1
|
By S, Kahl A, Cogswell PM. Alzheimer's Disease Clinical Trials: What Have We Learned From Magnetic Resonance Imaging. J Magn Reson Imaging 2025; 61:579-594. [PMID: 39031716 DOI: 10.1002/jmri.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia worldwide with rising prevalence, incidence and mortality. Despite many decades of research, there remains an unmet need for disease-modifying treatment that can significantly alter the progression of disease. Recently, with United States Food and Drug Administration (FDA) drug approvals, there have been tremendous advances in this area, with agents demonstrating effects on cognition and biomarkers. Magnetic resonance imaging (MRI) plays an instrumental role in these trials. This review article aims to outline how MRI is used for screening eligibility, monitoring safety and measuring efficacy in clinical trials, leaning on the landscape of past and recent AD clinical trials that have used MRI as examples; further, insight on promising MRI biomarkers for future trials is provided. LEVEL OF EVIDENCE: 1. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Samantha By
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Anja Kahl
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | |
Collapse
|
2
|
Okonkwo OC, Rivera-Mindt M, Weiner MW. Alzheimer's Disease Neuroimaging Initiative: Two decades of pioneering Alzheimer's disease research and future directions. Alzheimers Dement 2025. [PMID: 39760440 DOI: 10.1002/alz.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Monica Rivera-Mindt
- Department of Psychology, Latin American and Latino Studies Institute, African and African American Studies, Fordham University, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| |
Collapse
|
3
|
Wurm R, Klotz S, Erber A, Gruber F, Leitner S, Reichardt B, Stögmann E, Schernhammer E, Gelpi E, Cetin H. Mood Alterations in the Prodromal Phase of Sporadic Creutzfeldt-Jakob Disease. JAMA Neurol 2024:2828525. [PMID: 39786417 DOI: 10.1001/jamaneurol.2024.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Importance Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare, rapidly progressive and fatal neurodegenerative disease. Definite sCJD diagnosis can only be made post mortem, and little is known about the prodromal phase of the disease. Objective To compare drug prescription patterns before the clinical onset of sCJD between patients and matched controls for exploration of potential risk factors and to assess correlations between drug exposure and sCJD survival. Design, Setting, and Participants This retrospective analysis was designed as a case-control study, with data collected from January 2013 to December 2020 and analyzed in 2023. Follow-up was available until December 2020. Cases were collected from the Austrian Reference Centre for Human Prion Diseases, which receives all suspected cases at a national level in Austria. The analyses were conducted at a single center. Patients with autopsy-confirmed sCJD were linked with insurance claims data, and a minimum of 10 control individuals were matched by sex, age at onset, and area of residence for each patient with sCJD. Exposure Medication prescribed to 10% or more of the cohort with sCJD up to 5 years before symptom onset or the matching date in the control cohort. Main Outcomes and Measures Drug prescription before symptom onset or the matching date was compared between patients with sCJD and controls using conditional regression, and prescriptions in the cohort with sCJD were assessed for correlation with survival using Cox proportional hazard models. Results A total of 129 patients with sCJD (median [IQR] age, 68.9 [62.4-75.5] years; 67 female [51.9%]) and 1350 controls (median [IQR] age, 69.0 [62.2-75.3] years; 700 female [51.9%]) were included. As compared with controls, patients with sCJD were found to have significantly higher odds of being prescribed selective serotonin reuptake inhibitors (SSRIs) in the year preceding disease onset (odds ratio, 2.86; 95% CI, 1.63-4.95; P < .001). SSRI prescription rates started to increase 3 years before symptom onset in the cohort with sCJD. Conclusions and Relevance Results of this case-control study provide evidence for prodromal mood alterations as early as 3 years before symptom onset in patients with sCJD. Although sCJD remains an extremely rare cause of mood alterations, increased vigilance for neurodegenerative diseases in this setting could eventually help to extend the diagnostic window.
Collapse
Affiliation(s)
- Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sigrid Klotz
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Astrid Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Felix Gruber
- Main Association of Austrian Social Security Institutions, Austria
| | - Stefan Leitner
- Main Association of Austrian Social Security Institutions, Austria
| | - Berthold Reichardt
- Austrian Social Health Insurance Fund, Österreichische Gesundheitskasse, Eisenstadt, Austria
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Eva Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Weiner MW, Kanoria S, Miller MJ, Aisen PS, Beckett LA, Conti C, Diaz A, Flenniken D, Green RC, Harvey DJ, Jack CR, Jagust W, Lee EB, Morris JC, Nho K, Nosheny R, Okonkwo OC, Perrin RJ, Petersen RC, Rivera-Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Veitch DP. Overview of Alzheimer's Disease Neuroimaging Initiative and future clinical trials. Alzheimers Dement 2024. [PMID: 39711072 DOI: 10.1002/alz.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to optimize and validate biomarkers for clinical trials while sharing all data and biofluid samples with the global scientific community. ADNI has been instrumental in standardizing and validating amyloid beta (Aβ) and tau positron emission tomography (PET) imaging. ADNI data were used for the US Food and Drug Administration (FDA) approval of the Fujirebio and Roche Elecsys cerebrospinal fluid diagnostic tests. Additionally, ADNI provided data for the trials of the FDA-approved treatments aducanumab, lecanemab, and donanemab. More than 6000 scientific papers have been published using ADNI data, reflecting ADNI's promotion of open science and data sharing. Despite its enormous success, ADNI has some limitations, particularly in generalizing its data and findings to the entire US/Canadian population. This introduction provides a historical overview of ADNI and highlights its significant accomplishments and future vision to pioneer "the clinical trial of the future" focusing on demographic inclusivity. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) introduced a novel model for public-private partnerships and data sharing. It successfully validated amyloid and Tau PET imaging, as well as CSF and plasma biomarkers, for diagnosing Alzheimer's disease. ADNI generated and disseminated vital data for designing AD clinical trials.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Shaveta Kanoria
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Melanie J Miller
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, California, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Medical Sciences 1C, Davis, California, USA
| | - Catherine Conti
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Adam Diaz
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Derek Flenniken
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute Ariadne Labs and Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Medical Sciences 1C, Davis, California, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rachel Nosheny
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Clinical Science Center, Madison, Wisconsin, USA
| | - Richard J Perrin
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Monica Rivera-Mindt
- Department of Psychology, Latin American and Latino Studies Institute, African and African American Studies, Fordham University, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine and the PENN Alzheimer's Disease Research Center, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California, San Diego, California, USA
| | - Duygu Tosun
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| |
Collapse
|
5
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Snyder AZ, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Perrin RJ, Benzinger TLS, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease. Netw Neurosci 2024; 8:1265-1290. [PMID: 39735502 PMCID: PMC11674321 DOI: 10.1162/netn_a_00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved. First, past research has not clearly distinguished between two scenarios: hub regions facing a higher risk of connectivity disruption (targeted attack) and all regions having an equal risk (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We refined the hub disruption index to demonstrate a hub disruption pattern in functional connectivity in autosomal dominant AD that aligned with targeted attacks. This hub disruption is detectable even in preclinical stages, 12 years before the expected symptom onset and is amplified alongside symptomatic progression. Moreover, hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in amyloid-beta positron emission tomography cortical markers, consistent with the activity-dependent degeneration explanation. Taken together, our findings deepen the understanding of brain network organization in neurodegenerative diseases and could be instrumental in refining diagnostic and targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy F. Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z. Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward D. Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
6
|
Cash DM, Morgan KE, O’Connor A, Veale TD, Malone IB, Poole T, Benzinger TLS, Gordon BA, Ibanez L, Li Y, Llibre-Guerra JJ, McDade E, Wang G, Chhatwal JP, Day GS, Huey E, Jucker M, Levin J, Niimi Y, Noble JM, Roh JH, Sánchez-Valle R, Schofield PR, Bateman RJ, Frost C, Fox NC. Sample size estimates for biomarker-based outcome measures in clinical trials in autosomal dominant Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24316919. [PMID: 39606328 PMCID: PMC11601746 DOI: 10.1101/2024.11.12.24316919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Alzheimer disease (AD)-modifying therapies are approved for treatment of early-symptomatic AD. Autosomal dominant AD (ADAD) provides a unique opportunity to test therapies in presymptomatic individuals. METHODS Using data from the Dominantly Inherited Alzheimer Network (DIAN), sample sizes for clinical trials were estimated for various cognitive, imaging, and CSF outcomes. RESULTS Biomarkers measuring amyloid and tau pathology had required sample sizes below 200 participants per arm (examples CSF Aβ42/40: 22[95%CI 13,46], cortical PIB 32[20,57], CSF p-tau181 58[40,112]) for a four-year trial to have 80% power (5% statistical significance) to detect a 25% reduction in absolute levels of pathology, allowing 40% dropout. For cognitive, MRI, and FDG, it was more appropriate to detect a 50% reduction in rate of change. Sample sizes ranged from 75-250 (examples precuneus volume: 137[80,284], cortical FDG: 256[100,1208], CDR-SB: 161[102,291]). DISCUSSION Despite the rarity of ADAD, clinical trials with feasible sample sizes given the number of cases appear possible.
Collapse
Affiliation(s)
- David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London UK
- UK Dementia Research Institute
| | - Katy E Morgan
- London School of Hygiene and Tropical Medicine, London UK
| | - Antoinette O’Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London UK
| | - Thomas D Veale
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London UK
| | - Teresa Poole
- London School of Hygiene and Tropical Medicine, London UK
| | - Tammie LS Benzinger
- Department of Radiology. Washington University School of Medicine, St. Louis MO
| | - Brian A Gordon
- Department of Radiology. Washington University School of Medicine, St. Louis MO
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Laura Ibanez
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- Department of Psychiarty, Washington University in St Louis, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Jasmeer P Chhatwal
- Brigham and Women’s Hospital; Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Edward Huey
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yoshiki Niimi
- Unit for early and exploratory clinical development, The University of Tokyo Hospital, Tokyo, Japan
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, GH Sergievksy Center, Columbia University, New York, NY
| | - Jee Hoon Roh
- Departments of Neurology and Physiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Racquel Sánchez-Valle
- Alzheimer’s disease and other cognitive disorders group. Hospital Clínic de Barcelona. FRCB-IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney Australia
- School of Biomedical Sciences, University of New South Wales, Sydney Australia
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Chris Frost
- London School of Hygiene and Tropical Medicine, London UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London UK
- UK Dementia Research Institute
| | | |
Collapse
|
7
|
Feldman HH, Cummings JL, Boxer AL, Staffaroni AM, Knopman DS, Sukoff Rizzo SJ, Territo PR, Arnold SE, Ballard C, Beher D, Boeve BF, Dacks PA, Diaz K, Ewen C, Fiske B, Gonzalez MI, Harris GA, Hoffman BJ, Martinez TN, McDade E, Nisenbaum LK, Palma J, Quintana M, Rabinovici GD, Rohrer JD, Rosen HJ, Troyer MD, Kim DY, Tanzi RE, Zetterberg H, Ziogas NK, May PC, Rommel A. A framework for translating tauopathy therapeutics: Drug discovery to clinical trials. Alzheimers Dement 2024; 20:8129-8152. [PMID: 39316411 PMCID: PMC11567863 DOI: 10.1002/alz.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jeffrey L. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada at Las VegasLas VegasNevadaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Paul R. Territo
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Steven E. Arnold
- Department of NeurologyHarvard Medical SchoolMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | | | | | - Penny A. Dacks
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | | | | | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | | | | | | | | | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Jose‐Alberto Palma
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreQueen Square Institute of NeurologyUniversity College of LondonLondonUK
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Doo Yeon Kim
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Rudolph E. Tanzi
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy at the University of GothenburgMölndalSweden
| | | | - Patrick C. May
- ADvantage Neuroscience Consulting LLCFort WayneIndianaUSA
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| |
Collapse
|
8
|
Nissim NR, Fudge MR, Lachner C, Babulal GM, Allyse MA, Graff-Radford NR, Lucas JA, Day GS. Age-Specific Barriers and Facilitators to Research Participation Amongst African Americans in Observational Studies of Memory and Aging. J Racial Ethn Health Disparities 2024; 11:2796-2805. [PMID: 37555913 PMCID: PMC10853486 DOI: 10.1007/s40615-023-01741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Black/African Americans experience a high burden of Alzheimer disease and related dementias yet are critically underrepresented in corresponding research. Understanding barriers and facilitators to research participation among younger and older African Americans is necessary to inform age-specific strategies to promote equity in studies of early- and late-onset neurodegenerative diseases. STUDY DESIGN Survey respondents (n = 240) rated barriers and facilitators of research participation. Age-specific differences were evaluated using nonparametric Kruskal-Wallis tests across respondents aged 18-44 years (n = 76), 45-64 years (n = 83), and ≥ 65 years (n = 81). Strategies to mitigate barriers and promote facilitators were further explored via community-based focus groups. Pooled frequency of common themes discussed in focus groups were evaluated and compared across different ages including ≥ 45 years, ≥ 65 years, and mixed ages ≥ 45 years. RESULTS Younger respondents (aged 18-44 and 45-64 years) expressed a greater need for flexibility in when, where, and how research testing takes place versus adults ≥ 65 years. Focus groups emphasized long-lasting consequences of systemic racism and the need to build and foster trust to resolve barriers and promote research engagement amongst African Americans. DISCUSSION Age-specific strategies are needed to increase engagement, address recruitment disparities, and promote retention of African American participants in memory and aging studies across the lifespan.
