1
|
Rajasekera TA, Galley JD, Mashburn-Warren L, Lauber CL, Bailey MT, Worly BL, Gur TL. Pregnancy during COVID 19 pandemic associated with differential gut microbiome composition as compared to pre-pandemic. Sci Rep 2024; 14:26880. [PMID: 39505949 PMCID: PMC11541556 DOI: 10.1038/s41598-024-77560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
The first two years of the COVID-19 pandemic and subsequent health mandates resulted in significant disruptions to daily life, creating a period of heightened psychosocial stress in myriad aspects. Understanding the impact of this period on pregnant individuals' bacteriomes is crucial as pregnancy is a period of heightened vulnerability to stress and its sequelae, anxiety and mood disorders, which have been demonstrated to alter gut microbiome composition. In a prospective cohort study (N = 12-26) conducted from February 2019 to August 2021, we examined psychometric responses and rectal microbiome swabs from pregnant individuals. Full-length 16 S rRNA sequencing followed by calculation of diversity metrics and relative abundance values were used to interrogate fecal microbiome community composition across pandemic groups. Distinct shifts in bacterial diversity and composition were observed during early to late pregnancy in the pandemic group, including lower relative abundance of pathogenic and lesser-known taxa. However, distribution of stress and depressive symptoms did not significantly differ from the pre-pandemic period while the correlation between stress and depressive symptoms dissipated during the pandemic. Our findings suggest that living through the COVID-19 pandemic altered the gut microbiome of pregnant individuals, independent of perceived stress.
Collapse
Affiliation(s)
- Therese A Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | | | - Christian L Lauber
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brett L Worly
- Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- College of Medicine, The Ohio State University, Columbus, OH, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Chen L, Cao H, Zhang X, Du X, Guan Y, Li M, Chang AK, He X, Li X, Bi X. Antidepressant effects of sulforaphane (SFN) and its derivatives SLL-III-9 and SLL-III-120 and their potential underlying mechanisms based on the microbiota-gut-brain axis. Food Funct 2024; 15:10539-10552. [PMID: 39370907 DOI: 10.1039/d3fo05278h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Broccoli (Brassica oleracea L.) is a vegetable with numerous nutritional properties, with sulforaphane (SFN) being the most abundant and unique bioactive ingredient. SFN has anti-inflammatory, antioxidant, and anti-cancer activities. In this study, a series of SFN derivatives were synthesized and screened for improved antidepressant effects. Among these, the SFN derivatives SLL-III-9 and SLL-III-120 were the best candidates, and the potential antidepressant mechanism of SFN, SLL-III-9, and SLL-III-120 associated with their effects in a chronic unpredictable mild stress (CUMS) mouse model was explored based on the microbiota-gut-brain axis. All three compounds were able to relieve depression-like behaviors in CUMS mice and regulate the composition of the gut bacteria Firmicutes, Actinobacteria, Parabasalia, and Tenericutes at the phylum level and Bacteroidales bacterium, Lachnospiraceae bacterium A4, Muribaculum intestinale, Muribaculaceae bacterium, and Prevotella sp. MGM1 at the species level, possibly altering their function associated with the anti-inflammatory effect. Additionally, SFN and its derivatives upregulated the expression of the tight junction proteins ZO-1, occludin, and claudin and increased the concentration of IL-10, dopamine (DA), 5-hydroxytryptamine (5-HT) and the brain-derived neurotrophic factor (BDNF), while downregulating the expressions of proteins related to the NF-κB/NLRP3 pathway and reducing the concentration of TNF-α. Further in vitro studies revealed significant inhibition of the production of inflammatory factors IL-1β, IL-18, IL-6, and TNF-α in LPS-activated BV2 cells via the NF-κB/NLRP3 pathway when these cells were treated with SFN or its two derivatives. Taken together, the results suggested that SFN and its two derivatives, SLL-III-9 and SLL-III-120, could be considered potential compounds for the development of a promising and safe agent for combating depression.
Collapse
Affiliation(s)
- Lili Chen
- College of Life Science, Liaoning University, Shenyang, 110036, China.
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, 110036, China
- College of Mathematics and Statistics, Liaoning University, Shenyang, 110036, China
| | - Huihui Cao
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Xin Zhang
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Xintong Du
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Yang Guan
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Mei Li
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen 518057, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang, 110036, China.
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
3
|
Green M, Trivedi MH, Foster JA. Microbes and mood: innovative biomarker approaches in depression. Trends Mol Med 2024:S1471-4914(24)00241-7. [PMID: 39353744 DOI: 10.1016/j.molmed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.
Collapse
Affiliation(s)
- Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada; Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Jiang ZM, Wang FF, Zhao YY, Lu LF, Jiang XY, Huang TQ, Lin Y, Guo L, Weng ZB, Liu EH. Hypericum perforatum L. attenuates depression by regulating Akkermansia muciniphila, tryptophan metabolism and NFκB-NLRP2-Caspase1-IL1β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155847. [PMID: 38996505 DOI: 10.1016/j.phymed.2024.155847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1β pathway and increased proinflammatory IL1β in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1β pathway. CONCLUSIONS The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1β pathway, specifically by targeting AKK and tryptophan metabolites.
Collapse
Affiliation(s)
- Zheng-Meng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang-Fang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin-Feng Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Long Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.
| | - Ze-Bin Weng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Nikdasti A, Khodadadi ES, Ferdosi F, Dadgostar E, Yahyazadeh S, Heidari P, Ehtiati S, Vakili O, Khatami SH. Nutritional Strategies in Major Depression Disorder: From Ketogenic Diet to Modulation of the Microbiota-Gut-Brain Axis. Mol Neurobiol 2024:10.1007/s12035-024-04446-4. [PMID: 39192045 DOI: 10.1007/s12035-024-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. While traditional pharmacological treatments are effective for many cases, a significant proportion of patients do not achieve full remission or experience side effects. Nutritional interventions hold promise as an alternative or adjunctive approach, especially for treatment-resistant depression. This review examines the potential role of nutrition in managing MDD through addressing biological deficits and modulating pathways relevant to its pathophysiology. Specifically, it explores the ketogenic diet and gut microbiome modulation through various methods, including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation. Numerous studies link dietary inadequacies to increased MDD risk and deficiencies in nutrients like omega-3 s, vitamins D and B, magnesium, and zinc. These deficiencies impact neurotransmitters, inflammation, and other biological factors in MDD. The gut-brain axis also regulates mood, stress response, and immunity, and disruptions are implicated in MDD. While medications aid acute symptoms, nutritional strategies may improve long-term outcomes by preventing relapse and promoting sustained remission. This comprehensive review aims to provide insights into nutrition's multifaceted relationship with MDD and its potential for developing more effective integrated treatment approaches.
Collapse
Affiliation(s)
- Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Elaheh Sadat Khodadadi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10326-z. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
7
|
Yu H, Song Y, Lou M, Shen S. Mitigation and mechanism of low dose linoleic acid on depression caused by disorder of gut microbiome. Nutr Neurosci 2024:1-18. [PMID: 38963806 DOI: 10.1080/1028415x.2024.2366648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVES Depression is a widely prevalent mental disorder, and nutritional interventions play an increasingly important role in its treatment. In this paper, effects of linoleic acid (LA) on depressive behavior in mice induced by gut microbiome disorders were investigated. METHODS Fifty C57BL/6J male mice were randomly separated into five groups, control group (CK), ceftriaxone sodium group (CRO), low-dose linoleic acid group (LLA, 1 g/kg), medium-dose linoleic acid group (MLA, 2 g/kg), and high-dose linoleic acid group (HLA, 5 g/kg). In the LLA, MLA, and HLA groups, mice were treated with ceftriaxone sodium (CRO) to induce depressive behaviors, followed by LA administration. Behavioral tests were used to evaluate depressive behavior. High-throughput sequencing and Hematoxylin-eosin (H&E) staining in gut microenvironment were carried out. ELISA kits were used to measure brain inflammatory factors, and 5-hydroxy-tryptamine (5-HT). Gas chromatography and western blot were used to determine fatty acids compositions and the enzymes expression involved in lipid metabolism in brain respectively. RESULTS The results showed that 10 weeks CRO treatment contribute to depressive behavior, gut microbiome disturbance, and serotonin system disturbance. LLA and MLA improved the depressive-like behavior, and significantly increased the levels of 5-HT1A, 5-HTT and 5-HT in the hippocampus. LLA was found to improve the diversity of gut microbiome and alleviate colon tissue damage. Meantime, LLA increased the content of linoleic acid, improved the expression of FADS2 and COX-2, increased IL-10 levels, and decreased IL-6 levels in the brain. DISCUSSION LA alleviated depressive behavior in mice by improving the gut microenvironment, regulate fatty acid metabolism, and modulate inflammation.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yinan Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Maoshan Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shengrong Shen
- Department of Nutrition, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Bashir Z, Hugerth LW, Krog MC, Prast-Nielsen S, Edfeldt G, Boulund F, Schacht SR, Tetens I, Engstrand L, Schuppe-Koistinen I, Fransson E, Nielsen HS. Investigations of microbiota composition and neuroactive pathways in association with symptoms of stress and depression in a cohort of healthy women. Front Cell Infect Microbiol 2024; 14:1324794. [PMID: 39015337 PMCID: PMC11249552 DOI: 10.3389/fcimb.2024.1324794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Background Despite mounting evidence of gut-brain involvement in psychiatric conditions, functional data remain limited, and analyses of other microbial niches, such as the vaginal microbiota, are lacking in relation to mental health. This aim of this study was to investigate if the connections between the gut microbiome and mental health observed in populations with a clinical diagnosis of mental illness extend to healthy women experiencing stress and depressive symptoms. Additionally, this study examined the functional pathways of the gut microbiota according to the levels of psychological symptoms. Furthermore, the study aimed to explore potential correlations between the vaginal microbiome and mental health parameters in young women without psychiatric diagnoses. Methods In this cross-sectional study, 160 healthy Danish women (aged 18-40 years) filled out questionnaires with validated scales measuring symptoms of stress and depression and frequency of dietary intake. Fecal and vaginal microbiota samples were collected at the beginning of the menstrual cycle and vaginal samples were also collected at cycle day 8-12 and 18-22. Shotgun metagenomic profiling of the gut and vaginal microbiome was performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for functional profiling and 56 Gut Brain Modules were analyzed in the fecal samples. Results The relative abundance in the gut of the genera Escherichia, Parabacteroides, and Shigella was higher in women with elevated depressive symptoms. Women with high perceived stress showed a tendency of increased abundance of Escherichia, Shigella, and Blautia. Amongst others, the potentially pathogenic genera, Escherichia and Shigella correlate with alterations in the neuroactive pathways such as the glutamatergic, GABAeric, dopaminergic, and Kynurenine pathways. Vaginosis symptoms were more prevalent in women reporting high levels of stress and depressive symptoms. Conclusions The findings of this study support the concept of a microbiota-associated effect on the neuroactive pathways even in healthy young women. This suggest, that targeting the gut microbiome could be a promising approach for future psychiatric interventions.
