic modulators of different processes, including immune response. The syndrome is characterized by anomalies in multiple organ systems, and it is associated with autoimmune and inflammatory disorders, and an underlying immunological phenotype characterized by immunodeficiency and immune dysregulation. Up to 17% of KS patients present with immune thrombocytopenia characterized by a severe, chronic or relapsing course, and often associated to other hematological autoimmune diseases including autoimmune hemolytic anemia, eventually resulting in Evans syndrome (ES). A 23-year-old woman, clinically diagnosed with KS and presenting from the age of 3 years with ES was referred to the Rare Diseases Centre of our Pediatric Department for corticosteroid-induced hyperglycemia. Several ES relapses and recurrent respiratory infections in the previous years were reported. Severe hypogammaglobulinemia, splenomegaly and signs of chronic lung inflammation were diagnosed only at the time of our observation. Supportive treatment with amoxicillin-clavulanate prophylaxis and recombinant human hyaluronidase-facilitated subcutaneous immunoglobulin replacement were immediately started. In KS patients, the failure of B-cell development and the lack of autoreactive immune cells suppression can lead to immunodeficiency and autoimmunity that may be undiagnosed for a long time. Our patient's case is paradigmatic since she presented with preventable morbidity and severe lung disease years after disease onset. This case emphasizes the importance of suspecting immune dysregulation in KS. Pathogenesis and immunological complications of KS are discussed. Moreover, the need to perform immunologic evaluations is highlighted both at the time of KS diagnosis and during disease follow-up, in order to allow proper treatment while intercepting avoidable morbidity in these patients.
Collapse
Affiliation(s)
- Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Testa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariavittoria Feleppa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Gnazzo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Gian Marco Andreoli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Costantino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Pieniawska-Śmiech K, Lewandowicz-Uszyńska A, Zemelka-Wiacek M, Jutel M. Assessment of autoantibodies in paediatric population with primary immunodeficiencies: a pilot study. BMC Immunol 2023; 24:8. [PMID: 37270495 DOI: 10.1186/s12865-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The correlation between primary immunodeficiencies (PIDs) and autoimmunity shows ethnic and geographical diversity. The aim of our study was to accumulate more data in paediatric PID population. METHODS 58 children aged 1-17 and with PID (study group) and 14 age-matched immunocompetent individuals (control group) were included in the study. Serum levels of 17 different specific IgG antibodies against autoantigens were measured by means of a quantitative enzyme immunoassay. Immunoglobulin levels were analysed in relation to a detailed medical examination. RESULTS Autoantibodies against one or more antigens were detected in the sera of 24.14% (n = 14) subjects in the study group. The most frequent were anti-thyroid peroxidase (anti-TPO) antibodies (n = 8; 13.8%). Anti-TPO antibody levels were elevated more often in PID patients with a positive family history of autoimmune diseases (p = 0.04). The screening for anti-deamidated gliadin peptide (DGP) and anti-tissue transglutaminase (tTG) antibodies in our series allowed identifying two previously undiagnosed cases of coeliac disease in PID patients. There was no statistically significant difference between the study and the control group in terms of the autoantibodies prevalence. CONCLUSIONS This study provides data on the prevalence of autoantibodies in paediatric population diagnosed with PID. Selected autoantibodies (i.e. anti-tTG, anti-DGP) might be useful for the screening of PID to avoid the delay of diagnosis of an autoimmune disease.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J.Gromkowski, 51-149, Wroclaw, Poland.
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J.Gromkowski, 51-149, Wroclaw, Poland
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367, Wroclaw, Poland
| | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
- ALL-MED Research Institute, 53-201, Wroclaw, Poland.