Collapse
Affiliation(s)
- Nicole R Nissim
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michelle R Fudge
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Christian Lachner
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Megan A Allyse
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - John A Lucas
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Wang G, Li ZA, Chen L, Lugar H, Hershey T. Clinical Trials for Wolfram Syndrome Neurodegeneration: Novel Design, Endpoints, and Analysis Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.10.24313426. [PMID: 39314971 PMCID: PMC11419225 DOI: 10.1101/2024.09.10.24313426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Wolfram syndrome, an ultra-rare condition, currently lacks effective treatment options. The rarity of this disease presents significant challenges in conducting clinical trials, particularly in achieving sufficient statistical power (e.g., 80%). The objective of this study is to propose a novel clinical trial design based on real-world data to reduce the sample size required for conducting clinical trials for Wolfram syndrome. Methods We propose a novel clinical trial design with three key features aimed at reducing sample size and improve efficiency: (i) Pooling historical/external controls from a longitudinal observational study conducted by the Washington University Wolfram Research Clinic. (ii) Utilizing run-in data to estimate model parameters. (iii) Simultaneously tracking treatment effects in two endpoints using a multivariate proportional linear mixed effects model. Results Comprehensive simulations were conducted based on real-world data obtained through the Wolfram syndrome longitudinal observational study. Our simulations demonstrate that this proposed design can substantially reduce sample size requirements. Specifically, with a bivariate endpoint and the inclusion of run-in data, a sample size of approximately 30 per group can achieve over 80% power, assuming the placebo progression rate remains consistent during both the run-in and randomized periods. In cases where the placebo progression rate varies, the sample size increases to approximately 50 per group. Conclusions For rare diseases like Wolfram syndrome, leveraging existing resources such as historical/external controls and run-in data, along with evaluating comprehensive treatment effects using bivariate/multivariate endpoints, can significantly expedite the development of new drugs.
Collapse
Affiliation(s)
- Guoqiao Wang
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Ling Chen
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Heather Lugar
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
10
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
11
|
Dhaenens BAE, Heimann G, Bakker A, Nievo M, Ferner RE, Evans DG, Wolkenstein P, Leubner J, Potratz C, Carton C, Iloeje U, Kirk G, Blakeley JO, Plotkin S, Fisher MJ, Kim A, Driever PH, Azizi AA, Widemann BC, Gross A, Parke T, Legius E, Oostenbrink R. Platform trial design for neurofibromatosis type 1, NF2-related schwannomatosis and non-NF2-related schwannomatosis: A potential model for rare diseases. Neurooncol Pract 2024; 11:395-403. [PMID: 39006526 PMCID: PMC11241353 DOI: 10.1093/nop/npae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background Neurofibromatosis type 1, NF2-related schwannomatosis and non-NF2-related schwannomatosis (grouped under the abbreviation "NF") are rare hereditary tumor predisposition syndromes. Due to the low prevalence, variability in the range, and severity of manifestations, as well as limited treatment options, these conditions require innovative trial designs to accelerate the development of new treatments. Methods Within European Patient-Centric Clinical Trial Platforms (EU-PEARL), we designed 2 platform-basket trials in NF. The trials were designed by a team of multidisciplinary NF experts and trial methodology experts. Results The trial will consist of an observational and a treatment period. The observational period will serve as a longitudinal natural history study. The platform trial design and randomization to a sequence of available interventions allow for the addition of interventions during the trial. If a drug does not meet the predetermined efficacy endpoint or reveals unacceptable toxicities, participants may stop treatment on that arm and re-enter the observational period, where they can be re-randomized to a different treatment arm if eligible. Intervention-specific eligibility criteria and endpoints are listed in intervention-specific-appendices, allowing the flexibility and adaptability needed for highly variable and rare conditions like NF. Conclusions These innovative platform-basket trials for NF may serve as a model for other rare diseases, as they will enhance the chance of identifying beneficial treatments through optimal learning from a small number of patients. The goal of these trials is to identify beneficial treatments for NF more rapidly and at a lower cost than traditional, single-agent clinical trials.
Collapse
Affiliation(s)
- Britt A E Dhaenens
- Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Günter Heimann
- Biostatistics & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
| | | | - Marco Nievo
- Children's Tumor Foundation, New York, New York, USA
| | - Rosalie E Ferner
- Neurofibromatosis Service, Department of Neurology, Guy's and St. Thomas' NHS Foundation Trust London, Great Maze Pond, London, UK
| | - D Gareth Evans
- Centre for Genomic Medicine, Division of Evolution, Infection and Genomic Sciences, University of Manchester, St Mary's Hospital, Manchester, UK
| | | | - Jonas Leubner
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Cornelia Potratz
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | | | - Uchenna Iloeje
- Medical Affairs, SpringWorks Therapeutics, Stamford, Connecticut, USA
| | | | - Jaishri O Blakeley
- Department of Neurology, Neuro-Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Scott Plotkin
- Cancer Center and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - AeRang Kim
- Division of Oncology, Children's National Hospital, Washington DC, District of Columbia, USA
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Amedeo A Azizi
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Wien, Austria
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Andrea Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Clinical Genetics, UZ Leuven, Leuven, Belgium
- Full Member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands (E.L., R.O.)
| | - Rianne Oostenbrink
- Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Full Member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| |
Collapse
|
12
|
Kawano-Dourado L, Kulkarni T, Ryerson CJ, Rivera-Ortega P, Baldi BG, Chaudhuri N, Funke-Chambour M, Hoffmann-Vold AM, Johannson KA, Khor YH, Montesi SB, Piccari L, Prosch H, Molina-Molina M, Sellares Torres J, Bauer-Ventura I, Rajan S, Jacob J, Richards D, Spencer LG, Wendelberger B, Jensen T, Quintana M, Kreuter M, Gordon AC, Martinez FJ, Kaminski N, Cornelius V, Lewis R, Adams W, Jenkins G. Adaptive multi-interventional trial platform to improve patient care for fibrotic interstitial lung diseases. Thorax 2024; 79:788-795. [PMID: 38448221 PMCID: PMC11287572 DOI: 10.1136/thorax-2023-221148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Fibrotic interstitial lung diseases (fILDs) are a heterogeneous group of lung diseases associated with significant morbidity and mortality. Despite a large increase in the number of clinical trials in the last 10 years, current regulatory-approved management approaches are limited to two therapies that prevent the progression of fibrosis. The drug development pipeline is long and there is an urgent need to accelerate this process. This manuscript introduces the concept and design of an innovative research approach to drug development in fILD: a global Randomised Embedded Multifactorial Adaptive Platform in fILD (REMAP-ILD). METHODS Description of the REMAP-ILD concept and design: the specific terminology, design characteristics (multifactorial, adaptive features, statistical approach), target population, interventions, outcomes, mission and values, and organisational structure. RESULTS The target population will be adult patients with fILD, and the primary outcome will be a disease progression model incorporating forced vital capacity and mortality over 12 months. Responsive adaptive randomisation, prespecified thresholds for success and futility will be used to assess the effectiveness and safety of interventions. REMAP-ILD embraces the core values of diversity, equity, and inclusion for patients and researchers, and prioritises an open-science approach to data sharing and dissemination of results. CONCLUSION By using an innovative and efficient adaptive multi-interventional trial platform design, we aim to accelerate and improve care for patients with fILD. Through worldwide collaboration, novel analytical methodology and pragmatic trial delivery, REMAP-ILD aims to overcome major limitations associated with conventional randomised controlled trial approaches to rapidly improve the care of people living with fILD.
Collapse
Affiliation(s)
- Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo, Brazil
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, Sao Paulo, Brazil
- MAGIC Evidence Ecosystem Foundation, Oslo, Norway
| | - Tejaswini Kulkarni
- The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Christopher J Ryerson
- Department of Medicine and Centre of Heart Lung Innovations, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pilar Rivera-Ortega
- Interstitial Lung Disease Unit, Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bruno Guedes Baldi
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, Sao Paulo, Brazil
| | - Nazia Chaudhuri
- Department of Health and Life Sciences, School of Medicine, University of Ulster, Londonderry, UK
| | - Manuela Funke-Chambour
- Department for Pulmonology, Allergology and clinical Immunology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yet Hong Khor
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lucilla Piccari
- Department of Pulmonology, Hospital del Mar, Barcelona, Spain
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - María Molina-Molina
- Servei de Pneumologia, Grup de Recerca Pneumològic, Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Jacobo Sellares Torres
- Grup de Treball de Malalties Pulmonars Intersticials. Pneumology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Iazsmin Bauer-Ventura
- Rheumatology Division, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Sujeet Rajan
- Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - Joseph Jacob
- Centre for Medical Imaging and Computing, University College London, London, UK
- Department of Respiratory Medicine, University College London, London, UK
| | - Duncan Richards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lisa G Spencer
- Liverpool Interstitial Lung Disease Service, Aintree Hospital, Liverpool University Hospitals NHS Foundation Trust Library and Knowledge Service, Liverpool, UK
| | | | | | | | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pulmology, Mainz University Medical Center and Department of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Roger Lewis
- Berry Consultants, Los Angeles, California, USA
| | - Wendy Adams
- Action for Pulmonary Fibrosis Foundation, London, UK
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
13
|
Wang G, Wang W, Mangal B, Liao Y, Schneider L, Li Y, Xiong C, McDade E, Kennedy R, Bateman R, Cutter G. Novel non-linear models for clinical trial analysis with longitudinal data: A tutorial using SAS for both frequentist and Bayesian methods. Stat Med 2024; 43:2987-3004. [PMID: 38727205 PMCID: PMC11187662 DOI: 10.1002/sim.10089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 04/14/2024] [Indexed: 06/19/2024]
Abstract
Longitudinal data from clinical trials are commonly analyzed using mixed models for repeated measures (MMRM) when the time variable is categorical or linear mixed-effects models (ie, random effects model) when the time variable is continuous. In these models, statistical inference is typically based on the absolute difference in the adjusted mean change (for categorical time) or the rate of change (for continuous time). Previously, we proposed a novel approach: modeling the percentage reduction in disease progression associated with the treatment relative to the placebo decline using proportional models. This concept of proportionality provides an innovative and flexible method for simultaneously modeling different cohorts, multivariate endpoints, and jointly modeling continuous and survival endpoints. Through simulated data, we demonstrate the implementation of these models using SAS procedures in both frequentist and Bayesian approaches. Additionally, we introduce a novel method for implementing MMRM models (ie, analysis of response profile) using the nlmixed procedure.