Collapse
Affiliation(s)
- Zahra Bashir
- Department of Obstetrics and Gynecology, Slagelse Hospital, Slagelse, Denmark
- The Recurrent Pregnancy Loss Unit, Dept. of Fertility, The Capital Region, Copenhagen University Hospitals, Rigshospitalet, Copenhagen, Denmark
- Dept. of Obstetrics and Gynecology, Hvidovre Hospital, Hvidovre, Denmark
| | - Luisa W. Hugerth
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Christine Krog
- The Recurrent Pregnancy Loss Unit, Dept. of Fertility, The Capital Region, Copenhagen University Hospitals, Rigshospitalet, Copenhagen, Denmark
- Dept. of Obstetrics and Gynecology, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefanie Prast-Nielsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Boulund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Simon Rønnow Schacht
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Inge Tetens
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, Dept. of Fertility, The Capital Region, Copenhagen University Hospitals, Rigshospitalet, Copenhagen, Denmark
- Dept. of Obstetrics and Gynecology, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Hvidovre Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Du C, Zhang T, Feng C, Sun Q, Chen Z, Shen X, Liu Y, Dai G, Zhang X, Tang N. The effects of venlafaxine on depressive-like behaviors and gut microbiome in cuprizone-treated mice. Front Psychiatry 2024; 15:1347867. [PMID: 38899045 PMCID: PMC11186413 DOI: 10.3389/fpsyt.2024.1347867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background Cuprizone (CPZ)-treated mice show significant demyelination, altered gut microbiome, and depressive-like behaviors. However, the effects of venlafaxine (Ven) on the gut microbiome and depressive-like behavior of CPZ-treated mice are largely unclear. Methods Male C57BL/6J mice were fed a chow containing 0.2% cuprizone (w/w) for 5 weeks to induce a model of demyelination. Meanwhile, the gut microbiota and depressive-like behaviors were assessed after the mice were fed with Ven (20 mg/kg/day) or equal volumes of distilled water for 2 weeks by oral gavage from the third week onward during CPZ treatment. Results CPZ treatment decreased the sucrose preference rate in the sucrose preference test and increased the immobility time in the tail-suspension test, and it also induced an abnormality in β-diversity and changes in microbial composition. Ven alleviated the depressive-like behavior and regulated the composition of the gut microbiota, such as the increase of Lactobacillus and Bifidobacterium in CPZ-treated mice. Conclusion The anti-depressant effects of Ven might be related to the regulation of gut microbiota in the CPZ-treated mice.
Collapse
Affiliation(s)
- Chunhai Du
- Department of Oncology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China
| | - Tian Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Chong Feng
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Qian Sun
- Department of Oncology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China
| | - ZhiGuo Chen
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Xin Shen
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Ying Liu
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Gengwu Dai
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China
| | - Nailong Tang
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| |
Collapse
|
10
|
Wei JQ, Bai J, Zhou CH, Yu H, Zhang W, Xue F, He H. Electroacupuncture intervention alleviates depressive-like behaviors and regulates gut microbiome in a mouse model of depression. Heliyon 2024; 10:e30014. [PMID: 38699009 PMCID: PMC11064442 DOI: 10.1016/j.heliyon.2024.e30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.
Collapse
Affiliation(s)
- Jia-quan Wei
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Jie Bai
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Cui-hong Zhou
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Wen Zhang
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Fen Xue
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Hong He
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| |
Collapse
|
11
|
Yu H, Yang WM, Chen YH, Guo L, Li R, Xue F, Tan QR, Peng ZW. The gut microbiome from middle-aged women with depression modulates depressive-like behaviors and plasma fatty acid metabolism in female middle-aged mice. J Psychiatr Res 2024; 173:139-150. [PMID: 38531144 DOI: 10.1016/j.jpsychires.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Intestinal dysbacteriosis has frequently been involved in the context of depression. Nonetheless, only scant information is available about the features and functional changes of gut microbiota in female middle-aged depression (MAD). OBJECTIVE This study aims to explore whether there are characteristic changes in the gut microbes of female MAD and whether these changes are associated with depressive-like behaviors. Meanwhile, this study observed alterations in the lipid metabolism function of gut microbes and further examined changes in plasma medium- and long-chain fatty acids (MLCFAs) in mice that underwent fecal microbiota transplantation (FMT). METHODS Stool samples obtained from 31 MAD, along with 24 healthy individuals (HC) were analyzed by 16 S rRNA gene sequencing. Meanwhile, 14-month-old female C57BL/6J mice received antibiotic cocktails and then oral gavage of the microbiota suspension of MAD or HC for 3 weeks to reconstruct gut microbiota. The subsequent depressive-like behaviors, the composition of gut microbiota, as well as MLCFAs in the plasma were evaluated. RESULTS A noteworthy disruption in gut microbial composition in MAD individuals compared to HC was observed. Several distinct bacterial taxa, including Dorea, Butyricicoccus, and Blautia, demonstrated associations with the demographic variables. A particular microbial panel encompassing 49 genera effectively differentiated MAD patients from HC (AUC = 0.82). Fecal microbiome transplantation from MAD subjects led to depressive-like behaviors and dysfunction of plasma MLCFAs in mice. CONCLUSIONS These findings suggest that microbial dysbiosis is linked to the pathogenesis of MAD, and its role may be associated with the regulation of MLCFAs metabolism.
Collapse
Affiliation(s)
- Huan Yu
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China; Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Wen-Mao Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China; Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China; Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Zidan S, Hilary S, Al Dhaheri AS, Cheikh Ismail L, Ali HI, Apostolopoulos V, Stojanovska L. Could psychobiotics and fermented foods improve mood in middle-aged and older women? Maturitas 2024; 181:107903. [PMID: 38157685 DOI: 10.1016/j.maturitas.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Menopause is a natural physiological phase during which women experience dramatic hormonal fluctuations. These lead to many symptoms, such as depression and anxiety, which, in turn, can negatively affect quality of life. Proper nutrition has an influential role in alleviating depression as well as anxiety. It is well known that gut microbiota dysbiosis contributes to the development of mood disorder. There is mounting evidence that modulating the gut-brain axis may aid in improving mood swings. In this context, this narrative review summarizes recent findings on how aging changes the composition of the gut microbiota and on the association between gut microbiota and mood disorders. In addition, it evaluates the effectiveness of psychobiotics and fermented foods in treating mood swings in middle-aged and older women. A search was done using PubMed, Scopus, and Google Scholar, and thirteen recent articles are included in this review. It is evident that psychobiotic supplementation and fermented foods can improve mood swings via several routes. However, these conclusions are based on only a few studies in middle-aged and older women. Therefore, long-term, well-designed randomized controlled trials are required to fully evaluate whether psychobiotics and fermented foods can be used to treat mood swings in this population.