| |
Collapse
|
34
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
35
|
López-Nevado M, Sevilla J, Almendro-Vázquez P, Gil-Etayo FJ, Garcinuño S, Serrano-Hernández A, Paz-Artal E, González-Granado LI, Allende LM. Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children. J Clin Immunol 2023:10.1007/s10875-023-01488-6. [PMID: 37074537 PMCID: PMC10113994 DOI: 10.1007/s10875-023-01488-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Human inborn errors of immunity (IEI) affecting the type I interferon (IFN-I) induction pathway have been associated with predisposition to severe viral infections. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory syndrome that has been increasingly associated with inborn errors of IFN-I-mediated innate immunity. Here is reported a novel case of complete deficiency of STAT2 in a 3-year-old child that presented with typical features of HLH after mumps, measles, and rubella vaccination at the age of 12 months. Due to the life-threatening risk of viral infection, she received SARS-CoV-2 mRNA vaccination. Unfortunately, she developed multisystem inflammatory syndrome in children (MIS-C) after SARS-CoV-2 infection, 4 months after the last dose. Functional studies showed an impaired IFN-I-induced response and a defective IFNα expression at later stages of STAT2 pathway induction. These results suggest a possible more complex mechanism for hyperinflammatory reactions in this type of patients involving a possible defect in the IFN-I production. Understanding the cellular and molecular links between IFN-I-induced signaling and hyperinflammatory syndromes can be critical for the diagnosis and tailored management of these patients with predisposition to severe viral infection.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
| | - Julián Sevilla
- Hematology and Hemotherapy Unit, University Children's Hospital Niño Jesus, Madrid, Spain
| | - Patricia Almendro-Vázquez
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Francisco J Gil-Etayo
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Sara Garcinuño
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Antonio Serrano-Hernández
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis I González-Granado
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Department of Pediatrics, Immunodeficiency Unit, University Hospital, 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
- School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
36
|
Pergent M, Haerynck F, Hoste L, Gardulf A. COVID-19 vaccination in patients with primary immunodeficiencies: an international survey on patient vaccine hesitancy and self-reported adverse events. Front Immunol 2023; 14:1166198. [PMID: 37143673 PMCID: PMC10151802 DOI: 10.3389/fimmu.2023.1166198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The Sars-CoV-2 pandemic caused great concern for this novel virus among patients with primary immunodeficiency (PID) or inborn errors of immunity (IEI) and their families. When COVID-19 vaccination program started, no data existed on adverse events (AEs) in this particular patient population, nor if patients felt hesitancy being vaccinated. Objectives To explore i) reasons for COVID-19 vaccination hesitancy, ii) the number and symptoms of AEs and their severity, durability and management. Method The organisations International Patient Organisation for Primary Immunodeficiencies (IPOPI), European Society for Immunodeficiencies (ESID) and International Nursing Group for Immunodeficiencies (INGID) distributed a global self-administered online survey. Results The survey was completed by 1317 patients (mean 47, range 12-100, years) from 40 countries. 41.7% of the patients denoted some hesitancy to COVID-19 vaccination, mainly having doubts about postvaccination protection related to their underlying PID and concerns about negative long-term effects. More women (22.6%) reported "very" or "pretty much" hesitancy compared to men (16.4%) (P<0.05). The most common systemic AEs were fatigue, muscle/body pain and headache, usually the same day or the day after the vaccination and lasting for 1-2 days. 27.8% of the respondents reported severe systemic AEs after any dose of COVID-19 vaccine. Only a minority (7.8%) of these patients visited a health-care professional and 20 patients (1.5%) were hospitalized or seen at emergency room without specifying subsequent admission at the hospital. Significantly more local and systemic AEs were reported after the second dose. No differences regarding AEs were observed across different PID subgroups or vaccine types. Conclusion At the time of the survey, almost half of the patients reported having felt hesitancy to COVID-19 vaccination highlighting the importance and need of developing joint international guidelines and education programs about COVID-19 vaccination. The types of AEs were comparable to healthy controls, but more frequent AEs were reported. Clinical studies and prospective, detailed registration of AEs related to COVID-19 vaccines in this patient population is of great importance. It is crucial to elucidate whether there is a coincidental or causal association between COVID-19 vaccine and some severe systemic AEs. Our data do not contradict that patients with PID can be advised to be vaccinated against COVID-19, in accordance with applicable national guidelines.