Collapse
Affiliation(s)
- Guoqiao Wang
- Department of Neurology, School of Medicine, Washington University, St. Louis, 63130, United States
- Division of Biostatistics, School of Medicine, Washington University, St. Louis, 63130, United States
| | - Whedy Wang
- Tenaya Therapeutics, South San Francisco, CA 94080, United States
| | - Brian Mangal
- Solara Consulting Corp., 2311 Swinburne Ave. North Vancouver, BC V7H 3A6, Canada
| | - Yijie Liao
- Neogene Therapeutics, Inc., Santa Monica, 90404, United States
| | - Lon Schneider
- Department of Psychiatry and The Behavioral Sciences, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, 90033, United States
| | - Yan Li
- Department of Neurology, School of Medicine, Washington University, St. Louis, 63130, United States
| | - Chengjie Xiong
- Division of Biostatistics, School of Medicine, Washington University, St. Louis, 63130, United States
| | - Eric McDade
- Department of Neurology, School of Medicine, Washington University, St. Louis, 63130, United States
| | - Richard Kennedy
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States
| | - Randall Bateman
- Department of Neurology, School of Medicine, Washington University, St. Louis, 63130, United States
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, 35233, United States
| |
Collapse
|
14
|
Weemering DN, Beelen A, Kliest T, van Leeuwen LAG, van den Berg LH, van Eijk RPA. Trial Participation in Neurodegenerative Diseases: Barriers and Facilitators: A Systematic Review and Meta-Analysis. Neurology 2024; 103:e209503. [PMID: 38830181 PMCID: PMC11244742 DOI: 10.1212/wnl.0000000000209503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Clinical trials in neurodegenerative diseases often encounter selective enrollment and under-representation of certain patient populations. This delays drug development and substantially limits the generalizability of clinical trial results. To inform recruitment and retention strategies, and to better understand the generalizability of clinical trial populations, we investigated which factors drive participation. METHODS We reviewed the literature systematically to identify barriers to and facilitators of trial participation in 4 major neurodegenerative disease areas: Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease. Inclusion criteria included original research articles published in a peer-reviewed journal and evaluating barriers to and/or facilitators of participation in a clinical trial with a drug therapy (either symptomatic or disease-modifying). The Critical Appraisal Skills Program checklist for qualitative studies was used to assess and ensure the quality of the studies. Qualitative thematic analyses were employed to identify key enablers of trial participation. Subsequently, we pooled quantitative data of each enabler using meta-analytical models. RESULTS Overall, we identified 36 studies, enrolling a cumulative sample size of 5,269 patients, caregivers, and health care professionals. In total, the thematic analysis resulted in 31 unique enablers of trial participation; the key factors were patient-related (own health benefit and altruism), study-related (treatment and study burden), and health care professional-related (information availability and patient-physician relationship). When meta-analyzed across studies, responders reported that the reason to participate was mainly driven by (1) the relationship with clinical staff (70% of the respondents; 95% CI 53%-83%), (2) the availability of study information (67%, 95% CI 38%-87%), and (3) the use or absence of a placebo or sham-control arm (53% 95% CI 32%-72%). There was, however, significant heterogeneity between studies (all p < 0.001). DISCUSSION We have provided a comprehensive list of reasons why patients participate in clinical trials for neurodegenerative diseases. These results may help to increase participation rates, better inform patients, and facilitate patient-centric approaches, thereby potentially reducing selection mechanisms and improving generalizability of trial results.
Collapse
Affiliation(s)
- Daphne N Weemering
- From the Department of Neurology (D.N.W., T.K., L.A.G.v.L., L.H.v.d.B., R.P.A.v.E.), Department of Rehabilitation, Physical Therapy Science & Sports (A.B.), and Center of Excellence for Rehabilitation Medicine (A.B.), UMC Utrecht Brain Center, University Medical Center Utrecht; De Hoogstraat Rehabilitation (A.B.), Utrecht; and Biostatistics & Research Support (R.P.A.v.E.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Anita Beelen
- From the Department of Neurology (D.N.W., T.K., L.A.G.v.L., L.H.v.d.B., R.P.A.v.E.), Department of Rehabilitation, Physical Therapy Science & Sports (A.B.), and Center of Excellence for Rehabilitation Medicine (A.B.), UMC Utrecht Brain Center, University Medical Center Utrecht; De Hoogstraat Rehabilitation (A.B.), Utrecht; and Biostatistics & Research Support (R.P.A.v.E.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Tessa Kliest
- From the Department of Neurology (D.N.W., T.K., L.A.G.v.L., L.H.v.d.B., R.P.A.v.E.), Department of Rehabilitation, Physical Therapy Science & Sports (A.B.), and Center of Excellence for Rehabilitation Medicine (A.B.), UMC Utrecht Brain Center, University Medical Center Utrecht; De Hoogstraat Rehabilitation (A.B.), Utrecht; and Biostatistics & Research Support (R.P.A.v.E.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Lucie A G van Leeuwen
- From the Department of Neurology (D.N.W., T.K., L.A.G.v.L., L.H.v.d.B., R.P.A.v.E.), Department of Rehabilitation, Physical Therapy Science & Sports (A.B.), and Center of Excellence for Rehabilitation Medicine (A.B.), UMC Utrecht Brain Center, University Medical Center Utrecht; De Hoogstraat Rehabilitation (A.B.), Utrecht; and Biostatistics & Research Support (R.P.A.v.E.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- From the Department of Neurology (D.N.W., T.K., L.A.G.v.L., L.H.v.d.B., R.P.A.v.E.), Department of Rehabilitation, Physical Therapy Science & Sports (A.B.), and Center of Excellence for Rehabilitation Medicine (A.B.), UMC Utrecht Brain Center, University Medical Center Utrecht; De Hoogstraat Rehabilitation (A.B.), Utrecht; and Biostatistics & Research Support (R.P.A.v.E.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Ruben P A van Eijk
- From the Department of Neurology (D.N.W., T.K., L.A.G.v.L., L.H.v.d.B., R.P.A.v.E.), Department of Rehabilitation, Physical Therapy Science & Sports (A.B.), and Center of Excellence for Rehabilitation Medicine (A.B.), UMC Utrecht Brain Center, University Medical Center Utrecht; De Hoogstraat Rehabilitation (A.B.), Utrecht; and Biostatistics & Research Support (R.P.A.v.E.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
15
|
Sosa AL, Brucki SMD, Crivelli L, Lopera FJ, Acosta DM, Acosta‐Uribe J, Aguilar D, Aguilar‐Navarro SG, Allegri RF, Bertolucci PHF, Calandri IL, Carrillo MC, Mendez PAC, Cornejo‐Olivas M, Custodio N, Damian A, de Souza LC, Duran‐Aniotz C, García AM, García‐Peña C, Gonzales MM, Grinberg LT, Ibanez AM, Illanes‐Manrique MZ, Jack CR, Leon‐Salas JM, Llibre‐Guerra JJ, Luna‐Muñoz J, Matallana D, Miller BL, Naci L, Parra MA, Pericak‐Vance M, Piña‐Escudero SD, França Resende EDP, Ringman JM, Sevlever G, Slachevsky A, Suemoto CK, Valcour V, Villegas‐Lanau A, Yassuda MS, Mahinrad S, Sexton C. Advancements in dementia research, diagnostics, and care in Latin America: Highlights from the 2023 Alzheimer's Association International conference satellite symposium in Mexico City. Alzheimers Dement 2024; 20:5009-5026. [PMID: 38801124 PMCID: PMC11247679 DOI: 10.1002/alz.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION While Latin America (LatAm) is facing an increasing burden of dementia due to the rapid aging of the population, it remains underrepresented in dementia research, diagnostics, and care. METHODS In 2023, the Alzheimer's Association hosted its eighth satellite symposium in Mexico, highlighting emerging dementia research, priorities, and challenges within LatAm. RESULTS Significant initiatives in the region, including intracountry support, showcased their efforts in fostering national and international collaborations; genetic studies unveiled the unique genetic admixture in LatAm; researchers conducting emerging clinical trials discussed ongoing culturally specific interventions; and the urgent need to harmonize practices and studies, improve diagnosis and care, and use affordable biomarkers in the region was highlighted. DISCUSSION The myriad of topics discussed at the 2023 AAIC satellite symposium highlighted the growing research efforts in LatAm, providing valuable insights into dementia biology, genetics, epidemiology, treatment, and care.
Collapse
|
16
|
McKay NS, Millar PR, Nicosia J, Aschenbrenner AJ, Gordon BA, Benzinger TLS, Cruchaga CC, Schindler SE, Morris JC, Hassenstab J. Pick a PACC: Comparing domain-specific and general cognitive composites in Alzheimer disease research. Neuropsychology 2024; 38:443-464. [PMID: 38602816 PMCID: PMC11176005 DOI: 10.1037/neu0000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE We aimed to illustrate how complex cognitive data can be used to create domain-specific and general cognitive composites relevant to Alzheimer disease research. METHOD Using equipercentile equating, we combined data from the Charles F. and Joanne Knight Alzheimer Disease Research Center that spanned multiple iterations of the Uniform Data Set. Exploratory factor analyses revealed four domain-specific composites representing episodic memory, semantic memory, working memory, and attention/processing speed. The previously defined preclinical Alzheimer disease cognitive composite (PACC) and a novel alternative, the Knight-PACC, were also computed alongside a global composite comprising all available tests. These three composites allowed us to compare the usefulness of domain and general composites in the context of predicting common Alzheimer disease biomarkers. RESULTS General composites slightly outperformed domain-specific metrics in predicting imaging-derived amyloid, tau, and neurodegeneration burden. Power analyses revealed that the global, Knight-PACC, and attention and processing speed composites would require the smallest sample sizes to detect cognitive change in a clinical trial, while the Alzheimer Disease Cooperative Study-PACC required two to three times as many participants. CONCLUSIONS Analyses of cognition with the Knight-PACC and our domain-specific composites offer researchers flexibility by providing validated outcome assessments that can equate across test versions to answer a wide range of questions regarding cognitive decline in normal aging and neurodegenerative disease. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
|
17
|
Li Y, Nelson R, Izem R, Broglio K, Mundayat R, Gamalo M, Wen Y, Pan H, Sun H, Ye J. Unlocking the Potential: A Systematic Review of Master Protocol in Pediatrics. Ther Innov Regul Sci 2024; 58:634-644. [PMID: 38653950 PMCID: PMC11169036 DOI: 10.1007/s43441-024-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
The use of master protocols allows for innovative approaches to clinical trial designs, potentially enabling new approaches to operations and analytics and creating value for patients and drug developers. Pediatric research has been conducted for many decades, but the use of novel designs such as master protocols in pediatric research is not well understood. This study aims to provide a systematic review on the utilization of master protocols in pediatric drug development. A search was performed in September 2022 using two data sources (PubMed and ClinicalTrials.gov) and included studies conducted in the past10 years. General study information was extracted such as study type, study status, therapeutic area, and clinical trial phase. Study characteristics that are specific to pediatric studies (such as age of the participants and pediatric drug dosing) and important study design elements (such as number of test drug arms and whether randomization and/or concurrent control was used) were also collected. Our results suggest that master protocol studies are being used in pediatrics, with platform and basket trials more common than umbrella trials. Most of this experience is in oncology and early phase studies. There is a rise in the use starting in 2020, largely in oncology and COVID-19 trials. However, adoption of master protocols in pediatric clinical research is still on a small scale and could be substantially expanded. Work is required to further understand the barriers in implementing pediatric master protocols, from setting up infrastructure to interpreting study findings.