Collapse
Affiliation(s)
- Souzan Zidan
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| | - Serene Hilary
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ayesha S Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Habiba I Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| |
Collapse
|
13
|
Rajasekera TA, Galley JD, Mackos AR, Chen HJ, Mitchell JG, Kleinman JJ, Cappelucci P, Mashburn-Warren L, Lauber CL, Bailey MT, Worly BL, Gur TL. Stress and depression-associated shifts in gut microbiota: A pilot study of human pregnancy. Brain Behav Immun Health 2024; 36:100730. [PMID: 38323225 PMCID: PMC10844036 DOI: 10.1016/j.bbih.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Background Psychosocial stress and mood-related disorders, such as depression, are prevalent and vulnerability to these conditions is heightened during pregnancy. Psychosocial stress induces consequences via several mechanisms including the gut microbiota-brain axis and associated signaling pathways. Previous preclinical work indicates that prenatal stress alters maternal gut microbial composition and impairs offspring development. Importantly, although the fecal and vaginal microenvironments undergo alterations across pregnancy, we lack consensus regarding which shifts are adaptive or maladaptive in the presence of prenatal stress and depression. Clinical studies interrogating these relationships have identified unique taxa but have been limited in study design. Methods We conducted a prospective cohort study of pregnant individuals consisting of repeated administration of psychometrics (Perceived Stress Scale (PSS) and Center for Epidemiological Studies Depression Scale (CES-D)) and collection of fecal and vaginal microbiome samples. Fecal and vaginal microbial community composition across psychometric responses were interrogated using full-length 16S rRNA sequencing followed by α and β-diversity metrics and taxonomic abundance. Results Early pregnancy stress was associated with increased abundance of fecal taxa not previously identified in related studies, and stress from late pregnancy through postpartum was associated with increased abundance of typical vaginal taxa and opportunistic pathogens in the fecal microenvironment. Additionally, in late pregnancy, maternal stress and depression scores were associated with each other and with elevated maternal C-C motif chemokine ligand 2 (CCL2) concentrations. At delivery, concordant with previous literature, umbilical CCL2 concentration was negatively correlated with relative abundance of maternal fecal Lactobacilli. Lastly, participants with more severe depressive symptoms experienced steeper decreases in prenatal vaginal α-diversity. Conclusion These findings a) underscore previous preclinical and clinical research demonstrating the effects of prenatal stress on maternal microbiome composition, b) suggest distinct biological pathways for the consequences of stress versus depression and c) extend the literature by identifying several taxa which may serve critical roles in mediating this relationship. Thus, further interrogation of the role of specific maternal microbial taxa in relation to psychosocial stress and its sequelae is warranted.
Collapse
Affiliation(s)
- Therese A. Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D. Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Helen J. Chen
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | | | - Paige Cappelucci
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Christian L. Lauber
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Michael T. Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brett L. Worly
- Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tamar L. Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Shi R, Ye J, Fan H, Hu X, Wu X, Wang D, Zhao B, Dai X, Liu X. Lactobacillus plantarum LLY-606 Supplementation Ameliorates the Cognitive Impairment of Natural Aging in Mice: The Potential Role of Gut Microbiota Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4049-4062. [PMID: 38373323 DOI: 10.1021/acs.jafc.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This work explored the effects of Lactobacillus plantarum LLY-606 (LLY-606) on cognitive function in aging mice. Our findings demonstrated that LLY-606 effectively prolonged the lifespan of mice and improved age-related cognitive impairments. Additionally, our study revealed that supplementation with LLY-606 resulted in the downregulation of inflammatory cytokine levels and the upregulation of antioxidant capacity. Furthermore, probiotic supplementation effectively mitigated the deterioration of the intestinal barrier function in aging mice. Amplicon analysis indicated the successful colonization of probiotics, facilitating the regulation of age-induced gut microbiota dysbiosis. Notably, the functional abundance prediction of microbiota indicated that tryptophan metabolism pathways, glutamatergic synapse pathways, propanoate metabolism pathways, and arginine and proline metabolism pathways were enriched after the LLY-606 intervention. In summary, LLY-606 emerged as a potential functional probiotic capable of influencing cognitive function in aging mice. This effect was achieved through the modulation of gut microbiota, the regulation of synaptic plasticity, and the enhancement of neurotrophic factor levels.
Collapse
Affiliation(s)
- Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
15
|
Niemela L, Lamoury G, Carroll S, Morgia M, Yeung A, Oh B. Exploring gender differences in the relationship between gut microbiome and depression - a scoping review. Front Psychiatry 2024; 15:1361145. [PMID: 38439790 PMCID: PMC10910028 DOI: 10.3389/fpsyt.2024.1361145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Major depressive disorder (MDD) exhibits gender disparities, and emerging evidence suggests the involvement of the gut microbiome, necessitating exploration of sex-specific differences. Methods A review was conducted, encompassing a thorough examination of relevant studies available in Medline via Ovid, Embase via OvidSP, CINAHL, and PsycINFO databases from their inception to June 2023. The search strategy employed specific keywords and Medical Subject Headings (MeSH) terms tailored to major depressive disorder in women, encompassing unipolar depression, depressive symptoms, and dysbiosis. Results Five studies were included. Among the four studies, alterations in alpha (n=1) and beta diversity (n=3) in the gut microbiome of individuals with MDD were revealed compared to controls. Gender-specific differences were observed in four studies, demonstrating the abundance of specific bacterial taxa and highlighting potential sex-specific implications in MDD pathophysiology. Correlation analyses (n=4) indicated associations between certain bacterial taxa and the severity of depressive symptoms, with varying patterns between males and females. Studies (n=3) also highlighted promising findings regarding the potential utility of microbial markers in diagnosing MDD, emphasizing the crucial role of sex stratification in understanding the disease pathophysiology. Conclusions The findings underscore the importance of recognizing gender-specific differences in the composition of the gut microbiome and its relationship with MDD. Further comprehensive robust studies are required to unravel the intricate mechanisms underlying these disparities.
Collapse
Affiliation(s)
- Leila Niemela
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Gillian Lamoury
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Susan Carroll
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Marita Morgia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Albert Yeung
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Byeongsang Oh
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
16
|
Cheng L, Wu H, Cai X, Zhang Y, Yu S, Hou Y, Yin Z, Yan Q, Wang Q, Sun T, Wang G, Yuan Y, Zhang X, Hao H, Zheng X. A Gpr35-tuned gut microbe-brain metabolic axis regulates depressive-like behavior. Cell Host Microbe 2024; 32:227-243.e6. [PMID: 38198925 DOI: 10.1016/j.chom.2023.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Gene-environment interactions shape behavior and susceptibility to depression. However, little is known about the signaling pathways integrating genetic and environmental inputs to impact neurobehavioral outcomes. We report that gut G-protein-coupled receptor, Gpr35, engages a microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Psychological stress decreases intestinal epithelial Gpr35, genetic deletion of which induces depressive-like behavior in a microbiome-dependent manner. Gpr35-/- mice and individuals with depression have increased Parabacteroides distasonis, and its colonization to wild-type mice induces depression. Gpr35-/- and Parabacteroides distasonis-colonized mice show reduced indole-3-carboxaldehyde (IAld) and increased indole-3-lactate (ILA), which are produced from opposing branches along the bacterial catabolic pathway of tryptophan. IAld and ILA counteractively modulate neuroplasticity in the nucleus accumbens, a brain region linked to depression. IAld supplementation produces anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings elucidate a gut microbe-brain signaling mechanism that underlies susceptibility to depression.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Siqi Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhe Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Taipeng Sun
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Xueli Zhang
- Department of Pharmacy, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Liu X, Li Y, Gu M, Xu T, Wang C, Chang P. Radiation enteropathy-related depression: A neglectable course of disease by gut bacterial dysbiosis. Cancer Med 2024; 13:e6865. [PMID: 38457257 PMCID: PMC10923036 DOI: 10.1002/cam4.6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024] Open
Abstract
Radiation enteropathy (RE) is common in patients treated with radiotherapy for pelvic-abdominal cancers. Accumulating data indicate that gut commensal bacteria determine intestinal radiosensitivity. Radiotherapy can result in gut bacterial dysbiosis. Gut bacterial dysbiosis contributes to the pathogenesis of RE. Mild to moderate depressive symptoms can be observed in patients with RE in clinical settings; however, the rate of these symptoms has not been reported. Studies have demonstrated that gut bacterial dysbiosis induces depression. In the state of comorbidity, RE and depression may be understood as local and abscopal manifestations of gut bacterial disorders. The ability of comorbid depression to worsen inflammatory bowel disease (IBD) has long been demonstrated and is associated with dysfunction of cholinergic neural anti-inflammatory pathways. There is a lack of direct evidence for RE comorbid with depression. It is widely accepted that RE shares similar pathophysiologic mechanisms with IBD. Therefore, we may be able to draw on the findings of the relationship between IBD and depression. This review will explore the relationship between gut bacteria, RE, and depression in light of the available evidence and indicate a method for investigating the mechanisms of RE combined with depression. We will also describe new developments in the treatment of RE with probiotics, prebiotics, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xinliang Liu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Li
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Meichen Gu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Tiankai Xu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Pengyu Chang
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
18
|
Wallace CJ, Audet MC. Diet and the gut microbiota-immune axis in the context of perinatal mental health: Protocol for a prospective cohort study. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057241277072. [PMID: 39287570 PMCID: PMC11409294 DOI: 10.1177/17455057241277072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Physiological and psychosocial changes experienced by women during the perinatal period may put them at risk for postpartum mental health disturbances. Accumulating evidence suggests that dietary patterns may influence mental health through the modulation of the gut microbiota and its effects on host immune activity. Thus, targeting the gut microbiota via dietary intake could serve as both a preventative and therapeutic strategy in improving perinatal mental health. OBJECTIVES Here, we present a protocol for a prospective cohort study that primarily aims to determine if diet quality during pregnancy is protective against postpartum depression severity. Secondary objectives will examine if microbiota- and blood-based inflammatory markers may be associated with the relationship between prenatal diet quality and postpartum depression severity, as well as with associations between additional dietary and mental health outcomes. METHODS AND ANALYSIS Dietary patterns and mental health symptoms will be documented in 100 pregnant women at 4 time points during pregnancy and postpartum. Participants will also provide stool and blood samples at the same time points to determine microbiota composition and predicted function and inflammatory factors, respectively. Stool microbiota will be analyzed using 16S ribosomal RNA gene sequencing and bioinformatics tools (QIIME 2/PICRUSt2). Inflammatory factors will be determined using high-sensitivity antibody-based immunoassays. Statistical analyses will include linear mixed models and hierarchical linear mixed effect models. ETHICS The study was approved by the Research Ethics Boards of the Royal Ottawa Health Care Group (#2022002) and of the University of Ottawa (#H-06-22-8013). Informed consent will be obtained from all participants before their enrollment. DISCUSSION Findings from this study will help develop evidence-based dietary recommendations and potential interventions for women susceptible to or suffering from postpartum mental health issues that are accessible, noninvasive, and have potential to play a role in prevention and treatment.