Collapse
Affiliation(s)
- Martine Pergent
- The International Patient Organisation for Primary Immunodeficiencies, Brussels, Belgium
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Pulmonology, Infectious Diseases and Immune Deficiency, Centre for Primary Immune Deficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Pulmonology, Infectious Diseases and Immune Deficiency, Centre for Primary Immune Deficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Ann Gardulf
- Department of Clinical Immunology, John Radcliffe Hospital, The International Nursing Group for Immunodeficiencies (INGID), Oxford University Hospitals NHSFT, Oxford, United Kingdom
- Division of Clinical Immunology and Transfusion Medicine, The Unit for Clinical Research, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Social and Health Sciences, Department of Health and Nursing Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
37
|
Tangye SG. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol 2023; 151:818-831. [PMID: 36522221 PMCID: PMC9746792 DOI: 10.1016/j.jaci.2022.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales Sydney, Randwick, Randwick, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA).
| |
Collapse
|
38
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Hajjar J, Voigt A, Conner M, Swennes A, Fowler S, Calarge C, Mendonca D, Armstrong D, Chang CY, Walter J, Butte M, Savidge T, Oh J, Kheradmand F, Petrosino J. Common Variable Immunodeficiency Patient Fecal Microbiota Transplant Recapitulates Gut Dysbiosis. RESEARCH SQUARE 2023:rs.3.rs-2640584. [PMID: 36993518 PMCID: PMC10055500 DOI: 10.21203/rs.3.rs-2640584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Purpose Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.
Collapse
|
40
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
41
|
The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages. J Clin Immunol 2023; 43:819-834. [PMID: 36790564 PMCID: PMC10110688 DOI: 10.1007/s10875-023-01442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. METHODS Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. RESULTS A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. CONCLUSION Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity.
Collapse
|
42
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
43
|
Strohmeier V, Andrieux G, Unger S, Pascual-Reguant A, Klocperk A, Seidl M, Marques OC, Eckert M, Gräwe K, Shabani M, von Spee-Mayer C, Friedmann D, Harder I, Gutenberger S, Keller B, Proietti M, Bulashevska A, Grimbacher B, Provaznik J, Benes V, Goldacker S, Schell C, Hauser AE, Boerries M, Hasselblatt P, Warnatz K. Interferon-Driven Immune Dysregulation in Common Variable Immunodeficiency-Associated Villous Atrophy and Norovirus Infection. J Clin Immunol 2023; 43:371-390. [PMID: 36282455 PMCID: PMC9892141 DOI: 10.1007/s10875-022-01379-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.
Collapse
Affiliation(s)
- Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Adam Klocperk
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, 2Nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Maximilian Seidl
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Otavio Cabral Marques
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marleen Eckert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katja Gräwe
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Michelle Shabani
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Caroline von Spee-Mayer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Friedmann
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvia Gutenberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Jan Provaznik
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
45
|
Kido T, Hosaka S, Imagawa K, Fukushima H, Morio T, Nonoyama S, Takada H. Initial manifestations in Patients with Inborn Errors of Immunity Based on Onset Age: a Study from a Nationwide Survey in Japan. J Clin Immunol 2023; 43:747-755. [PMID: 36662456 DOI: 10.1007/s10875-023-01434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Patients with inborn errors of immunity (IEI) manifest various initial symptoms; however, those that are critical for the early diagnosis of IEI have not been identified. Also, the significance of the ten warning signs of primary immunodeficiency (PID) among infants has not been established. This study aimed to conduct a nationwide survey of IEI in Japan and investigated the initial manifestations based on onset age. METHODS Among 1298 patients, data regarding the initial manifestation were available from 505 patients. Patients with autoinflammatory diseases, complement deficiency, and phenocopies of IEI were excluded. RESULTS The ten warning signs were positive in 67.3% of the cases. The positivity rate was low (20.5%) in patients with immune dysregulation. Although the positivity rate was low (36.6%) in patients aged less than 3 months, they were highly positive for family history of IEI (26.8%). Infectious symptoms were the most commonly observed in all age groups and in all disease categories. Symptoms of "immune dysregulation" were present in approximately 15% of the patients. Regarding the anatomical category, almost all initial symptoms were "systemic" infections in patients with X-linked severe combined immunodeficiency. Moreover, "respiratory" symptoms were the most common in patients with IEI aged ≥ 1 year and accounted for more than 50% in all age groups in patients with common variable immunodeficiency. CONCLUSION These results highlight the significance of the 10 warning signs and may serve as clinical indicators for early diagnosis, considering the initial presentation of IEI.