Collapse
Affiliation(s)
- Yimei Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 3501 Civic Center Blvd, Colket Translational Research Building Room 4032, 19034, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | - Rima Izem
- Statistical Methodology, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | - Yansong Wen
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haitao Pan
- Department of Biostatistics, St. Jude Children's Hospital, Memphis, TN, USA
| | - Hengrui Sun
- Food & Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
18
|
Lozupone M, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Stallone R, Altamura M, Bellomo A, Daniele A, Solfrizzi V, Panza F. Lessons learned from the failure of solanezumab as a prospective treatment strategy for Alzheimer's disease. Expert Opin Drug Discov 2024; 19:639-647. [PMID: 38685682 DOI: 10.1080/17460441.2024.2348142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION In the last decade, the efforts conducted for discovering Alzheimer's Disease (AD) treatments targeting the best-known pathogenic factors [amyloid-β (Aβ), tau protein, and neuroinflammation] were mostly unsuccessful. Given that a systemic failure of Aβ clearance was supposed to primarily contribute to AD development and progression, disease-modifying therapies with anti-Aβ monoclonal antibodies (e.g. solanezumab, bapineuzumab, gantenerumab, aducanumab, lecanemab and donanemab) are ongoing in randomized clinical trials (RCTs) with contrasting results. AREAS COVERED The present Drug Discovery Case History analyzes the failures of RCTs of solanezumab on AD. Furthermore, the authors review the pharmacokinetics, pharmacodynamics, and tolerability effect of solanezumab from preclinical studies with its analogous m266 in mice. Finally, they describe the RCTs with cognitive, cerebrospinal fluid and neuroimaging findings in mild-to-moderate AD (EXPEDITION studies) and in secondary prevention studies (A4 and DIAN-TU). EXPERT OPINION Solanezumab was one of the first anti-Aβ monoclonal antibodies to be tested in preclinical and clinical AD showing to reduce brain Aβ level by acting on soluble monomeric form of Aβ peptide without significant results on deposits. Unfortunately, this compound showed to accelerate cognitive decline in both asymptomatic and symptomatic trial participants, and this failure of solanezumab further questioned the Aβ cascade hypothesis of AD.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Vittorio Dibello
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| | - Fabio Castellana
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Roberta Zupo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | | | - Ilaria Bortone
- Local Healthcare Authority of Bari, ASL Bari, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Homanics GE, Park JE, Bailey L, Schaeffer DJ, Schaeffer L, He J, Li S, Zhang T, Haber A, Spruce C, Greenwood A, Murai T, Schultz L, Mongeau L, Ha S, Oluoch J, Stein B, Choi SH, Huhe H, Thathiah A, Strick PL, Carter GW, Silva AC, Sukoff Rizzo SJ. Early molecular events of autosomal-dominant Alzheimer's disease in marmosets with PSEN1 mutations. Alzheimers Dement 2024; 20:3455-3471. [PMID: 38574388 PMCID: PMC11095452 DOI: 10.1002/alz.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically engineered marmosets that carry knock-in (KI) point mutations in the presenilin 1 (PSEN1) gene that can be studied from birth throughout lifespan. METHODS CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1. Founders and their germline offspring are comprehensively studied longitudinally using non-invasive measures including behavior, biomarkers, neuroimaging, and multiomics signatures. RESULTS Prior to adulthood, increases in plasma amyloid beta were observed in PSEN1 mutation carriers relative to non-carriers. Analysis of brain revealed alterations in several enzyme-substrate interactions within the gamma secretase complex prior to adulthood. DISCUSSION Marmosets carrying KI point mutations in PSEN1 provide the opportunity to study the earliest primate-specific mechanisms that contribute to the molecular and cellular root causes of AD onset and progression. HIGHLIGHTS We report the successful generation of genetically engineered marmosets harboring knock-in point mutations in the PSEN1 gene. PSEN1 marmosets and their germline offspring recapitulate the early emergence of AD-related biomarkers. Studies as early in life as possible in PSEN1 marmosets will enable the identification of primate-specific mechanisms that drive disease progression.
Collapse
Affiliation(s)
- Gregg E. Homanics
- Department of Anesthesiology & Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jung Eun Park
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Bailey
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - David J. Schaeffer
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Schaeffer
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jie He
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Shuoran Li
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingting Zhang
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | | | | | - Takeshi Murai
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Laura Schultz
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Mongeau
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Seung‐Kwon Ha
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Oluoch
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brianne Stein
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sang Ho Choi
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hasi Huhe
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Amantha Thathiah
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter L. Strick
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Afonso C. Silva
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Stacey J. Sukoff Rizzo
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
20
|
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, Karikari TK, Apostolova L, Murray ME, Verberk I, Vogel JW, La Joie R, Gauthier S, Teunissen C, Rabinovici GD, Zetterberg H, Bateman RJ, Scheltens P, Blennow K, Sperling R, Hansson O, Jack CR, Rosa-Neto P. Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol 2024; 20:232-244. [PMID: 38429551 DOI: 10.1038/s41582-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Liana Apostolova
- Department of Neurology, University of Indiana School of Medicine, Indianapolis, IN, USA
| | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Sexton CE, Bitan G, Bowles KR, Brys M, Buée L, Maina MB, Clelland CD, Cohen AD, Crary JF, Dage JL, Diaz K, Frost B, Gan L, Goate AM, Golbe LI, Hansson O, Karch CM, Kolb HC, La Joie R, Lee SE, Matallana D, Miller BL, Onyike CU, Quiroz YT, Rexach JE, Rohrer JD, Rommel A, Sadri‐Vakili G, Schindler SE, Schneider JA, Sperling RA, Teunissen CE, Weninger SC, Worley SL, Zheng H, Carrillo MC. Novel avenues of tau research. Alzheimers Dement 2024; 20:2240-2261. [PMID: 38170841 PMCID: PMC10984447 DOI: 10.1002/alz.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.
Collapse
Affiliation(s)
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of MedicineBrain Research InstituteMolecular Biology InstituteUniversity of California Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Kathryn R. Bowles
- UK Dementia Research Institute at the University of EdinburghCentre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Luc Buée
- Univ LilleInsermCHU‐LilleLille Neuroscience and CognitionLabEx DISTALZPlace de VerdunLilleFrance
| | - Mahmoud Bukar Maina
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexFalmerUK
- Biomedical Science Research and Training CentreYobe State UniversityDamaturuNigeria
| | - Claire D. Clelland
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ann D. Cohen
- University of PittsburghSchool of MedicineDepartment of Psychiatry and Alzheimer's disease Research CenterPittsburghPennsylvaniaUSA
| | - John F. Crary
- Departments of PathologyNeuroscience, and Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeffrey L. Dage
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Bess Frost
- Sam & Ann Barshop Institute for Longevity & Aging Studies Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders Department of Cell Systems and Anatomy University of Texas Health San AntonioSan AntonioTexasUSA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research InstituteFeil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Alison M Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lawrence I. Golbe
- CurePSPIncNew YorkNew YorkUSA
- Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityLundSweden
| | - Celeste M. Karch
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Suzee E. Lee
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Diana Matallana
- Aging InstituteNeuroscience ProgramPsychiatry DepartmentSchool of MedicinePontificia Universidad JaverianaBogotáColombia
- Mental Health DepartmentHospital Universitario Fundaciòn Santa FeBogotaColombia
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryJohns Hopkins University School of MedicineBaltimoreBaltimoreMarylandUSA
| | - Yakeel T. Quiroz
- Departments of Psychiatry and NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jessica E. Rexach
- Program in NeurogeneticsDepartment of NeurologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreUniversity College London Institute of Neurology, Queen SquareLondonUK
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey &AMG Center for ALS at Mass GeneralMassachusetts General HospitalBostonMassachusettsUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Reisa A. Sperling
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryClinical Chemistry departmentAmsterdam NeuroscienceProgram NeurodegenerationAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | | | - Hui Zheng
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
22
|
Aschenbrenner AJ, Hassenstab JJ, Schindler SE, Janelidze S, Hansson O, Morris JC, Grober E. Free Recall Outperforms Story Recall in Associations with Plasma Biomarkers in Preclinical Alzheimer Disease. J Prev Alzheimers Dis 2024; 11:1696-1702. [PMID: 39559880 PMCID: PMC11573877 DOI: 10.14283/jpad.2024.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND A decline in episodic memory is one of the earliest cognitive characteristics of Alzheimer disease and memory tests are heavily featured in cognitive composite endpoints that are used to demonstrate treatment efficacy. Assessments of episodic memory can take many forms including free recall, associate learning, and paragraph or story recall. Plasma biomarkers of Alzheimer disease are now widely available and will likely form the backbone of cohort enrichment strategies for future clinical trials. Thus, it is critical to evaluate which episodic memory measures are most sensitive to plasma markers of Alzheimer disease pathology. OBJECTIVES To compare the associations of common episodic memory tests with plasma biomarkers of Alzheimer disease. DESIGN Longitudinal cohort study. SETTING Academic medical center in the midwestern United States. PARTICIPANTS A total of 161 cognitively normal older adults with at least one plasma biomarker assessment and two or more annual clinical and cognitive assessments which included up to three different tests of episodic memory. MEASUREMENTS Episodic memory performance using free recall, paired associates recall or paragraph recall. Plasma Aβ42, Aβ40, ptau217, and neurofilament light chain were measured. RESULTS Free recall on the Free and Cued Selective Reminding Test with Immediate Recall (FCSRT + IR) was substantially more sensitive to longitudinal cognitive change associated with abnormal baseline plasma Aβ42/Aβ40 and ptau217 compared to other measures of episodic memory. A cognitive composite that included only free recall showed larger decline associated with baseline Aβ42/Aβ40 when compared to those that included paragraph recall. Differences in decline across composites were minimal when considering baseline ptau217 or NfL. CONCLUSION Episodic memory is a critical domain to assess in preclinical Alzheimer disease. Methods of assessing memory are not equal and longitudinal change in free recall substantially outperformed both paired associates and paragraph recall. Clinical trial results will depend critically on the episodic memory test(s) that are chosen for a composite endpoint and free recall from the FCSRT + IR is an optimal memory measure to include rather than paired associates or paragraph recall.