Collapse
Affiliation(s)
- Caroline Jk Wallace
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canadaa
| | - Marie-Claude Audet
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canadaa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Desorcy-Scherer K, Fricke HP, Hernandez LL. Selective serotonin reuptake inhibitors during pregnancy and lactation: A scoping review of effects on the maternal and infant gut microbiome. Dev Psychobiol 2024; 66:e22441. [PMID: 38131241 PMCID: PMC11017378 DOI: 10.1002/dev.22441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Perinatal mood disorders are a tremendous burden to childbearing families and treatment with selective serotonin reuptake inhibitor (SSRI) antidepressants is increasingly common. Exposure to SSRIs may affect serotonin signaling and ultimately, microbes that live in the gut. Health of the gut microbiome during pregnancy, lactation, and early infancy is critical, yet there is limited evidence to describe the relationship between SSRI exposure and gut microbiome status in this population. The purpose of this Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)-compliant scoping review is to assess evidence and describe key concepts regarding whether SSRI exposure affects the maternal and infant gut microbiome. Sources were collected from PubMed, Web of Science, and Scopus databases, and an additional gray literature search was performed. Our search criteria returned only three sources, two rodent models and one human subjects research study. Results suggest that fluoxetine (SSRI) exposure may affect maternal gut microbiome dynamics during pregnancy and lactation. There were no available sources to describe the relationship between perinatal SSRI exposure and the infant gut microbiome. There is a significant gap in the literature regarding whether SSRI antidepressants affect the maternal and infant gut microbiome. Future studies are required to better understand how SSRI antidepressant exposure affects perinatal health.
Collapse
Affiliation(s)
| | - Hannah P. Fricke
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
21
|
Gao M, Wang J, Liu P, Tu H, Zhang R, Zhang Y, Sun N, Zhang K. Gut microbiota composition in depressive disorder: a systematic review, meta-analysis, and meta-regression. Transl Psychiatry 2023; 13:379. [PMID: 38065935 PMCID: PMC10709466 DOI: 10.1038/s41398-023-02670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Studies investigating gut microbiota composition in depressive disorder have yielded mixed results. The aim of our study was to compare gut microbiome between people with depressive disorder and healthy controls. We did a meta-analysis and meta-regression of studies by searching PubMed, Web of Science, Embase, Scopus, Ovid, Cochrane Library, ProQuest, and PsycINFO for articles published from database inception to March 07, 2022. Search strategies were then re-run on 12 March 2023 for an update. We undertook meta-analyses whenever values of alpha diversity and Firmicutes, Bacteroidetes (relative abundance) were available in two or more studies. A random-effects model with restricted maximum-likelihood estimator was used to synthesize the effect size (assessed by standardized mean difference [SMD]) across studies. We identified 44 studies representing 2091 patients and 2792 controls. Our study found that there were no significant differences in patients with depressive disorder on alpha diversity indices, Firmicutes and Bacteroidetes compared with healthy controls. In subgroup analyses with regional variations(east/west) as a predictor, patients who were in the West had a lower Chao1 level (SMD -0.42[-0.74 to -0.10]). Subgroup meta-analysis showed Firmicutes level was decreased in patients with depressive disorder who were medication-free (SMD -1.54[-2.36 to -0.72]), but Bacteroidetes level was increased (SMD -0.90[0.07 to 1.72]). In the meta-regression analysis, six variables cannot explain the 100% heterogeneity of the studies assessing by Chao1, Shannon index, Firmicutes, and Bacteroidetes. Depleted levels of Butyricicoccus, Coprococcus, Faecalibacterium, Fusicatenibacter, Romboutsia, and enriched levels of Eggerthella, Enterococcus, Flavonifractor, Holdemania, Streptococcus were consistently shared in depressive disorder. This systematic review and meta-analysis found that psychotropic medication and dietary habit may influence microbiota. There is reliable evidence for differences in the phylogenetic relationship in depressive disorder compared with controls, however, method of measurement and method of patient classification (symptom vs diagnosis based) may affect findings. Depressive disorder is characterized by an increase of pro-inflammatory bacteria, while anti-inflammatory butyrate-producing genera are depleted.
Collapse
Affiliation(s)
- Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Hongwei Tu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Ruiyu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- Basic Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China.
| |
Collapse
|
22
|
Nguyen TQ, Martínez-Álvaro M, Lima J, Auffret MD, Rutherford KMD, Simm G, Dewhurst RJ, Baima ET, Roehe R. Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Front Microbiol 2023; 14:1197371. [PMID: 38029169 PMCID: PMC10670831 DOI: 10.3389/fmicb.2023.1197371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition. The application of the porcine stress model resulted in a significant increase in salivary cortisol concentration over the course of the trial and decreased growth performance and appetite. The applied social stress resulted in 32 bacteria being either enriched (13) or depleted (19) in the intestine and feces. Fecal samples showed a greater number of microbial genera influenced by stress than caecum or colon samples. Our trial revealed that the opportunistic pathogens Treponema and Clostridium were enriched in colonic and fecal samples from stressed pigs. Additionally, genera such as Streptococcus, Parabacteroides, Desulfovibrio, Terrisporobacter, Marvinbryantia, and Romboutsia were found to be enriched in response to social stress. In contrast, the genera Prevotella, Faecalibacterium, Butyricicoccus, Dialister, Alloprevotella, Megasphaera, and Mitsuokella were depleted. These depleted bacteria are of great interest because they synthesize metabolites [e.g., short-chain fatty acids (SCFA), in particular, butyrate] showing beneficial health benefits due to inhibitory effects on pathogenic bacteria in different animal species. Of particular interest are Dialister and Faecalibacterium, as their depletion was identified in a human study to be associated with inferior quality of life and depression. We also revealed that some pigs were more susceptible to pathogens as indicated by large enrichments of opportunistic pathogens of Clostridium, Treponema, Streptococcus and Campylobacter. Generally, our results provide further evidence for the microbiota-gut-brain axis as indicated by an increase in cortisol concentration due to social stress regulated by the hypothalamic-pituitary-adrenal axis, and a change in microbiota composition, particularly of bacteria known to be associated with pathogenicity and mental health diseases.
Collapse
Affiliation(s)
- Tuan Q. Nguyen
- Scotland’s Rural College, Edinburgh, United Kingdom
- Department of Animal Breeding, Faculty of Animal Science and Veterinary Medicine, Nong Lam University – Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Joana Lima
- Scotland’s Rural College, Edinburgh, United Kingdom
| | | | | | - Geoff Simm
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eric T. Baima
- Zoetis Inc., Parsippany-Troy Hills, NJ, United States
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
24
|
Kouraki A, Kelly A, Vijay A, Gohir S, Astbury S, Georgopoulos V, Millar B, Walsh DA, Ferguson E, Menni C, Valdes AM. Reproducible microbiome composition signatures of anxiety and depressive symptoms. Comput Struct Biotechnol J 2023; 21:5326-5336. [PMID: 37954149 PMCID: PMC10637863 DOI: 10.1016/j.csbj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The gut microbiome is a significant contributor to mental health, with growing evidence linking its composition to anxiety and depressive disorders. Gut microbiome composition is associated with signs of anxiety and depression both in clinically diagnosed mood disorders and subclinically in the general population and may be influenced by dietary fibre intake and the presence of chronic pain. We provide an update of current evidence on the role of gut microbiome composition in depressive and anxiety disorders or symptoms by reviewing available studies. Analysing data from three independent cohorts (osteoarthritis 1 (OA1); n = 46, osteoarthritis 2 (OA2); n = 58, and healthy controls (CON); n = 67), we identified microbial composition signatures of anxiety and depressive symptoms at genus level and cross-validated our findings performing meta-analyses of our results with results from previously published studies. The genera Bifidobacterium (fixed-effect beta (95% CI) = -0.22 (-0.34, -0.10), p = 3.90e-04) and Lachnospiraceae NK4A136 group (fixed-effect beta (95% CI) = -0.09 (-0.13, -0.05), p = 2.53e-06) were found to be the best predictors of anxiety and depressive symptoms, respectively, across our three cohorts and published literature taking into account demographic and lifestyle covariates, such as fibre intake. The association with anxiety was robust in accounting for heterogeneity between cohorts and supports previous observations of the potential prophylactic effect of Bifidobacterium against anxiety symptoms.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Vasileios Georgopoulos
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Bonnie Millar
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - David Andrew Walsh
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Eamonn Ferguson
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ana M. Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
26
|
Notting F, Pirovano W, Sybesma W, Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e16. [PMID: 39295905 PMCID: PMC11406416 DOI: 10.1017/gmb.2023.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2024]
Abstract
The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. Coprococcus is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of Coprococcus spp. in depressed individuals. The species Coprococcus eutactus has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on Coprococcus and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus Coprococcus is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.
