1
|
Ma X, Wang XM, Tang GZ, Wang Y, Liu XC, Wang SD, Peng P, Qi XH, Qin XY, Wang YJ, Wang CW, Zhou JN. Alterations of amino acids in older adults with Alzheimer's Disease and Vascular Dementia. Amino Acids 2025; 57:10. [PMID: 39825947 DOI: 10.1007/s00726-024-03442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025]
Abstract
Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls. Several differences in the concentration of amino acids were observed in AD patients compared to both healthy controls and VD patients. However, no significant distinction was found between healthy controls and VD patients. Considering comorbidities, cystine levels were higher in AD than in VD among non-diabetic patients, but not in those with diabetes. Notably, creatine, spermidine, cystine, and tyrosine demonstrated favorable results in decision curve analyses and good discriminative performances, suggesting their potential for clinical application. These fundings give novel perspectives of serum amino acids for predicting metabolic pathways in AD and VD pathogenesis.
Collapse
Affiliation(s)
- Xin Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xin-Meng Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Guo-Zhang Tang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xue-Chun Liu
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, P. R. China
| | - Shuai-Deng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Peng Peng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xiu-Hong Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230026, P. R. China
| | - Xin-Ya Qin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230026, P. R. China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Yue-Ju Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China.
| | - Chen-Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| |
Collapse
|
2
|
Thomas A, Guo J, Reyes-Dumeyer D, Sanchez D, Scarmeas N, Manly JJ, Brickman AM, Lantigua RA, Mayeux R, Gu Y. Inflammatory biomarkers profiles and cognition among older adults. Sci Rep 2025; 15:2265. [PMID: 39824904 DOI: 10.1038/s41598-025-86309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Inflammation plays a major role in cognitive aging. Most studies on peripheral inflammation and cognitive aging focused on selected major inflammatory biomarkers. However, inflammatory markers are regulated and influenced by each other, and it is therefore important to consider a more comprehensive panel of markers to better capture diverse immune pathways and characterize the overall inflammatory profile of individuals. We explored 23 circulating inflammatory biomarkers using data from 1,743 participants without dementia (≥ 65 years-old) from the community-based, multiethnic Washington Heights Inwood Columbia Aging Project. Using principal component analysis (PCA), we developed six inflammatory profiles (PC-1 to PC-6) based on these 23 biomarkers and tested the association of resulting inflammatory profile with cognitive decline, over up to 12 years of follow-up. PC-1 described a pro-inflammatory profile characterized by high positive loadings for pro-inflammatory biomarkers. A higher PC-1 score was associated with lower baseline cognitive performances. No association of this profile with cognitive decline was observed in longitudinal analysis. However, PC-5 characterized by high PDGF-AA and RANTES was associated with a faster cognitive decline. Among older adults, a circulating pro-inflammatory immune profile is associated with lower baseline cognitive performance, and some specific pro-inflammatory cytokines might be associated with faster cognitive decline.
Collapse
Affiliation(s)
- Aline Thomas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jing Guo
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Danurys Sanchez
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Jennifer J Manly
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Adam M Brickman
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Rafael A Lantigua
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Yian Gu
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
- Departments of Neurology and Epidemiology, Taub Institute, and Sergievsky Center, Columbia University Irving Medical Center, 622 W 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
3
|
Jemimah S, Abuhantash F, AlShehhi A. c-Triadem: A constrained, explainable deep learning model to identify novel biomarkers in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.19.24317595. [PMID: 39606415 PMCID: PMC11601769 DOI: 10.1101/2024.11.19.24317595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that requires early diagnosis for effective management. However, issues with currently available diagnostic biomarkers preclude early diagnosis, necessitating the development of alternative biomarkers and methods, such as blood-based diagnostics. We propose c-Triadem (constrained triple-input Alzheimer's disease model), a novel deep neural network to identify potential blood-based biomarkers for AD and predict mild cognitive impairment (MCI) and AD with high accuracy. The model utilizes genotyping data, gene expression data, and clinical information to predict the disease status of participants, i.e., cognitively normal (CN), MCI, or AD. The nodes of the neural network represent genes and their related pathways, and the edges represent known relationships among the genes and pathways. We trained the model with blood genotyping data, microarray, and clinical features from the Alzheimer's Neuroimaging Disease Initiative (ADNI). We demonstrate that our model's performance is superior to previous models with an AUC of 97% and accuracy of 89%. We then identified the most influential genes and clinical features for prediction using SHapley Additive exPlanations (SHAP). Our SHAP analysis shows that CASP9, LCK, and SDC3 SNPs and PINK1, ATG5, and ubiquitin (UBB, UBC) expression have a higher impact on model performance. Our model has facilitated the identification of potential blood-based genetic markers of DNA damage response and mitophagy in affected regions of the brain. The model can be used for detection and biomarker identification in other related dementias.