Collapse
Affiliation(s)
- Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan.
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan.,Department of Child Health, University of Tsukuba, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan.,Department of Child Health, University of Tsukuba, Ibaraki, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan.,Department of Child Health, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
46
|
Grochowalska K, Ziętkiewicz M, Więsik-Szewczyk E, Matyja-Bednarczyk A, Napiórkowska-Baran K, Nowicka-Sauer K, Hajduk A, Sołdacki D, Zdrojewski Z. Subjective sleep quality and fatigue assessment in Polish adult patients with primary immunodeficiencies: A pilot study. Front Immunol 2023; 13:1028890. [PMID: 36713442 PMCID: PMC9880253 DOI: 10.3389/fimmu.2022.1028890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Primary immunodeficiencies (PIDs) are clinically heterogeneous disorders caused by abnormalities in the immune system. However, PIDs are genetically determined and may occur at any age from early childhood to elderly age. Due to chronic patterns, the risk of malignancy and organ damage in patients with PIDs may affect any aspect of life, including sleep patterns. To our knowledge, the prevalence of insomnia and subjective sleep quality have not been investigated in patients with PIDs. Therefore, this pilot study was conducted to investigate sleep quality, the prevalence of sleep disturbances, and fatigue in adult patients with PIDs in Poland. Methods All participants were surveyed using the Athens Insomnia Scale, Pittsburgh Sleep Quality Index, Fatigue Severity Scale, and a questionnaire concerning general health and demographic data. We included 92 participants: 48 women (52.2%) and 44 men (47.8%). Results Participants' mean age was 41.9 ± 13.9 years. The mean sleep duration was 7.0 ± 1.5 hours, and the mean sleep latency was 41.2 ± 53.1 minutes. Additionally, 44.6% of patients (n=41) had symptoms of insomnia and 44.6% (n=42) had poor sleep quality. Less than one-fourth (n=22; 23.9%) of the patients reported the use of sleeping pills; moreover, clinically significant fatigue was reported in 52.2% (n=48). Discussion Our investigation provides insight into the problem of sleep disturbances in patients with PIDs. Data have demonstrated that sleeping disorders with concomitant fatigue are common in patients with PID. Further studies are needed to determine the determinants of poor sleep quality in this specific group of patients.
Collapse
Affiliation(s)
- Kinga Grochowalska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland,*Correspondence: Kinga Grochowalska,
| | - Marcin Ziętkiewicz
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Aleksandra Matyja-Bednarczyk
- Outpatient Clinic for the Immunological Hypercoagulable Diseases, The University Hospital in Krakow, Kraków, Poland
| | - Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | | | - Adam Hajduk
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Dariusz Sołdacki
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Zbigniew Zdrojewski
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
47
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
48
|
Freund T, Baxter SK, Walsh T, Golan H, Kapelushnik J, Abramsohn-Goldenberg M, Benor S, Sarid N, Ram R, Alcalay Y, Segel R, Renbaum P, Stepensky P, King MC, Torgerson TR, Hagin D. Clinically Complex LRBA Deficiency Due to a Founder Allele in the Georgian Jewish Population. J Clin Immunol 2023; 43:151-164. [PMID: 36063261 DOI: 10.1007/s10875-022-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
Pathogenic variants in LRBA, encoding the LPS Responsive Beige-Like Anchor (LRBA) protein, are responsible for recessive, early-onset hypogammaglobulinemia, severe multi-organ autoimmunity, and lymphoproliferation, with increased risk for malignancy. LRBA deficiency has a wide clinical spectrum with variable age of onset and disease severity. Three apparently unrelated patients with LRBA deficiency, of Georgian Jewish descent, were homozygous for LRBA c.6640C > T, p.R2214*, leading to a stop upstream of the LRBA BEACH domain. Despite carrying the same LRBA genotype, the three patients differed in clinical course: the first patient was asymptomatic until age 25 years; the second presented with failure to thrive at age 3 months; and the third presented at age 7 years with immune cytopenias and severe infections. Two of the patients developed malignancies: the first patient was diagnosed with recurrent Hodgkin's disease at age 36 years, and the second patient developed aggressive gastric cancer at age 15 years. Among Georgian Jews, the carrier frequency of the LRBA p.R2214* allele was 1.6% (4 of 236 Georgian Jewish controls). The allele was absent from other populations. Haplotype analysis showed a shared origin of the mutation. These three patients revealed a pathogenic LRBA founder allele in the Georgian Jewish population, support the diverse and complex clinical spectrum of LRBA deficiency, and support the possibility that LRBA deficiency predisposes to malignancy.