Collapse
Affiliation(s)
- Fleur Notting
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Walter Pirovano
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Remco Kort
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Grau-Del Valle C, Fernández J, Solá E, Montoya-Castilla I, Morillas C, Bañuls C. Association between gut microbiota and psychiatric disorders: a systematic review. Front Psychol 2023; 14:1215674. [PMID: 37599717 PMCID: PMC10435258 DOI: 10.3389/fpsyg.2023.1215674] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction In recent years, it has been described that the dysbiosis of the intestinal microbiota plays a transcendental role in several pathologies. In this sense, the importance of the gut microbiota in the gut-brain axis, with a bidirectional communication, has been demonstrated. Furthermore, the gut microbiota has been linked with mood disorders and neuropsychiatric disorders. Methods A systematic review of two databases - PubMed and Scopus - was carried out following PRISMA guidelines. We included original studies in humans with a control group published in the last 11 years, which were assessed by the Critical Appraisal Skills Program (CASP) to confirm their quality. Eighteen articles met all the selection criteria. Results A review of the articles revealed an association between psychiatric disorders and different bacterial phyla. The studies we have reviewed have demonstrated differences between subjects with psychiatric disorders and controls and highlight a clear relationship between depression, stress, autism spectrum disorder (ASD), psychotic episodes, eating disorders, anxiety and brain function and the gut microbiota composition. Conclusion A reduction of fermentative taxa has been observed in different psychiatric disorders, resulting in a decrease in the production of short-chain fatty acids (SCFAs) and an increase in pro-inflammatory taxa, both of which may be consequences of the exacerbation of these pathologies.
Collapse
Affiliation(s)
- Carmen Grau-Del Valle
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Javier Fernández
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Eva Solá
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | | | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
28
|
Zheng Q, Wang S, Tian X, Liu W, Gao P. Fecal microbiota transplantation confirmed that 919 Syrup reduced the ratio of erucamide to 5-AVAB in hippocampus to alleviate postpartum depression by regulating gut microbes. Front Immunol 2023; 14:1203015. [PMID: 37292211 PMCID: PMC10244653 DOI: 10.3389/fimmu.2023.1203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Background Postpartum depression has a crucial impact on the physical and psychological comfort and the work of postnatal women, the growth and development of infants and mental health in adulthood. Finding a safe and effective anti-postnatal depression drug is currently an important research goal in this field. Methods In this study, the forced swimming test (FST) and tail suspension test (TST) were used to evaluated the depressive behaviors of mice, and the changes of metabolites and intestinal microflora in mice with postpartum depression were examined through non-target metabolomics and 16S RNA sequencing respectively. Results We found that traditional Chinese medicine compound 919 Syrup could alleviate postpartum depression in mice and inhibit the elevated erucamide level in depressive hippocampus. However, mice treated with antibiotics were not sensitive to the anti-postnatal depression effect of 919 Syrup, and the level of 5-aminovaleric acid betaine (5-AVAB) in their hippocampus was significantly decreased. Transplanting fecal microflora treated with 919 Syrup could effectively improve the depressive behaviors of mice, upregulate the level of gut-derived 5-AVAB in the hippocampus, and downregulate the level of erucamide. Erucamide was significantly negatively correlated with increased Bacteroides in intestine after 919 Syrup treatment or fecal transplantation, and significantly positively correlated with Ruminococcaceae UCG-014 which was increased in feces of mice with postpartum depression. The increase of Bacteroides, Lactobacillus, and Ruminiclostridium in intestine after fecal transplantation had a clearly positive correlation with 5-AVAB. Conclusion In brief, 919 Syrup may downregulate the ratio of hippocampal metabolites erucamide to 5-AVAB by regulating intestinal flora to alleviate postpartum depression, laying a scientific foundation for future pathological research and development of therapeutic drugs for postpartum depression.
Collapse
Affiliation(s)
- Qiaoqi Zheng
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shusheng Wang
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xinyun Tian
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Gao
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Chen MM, Wang P, Xie XH, Nie Z, Xu SX, Zhang N, Wang W, Yao L, Liu Z. Young adults with major depression show altered microbiome. Neuroscience 2023; 522:23-32. [PMID: 37169166 DOI: 10.1016/j.neuroscience.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
There is growing basic and clinical evidence that major depressive disorder (MDD) is associated with gut microbiome alterations, but clinical studies have tended not to adjust for confounding factors. And few studies on the gut microbiome focused on young adults with MDD. Here we performed a pilot study to compare the gut microbiome of young adults with MDD with healthy controls. Shotgun metagenomic sequencing was performed on stool samples obtained from 40 young adults with MDD and 42 healthy controls. After controlling for confounding factors including sex, age, BMI, alcohol or cigarette consumption, bowel movement quality, exercise or defecation frequency, we compared microbiome diversity between groups, identified differentially abundant taxa, and further compared functional differences through gut-brain and gut-metabolic module analysis. There were no significant differences in overall gut microbiome structure and function in young adults with MDD compared with controls. Abundance of Sutterellaceae and species belonging to Clostridium, Eubacterium, and Ruminococcus were significantly different between groups. The cysteine degradation I pathway was increased in MDD. After controlling for most confounding factors, this pilot study provides new evidence on the specific, often subtle gut dysbiosis affecting young adults with depression.
Collapse
Affiliation(s)
- Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Peilin Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China.
| |
Collapse
|
30
|
Chin Fatt CR, Asbury S, Jha MK, Minhajuddin A, Sethuram S, Mayes T, Kennedy SH, Foster JA, Trivedi MH. Leveraging the microbiome to understand clinical heterogeneity in depression: findings from the T-RAD study. Transl Psychiatry 2023; 13:139. [PMID: 37117195 PMCID: PMC10147668 DOI: 10.1038/s41398-023-02416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
Alterations in the gut microbiome have been linked to a variety of mental illnesses including anxiety and depression. This study utilized advanced bioinformatics tools that integrated both the compositional and community nature of gut microbiota to investigate how gut microbiota influence clinical symptoms in a sample of participants with depression. Gut microbiota of 179 participants with major depressive disorder (MDD) in the Texas Resilience Against Depression (T-RAD) study were analyzed by 16S rRNA gene sequencing of stool samples. Severity of anxiety, depression, and anhedonia symptoms were assessed with General Anxiety Disorder - 7 item scale, Patient Health 9-item Questionnaire, and Dimensional Anhedonia Rating Scale, respectively. Using weighted correlation network analysis, a data-driven approach, three co-occurrence networks of bacterial taxa were identified. One of these co-occurrence networks was significantly associated with clinical features including depression and anxiety. The hub taxa associated with this co-occurrence module -one Ruminococcaceae family taxon, one Clostridiales vadinBB60 group family taxon, and one Christencenellaceae family taxon- were connected to several additional butyrate-producing bacteria suggesting that deficits in butyrate production may contribute to clinical symptoms. Therefore, by considering the community nature of the gut microbiome in a real world clinical sample, this study identified a gut microbial co-occurrence network that was significantly associated with clinical anxiety in a cohort of depressed individuals.
Collapse
Affiliation(s)
- Cherise R Chin Fatt
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Asbury
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Manish K Jha
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sangita Sethuram
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taryn Mayes
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto and Centre for Depression and Suicide Studies, Unity Health, Toronto, ON, Canada
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Yu S, Wang L, Jing X, Wang Y, An C. Features of gut microbiota and short-chain fatty acids in patients with first-episode depression and their relationship with the clinical symptoms. Front Psychol 2023; 14:1088268. [PMID: 37168424 PMCID: PMC10165121 DOI: 10.3389/fpsyg.2023.1088268] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Objective To compare the differences in gut microbiota and short-chain fatty acids (SCFAs; metabolites of gut microbiota) in the serum of patients with first-episode depression and the healthy population and to analyze the relationship between gut microbiota and metabolite SCFAs and the clinical symptoms of major depressive disorder (MDD). Methods A total of 45 patients with first-episode depression and 22 healthy volunteers were chosen to complete relevant scale evaluations, and feces samples and venous blood samples were collected. The 16S RNA method was used to analyze the intestinal microflora and the characteristics of serum SCFAs detection by ELISA kit, as well as the intestinal flora, SCFAs content and their correlation with MDD clinical indicators. Results The abundance of Akkermansia, Megamonas, Prevotellaceae NK3B31 group, and butyrate-producing bacteria, Lachnospira, Subdoligranulum, Blautia, and Dialister, and acetate-producing bacteria, Streptococcus, in the gut microbiota of the MDD group was lower than that in the control (C) group. The abundance of Parasutterella in the MDD group was higher than that in the C group. Dialister negatively correlated with all measured clinical symptoms (r < 0, P < 0.05). The serum SCFA content in the MDD group was higher than that in the C group, and the content positively correlated with the Hamilton anxiety scale scores (r = 0.584, P < 0.05). Conclusion The results demonstrated that the MDD group differed from the C group in terms of gut microbiota and SCFAs in the serum and that the change in certain intestinal bacteria might participate in the pathogenic mechanism of MDD.