Collapse
Affiliation(s)
- A J Aschenbrenner
- Andrew Aschenbrenner, PhD, 4488 Forest Park Ave, STE 301, St. Louis, MO, 63108, , 314-273-1041
| | | | | | | | | | | | | |
Collapse
|
23
|
Scott MR, Edwards NC, Properzi MJ, Jacobs HIL, Price JC, Lois C, Farrell ME, Hanseeuw BJ, Thibault EG, Rentz DM, Johnson KA, Sperling RA, Schultz AP, Buckley RF. Contribution of extracerebral tracer retention and partial volume effects to sex differences in Flortaucipir-PET signal. J Cereb Blood Flow Metab 2024; 44:131-141. [PMID: 37728659 PMCID: PMC10905641 DOI: 10.1177/0271678x231196978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 09/21/2023]
Abstract
Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.
Collapse
Affiliation(s)
- Matthew R Scott
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Natalie C Edwards
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Heidi IL Jacobs
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Julie C Price
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristina Lois
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michelle E Farrell
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bernard J Hanseeuw
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Cliniques Universitaires SaintLuc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Emma G Thibault
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Keith A Johnson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
- Melbourne School of Psychological Science, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Noorda K, Noorda K, Sabbagh MN, Bertelson J, Singer J, Decourt B. Amyloid-Directed Antibodies: Past, Present, and Future. J Alzheimers Dis 2024; 101:S3-S22. [PMID: 39422953 DOI: 10.3233/jad-240189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disorder in patient demographics over 65 years old causing debilitating cognitive impairment. Most commonly, AD is diagnosed clinically as "probable AD", and definitive diagnosis is confirmed through postmortem brain autopsies to detect extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated tau tangles. The exact mechanism causing AD is still unknown, but treatments for AD have been actively investigated. Currently, immunotherapies have shown substantial promise in reducing the pathologic and clinical signs of AD. Objective This review aims to evaluate passive immunotherapies deemed to have promise for further development and use in the treatment of AD. Methods Immunotherapies were selected via a narrative review of medications that have potential clinical effectiveness with a status of FDA accepted, FDA fast-track, FDA status pending, or emerging therapies poised to pursue FDA approval. Results This review has yielded two anti-Aβ monoclonal antibodies (mAb) that are currently fully FDA approved, one mAb granted FDA fast-track status, two therapies on hold, three discontinued medications, and three promising emerging therapies. Conclusions We conclude that, in the near future, passive immunotherapies will be the preferred and evidence-based method of treatment for AD with the presence of brain Aβ deposits for both symptom management and potential slowing of disease progression. Specifically, lecanemab and donanemab will require further clinical studies to optimize patient selection based on safety profiles. Despite some key limitations, these two drugs are paving the way for disease-modifying treatments in patients displaying early signs of amyloid pathology.
Collapse
Affiliation(s)
- Keith Noorda
- School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Kevin Noorda
- School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - John Bertelson
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; and The University of Texas Health at Austin, Austin, TX, USA
| | - Jonathan Singer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Psychological Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Roseman University of Health Sciences, Las Vegas, NV, USA
| |
Collapse
|
25
|
Rahmani F, Brier MR, Gordon BA, McKay N, Flores S, Keefe S, Hornbeck R, Ances B, Joseph‐Mathurin N, Xiong C, Wang G, Raji CA, Libre‐Guerra JJ, Perrin RJ, McDade E, Daniels A, Karch C, Day GS, Brickman AM, Fulham M, Jack CR, la La Fougère C, Reischl G, Schofield PR, Oh H, Levin J, Vöglein J, Cash DM, Yakushev I, Ikeuchi T, Klunk WE, Morris JC, Bateman RJ, Benzinger TLS. T1 and FLAIR signal intensities are related to tau pathology in dominantly inherited Alzheimer disease. Hum Brain Mapp 2023; 44:6375-6387. [PMID: 37867465 PMCID: PMC10681640 DOI: 10.1002/hbm.26514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (μ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-μ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-μ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.
Collapse
Affiliation(s)
| | | | - Brian A. Gordon
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Nicole McKay
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Shaney Flores
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Sarah Keefe
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Russ Hornbeck
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Beau Ances
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | - Chengjie Xiong
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Guoqiao Wang
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Cyrus A. Raji
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | | | - Eric McDade
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Alisha Daniels
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Celeste Karch
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Gregory S. Day
- Mayo Clinic, Department of NeurologyJacksonvilleFloridaUSA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's Disease & the Aging Brain, and Department of Neurology College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | | | | | - Christian la La Fougère
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE) TuebingenTübingenGermany
- Department of Preclinical Imaging and RadiopharmacyEberhard Karls University TübingenTübingenGermany
| | - Gerald Reischl
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE) TuebingenTübingenGermany
- Department of Preclinical Imaging and RadiopharmacyEberhard Karls University TübingenTübingenGermany
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Hwamee Oh
- Brown UniversityProvidenceRhode IslandUSA
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE), site MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Jonathan Vöglein
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE), site MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - David M. Cash
- UK Dementia Research Institute at University College LondonLondonUK
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Igor Yakushev
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE), site MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | | | | | - John C. Morris
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | | | | |
Collapse
|
26
|
Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, Disney MD, Gendron TF, Wong PC, Turner MR, Boxer A, Babu S, Benatar M, Kurnellas M, Rohrer JD, Donnelly CJ, Bustos LM, Van Keuren-Jensen K, Dacks PA, Sabbagh MN. Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit. Neurol Ther 2023; 12:1821-1843. [PMID: 37847372 PMCID: PMC10630271 DOI: 10.1007/s40120-023-00548-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
A summit held March 2023 in Scottsdale, Arizona (USA) focused on the intronic hexanucleotide expansion in the C9ORF72 gene and its relevance in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS; C9ORF72-FTD/ALS). The goal of this summit was to connect basic scientists, clinical researchers, drug developers, and individuals affected by C9ORF72-FTD/ALS to evaluate how collaborative efforts across the FTD-ALS disease spectrum might break down existing disease silos. Presentations and discussions covered recent discoveries in C9ORF72-FTD/ALS disease mechanisms, availability of disease biomarkers and recent advances in therapeutic development, and clinical trial design for prevention and treatment for individuals affected by C9ORF72-FTD/ALS and asymptomatic pathological expansion carriers. The C9ORF72-associated hexanucleotide repeat expansion is an important locus for both ALS and FTD. C9ORF72-FTD/ALS may be characterized by loss of function of the C9ORF72 protein and toxic gain of functions caused by both dipeptide repeat (DPR) proteins and hexanucleotide repeat RNA. C9ORF72-FTD/ALS therapeutic strategies discussed at the summit included the use of antisense oligonucleotides, adeno-associated virus (AAV)-mediated gene silencing and gene delivery, and engineered small molecules targeting RNA structures associated with the C9ORF72 expansion. Neurofilament light chain, DPR proteins, and transactive response (TAR) DNA-binding protein 43 (TDP-43)-associated molecular changes were presented as biomarker candidates. Similarly, brain imaging modalities (i.e., magnetic resonance imaging [MRI] and positron emission tomography [PET]) measuring structural, functional, and metabolic changes were discussed as important tools to monitor individuals affected with C9ORF72-FTD/ALS, at both pre-symptomatic and symptomatic disease stages. Finally, summit attendees evaluated current clinical trial designs available for FTD or ALS patients and concluded that therapeutics relevant to FTD/ALS patients, such as those specifically targeting C9ORF72, may need to be tested with composite endpoints covering clinical symptoms of both FTD and ALS. The latter will require novel clinical trial designs to be inclusive of all patient subgroups spanning the FTD/ALS spectrum.
Collapse
Affiliation(s)
- Rita Sattler
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ludo Van Den Bosch
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology and KU Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Sami J Barmada
- Department of Neurology, Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF-Scripps Institute for Biomedical Research and Innovation, The Scripps Research Institute, Jupiter, FL, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip C Wong
- Departments of Pathology and Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | - Suma Babu
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33129, USA
| | | | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher J Donnelly
- LiveLikeLou Center for ALS Research, Brain Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Bustos
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA
| | | | - Penny A Dacks
- The Association for Frontotemporal Degeneration and FTD Disorders Registry, King of Prussia, PA, USA
| | - Marwan N Sabbagh
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| |
Collapse
|
27
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Bateman RJ, Perrin RJ, Benzinger T, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564633. [PMID: 37961586 PMCID: PMC10634945 DOI: 10.1101/2023.10.29.564633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aβ PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Gregory S Day
- Department of Neurology, Mayo Clinic College of Medicine, Jacksonville, FL, USA, 32224
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany, 81675
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, 72076
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany, 72076
| | | | - Randell J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Tammie Benzinger
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| |
Collapse
|
28
|
Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials. Cell 2023; 186:4757-4772. [PMID: 37848035 PMCID: PMC10625460 DOI: 10.1016/j.cell.2023.09.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Alzheimer's disease (AD) research has entered a new era with the recent positive phase 3 clinical trials of the anti-Aβ antibodies lecanemab and donanemab. Why did it take 30 years to achieve these successes? Developing potent therapies for reducing fibrillar amyloid was key, as was selection of patients at relatively early stages of disease. Biomarkers of the target pathologies, including amyloid and tau PET, and insights from past trials were also critical to the recent successes. Moving forward, the challenge will be to develop more efficacious therapies with greater efficiency. Novel trial designs, including combination therapies and umbrella and basket protocols, will accelerate clinical development. Better diversity and inclusivity of trial participants are needed, and blood-based biomarkers may help to improve access for medically underserved groups. Incentivizing innovation in both academia and industry through public-private partnerships, collaborative mechanisms, and the creation of new career paths will be critical to build momentum in these exciting times.
Collapse
Affiliation(s)
- Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, MassGeneral Brigham, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Llibre-Guerra JJ, Iaccarino L, Coble D, Edwards L, Li Y, McDade E, Strom A, Gordon B, Mundada N, Schindler SE, Tsoy E, Ma Y, Lu R, Fagan AM, Benzinger TLS, Soleimani-Meigooni D, Aschenbrenner AJ, Miller Z, Wang G, Kramer JH, Hassenstab J, Rosen HJ, Morris JC, Miller BL, Xiong C, Perrin RJ, Allegri R, Chrem P, Surace E, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Fox NC, Day G, Gorno-Tempini ML, Boxer AL, La Joie R, Rabinovici GD, Bateman R. Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2023; 5:fcad280. [PMID: 37942088 PMCID: PMC10629466 DOI: 10.1093/braincomms/fcad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.
Collapse
Affiliation(s)
| | - Leonardo Iaccarino
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Coble
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Amelia Strom
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Elena Tsoy
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinjiao Ma
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Ruijin Lu
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Tammie L S Benzinger
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - David Soleimani-Meigooni
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Zachary Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Howard J Rosen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Pathology and Immunology, Washington University in St Louis, St. Louis, MO 63108, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Ezequiel Surace
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| |
Collapse
|
30
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
31
|
Huang LK, Kuan YC, Lin HW, Hu CJ. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. J Biomed Sci 2023; 30:83. [PMID: 37784171 PMCID: PMC10544555 DOI: 10.1186/s12929-023-00976-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, presenting a significant unmet medical need worldwide. The pathogenesis of AD involves various pathophysiological events, including the accumulation of amyloid and tau, neuro-inflammation, and neuronal injury. Clinical trials focusing on new drugs for AD were documented in 2020, but subsequent developments have emerged since then. Notably, the US-FDA has approved Aducanumab and Lecanemab, both antibodies targeting amyloid, marking the end of a nearly two-decade period without new AD drugs. In this comprehensive report, we review all trials listed in clinicaltrials.gov, elucidating their underlying mechanisms and study designs. Ongoing clinical trials are investigating numerous promising new drugs for AD. The main trends in these trials involve pathophysiology-based, disease-modifying therapies and the recruitment of participants in earlier stages of the disease. These trends underscore the significance of conducting fundamental research on pathophysiology, prevention, and intervention prior to the occurrence of brain damage caused by AD.