Collapse
Affiliation(s)
- Sherlyn Jemimah
- Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ferial Abuhantash
- Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Aamna AlShehhi
- Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Fan X, Chen H, He W, Zhang J. Emerging microglial biology highlights potential therapeutic targets for Alzheimer's disease. Ageing Res Rev 2024; 101:102471. [PMID: 39218078 DOI: 10.1016/j.arr.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is a chronic degenerative disease of the central nervous system, which primarily affects elderly people and accounts for 70-80 % of dementia cases. The current prevailing amyloid cascade hypothesis suggests that Alzheimer's disease begins with the deposition of amyloid β (Aβ) in the brain. Major therapeutic strategies target Aβ production, aggregation, and clearance, although many clinical trials have shown that these therapeutic strategies are not sufficient to completely improve cognitive deficits in AD patients. Recent genome-wide association studies have identified that multiple important regulators are the most significant genetic risk factors for Alzheimer's disease, especially in the innate immune pathways. These genetic risk factors suggest a critical role for microglia, highlighting their therapeutic potential in treating neurodegenerative diseases. In this review, we discuss how these recently documented AD risk genes affect microglial function and AD pathology and how they can be further targeted to regulate microglial states and slow AD progression, especially the highly anticipated APOE and TREM2 targets. We focused on recent findings that modulation of innate and adaptive neuroimmune microenvironment crosstalk reverses cognitive deficits in AD patients. We also considered novel strategies for microglia in AD patients.
Collapse
Affiliation(s)
- Xi Fan
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Wei He
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Jianmin Zhang
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
5
|
Morrison L, Dyer AH, Dolphin H, Batten I, Reddy C, Widdowson M, Woods CP, Gibney J, Bourke NM, Kennelly SP. Circulating Interleukin-17A is associated with executive function in middle aged adults with and without type 2 diabetes. Brain Behav Immun Health 2024; 41:100862. [PMID: 39350951 PMCID: PMC11440310 DOI: 10.1016/j.bbih.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Midlife cardiovascular risk factors such as Type 2 Diabetes (T2DM) and obesity are associated with the later development of cognitive impairment and dementia. Systemic inflammation is postulated as a crucial mechanism, yet there are few studies examining this at the earliest stages prior to overt cognitive impairment. To assess this, we recruited a cohort of middle-aged cognitively-unimpaired individuals with and without uncomplicated T2DM. Comprehensive neuropsychological assessment was performed at baseline and at 4-year follow-up. Ten serum chemokines and cytokines (Eotaxin, MCP-1, MIP-1β, CXCL10, IL-6, IL-10, IL12p70, IL-17A, IFN-γ and TNF-α) were measured at both baseline and follow-up using high-sensitivity assays. Overall, 136 participants were recruited including 90 with uncomplicated midlife T2DM (age 52.6 ± 8.3; 47% female) and 46 without (age 52.9 ± 8.03; 61% female). Cognitive trajectories were stable over time and did not differ with T2DM. Yet on cross-sectional analyses at both baseline and follow-up, greater circulating IL-17A was consistently associated with poorer performance on tests of executive function/attention (β: 0.21; -0.40, -0.02, p = 0.03 at baseline; β: 0.26; -0.46, -0.05, p = 0.02 at follow-up). Associations persisted on covariate adjustment and did not differ by T2DM status. In summary, we provide evidence that greater circulating IL-17A levels were associated with poorer executive function in midlife, independent of T2DM. Long-term follow-up of this and other cohorts will further elucidate the earliest stages in the relationship between systemic inflammation and cognitive decline to provide further mechanistic insights and potentially identify those at greatest risk for later cognitive decline.