Collapse
Affiliation(s)
| | | | | | | | - Cuixia An
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, China
| |
Collapse
|
32
|
Boodaghidizaji M, Jungles T, Chen T, Zhang B, Landay A, Keshavarzian A, Hamaker B, Ardekani A. Machine learning based gut microbiota pattern and response to fiber as a diagnostic tool for chronic inflammatory diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534466. [PMID: 37034781 PMCID: PMC10081192 DOI: 10.1101/2023.03.27.534466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gut microbiota has been implicated in the pathogenesis of multiple gastrointestinal (GI) and systemic metabolic and inflammatory disorders where disrupted gut microbiota composition and function (dysbiosis) has been found in multiple studies. Thus, human microbiome data has a potential to be a great source of information for the diagnosis and disease characteristics (phenotypes, disease course, therapeutic response) of diseases with dysbiotic microbiota community. However, multiple attempts to leverage gut microbiota taxonomic data for diagnostic and disease characterization have failed due to significant inter-individual variability of microbiota community and overlap of disrupted microbiota communities among multiple diseases. One potential approach is to look at the microbiota community pattern and response to microbiota modifiers like dietary fiber in different disease states. This approach is now feasible by availability of machine learning that is able to identify hidden patterns in the human microbiome and predict diseases. Accordingly, the aim of our study was to test the hypothesis that application of machine learning algorithms can distinguish stool microbiota pattern and microbiota response to fiber between diseases where overlapping dysbiotic microbiota have been previously reported. Here, we have applied machine learning algorithms to distinguish between Parkinson's disease, Crohn's disease (CD), ulcerative colitis (UC), human immune deficiency virus (HIV), and healthy control (HC) subjects in the presence and absence of fiber treatments. We have shown that machine learning algorithms can classify diseases with accuracy as high as 95%. Furthermore, machine learning methods applied to the microbiome data to predict UC vs CD led to prediction accuracy as high as 90%.
Collapse
|
33
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
34
|
Wang H, Bin Wang, Pan MB, Jiang ST, Wang YC, Zhu Y, Zhang QC, Dong YF. Disorders in the gut and liver are involved in depression contagion between isosexual post-stroke depression mice and the healthy cohabitors. Behav Brain Res 2023; 439:114246. [PMID: 36481213 DOI: 10.1016/j.bbr.2022.114246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Despite the accumulated evidence that pair housing could attenuate post-stroke depression (PSD), but less attention has been paid to the healthy cohabitors, and the underlying mechanisms remain unclear. This study aimed to determine whether there is depressive contagion between PSD mice and their healthy cohabitors. PSD was induced by middle cerebral artery occlusion (MCAO) plus restraint stress for four weeks. Three days after MCAO, the mice were restrained two hours per day and isosexually pair-housed for four weeks. The results showed that, compared with the partners pair housed with normal control mice (Ctrl group), the partners pair housed with PSD mice (CH group) displayed depressive-like behaviors, including decreased sucrose preference rate, significantly shorter duration in the center arena and reduced total distance in the open-field test, and extended immobile time in forced swimming test and tail-suspension test without sex differences. Regarding the change in the body weight, only the males showed a significant reduction on days 17 and 24 after treatment. Furthermore, the CH group showed significantly increased corticosterone and decreased oxytocin (OXT) levels in serum, while the mRNA levels of OXT, vasopressin and oxytocin receptor were remarkably upregulated in the hypothalamus of the CH group. However, there was no significant change in the vasopressin receptor V1a. Interestingly, compared with the Ctrl group, there was a significant decrease in butyrate in serum of the CH group. Consistently, they had mild liver dysfunction with increased alanine transaminase, extended hepatic sinus surrounded by enhanced SLC22A9, and significantly increased Iba1-positive macrophages. Moreover, the expression of tight junction protein (Occludin and ZO-1) obviously decreased in the colon with increasing Iba1-positive cells. These results suggest that isosexual pair-housing with PSD mice causes the healthy partners to develop depressive-like behaviors with disturbances in the gut and liver.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei-Bo Pan
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Su-Ting Jiang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Chen Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhu
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi-Chun Zhang
- Department of Clinical Pharmacy and Toxicity, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin-Feng Dong
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
35
|
Liu L, Wang H, Zhang H, Chen X, Zhang Y, Wu J, Zhao L, Wang D, Pu J, Ji P, Xie P. Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203707. [PMID: 36285702 PMCID: PMC9762301 DOI: 10.1002/advs.202203707] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Indexed: 05/30/2023]
Abstract
The emergence of the coronavirus disease 2019 pandemic has dramatically increased the global prevalence of depression. Unfortunately, antidepressant drugs benefit only a small minority of patients. Thus, there is an urgent need to develop new interventions. Accumulating evidence supports a causal relationship between gut microbiota dysbiosis and depression. To advance microbiota-based diagnostics and therapeutics of depression, a comprehensive overview of microbial alterations in depression is presented to identify effector microbial biomarkers. This procedure generated 215 bacterial taxa from humans and 312 from animal models. Compared to controls, depression shows significant differences in β-diversity, but no changes in microbial richness and diversity. Additionally, species-specific microbial changes are identified like increased Eggerthella in humans and decreased Acetatifactor in rodent models. Moreover, a disrupted microbiome balance and functional changes, characterized by an enrichment of pro-inflammatory bacteria (e.g., Desulfovibrio and Escherichia/Shigella) and depletion of anti-inflammatory butyrate-producing bacteria (e.g., Bifidobacterium and Faecalibacterium) are consistently shared across species. Confounding effects of geographical region, depression type, and intestinal segments are also investigated. Ultimately, a total of 178 species and subspecies probiotics are identified to alleviate the depressive phenotypes. Current findings provide a foundation for developing microbiota-based diagnostics and therapeutics and advancing microbiota-oriented precision medicine for depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ji Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Libo Zhao
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| | - Peng Xie
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| |
Collapse
|
36
|
Herselman MF, Bailey S, Deo P, Zhou XF, Gunn KM, Bobrovskaya L. The Effects of Walnuts and Academic Stress on Mental Health, General Well-Being and the Gut Microbiota in a Sample of University Students: A Randomised Clinical Trial. Nutrients 2022; 14:4776. [PMID: 36432461 PMCID: PMC9697272 DOI: 10.3390/nu14224776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Poorer mental health is common in undergraduate students due to academic stress. An interplay between stress and diet exists, with stress influencing food choices. Nutritional interventions may be effective in preventing mental health decline due to complex bidirectional interactions between the brain, the gut and the gut microbiota. Previous studies have shown walnut consumption has a positive effect on mental health. Here, using a randomized clinical trial (Australian New Zealand Clinical Trials Registry, #ACTRN12619000972123), we aimed to investigate the effects of academic stress and daily walnut consumption in university students on mental health, biochemical markers of general health, and the gut microbiota. We found academic stress had a negative impact on self-reported mood and mental health status, while daily walnut consumption improved mental health indicators and protected against some of the negative effects of academic stress on metabolic and stress biomarkers. Academic stress was associated with lower gut microbial diversity in females, which was improved by walnut consumption. The effects of academic stress or walnut consumption in male participants could not be established due to small numbers of participants. Thus, walnut consumption may have a protective effect against some of the negative impacts of academic stress, however sex-dependent mechanisms require further study.
Collapse
Affiliation(s)
- Mauritz F. Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sheree Bailey
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kate M. Gunn
- Allied Health & Human Performance, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
37
|
Chung SY, Kostev K, Tanislav C. Dysbiosis: A Potential Precursor to the Development of a Depressive Disorder. Healthcare (Basel) 2022; 10:healthcare10081503. [PMID: 36011160 PMCID: PMC9407892 DOI: 10.3390/healthcare10081503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Although previous investigations have indicated that gastrointestinal pathologies facilitate the occurrence of mood disorders, there is a lack of studies based on data from clinical practice. The aim of this study was to investigate the incidence of depression in patients with dysbiosis. Methods: Adult patients (≥18 years) from 1193 general practices in Germany between January 2005 and December 2018 with an initial diagnosis of dysbiosis documented anonymously in the Disease Analyzer database (IQVIA) were analyzed. The incidence of depression diagnoses as a function of dysbiosis was calculated and multivariate regression models were applied. Results: This study included 552 patients with and 552 patients without dysbiosis. Within five years of the index date, 20.5% of patients with dysbiosis and 5.5% of individuals without dysbiosis had been diagnosed with depression (p < 0.001). Dysbiosis was found to be significantly associated with the incidence of depression (HR: 2.85 (95% CI: 2.00−4.04)). This association was slightly stronger in men (HR: 3.54) than in women (HR: 2.61) and was more pronounced in the age group >60 years (HR: 4.43). Conclusions: We identified dysbiosis as a risk factor for developing depression within 5 years after the index date. This risk seems to be higher in male than in female patients.