Collapse
Affiliation(s)
- Li-Kai Huang
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhong Zheng Road, Zhonghe District, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ho-Wei Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhong Zheng Road, Zhonghe District, New Taipei City, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan.
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Welsh‐Bohmer KA, Kerchner GA, Dhadda S, Garcia M, Miller DS, Natanegara F, Raket LL, Robieson W, Siemers ER, Carrillo MC, Weber CJ. Decision making in clinical trials: Interim analyses, innovative design, and biomarkers. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12421. [PMID: 37867532 PMCID: PMC10585126 DOI: 10.1002/trc2.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
The efficient and accurate execution of clinical trials testing novel treatments for Alzheimer's disease (AD) is a critical component of the field's collective efforts to develop effective disease-modifying treatments for AD. The lengthy and heterogeneous nature of clinical progression in AD contributes to the challenges inherent in demonstrating a clinically meaningful benefit of any potential new AD therapy. The failure of many large and expensive clinical trials to date has prompted a focus on optimizing all aspects of decision making, to not only expedite the development of new treatments, but also maximize the value of the information that each clinical trial yields, so that all future clinical trials (including those that are negative) will contribute toward advancing the field. To address this important topic the Alzheimer's Association Research Roundtable convened December 1-2, 2020. The goals focused around identifying new directions and actionable steps to enhance clinical trial decision making in planned future studies.
Collapse
Affiliation(s)
| | | | | | - Miguel Garcia
- Boehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | | | - Fanni Natanegara
- Eli Lilly and Company Lilly Corporate CenterIndianapolisIndianaUSA
| | | | | | | | | | | |
Collapse
|
33
|
Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 2023; 29:2187-2199. [PMID: 37667136 DOI: 10.1038/s41591-023-02505-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries-and the research directions that they open-have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.
Collapse
Affiliation(s)
- Wade K Self
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Quintana M, Saville BR, Vestrucci M, Detry MA, Chibnik L, Shefner J, Berry JD, Chase M, Andrews J, Sherman AV, Yu H, Drake K, Cudkowicz M, Paganoni S, Macklin EA. Design and Statistical Innovations in a Platform Trial for Amyotrophic Lateral Sclerosis. Ann Neurol 2023; 94:547-560. [PMID: 37245090 DOI: 10.1002/ana.26714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Platform trials allow efficient evaluation of multiple interventions for a specific disease. The HEALEY ALS Platform Trial is testing multiple investigational products in parallel and sequentially in persons with amyotrophic lateral sclerosis (ALS) with the goal of rapidly identifying novel treatments to slow disease progression. Platform trials have considerable operational and statistical efficiencies compared with typical randomized controlled trials due to their use of shared infrastructure and shared control data. We describe the statistical approaches required to achieve the objectives of a platform trial in the context of ALS. This includes following regulatory guidance for the disease area of interest and accounting for potential differences in outcomes of participants within the shared control (potentially due to differences in time of randomization, mode of administration, and eligibility criteria). Within the HEALEY ALS Platform Trial, the complex statistical objectives are met using a Bayesian shared parameter analysis of function and survival. This analysis serves to provide a common integrated estimate of treatment benefit, overall slowing in disease progression, as measured by function and survival while accounting for potential differences in the shared control group using Bayesian hierarchical modeling. Clinical trial simulation is used to provide a better understanding of this novel analysis method and complex design. ANN NEUROL 2023;94:547-560.
Collapse
Affiliation(s)
| | - Benjamin R Saville
- Berry Consultants, Austin, Texas, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Lori Chibnik
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianne Chase
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jinsy Andrews
- Neurological Institute of New York, Columbia University, New York, New York, USA
| | - Alexander V Sherman
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Yu
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin Drake
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Eric A Macklin
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
35
|
Felsky D, Cannitelli A, Pipitone J. Whole Person Modeling: a transdisciplinary approach to mental health research. DISCOVER MENTAL HEALTH 2023; 3:16. [PMID: 37638348 PMCID: PMC10449734 DOI: 10.1007/s44192-023-00041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
The growing global burden of mental illness has prompted calls for innovative research strategies. Theoretical models of mental health include complex contributions of biological, psychosocial, experiential, and other environmental influences. Accordingly, neuropsychiatric research has self-organized into largely isolated disciplines working to decode each individual contribution. However, research directly modeling objective biological measurements in combination with cognitive, psychological, demographic, or other environmental measurements is only now beginning to proliferate. This review aims to (1) to describe the landscape of modern mental health research and current movement towards integrative study, (2) to provide a concrete framework for quantitative integrative research, which we call Whole Person Modeling, (3) to explore existing and emerging techniques and methods used in Whole Person Modeling, and (4) to discuss our observations about the scarcity, potential value, and untested aspects of highly transdisciplinary research in general. Whole Person Modeling studies have the potential to provide a better understanding of multilevel phenomena, deliver more accurate diagnostic and prognostic tests to aid in clinical decision making, and test long standing theoretical models of mental illness. Some current barriers to progress include challenges with interdisciplinary communication and collaboration, systemic cultural barriers to transdisciplinary career paths, technical challenges in model specification, bias, and data harmonization, and gaps in transdisciplinary educational programs. We hope to ease anxiety in the field surrounding the often mysterious and intimidating world of transdisciplinary, data-driven mental health research and provide a useful orientation for students or highly specialized researchers who are new to this area.
Collapse
Affiliation(s)
- Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON Canada
- Faculty of Medicine, McMaster University, Hamilton, ON Canada
| | - Alyssa Cannitelli
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
- Faculty of Medicine, McMaster University, Hamilton, ON Canada
| | - Jon Pipitone
- Department of Psychiatry, Queen’s University, Kingston, ON Canada
| |
Collapse
|
36
|
Schultz SA, Shirzadi Z, Schultz AP, Liu L, Fitzpatrick CD, McDade E, Barthelemy NR, Renton A, Esposito B, Joseph‐Mathurin N, Cruchaga C, Chen CD, Goate A, Allegri RF, Benzinger TLS, Berman S, Chui HC, Fagan AM, Farlow MR, Fox NC, Gordon BA, Day GS, Graff‐Radford NR, Hassenstab JJ, Hanseeuw BJ, Hofmann A, Jack CR, Jucker M, Karch CM, Koeppe RA, Lee J, Levey AI, Levin J, Martins RN, Mori H, Morris JC, Noble J, Perrin RJ, Rosa‐Neto P, Salloway SP, Sanchez‐Valle R, Schofield PR, Xiong C, Johnson KA, Bateman RJ, Sperling RA, Chhatwal JP. Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease. Aging Cell 2023; 22:e13871. [PMID: 37291760 PMCID: PMC10410059 DOI: 10.1111/acel.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aβ compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic β-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials.
Collapse
Affiliation(s)
| | - Zahra Shirzadi
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Aaron P. Schultz
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lei Liu
- Brigham and Women's HospitalBostonMassachusettsUSA
- Ann Romney Center for Neurologic DiseasesBostonMassachusettsUSA
| | | | - Eric McDade
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | - Alan Renton
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bianca Esposito
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Carlos Cruchaga
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Charles D. Chen
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Alison Goate
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | | | - Sarah Berman
- University of PittsburghPittsburghPennsylvaniaUSA
| | - Helena C. Chui
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anne M. Fagan
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Martin R. Farlow
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
| | - Nick C. Fox
- Dementia Research Centre & UK Dementia Research InstituteUCL Institute of NeurologyLondonUK
| | - Brian A. Gordon
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | | | | | - Bernard J. Hanseeuw
- Institute of Neuroscience, UCLouvainBrusselsBelgium
- Gordon Center for Medical Imaging in the Radiology Department of MGHBostonMassachusettsUSA
| | - Anna Hofmann
- German Center for Neurodegenerative Diseases (DZNE)TuebingenGermany
| | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE)TuebingenGermany
| | - Celeste M. Karch
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | - Jae‐Hong Lee
- Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Allan I. Levey
- Emory Goizueta Alzheimer's Disease Research CenterAtlantaGeorgiaUSA
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | | | | | - John C. Morris
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | - Richard J. Perrin
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Pedro Rosa‐Neto
- Translational Neuroimaging Laboratory, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest‐de‐l'Île‐de‐Montréal; Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | | | - Raquel Sanchez‐Valle
- Alzheimer's disease and other cognitive disorders Unit, Neurology Department, Hospital Clínic de BarcelonaInstitut d'Investigacions BiomediquesBarcelonaSpain
| | - Peter R. Schofield
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chengjie Xiong
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Keith A. Johnson
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Randall J. Bateman
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Reisa A. Sperling
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Jasmeer P. Chhatwal
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
37
|
Foltynie T, Gandhi S, Gonzalez-Robles C, Zeissler ML, Mills G, Barker R, Carpenter J, Schrag A, Schapira A, Bandmann O, Mullin S, Duffen J, McFarthing K, Chataway J, Parmar M, Carroll C. Towards a multi-arm multi-stage platform trial of disease modifying approaches in Parkinson's disease. Brain 2023; 146:2717-2722. [PMID: 36856727 PMCID: PMC10316775 DOI: 10.1093/brain/awad063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/20/2022] [Accepted: 01/08/2023] [Indexed: 03/02/2023] Open
Abstract
An increase in the efficiency of clinical trial conduct has been successfully demonstrated in the oncology field, by the use of multi-arm, multi-stage trials allowing the evaluation of multiple therapeutic candidates simultaneously, and seamless recruitment to phase 3 for those candidates passing an interim signal of efficacy. Replicating this complex innovative trial design in diseases such as Parkinson's disease is appealing, but in addition to the challenges associated with any trial assessing a single potentially disease modifying intervention in Parkinson's disease, a multi-arm platform trial must also specifically consider the heterogeneous nature of the disease, alongside the desire to potentially test multiple treatments with different mechanisms of action. In a multi-arm trial, there is a need to appropriately stratify treatment arms to ensure each are comparable with a shared placebo/standard of care arm; however, in Parkinson's disease there may be a preference to enrich an arm with a subgroup of patients that may be most likely to respond to a specific treatment approach. The solution to this conundrum lies in having clearly defined criteria for inclusion in each treatment arm as well as an analysis plan that takes account of predefined subgroups of interest, alongside evaluating the impact of each treatment on the broader population of Parkinson's disease patients. Beyond this, there must be robust processes of treatment selection, and consensus derived measures to confirm target engagement and interim assessments of efficacy, as well as consideration of the infrastructure needed to support recruitment, and the long-term funding and sustainability of the platform. This has to incorporate the diverse priorities of clinicians, triallists, regulatory authorities and above all the views of people with Parkinson's disease.