Collapse
Affiliation(s)
- Laura Morrison
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Adam H Dyer
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Helena Dolphin
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Isabella Batten
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Conor Reddy
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Matthew Widdowson
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Conor P Woods
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - James Gibney
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Sean P Kennelly
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
6
|
Daskoulidou N, Carpanini SM, Zelek WM, Paul Morgan B. Involvement of Complement in Alzheimer's Disease: From Genetics Through Pathology to Therapeutic Strategies. Curr Top Behav Neurosci 2024. [PMID: 39455500 DOI: 10.1007/7854_2024_524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Complement is a critical component of innate immunity, evolved to defend against pathogens and clear toxic debris ranging from dead and dying cells to immune complexes. These roles make complement a key player in homeostasis; however, complement has a dark side. When the rigid control mechanisms fail, complement becomes dysregulated, acting as a driver of inflammation and resultant pathology in numerous diseases. Roles of complement in Alzheimer's disease (AD) and other dementias have emerged in recent years, supported by genetic, biomarker and pathological evidence and animal model studies. Numerous questions remain regarding the precise roles of complement in the brain in health and disease, including where and when complement is expressed, how it contributes to immune defence and garbage disposal in the healthy brain, and exactly how complement contributes to pathology in dementias. In this brief review, we will summarise current knowledge on complement roles in brain, present the evidence implicating complement in AD and explore whether complement represents an attractive therapeutic target for AD.
Collapse
Affiliation(s)
| | - Sarah M Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
Nelson RB, Rose KN, Menniti FS, Zorn SH. Hiding in plain sight: Do recruited dendritic cells surround amyloid plaques in Alzheimer's disease? Biochem Pharmacol 2024; 228:116258. [PMID: 38705533 DOI: 10.1016/j.bcp.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk. While the prevailing view is that these immune cells arise from transformation of resident brain microglia, studies across several decades and using multiple techniques and strategies suggest instead that the pathology-associated immune cells are bone-marrow derived hematopoietic cells that are recruited into brain. We critically review this translational literature, emphasizing the strengths and limitations of techniques used to address recruitment and the experimental designs employed. We conclude that the aggregate evidence points toward recruitment into brain of innate immune cells of the myeloid dendritic cell lineage. Recruitment of dendritic cells and their role in AD pathogenesis has broad implications for our understanding of the etiology and pathobiology of AD that impact the strategies to develop new, immune system-targeted therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Robert B Nelson
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI.
| | - Kenneth N Rose
- MindImmune Therapeutics, Inc., Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Stevin H Zorn
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| |
Collapse
|
8
|
Gutierrez Reyes CD, Atashi M, Fowowe M, Onigbinde S, Daramola O, Lubman DM, Mechref Y. Differential expression of N-glycopeptides derived from serum glycoproteins in mild cognitive impairment (MCI) patients. Proteomics 2024; 24:e2300620. [PMID: 38602241 DOI: 10.1002/pmic.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Mild cognitive impairment (MCI) is an early stage of memory loss that affects cognitive abilities with the aging of individuals, such as language or visual/spatial comprehension. MCI is considered a prodromal phase of more complicated neurodegenerative diseases such as Alzheimer's. Therefore, accurate diagnosis and better understanding of the disease prognosis will facilitate prevention of neurodegeneration. However, the existing diagnostic methods fail to provide precise and well-timed diagnoses, and the pathophysiology of MCI is not fully understood. Alterations of the serum N-glycoproteome expression could represent an essential contributor to the overall pathophysiology of neurodegenerative diseases and be used as a potential marker to assess MCI diagnosis using less invasive procedures. In this approach, we identified N-glycopeptides with different expressions between healthy and MCI patients from serum glycoproteins. Seven of the N-glycopeptides showed outstanding AUC values, among them the antithrombin-III Asn224 + 4-5-0-2 with an AUC value of 1.00 and a p value of 0.0004. According to proteomics and ingenuity pathway analysis (IPA), our data is in line with recent publications, and the glycoproteins carrying the identified N-sites play an important role in neurodegeneration.