Collapse
Affiliation(s)
| | - Karel Kostev
- Epidemiology, IQVIA, 65901 Frankfurt am Main, Germany
- Correspondence:
| | - Christian Tanislav
- Department of Geriatrics and Neurology, Diakonie Hospital Jung Stilling Siegen, 57074 Siegen, Germany
| |
Collapse
|
38
|
Zhang X, Hou Y, Li Y, Wei W, Cai X, Shao H, Yuan Y, Zheng X. Taxonomic and Metabolic Signatures of Gut Microbiota for Assessing the Severity of Depression and Anxiety in Major Depressive Disorder Patients. Neuroscience 2022; 496:179-189. [PMID: 35750110 DOI: 10.1016/j.neuroscience.2022.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
Major depressive disorder (MDD) is a heterogeneous mental disorder for which the precise assessment of symptom severity remains challenging. Studies have consistently found that the microbiota-gut-brain (MGB) axis is profoundly altered in MDD, but whether MGB-relevant clinical parameters are applicable to depression subphenotyping remains largely unexplored. In this prospective study, we assessed the taxonomic and metabolic signatures of fecal microbiota from 45 unmedicated MDD patients and explored their associations with the severity of depression and anxiety symptoms as measured by Hamilton depression scale-17 (HAMD-17) and Hamilton anxiety scale-14 (HAMA-14), respectively. The global microbial compositions of MDD patients with mild, moderate and severe symptoms were largely similar. Nevertheless, multiple discriminative bacterial taxa could be identified among the subgroups across the genus to species level. The abundance of fecal Streptococcus was highly correlated with both HAMD and HAMA scores. Patients with severe depression symptoms showed significantly higher abundance of Phascolarctobacterium and Akkermansia, while enrichment of Akkermansia, Coprococcus and Streptococcus were observed with severe anxiety symptoms. In addition, fecal microbial metabolite indole-3-carboxyaldehyde proved useful to discriminate the severity of depression or anxiety symptoms. Together, our results support the utility of microbial taxa and metabolites as potential MGB-based biomarker panel for stratifying the symptom severity of MDD patients.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yinghui Li
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
39
|
Zhang Y, Zhang R, Liu P, Wang J, Gao M, Zhang J, Yang J, Yang C, Zhang Y, Sun N. Characteristics and Mediating Effect of Gut Microbiota With Experience of Childhood Maltreatment in Major Depressive Disorder. Front Neurosci 2022; 16:926450. [PMID: 35774560 PMCID: PMC9238290 DOI: 10.3389/fnins.2022.926450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota and childhood maltreatment are closely related to depressive symptoms. This study aimed to analyze the characteristics of gut microbiota in major depressive disorder (MDD) patients with childhood maltreatment experience and explore the correlation between gut microbiota, childhood maltreatment, and depressive symptoms. A total of 37 healthy controls (HCs) and 53 patients with MDD were enrolled, including 18 MDD patients without childhood maltreatment experience and 35 MDD patients with childhood maltreatment experience. The Hamilton’s Depression Scale (HAMD-24) and Childhood Trauma Questionnaire-Short Form (CTQ-SF) were used to evaluate their depressive symptoms and childhood maltreatment experience, respectively. The composition of gut microbiota was evaluated using 16S rRNA sequencing. Spearman’s correlation analysis was used to evaluate the correlation between different gut microbiota, depressive symptoms and childhood maltreatment. The mediation analysis was used to evaluate the mediating effect of gut microbiota. In the α-diversity analysis, we found that the Simpson index and Pielou’s Evenness index differed significantly between MDD patients without childhood maltreatment experience and HCs. In the β-diversity analysis, principal coordinate analysis (PCoA) showed significant differences between MDD patients without childhood maltreatment experience, MDD patients with childhood maltreatment experience and HCs. Twenty-seven different bacteria were identified through Linear discriminant analysis effect size (LEfSe) analysis at different levels of classification. The analysis of the correlation showed that Blautia, Bifidobacterium, Bacteroides, Roseburia, and Phascolarctobacterium were significantly correlated with HAMD and CTQ-SF scores. The mediation analysis showed that childhood maltreatment had a significant direct effect on the patients’ depressive symptoms, and Blautia, Bifidobacterium, Roseburia had a significant mediating effect. The findings of this study suggested that MDD patients with childhood maltreatment experience had different gut microbiota, which might have a mediating effect on the influence of childhood maltreatment on depressive symptoms.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ruiyu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jie Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jun Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yu Zhang,
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Ning Sun,
| |
Collapse
|
40
|
Zhang Y, Fan Q, Hou Y, Zhang X, Yin Z, Cai X, Wei W, Wang J, He D, Wang G, Yuan Y, Hao H, Zheng X. Bacteroides species differentially modulate depression-like behavior via gut-brain metabolic signaling. Brain Behav Immun 2022; 102:11-22. [PMID: 35143877 DOI: 10.1016/j.bbi.2022.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Gut microbiome disturbances have been widely implicated in major depressive disorder (MDD), although the identity of causal microbial species and the underlying mechanisms are yet to be fully elucidated. Here we show that Bacteroides species enriched in the gut microbiome from MDD patients differentially impact the susceptibility to depressive behaviors. Transplantation of fecal microbiome from MDD patients into antibiotic-treated mice induced anxiety and despair-like behavior and impaired hippocampal neurogenesis. Colonization of Bacteroides fragilis, Bacteroides uniformis, and, to a lesser extent, Bacteroides caccae, but not Bacteroides ovatus, recapitulated the negative effects of MDD microbiome on behavior and neurogenesis. The varying impacts of Bacteroides species were partially explained by differential alternations of tryptophan pathway metabolites and neurotransmitters along the gut-brain axis. Notably, an intensified depletion of cerebral serotonin concurred with the enhanced susceptibility to depression. Together, these findings identify select Bacteroidetes species that contribute to depression susceptibility in mice by metabolic regulation along the gut-brain axis.
Collapse
Affiliation(s)
- Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Qilin Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Yuanlong Hou
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Department of Pharmacy, Shenzhen Luohu People's Hospital, 518000 Shenzhen, Guangdong, China
| | - Xuanshuang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zhe Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Wei Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jiaying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Dandan He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, 210009 Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Alli SR, Gorbovskaya I, Liu JCW, Kolla NJ, Brown L, Müller DJ. The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. Int J Mol Sci 2022; 23:4494. [PMID: 35562885 PMCID: PMC9101152 DOI: 10.3390/ijms23094494] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
An emerging body of literature demonstrates differences in the gut microbiome (GMB) of patients with major depressive disorder (MDD) compared to healthy controls (HC), as well as the potential benefits of prebiotic, probiotic, and synbiotic treatment. We conducted a systematic review of 24 observational studies (n = 2817), and 19 interventional trials (n = 1119). We assessed alpha diversity, beta diversity, and taxa abundance changes in patients with MDD relative to HC, as well as the effect of prebiotics, probiotics, and synbiotics on depressive symptoms in individuals with clinical or subclinical depression. We observed no significant differences in alpha diversity but a significant difference in beta diversity between patients with MDD and HC. There were fluctuations in the abundance of specific taxa in patients with MDD relative to HC. Probiotic and synbiotic, but not prebiotic, treatment showed a modest benefit in reducing depressive symptoms in patients with MDD over four to nine weeks. The GMB profiles of patients with MDD differ significantly from HC, but further studies are needed to elucidate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and over longer follow-up before these therapies are implemented into clinical practice.
Collapse
Affiliation(s)
- Sauliha R. Alli
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ilona Gorbovskaya
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan C. W. Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nathan J. Kolla
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Lisa Brown
- Great Scott Consulting, New York, NY, USA;
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
42
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
43
|
Herselman MF, Bailey S, Bobrovskaya L. The Effects of Stress and Diet on the "Brain-Gut" and "Gut-Brain" Pathways in Animal Models of Stress and Depression. Int J Mol Sci 2022; 23:ijms23042013. [PMID: 35216133 PMCID: PMC8875876 DOI: 10.3390/ijms23042013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.
Collapse
|
44
|
McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, Simpson CA, Green J, Marx W, Hair C, Guest G, Mohebbi M, Berk M, Stupart D, Watters D, Jacka FN. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 2022; 27:1920-1935. [PMID: 35194166 PMCID: PMC9126816 DOI: 10.1038/s41380-022-01456-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emerging understanding of gut microbiota as 'metabolic machinery' influencing many aspects of physiology has gained substantial attention in the field of psychiatry. This is largely due to the many overlapping pathophysiological mechanisms associated with both the potential functionality of the gut microbiota and the biological mechanisms thought to be underpinning mental disorders. In this systematic review, we synthesised the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), compared to 'healthy' controls. We also explored gut microbiota composition across disorders in an attempt to elucidate potential commonalities in the microbial signatures associated with these mental disorders. Following the PRISMA guidelines, databases were searched from inception through to December 2021. We identified 44 studies (including a total of 2510 psychiatric cases and 2407 controls) that met inclusion criteria, of which 24 investigated gut microbiota composition in MDD, seven investigated gut microbiota composition in BD, and 15 investigated gut microbiota composition in SZ. Our syntheses provide no strong evidence for a difference in the number or distribution (α-diversity) of bacteria in those with a mental disorder compared to controls. However, studies were relatively consistent in reporting differences in overall community composition (β-diversity) in people with and without mental disorders. Our syntheses also identified specific bacterial taxa commonly associated with mental disorders, including lower levels of bacterial genera that produce short-chain fatty acids (e.g. butyrate), higher levels of lactic acid-producing bacteria, and higher levels of bacteria associated with glutamate and GABA metabolism. We also observed substantial heterogeneity across studies with regards to methodologies and reporting. Further prospective and experimental research using new tools and robust guidelines hold promise for improving our understanding of the role of the gut microbiota in mental and brain health and the development of interventions based on modification of gut microbiota.