Collapse
Affiliation(s)
- Tom Foltynie
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Sonia Gandhi
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Cristina Gonzalez-Robles
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | | | - Georgia Mills
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Roger Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | | | - Anette Schrag
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Anthony Schapira
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen Mullin
- Faculty of Health, University of Plymouth, Plymouth PL4 9AA, UK
| | - Joy Duffen
- MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK
| | | | - Jeremy Chataway
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Mahesh Parmar
- MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK
| | - Camille Carroll
- Faculty of Health, University of Plymouth, Plymouth PL4 9AA, UK
| |
Collapse
|
38
|
Wheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Jucker M, Karch C, Käser S, Kasuga K, Keefe S, Klunk W, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Lee JH, Levey A, Levin J, Li Y, Lopez O, Marsh J, Martinez R, Martins R, Mason NS, Masters C, Mawuenyega K, McCullough A, McDade E, Mejia A, Morenas-Rodriguez E, Mori H, Morris J, Mountz J, Mummery C, Nadkami N, Nagamatsu A, Neimeyer K, Niimi Y, Noble J, Norton J, Nuscher B, O'Connor A, Obermüller U, Patira R, Perrin R, Ping L, Preische O, Renton A, Ringman J, Salloway S, Sanchez-Valle R, Schofield P, Senda M, Seyfried N, Shady K, Shimada H, Sigurdson W, Smith J, Smith L, Snitz B, Sohrabi H, Stephens S, Taddei K, Thompson S, Vöglein J, Wang P, Wang Q, Weamer E, Xiong C, Xu J, Xu X. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease. Brain 2023; 146:2928-2943. [PMID: 36625756 PMCID: PMC10316768 DOI: 10.1093/brain/awac498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Jeremy F Strain
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David M Cash
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Nick C Fox
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | | | - Jason Hassenstab
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric M McDade
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University in St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Randal J Bateman
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tammie L S Benzinger
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133:e168553. [PMID: 37317972 PMCID: PMC10266783 DOI: 10.1172/jci168553] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Tauopathies are disorders associated with tau protein dysfunction and insoluble tau accumulation in the brain at autopsy. Multiple lines of evidence from human disease, as well as nonclinical translational models, suggest that tau has a central pathologic role in these disorders, historically thought to be primarily related to tau gain of toxic function. However, a number of tau-targeting therapies with various mechanisms of action have shown little promise in clinical trials in different tauopathies. We review what is known about tau biology, genetics, and therapeutic mechanisms that have been tested in clinical trials to date. We discuss possible reasons for failures of these therapies, such as use of imperfect nonclinical models that do not predict human effects for drug development; heterogeneity of human tau pathologies which may lead to variable responses to therapy; and ineffective therapeutic mechanisms, such as targeting of the wrong tau species or protein epitope. Innovative approaches to human clinical trials can help address some of the difficulties that have plagued our field's development of tau-targeting therapies thus far. Despite limited clinical success to date, as we continue to refine our understanding of tau's pathogenic mechanism(s) in different neurodegenerative diseases, we remain optimistic that tau-targeting therapies will eventually play a central role in the treatment of tauopathies.
Collapse
|
40
|
Horie K, Li Y, Barthélemy NR, Gordon BA, Hassenstab J, Benzinger TL, Fagan AM, Morris JC, Karch CM, Xiong C, Allegri R, Mendez PC, Ikeuchi T, Kasuga K, Noble J, Farlow M, Chhatwal J, Day GS, Schofield PR, Masters CL, Levin J, Jucker M, Lee JH, Hoon Roh J, Sato C, Sachdev P, Koyama A, Reyderman L, Bateman RJ, McDade E. Change in Cerebrospinal Fluid Tau Microtubule Binding Region Detects Symptom Onset, Cognitive Decline, Tangles, and Atrophy in Dominantly Inherited Alzheimer's Disease. Ann Neurol 2023; 93:1158-1172. [PMID: 36843330 PMCID: PMC10238659 DOI: 10.1002/ana.26620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.
Collapse
Affiliation(s)
- Kanta Horie
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Eisai Inc., Nutley, NJ, 07110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nicolas R. Barthélemy
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tammie. L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ricardo Allegri
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina
| | - Patricio Chrem Mendez
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina
| | | | | | - James Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Farlow
- Department of Neurology, Indiana University, Indianapolis, IN 46202, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School Boston, MA 02114, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, 2031 NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Colin L. Masters
- The Florey Institute and the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Marchioninistr 15, D-83177 Munchen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Ludwig-Maximilians Universität München, Marchioninistr 15, 83177 Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE) Tübingen; and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, Seoul 05505, Korea
| | - Jee Hoon Roh
- Departments of Biomedical Sciences, Physiology, and Neurology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | | | | | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
41
|
Nicosia J, Aschenbrenner AJ, Balota DA, Sliwinski MJ, Tahan M, Adams S, Stout SS, Wilks H, Gordon BA, Benzinger TL, Fagan AM, Xiong C, Bateman RJ, Morris JC, Hassenstab J. Unsupervised high-frequency smartphone-based cognitive assessments are reliable, valid, and feasible in older adults at risk for Alzheimer's disease. J Int Neuropsychol Soc 2023; 29:459-471. [PMID: 36062528 PMCID: PMC9985662 DOI: 10.1017/s135561772200042x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Smartphones have the potential for capturing subtle changes in cognition that characterize preclinical Alzheimer's disease (AD) in older adults. The Ambulatory Research in Cognition (ARC) smartphone application is based on principles from ecological momentary assessment (EMA) and administers brief tests of associative memory, processing speed, and working memory up to 4 times per day over 7 consecutive days. ARC was designed to be administered unsupervised using participants' personal devices in their everyday environments. METHODS We evaluated the reliability and validity of ARC in a sample of 268 cognitively normal older adults (ages 65-97 years) and 22 individuals with very mild dementia (ages 61-88 years). Participants completed at least one 7-day cycle of ARC testing and conventional cognitive assessments; most also completed cerebrospinal fluid, amyloid and tau positron emission tomography, and structural magnetic resonance imaging studies. RESULTS First, ARC tasks were reliable as between-person reliability across the 7-day cycle and test-retest reliabilities at 6-month and 1-year follow-ups all exceeded 0.85. Second, ARC demonstrated construct validity as evidenced by correlations with conventional cognitive measures (r = 0.53 between composite scores). Third, ARC measures correlated with AD biomarker burden at baseline to a similar degree as conventional cognitive measures. Finally, the intensive 7-day cycle indicated that ARC was feasible (86.50% approached chose to enroll), well tolerated (80.42% adherence, 4.83% dropout), and was rated favorably by older adult participants. CONCLUSIONS Overall, the results suggest that ARC is reliable and valid and represents a feasible tool for assessing cognitive changes associated with the earliest stages of AD.
Collapse
Affiliation(s)
- Jessica Nicosia
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J. Aschenbrenner
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David A. Balota
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martin J. Sliwinski
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
| | - Marisol Tahan
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Adams
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah S. Stout
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah Wilks
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M. Fagan
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J. Bateman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Hassenstab
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
42
|
O'Connor A, Cash DM, Poole T, Markiewicz PJ, Fraser MR, Malone IB, Jiao J, Weston PSJ, Flores S, Hornbeck R, McDade E, Schöll M, Gordon BA, Bateman RJ, Benzinger TLS, Fox NC. Tau accumulation in autosomal dominant Alzheimer's disease: a longitudinal [ 18F]flortaucipir study. Alzheimers Res Ther 2023; 15:99. [PMID: 37231491 PMCID: PMC10210376 DOI: 10.1186/s13195-023-01234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Cortical tau accumulation is a key pathological event that partly defines Alzheimer's disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p < 0.001). There were no significant regional differences between presymptomatic carriers and non-carriers in FTP SUVRs, or their rates of change (p > 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK. Antoinette.o'
- UK Dementia Research Institute at UCL, London, UK. Antoinette.o'
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Pawel J Markiewicz
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Maggie R Fraser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jieqing Jiao
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Shaney Flores
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Schöll
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
43
|
Donohue M, Langford O, Insel P, van Dyck C, Petersen R, Craft S, Sethuraman G, Raman R, Aisen P. Natural cubic splines for the analysis of Alzheimer's clinical trials. Pharm Stat 2023; 22:508-519. [PMID: 36627206 PMCID: PMC10191992 DOI: 10.1002/pst.2285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
Mixed model repeated measures (MMRM) is the most common analysis approach used in clinical trials for Alzheimer's disease and other progressive diseases measured with continuous outcomes over time. The model treats time as a categorical variable, which allows an unconstrained estimate of the mean for each study visit in each randomized group. Categorizing time in this way can be problematic when assessments occur off-schedule, as including off-schedule visits can induce bias, and excluding them ignores valuable information and violates the intention to treat principle. This problem has been exacerbated by clinical trial visits which have been delayed due to the COVID19 pandemic. As an alternative to MMRM, we propose a constrained longitudinal data analysis with natural cubic splines that treats time as continuous and uses test version effects to model the mean over time. Compared to categorical-time models like MMRM and models that assume a proportional treatment effect, the spline model is shown to be more parsimonious and precise in real clinical trial datasets, and has better power and Type I error in a variety of simulation scenarios.
Collapse
Affiliation(s)
- M.C. Donohue
- Alzheimer’s Therapeutic Research Institute, University of Southern California California, USA
| | - O. Langford
- Alzheimer’s Therapeutic Research Institute, University of Southern California California, USA
| | - P. Insel
- Department of Psychiatry, University of California, San Francisco, California, USA
| | - C.H. van Dyck
- Alzheimer’s Disease Research Unit, Yale School of Medicine, Connecticut, USA
| | | | - S. Craft
- Department of Internal Medicine–Geriatrics, Wake Forest School of Medicine, North Carolina, USA
| | - G. Sethuraman
- Alzheimer’s Therapeutic Research Institute, University of Southern California California, USA
| | - R. Raman
- Alzheimer’s Therapeutic Research Institute, University of Southern California California, USA
| | - P.S. Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California California, USA
| | | |
Collapse
|
44
|
Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules 2023; 13:biom13030453. [PMID: 36979388 PMCID: PMC10046826 DOI: 10.3390/biom13030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Old age increases the risk of Alzheimer’s disease (AD), the most common neurodegenerative disease, a devastating disorder of the human mind and the leading cause of dementia. Worldwide, 50 million people have the disease, and it is estimated that there will be 150 million by 2050. Today, healthcare for AD patients consumes 1% of the global economy. According to the amyloid cascade hypothesis, AD begins in the brain by accumulating and aggregating Aβ peptides and forming β-amyloid fibrils (Aβ42). However, in clinical trials, reducing Aβ peptide production and amyloid formation in the brain did not slow cognitive decline or improve daily life in AD patients. Prevention studies in cognitively unimpaired people at high risk or genetically destined to develop AD also have not slowed cognitive decline. These observations argue against the amyloid hypothesis of AD etiology, its development, and disease mechanisms. Here, we look at other avenues in the research of AD, such as the presenilin hypothesis, synaptic glutamate signaling, and the role of astrocytes and the glutamate transporter EAAT2 in the development of AD.