Collapse
Affiliation(s)
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - David M Lubman
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
9
|
Vujosevic S, Limoli C, Kozak I. Hallmarks of aging in age-related macular degeneration and age-related neurological disorders: novel insights into common mechanisms and clinical relevance. Eye (Lond) 2024:10.1038/s41433-024-03341-5. [PMID: 39289517 DOI: 10.1038/s41433-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) and age-related neurological diseases (ANDs), such as Alzheimer's and Parkinson's Diseases, are increasingly prevalent conditions that significantly contribute to global morbidity, disability, and mortality. The retina, as an accessible part of the central nervous system (CNS), provides a unique window to study brain aging and neurodegeneration. By examining the associations between AMD and ANDs, this review aims to highlight novel insights into fundamental mechanisms of aging and their role in neurodegenerative disease progression. This review integrates knowledge from the emerging field of aging research, which identifies common denominators of biological aging, specifically loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, and inflammation. Finally, we emphasize the clinical relevance of these pathways and the potential for cross-disease therapies that target common aging hallmarks. Identifying these shared pathways could open avenues to develop therapeutic strategies targeting mechanisms common to multiple degenerative diseases, potentially attenuating disease progression and promoting the healthspan.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
- Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| |
Collapse
|
10
|
Pyo JH, Han SS, Kim MJ, Moon YK, Lee SJ, Lee C, Lee A, Lim SW, Kim DK. Potential Inflammatory Markers Related to the Conversion to Alzheimer's Disease in Female Patients With Late-Life Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100356. [PMID: 39205794 PMCID: PMC11350498 DOI: 10.1016/j.bpsgos.2024.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Inflammation has been postulated as a mediating factor in the development of Alzheimer's disease (AD) pathology. We investigated candidate inflammatory markers related to conversion to AD among patients with depression. Methods A longitudinal study was conducted with older women with depression who were at least 55 years of age, with a mean follow-up period of 5.73 years. At baseline, 9 inflammatory cytokines were measured using the immunoreactivity method. During follow-up, patients with depression who complained of cognitive impairment were evaluated and diagnosed with AD conversion. Association of the cytokines with conversion to AD was analyzed using multivariable Cox proportional hazards regression with adjusting covariates. For clinical applicability, the optimal cutoff value was determined using the minimum p value approach for the conversion to AD and was used to plot an AD-free survival curve. Results Among 132 participants, 34 patients with depression (25.76%) developed AD during their follow-up period. Higher levels of interleukin (IL) 1β at baseline (hazard ratio = 3.30 [95% CI, 1.11-9.78], p = .031) and lower levels of IL-10 (p < .001) were significantly associated with an increased risk of progression to AD. The survival curve plotted by the cutoff value of ≥0.25 pg/mL for IL-1β and ≤0.15 pg/mL for IL-10 suggested adjusted hazard ratios of 8.96 (95% CI, 3.48-23.09; p < .001) for IL-1β and 10.99 (p < .001) for IL-10, respectively. Conclusions This study demonstrated that IL-1β and IL-10 were associated with conversion to AD among patients with late-life depression, suggesting their potential as predictive markers of the transition to AD from depression.