Collapse
Affiliation(s)
- A. J. McGuinness
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - J. A. Davis
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - S. L. Dawson
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - A. Loughman
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - F. Collier
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - M. O’Hely
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - C. A. Simpson
- grid.1008.90000 0001 2179 088XMelbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - J. Green
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPcr), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Parkville, VIC Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, VIC Australia
| | - W. Marx
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - C. Hair
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.414257.10000 0004 0540 0062Department of Gastroenterology, Barwon Health, Geelong, VIC Australia
| | - G. Guest
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - M. Mohebbi
- grid.1021.20000 0001 0526 7079Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, VIC Australia
| | - M. Berk
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.1008.90000 0001 2179 088XOrygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - D. Stupart
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - D. Watters
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - F. N. Jacka
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XCentre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Sydney, NSW Australia ,grid.1011.10000 0004 0474 1797College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD Australia
| |
Collapse
|
45
|
Nikolova VL, Hall MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-analysis. JAMA Psychiatry 2021; 78:1343-1354. [PMID: 34524405 PMCID: PMC8444066 DOI: 10.1001/jamapsychiatry.2021.2573] [Citation(s) in RCA: 330] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022]
Abstract
Importance Evidence of gut microbiota perturbations has accumulated for multiple psychiatric disorders, with microbiota signatures proposed as potential biomarkers. However, no attempts have been made to evaluate the specificity of these across the range of psychiatric conditions. Objective To conduct an umbrella and updated meta-analysis of gut microbiota alterations in general adult psychiatric populations and perform a within- and between-diagnostic comparison. Data Sources Cochrane Library, PubMed, PsycINFO, and Embase were searched up to February 2, 2021, for systematic reviews, meta-analyses, and original evidence. Study Selection A total of 59 case-control studies evaluating diversity or abundance of gut microbes in adult populations with major depressive disorder, bipolar disorder, psychosis and schizophrenia, anorexia nervosa, anxiety, obsessive compulsive disorder, posttraumatic stress disorder, or attention-deficit/hyperactivity disorder were included. Data Extraction and Synthesis Between-group comparisons of relative abundance of gut microbes and beta diversity indices were extracted and summarized qualitatively. Random-effects meta-analyses on standardized mean difference (SMD) were performed for alpha diversity indices. Main Outcomes and Measures Alpha and beta diversity and relative abundance of gut microbes. Results A total of 34 studies provided data and were included in alpha diversity meta-analyses (n = 1519 patients, n = 1429 control participants). Significant decrease in microbial richness in patients compared with control participants were found (observed species SMD = -0.26; 95% CI, -0.47 to -0.06; Chao1 SMD = -0.5; 95% CI, -0.79 to -0.21); however, this was consistently decreased only in bipolar disorder when individual diagnoses were examined. There was a small decrease in phylogenetic diversity (SMD = -0.24; 95% CI, -0.47 to -0.001) and no significant differences in Shannon and Simpson indices. Differences in beta diversity were consistently observed only for major depressive disorder and psychosis and schizophrenia. Regarding relative abundance, little evidence of disorder specificity was found. Instead, a transdiagnostic pattern of microbiota signatures was found. Depleted levels of Faecalibacterium and Coprococcus and enriched levels of Eggerthella were consistently shared between major depressive disorder, bipolar disorder, psychosis and schizophrenia, and anxiety, suggesting these disorders are characterized by a reduction of anti-inflammatory butyrate-producing bacteria, while pro-inflammatory genera are enriched. The confounding associations of region and medication were also evaluated. Conclusions and Relevance This systematic review and meta-analysis found that gut microbiota perturbations were associated with a transdiagnostic pattern with a depletion of certain anti-inflammatory butyrate-producing bacteria and an enrichment of pro-inflammatory bacteria in patients with depression, bipolar disorder, schizophrenia, and anxiety.
Collapse
Affiliation(s)
- Viktoriya L. Nikolova
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Megan R. B. Hall
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College of London, London, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL–Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anthony J. Cleare
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, United Kingdom
| | - James M. Stone
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Allan H. Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, United Kingdom
| |
Collapse
|
46
|
Zhang Y, Gao C, Masum MMI, Cheng Y, Wei C, Guan Y, Guan J. Dynamic Microbiome Changes Reveal the Effect of 1-Methylcyclopropene Treatment on Reducing Post-harvest Fruit Decay in "Doyenne du Comice" Pear. Front Microbiol 2021; 12:729014. [PMID: 34512605 PMCID: PMC8430257 DOI: 10.3389/fmicb.2021.729014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogen-induced decay is one of the most common causes of fruit loss, resulting in substantial economic loss and posing a health risk to humans. As an ethylene action inhibitor, 1-methylcyclopropene (1-MCP) can significantly reduce fruit decay, but its effect on fruit pathogens remains unclear. Herein, the change in microbial community structure was analyzed using the high-throughput sequencing technology, and characteristics related to fruit quality were determined after 1-MCP (1.0 M l L-1) treatment in "Doyenne du Comiceis" pear fruit during storage at ambient temperature. Overall, 1-MCP was highly effective in reducing disease incidence and induced multiple changes of the fungal and bacterial microbiota. At day 15, the microbial diversity of fungi or bacteria was reduced significantly in the control fruit (non-treated with 1-MCP), which had the most severe decay incidence. For fungi, in addition to Alternaria being the most abundant in both 1-MCP treatment (59.89%) and control (40.18%), the abundances of Botryosphaeria (16.75%), Penicillium (8.81%), and Fusarium (6.47%) increased significantly with the extension of storage time. They became the primary pathogens to cause fruit decay in control, but they were markedly decreased in 1-MCP treatment, resulting in reduced disease incidence. For bacteria, the abundance of Gluconobacter (50.89%) increased dramatically at day 15 in the control fruit, showing that it also played a crucial role in fruit decay. In addition, Botryosphaeria, Fusarium fungi, and Massilia, Kineococcus bacteria were identified as biomarkers to distinguish 1-MCP treatment and control using Random Forest analysis. The redundancy analysis (RDA) result showed that the amount of Botryosphaeria, Penicillium, and Fusarium were positively correlated with disease incidence and respiration rate of pear fruits while negatively correlated with fruit firmness. This investigation is the first comprehensive analysis of the microbiome response to 1-MCP treatment in post-harvest pear fruit, and reveals the relationship between fruit decay and microbial composition in pear fruit.
Collapse
Affiliation(s)
- Yang Zhang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Congcong Gao
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Md. Mahidul Islam Masum
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Yudou Cheng
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Chuangqi Wei
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yeqing Guan
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Junfeng Guan
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
47
|
Goswami A, Wendt FR, Pathak GA, Tylee DS, De Angelis F, De Lillo A, Polimanti R. Role of microbes in the pathogenesis of neuropsychiatric disorders. Front Neuroendocrinol 2021; 62:100917. [PMID: 33957173 PMCID: PMC8364482 DOI: 10.1016/j.yfrne.2021.100917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Microbes inhabit different anatomical sites of the human body including oral cavity, gut, and skin. A growing literature highlights how microbiome variation is associated with human health and disease. There is strong evidence of bidirectional communication between gut and brain mediated by neurotransmitters and microbial metabolites. Here, we review the potential involvement of microbes residing in the gut and in other body sites in the pathogenesis of eight neuropsychiatric disorders, discussing findings from animal and human studies. The data reported provide a comprehensive overview of the current state of the microbiome research in neuropsychiatry, including hypotheses about the mechanisms underlying the associations reported and the translational potential of probiotics and prebiotics.
Collapse
Affiliation(s)
- Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA.
| |
Collapse
|
48
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
49
|
Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr 2021; 62:7929-7959. [PMID: 33955288 DOI: 10.1080/10408398.2021.1920884] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psychobiotics-live microorganisms with potential mental health benefits, which can modulate the microbiota-gut-brain-axis via immune, humoral, neural, and metabolic pathways-are emerging as novel therapeutic options for the effective treatment of psychiatric disorders Recently, microbiome studies have identified numerous putative psychobiotic strains, of which short-chain fatty acids (SCFAs) producing bacteria have attracted special attention from neurobiologists. Recent studies have highlighted that SCFAs-producing bacteria such as Lactobacillus, Bifidobacterium and Clostridium have a very specific function in various psychiatric disorders, suggesting that these bacteria can be potential novel psychobiotics. SCFAs, potential mediators of microbiota-gut-brain axis, might modulate function of neurological processes. While the specific roles and mechanisms of SCFAs-producing bacteria of microbiota-targeted interventions on neuropsychiatric disease are largely unknown. This Review summarizes existing knowledge on the neuroprotective effects of the SCFAs-producing bacteria in neurological disorders via modulating microbiota-gut-brain axis and illustrate their possible mechanisms by which SCFAs-producing bacteria may act on these disorders, which will shed light on the SCFAs-producing bacteria as a promising novel source of psychobiotics.
Collapse
Affiliation(s)
- Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Microbe & Host Health, Linyi University, Linyi, Shandong, China
| |
Collapse
|