Collapse
Affiliation(s)
- Tal Freund
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah K Baxter
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hana Golan
- Pediatric Hematology Oncology Department, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Kapelushnik
- Department of Pediatric Oncology and Department of Hematology, Faculty of Health Sciences, Soroka Medical Center and The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Shira Benor
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sarid
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Ram
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Alcalay
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reeval Segel
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Allen Institute for Immunology, Seattle, WA, USA
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A. Disrupted Ca 2+ homeostasis and immunodeficiency in patients with functional IP 3 receptor subtype 3 defects. Cell Mol Immunol 2023; 20:11-25. [PMID: 36302985 PMCID: PMC9794825 DOI: 10.1038/s41423-022-00928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Frederik Staels
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Taylor R Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaux Gerbaux
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - John S Barber
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Susan Schlenner
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- UZ Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- UZ Leuven, Leuven, Belgium.
- Laboratory for Allergy and Clinical Immunology and Immunogenetics Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
50
|
Ollech A, Simon AJ, Lev A, Stauber T, Sherman G, Solomon M, Barzilai A, Somech R, Greenberger S. A horse or a zebra? Unusual manifestations of common cutaneous infections in primary immunodeficiency pediatric patients. Front Pediatr 2023; 11:1103726. [PMID: 36950172 PMCID: PMC10026180 DOI: 10.3389/fped.2023.1103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 03/24/2023] Open
Abstract
Background Patients with primary immunodeficiency disorders (PIDs) often suffer from recurrent infections because of their inappropriate immune response to both common and less common pathogens. These patients may present with unique and severe cutaneous infectious manifestations that are not common in healthy individuals and may be more challenging to diagnose and treat. Objective To describe a cohort of patients with PIDs with atypical presentations of skin infections, who posed a diagnostic and/or therapeutic challenge. Methods This is a retrospective study of pediatric patients with PID with atypical presentations of infections, who were treated at the immunodeficiency specialty clinic and the pediatric dermatology clinic at the Sheba Medical Center between September 2012 and August 2022. Epidemiologic data, PID diagnosis, infectious etiology, presentation, course, and treatment were recorded. Results Eight children with a diagnosis of PID were included, five of whom were boys. The average age at PID diagnosis was 1.7 (±SD 3.2) years. The average age of cutaneous infection was 6.9 (±SD 5.9) years. Three patients were born to consanguineous parents. The PIDs included the following: common variable immunodeficiency, severe combined immunodeficiency, DOCK8 deficiency, ataxia telangiectasia, CARD11 deficiency, MALT1 deficiency, chronic granulomatous disease, and a combined cellular and humoral immunodeficiency syndrome of unknown etiology. The infections included the following: ulcerative-hemorrhagic varicella-zoster virus (two cases) atypical fungal and bacterial infections, resistant Norwegian scabies, giant perianal verrucae (two cases), and diffuse molluscum contagiosum. Conclusions In this case series, we present unusual manifestations of infectious skin diseases in pediatric patients with PID. In some of the cases, recognition of the infectious process prompted life-saving treatment. Increasing familiarity with these dermatological manifestations, as well as keeping a high index of suspicion, is important to enabling early diagnosis of cutaneous infections in PIDs and initiation of prompt suitable treatment.
Collapse
Affiliation(s)
- Ayelet Ollech
- Department of Dermatology, Pediatric Dermatology Service, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Correspondence: Ayelet Ollech
| | - Amos J Simon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Atar Lev
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Gilad Sherman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Infectious Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Michal Solomon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Aviv Barzilai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Pediatric Dermatology Service, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|