Collapse
Affiliation(s)
| | - Michał Fułek
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| | | | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| |
Collapse
|
45
|
Jutten RJ, Papp KV, Hendrix S, Ellison N, Langbaum JB, Donohue MC, Hassenstab J, Maruff P, Rentz DM, Harrison J, Cummings J, Scheltens P, Sikkes SAM. Why a clinical trial is as good as its outcome measure: A framework for the selection and use of cognitive outcome measures for clinical trials of Alzheimer's disease. Alzheimers Dement 2023; 19:708-720. [PMID: 36086926 PMCID: PMC9931632 DOI: 10.1002/alz.12773] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022]
Abstract
A crucial aspect of any clinical trial is using the right outcome measure to assess treatment efficacy. Compared to the rapidly evolved understanding and measurement of pathophysiology in preclinical and early symptomatic stages of Alzheimer's disease (AD), relatively less progress has been made in the evolution of clinical outcome assessments (COAs) for those stages. The current paper aims to provide a benchmark for the design and evaluation of COAs for use in early AD trials. We discuss lessons learned on capturing cognitive changes in predementia stages of AD, including challenges when validating novel COAs for those early stages and necessary evidence for their implementation in clinical trials. Moving forward, we propose a multi-step framework to advance the use of more effective COAs to assess clinically meaningful changes in early AD, which will hopefully contribute to the much-needed consensus around more appropriate outcome measures to assess clinical efficacy of putative treatments. HIGHLIGHTS: We discuss lessons learned on capturing cognitive changes in predementia stages of AD. We propose a framework for the design and evaluation of performance based cognitive tests for use in early AD trials. We provide recommendations to facilitate the implementation of more effective cognitive outcome measures in AD trials.
Collapse
Affiliation(s)
- Roos J. Jutten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn V. Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Jason Hassenstab
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul Maruff
- Cogstate Ltd., Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Dorene M. Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Harrison
- Metis Cognition Ltd., Kilmington, UK
- Department of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Movement and Behavioral Sciences, VU University, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Lee A, Shan D, Castle D, Rajji TK, Ma C. Landscape of Phase II Trials in Alzheimer's Disease. J Alzheimers Dis 2023; 96:745-757. [PMID: 37840500 DOI: 10.3233/jad-230660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Drug development in Alzheimer's disease (AD) over the past two decades has had high rates of failure. Novel trial designs, such as adaptive designs, have the potential to improve the efficiency of drug development in AD. OBJECTIVE To evaluate the design characteristics, temporal trends, and differences in design between sponsor types in phase II trials of investigational agents in AD. METHODS Phase I/II, II, and II/III trials for AD with drug or other biological interventions registered from December 1996 to December 2021 in ClinicalTrials.gov were included. Descriptive statistics were used to summarize trial characteristics. Linear, logistic, and multinomial regression models assessed temporal trends and differences between sponsor types in design characteristics. RESULTS Of N = 474 trials identified, randomized parallel group design was the most common design (72%). Only 12 trials (2.5%) used an adaptive design; adaptive features included early stopping rules, model-based dose-finding, adaptive treatment arm selection, and response adaptive randomization. The use of non-randomized parallel-group and open-label single arm designs increased over time. No temporal trend in the use of adaptive design was identified. Trials sponsored by industry only were more likely to use a randomized parallel-group design and have a larger estimated sample size than trials with other sponsor types. CONCLUSION Our systematic review showed that very few phase II trials in AD used an adaptive trial design. Innovation and implementation of novel trial designs in AD trials can accelerate the drug development process.
Collapse
Affiliation(s)
- Alina Lee
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Di Shan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - David Castle
- Department of Psychiatry, University of Tasmania, Tasmania, Australia
- Centre for Mental Health Service Innovation, Statewide Mental Health Service, Tasmania, Australia
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Clement Ma
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Cummings J, Apostolova L, Rabinovici GD, Atri A, Aisen P, Greenberg S, Hendrix S, Selkoe D, Weiner M, Petersen RC, Salloway S. Lecanemab: Appropriate Use Recommendations. J Prev Alzheimers Dis 2023; 10:362-377. [PMID: 37357276 PMCID: PMC10313141 DOI: 10.14283/jpad.2023.30] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Lecanemab (Leqembi®) is approved in the United States for the treatment of Alzheimer's disease (AD) to be initiated in early AD (mild cognitive impairment [MCI] due to AD or mild AD dementia) with confirmed brain amyloid pathology. Appropriate Use Recommendations (AURs) are intended to help guide the introduction of new therapies into real-world clinical practice. Community dwelling patients with AD differ from those participating in clinical trials. Administration of lecanemab at clinical trial sites by individuals experienced with monoclonal antibody therapy also differs from the community clinic-based administration of lecanemab. These AURs use clinical trial data as well as research and care information regarding AD to help clinicians administer lecanemab with optimal safety and opportunity for effectiveness. Safety and efficacy of lecanemab are known only for patients like those participating in the phase 2 and phase 3 lecanemab trials, and these AURs adhere closely to the inclusion and exclusion criteria of the trials. Adverse events may occur with lecanemab including amyloid related imaging abnormalities (ARIA) and infusion reactions. Monitoring guidelines for these events are detailed in this AUR. Most ARIA with lecanemab is asymptomatic, but a few cases are serious or, very rarely, fatal. Microhemorrhages and rare macrohemorrhages may occur in patients receiving lecanemab. Anticoagulation increases the risk of hemorrhage, and the AUR recommends that patients requiring anticoagulants not receive lecanemab until more data regarding this interaction are available. Patients who are apolipoprotein E ε4 (APOE4) gene carriers, especially APOE4 homozygotes, are at higher risk for ARIA, and the AUR recommends APOE genotyping to better inform risk discussions with patients who are lecanemab candidates. Clinician and institutional preparedness are mandatory for use of lecanemab, and protocols for management of serious events should be developed and implemented. Communication between clinicians and therapy candidates or those on therapy is a key element of good clinical practice for the use of lecanemab. Patients and their care partners must understand the potential benefits, the potential harms, and the monitoring requirements for treatment with this agent. Culture-specific communication and building of trust between clinicians and patients are the foundation for successful use of lecanemab.
Collapse
Affiliation(s)
- J Cummings
- Jeffrey Cummings, MD, ScD, 1380 Opal Valley Street, Henderson, NV 89052, USA, , T: 702-902-3939
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de Oliveira CM, Leotti VB, Cappelli AH, Rocha AG, Ecco G, Bolzan G, Kersting N, Saraiva-Pereira ML, Jardim LB. Progression of Clinical and Eye Movement Markers in Preataxic Carriers of Machado-Joseph Disease. Mov Disord 2023; 38:26-34. [PMID: 36129443 DOI: 10.1002/mds.29226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Little is known about preclinical stages of Machado-Joseph disease, a polyglutamine disorder characterized by progressive adult-onset ataxia. OBJECTIVE We aimed to describe the longitudinal progression of clinical and oculomotor variables in the preataxic phase of disease. METHODS Carriers and noncarriers were assessed at three visits. Preataxic carriers (Scale for Assessment and Rating of Ataxia score < 3) expected to start ataxia in ≤4 years were considered near onset (PAN). Progressions of ataxic and preataxic carriers, considering status at the end of the study, were described according to the start (or its prediction) of gait ataxia (TimeToAfterOnset) and according to the study time. RESULTS A total of 35 ataxics, 38 preataxics, and 22 noncarriers were included. The "TimeToAfterOnset" timeline showed that Neurological Examination Scale for Spinocerebellar Ataxias (NESSCA; effect size, 0.09), Inventory of Non-Ataxia Symptoms (INAS0.07), and the vestibulo-ocular reflex gain (0.12) progressed in preataxic carriers, and that most slopes accelerate in PAN, turning similar to those of ataxics. In the study time, NESSCA (1.36) and vertical pursuit gain (1.17) significantly worsened in PAN, and 6 of 11 PANs converted to ataxia. For a clinical trial with 80% power and 2-year duration, 57 PANs are needed in each study arm to detect a 50% reduction in the conversion rate. CONCLUSIONS NESSCA, INAS, vestibulo-ocular reflex, and vertical pursuit gains significantly worsened in the preataxic phase. The "TimeToAfterOnset" timeline unveiled that slopes of most variables are small in preataxics but increase and reach the ataxic slopes from 4 years before the onset of ataxia. For future trials in preataxic carriers, we recommend recruiting PANs and using the conversion rate as the primary outcome. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Camila Maria de Oliveira
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Henz Cappelli
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gabriela Ecco
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Bolzan
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nathalia Kersting
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
49
|
Long JM, Coble DW, Xiong C, Schindler SE, Perrin RJ, Gordon BA, Benzinger TLS, Grant E, Fagan AM, Harari O, Cruchaga C, Holtzman DM, Morris JC. Preclinical Alzheimer's disease biomarkers accurately predict cognitive and neuropathological outcomes. Brain 2022; 145:4506-4518. [PMID: 35867858 PMCID: PMC10200309 DOI: 10.1093/brain/awac250] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease biomarkers are widely accepted as surrogate markers of underlying neuropathological changes. However, few studies have evaluated whether preclinical Alzheimer's disease biomarkers predict Alzheimer's neuropathology at autopsy. We sought to determine whether amyloid PET imaging or CSF biomarkers accurately predict cognitive outcomes and Alzheimer's disease neuropathological findings. This study included 720 participants, 42-91 years of age, who were enrolled in longitudinal studies of memory and aging in the Washington University Knight Alzheimer Disease Research Center and were cognitively normal at baseline, underwent amyloid PET imaging and/or CSF collection within 1 year of baseline clinical assessment, and had subsequent clinical follow-up. Cognitive status was assessed longitudinally by Clinical Dementia Rating®. Biomarker status was assessed using predefined cut-offs for amyloid PET imaging or CSF p-tau181/amyloid-β42. Subsequently, 57 participants died and underwent neuropathologic examination. Alzheimer's disease neuropathological changes were assessed using standard criteria. We assessed the predictive value of Alzheimer's disease biomarker status on progression to cognitive impairment and for presence of Alzheimer's disease neuropathological changes. Among cognitively normal participants with positive biomarkers, 34.4% developed cognitive impairment (Clinical Dementia Rating > 0) as compared to 8.4% of those with negative biomarkers. Cox proportional hazards modelling indicated that preclinical Alzheimer's disease biomarker status, APOE ɛ4 carrier status, polygenic risk score and centred age influenced risk of developing cognitive impairment. Among autopsied participants, 90.9% of biomarker-positive participants and 8.6% of biomarker-negative participants had Alzheimer's disease neuropathological changes. Sensitivity was 87.0%, specificity 94.1%, positive predictive value 90.9% and negative predictive value 91.4% for detection of Alzheimer's disease neuropathological changes by preclinical biomarkers. Single CSF and amyloid PET baseline biomarkers were also predictive of Alzheimer's disease neuropathological changes, as well as Thal phase and Braak stage of pathology at autopsy. Biomarker-negative participants who developed cognitive impairment were more likely to exhibit non-Alzheimer's disease pathology at autopsy. The detection of preclinical Alzheimer's disease biomarkers is strongly predictive of future cognitive impairment and accurately predicts presence of Alzheimer's disease neuropathology at autopsy.
Collapse
Affiliation(s)
- Justin M Long
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Dean W Coble
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Suzanne E Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Brian A Gordon
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Elizabeth Grant
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Anne M Fagan
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Oscar Harari
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Carlos Cruchaga
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - David M Holtzman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - John C Morris
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
50
|
Levin J, Vöglein J, Quiroz YT, Bateman RJ, Ghisays V, Lopera F, McDade E, Reiman E, Tariot PN, Morris JC. Testing the amyloid cascade hypothesis: Prevention trials in autosomal dominant Alzheimer disease. Alzheimers Dement 2022; 18:2687-2698. [PMID: 35212149 PMCID: PMC9399299 DOI: 10.1002/alz.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. BACKGROUND An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. UPDATED HYPOTHESIS It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. MAJOR CHALLENGES FOR THE HYPOTHESIS Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common "sporadic" late-onset AD. LINKAGE TO OTHER MAJOR THEORIES The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, 39 1 Avenue, Suite 101, Charlestown, MA 02129, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| |
Collapse
|