Collapse
Affiliation(s)
- Jee Hyung Pyo
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sae Saem Han
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Min-Ji Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Young Kyung Moon
- Department of Psychiatry, Veteran Health Service Medical Center, Seoul, South Korea
| | - Su Jin Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Chaemin Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - AhRam Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Lista S, Imbimbo BP, Grasso M, Fidilio A, Emanuele E, Minoretti P, López-Ortiz S, Martín-Hernández J, Gabelle A, Caruso G, Malaguti M, Melchiorri D, Santos-Lozano A, Imbimbo C, Heneka MT, Caraci F. Tracking neuroinflammatory biomarkers in Alzheimer's disease: a strategy for individualized therapeutic approaches? J Neuroinflammation 2024; 21:187. [PMID: 39080712 PMCID: PMC11289964 DOI: 10.1186/s12974-024-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent trials of anti-amyloid-β (Aβ) monoclonal antibodies, including lecanemab and donanemab, in early Alzheimer disease (AD) showed that these drugs have limited clinical benefits and their use comes with a significant risk of serious adverse events. Thus, it seems crucial to explore complementary therapeutic approaches. Genome-wide association studies identified robust associations between AD and several AD risk genes related to immune response, including but not restricted to CD33 and TREM2. Here, we critically reviewed the current knowledge on candidate neuroinflammatory biomarkers and their role in characterizing the pathophysiology of AD. MAIN BODY Neuroinflammation is recognized to be a crucial and contributing component of AD pathogenesis. The fact that neuroinflammation is most likely present from earliest pre-stages of AD and co-occurs with the deposition of Aβ reinforces the need to precisely define the sequence and nature of neuroinflammatory events. Numerous clinical trials involving anti-inflammatory drugs previously yielded unfavorable outcomes in early and mild-to-moderate AD. Although the reasons behind these failures remain unclear, these may include the time and the target selected for intervention. Indeed, in our review, we observed a stage-dependent neuroinflammatory process in the AD brain. While the initial activation of glial cells counteracts early brain Aβ deposition, the downregulation in the functional state of microglia occurs at more advanced disease stages. To address this issue, personalized neuroinflammatory modulation therapy is required. The emergence of reliable blood-based neuroinflammatory biomarkers, particularly glial fibrillary acidic protein, a marker of reactive astrocytes, may facilitate the classification of AD patients based on the ATI(N) biomarker framework. This expands upon the traditional classification of Aβ ("A"), tau ("T"), and neurodegeneration ("N"), by incorporating a novel inflammatory component ("I"). CONCLUSIONS The present review outlines the current knowledge on potential neuroinflammatory biomarkers and, importantly, emphasizes the role of longitudinal analyses, which are needed to accurately monitor the dynamics of cerebral inflammation. Such a precise information on time and place will be required before anti-inflammatory therapeutic interventions can be considered for clinical evaluation. We propose that an effective anti-neuroinflammatory therapy should specifically target microglia and astrocytes, while considering the individual ATI(N) status of patients.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | | | | | | | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Giuseppe Caruso
- Oasi Research Institute-IRCCS, 94018, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital, 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Esch-Belval, Luxembourg.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018, Troina, Italy.
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
12
|
Cyr B, Curiel Cid R, Loewenstein D, Vontell RT, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome Adaptor Protein ASC in Plasma as a Biomarker of Early Cognitive Changes. Int J Mol Sci 2024; 25:7758. [PMID: 39063000 PMCID: PMC11276719 DOI: 10.3390/ijms25147758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a group of symptoms including memory loss, language difficulties, and other types of cognitive and functional impairments that affects 57 million people worldwide, with the incidence expected to double by 2040. Therefore, there is an unmet need to develop reliable biomarkers to diagnose early brain impairments so that emerging interventions can be applied before brain degeneration. Here, we performed biomarker analyses for apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid-β 42/40 (Aβ42/40) ratio in the plasma of older adults. Participants had blood drawn at baseline and underwent two annual clinical and cognitive evaluations. The groups tested either cognitively normal on both evaluations (NN), cognitively normal year 1 but cognitively impaired year 2 (NI), or cognitively impaired on both evaluations (II). ASC was elevated in the plasma of the NI group compared to the NN and II groups. Additionally, Aβ42 was increased in the plasma in the NI and II groups compared to the NN group. Importantly, the area under the curve (AUC) for ASC in participants older than 70 years old in NN vs. NI groups was 0.81, indicating that ASC is a promising plasma biomarker for early detection of cognitive decline.
Collapse
Affiliation(s)
- Brianna Cyr
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
| | - Rosie Curiel Cid
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
| | - David Loewenstein
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
| | | | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
| | - Robert W. Keane
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
- Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
- Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Sillau SH, Coughlan C, Ahmed MM, Nair K, Araya P, Galbraith MD, Bettcher BM, Espinosa JM, Chial HJ, Epperson N, Boyd TD, Potter H. Neuron loss in the brain starts in childhood, increases exponentially with age and is halted by GM-CSF treatment in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310223. [PMID: 39072024 PMCID: PMC11275665 DOI: 10.1101/2024.07.14.24310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aging increases the risk of neurodegeneration, cognitive decline, and Alzheimer's disease (AD). Currently no means exist to measure neuronal cell death during life or to prevent it. Here we show that cross-sectional measures of human plasma proteins released from dying/damaged neurons (ubiquitin C-terminal hydrolase-L1/UCH-L1 and neurofilament light/NfL) become exponentially higher from age 2-85; UCH-L1 rises faster in females. Glial fibrillary acidic protein (GFAP) concentrations, indicating astrogliosis/inflammation, increase exponentially after age 40. Treatment with human granulocyte-macrophage colony-stimulating factor (GM-CSF/sargramostim) halted neuronal cell death, as evidenced by reduced plasma UCH-L1 concentrations, in AD participants to levels equivalent to those of five-year-old healthy controls. The ability of GM-CSF treatment to reduce neuronal apoptosis was confirmed in a rat model of AD. These findings suggest that the exponential increase in neurodegeneration with age, accelerated by neuroinflammation, may underlie the contribution of aging to cognitive decline and AD and can be halted by GM-CSF/sargramostim treatment.
Collapse
|
14
|
Matthews DC, Kinney JW, Ritter A, Andrews RD, Toledano Strom EN, Lukic AS, Koenig LN, Revta C, Fillit HM, Zhong K, Tousi B, Leverenz JB, Feldman HH, Cummings J. Relationships between plasma biomarkers, tau PET, FDG PET, and volumetric MRI in mild to moderate Alzheimer's disease patients. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12490. [PMID: 38988416 PMCID: PMC11233274 DOI: 10.1002/trc2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION The "A/T/N" (amyloid/tau/neurodegeneration) framework provides a biological basis for Alzheimer's disease (AD) diagnosis and can encompass additional changes such as inflammation ("I"). A spectrum of T/N/I imaging and plasma biomarkers was acquired in a phase 2 clinical trial of rasagiline in mild to moderate AD patients. We evaluated these to understand biomarker distributions and relationships within this population. METHODS Plasma biomarkers of pTau-181, neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), other inflammation-related proteins, imaging measures including fluorodeoxyglucose (FDG) positron emission tomography (PET), flortaucipir PET, and volumetric magnetic resonance imaging (MRI), and cognitive endpoints were analyzed to assess characteristics and relationships for the overall population (N = 47 at baseline and N = 21 for longitudinal cognitive comparisons) and within age-decade subgroups (57-69, 70-79, 80-90 years). RESULTS Data demonstrate wide clinical and biomarker heterogeneity in this population influenced by age and sex. Plasma pTau-181 and GFAP correlate with tau PET, most strongly in left inferior temporal cortex (p = 0.0002, p = 0.0006, respectively). In regions beyond temporal cortex, tau PET uptake decreased with age for the same pTau-181 or GFAP concentrations. FDG PET and brain volumes correlate with tau PET in numerous regions (such as inferior temporal: p = 0.0007, p = 0.00001, respectively). NfL, GFAP, and all imaging modalities correlate with baseline MMSE; subsequent MMSE decline is predicted by baseline parahippocampal and lateral temporal tau PET (p = 0.0007) and volume (p = 0.0006). Lateral temporal FDG PET (p = 0.006) and volume (p = 0.0001) are most strongly associated with subsequent ADAS-cog decline. NfL correlates with FDG PET and baseline MMSE but not tau PET. Inflammation biomarkers are intercorrelated but correlated with other biomarkers in only the youngest group. DISCUSSION Associations between plasma biomarkers, imaging biomarkers, and cognitive status observed in this study provide insight into relationships among biological processes in mild to moderate AD. Findings show the potential to characterize AD patients regarding likely tau pathology, neurodegeneration, prospective clinical decline, and the importance of covariates such as age. Highlights Plasma pTau-181 and GFAP correlated with regional and global tau PET in mild to moderate AD.NfL correlated with FDG PET and cognitive endpoints but not plasma pTau-181 or tau PET.Volume and FDG PET showed strong relationships to tau PET, one another, and cognitive status.Temporal volumes most strongly predicted decline in both MMSE and ADAS-cog.Volume and plasma biomarkers can enrich for elevated tau PET with age a significant covariate.
Collapse
Affiliation(s)
| | | | - Aaron Ritter
- Hoag Pickup Family Neurosciences InstituteNewport BeachCaliforniaUSA
| | | | - Erin N. Toledano Strom
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health Sciences, University of Nevada Las VegasLas VegasNevadaUSA
| | | | | | - Carolyn Revta
- Alzheimer's Disease Cooperative StudyUniversity of California, San Diego, School of MedicineLa JollaCaliforniaUSA
| | | | | | - Babak Tousi
- Cleveland Clinical Lous Ruvo Center for Brain HealthClevelandOhioUSA
| | | | - Howard H. Feldman
- Alzheimer's Disease Cooperative StudyUniversity of California, San Diego, School of MedicineLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health Sciences, University of Nevada Las VegasLas VegasNevadaUSA
| |
Collapse
|
15
|
Jang JH, Jun HJ, Lee C, Sohn E, Kwon O, Kang DH, Umar M, Jung IC, Jeong SJ. Therapeutic Potential of Combined Herbal Medicine and Electroacupuncture in Mild Cognitive Impairment Through Cytokine Modulation: An Observational Study. Neuropsychiatr Dis Treat 2024; 20:1331-1344. [PMID: 38919562 PMCID: PMC11198010 DOI: 10.2147/ndt.s465650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose We aimed to investigate the efficacy of a combined herbal formula and electroacupuncture (EA) for mild cognitive impairment (MCI), a neurodegenerative disease leading to dementia, and its underlying mechanisms of action. Patients and Methods This was a prospective open-label observational pilot study at Daejeon Korean Medicine Hospital of Daejeon University in South Korea from March 2022 to March 2023. We included six Korean patients (50% male) aged ≥ 45 years and < 85 years with MCI, a clinical dementia rating score of 0.5, and a Montreal Cognitive Assessment-Korea (MoCA-K) score ≤ 22. The exclusion criterion was impaired cognitive function. Patients received combined therapy, including a herbal formula and EA, for 12-24 weeks. We prescribed the herbal formulas Gamiguibi-tang, Yukmijihwang-tang, and Banhasasim-tang to the patients for at least 70% of the treatment period, in combination with EA. Moreover, we investigated changes in cognitive and cognition-related symptoms and cytokine expression in the blood following combined traditional medicine therapy. At baseline and after 12 and 24 weeks, we administered the MoCA-K and cognitive-related questionnaires. We analyzed network pharmacology to reflect the herbal formula intervention mechanism comprehensively. Results The median score [interquartile range] of MoCA-K at baseline was 19.5 [16.0, 22.0], which improved significantly (24.5 [24.0, 26.0], p < 0.01) over 24 weeks following combined therapy. We obtained no significant conclusion regarding cytokine changes due to the small sample size. In network pharmacology, we analyzed the brain, head, heart, peripheral nerves, peripheral nervous system, and pancreas as the enriched organs from the common targets of the three herbal formulas. Conclusion Combined herbal medicine and EA improved cognitive function in patients with MCI. We assume the underlying mechanism of herbal formulas to be antioxidative and anti-inflammatory changes in cytokine expression. Combined traditional medicine has potential therapeutic application in preventing MCI progression to dementia.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyeong Joon Jun
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - ChaYoung Lee
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ojin Kwon
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Hoon Kang
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Muhammad Umar
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Soo-Jin Jeong
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Krix S, Wilczynski E, Falgàs N, Sánchez-Valle R, Yoles E, Nevo U, Baruch K, Fröhlich H. Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches. Front Immunol 2024; 15:1343900. [PMID: 38720902 PMCID: PMC11078023 DOI: 10.3389/fimmu.2024.1343900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| | - Ella Wilczynski
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Neus Falgàs
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eti Yoles
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Kiss E, Kins S, Gorgas K, Venczel Szakács KH, Kirsch J, Kuhse J. Another Use for a Proven Drug: Experimental Evidence for the Potential of Artemisinin and Its Derivatives to Treat Alzheimer's Disease. Int J Mol Sci 2024; 25:4165. [PMID: 38673751 PMCID: PMC11049906 DOI: 10.3390/ijms25084165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials. In particular, the benefits to the main pathological hallmarks and events in the pathological cascade throughout AD development in different animal models of AD are summarized. Moreover, dose- and context-dependent effects of artemisinins are noted.
Collapse
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 69120 Kaiserslautern, Germany;
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Kinga Hajnal Venczel Szakács
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| |
Collapse
|
19
|
Shim KH, Kim D, Kang MJ, Pyun J, Park YH, Youn YC, Park KW, Suk K, Lee H, Gomes BF, Zetterberg H, An SSA, Kim S. Subsequent correlated changes in complement component 3 and amyloid beta oligomers in the blood of patients with Alzheimer's disease. Alzheimers Dement 2024; 20:2731-2741. [PMID: 38411315 PMCID: PMC11032549 DOI: 10.1002/alz.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) involves the complement cascade, with complement component 3 (C3) playing a key role. However, the relationship between C3 and amyloid beta (Aβ) in blood is limited. METHODS Plasma C3 and Aβ oligomerization tendency (AβOt) were measured in 35 AD patients and 62 healthy controls. Correlations with cerebrospinal fluid (CSF) biomarkers, cognitive impairment, and amyloid positron emission tomography (PET) were analyzed. Differences between biomarkers were compared in groups classified by concordances of biomarkers. RESULTS Plasma C3 and AβOt were elevated in AD patients and in CSF or amyloid PET-positive groups. Weak positive correlation was found between C3 and AβOt, while both had strong negative correlations with CSF Aβ42 and cognitive performance. Abnormalities were observed for AβOt and CSF Aβ42 followed by C3 changes. DISCUSSION Increased plasma C3 in AD are associated with amyloid pathology, possibly reflecting a defense response for Aβ clearance. Further studies on Aβ-binding proteins will enhance understanding of Aβ mechanisms in blood.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano TechnologyGachon UniversitySeongnamRepublic of Korea
| | - Danyeong Kim
- Department of Bionano TechnologyGachon UniversitySeongnamRepublic of Korea
| | - Min Ju Kang
- Department of NeurologyVeterans Medical Research InstituteVeterans Health Service Medical CenterSeoulRepublic of Korea
| | - Jung‐Min Pyun
- Department of NeurologySoonchunhyang University Seoul HospitalSoonchunhyang University College of MedicineSeoulRepublic of Korea
| | - Young Ho Park
- Department of NeurologySeoul National University College of Medicine and Clinical Neuroscience CenterSeoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Young Chul Youn
- Department of NeurologyChung‐Ang University College of MedicineSeoulRepublic of Korea
| | - Kyung Won Park
- Department of NeurologyDong‐A University College of Medicine and Institute of Convergence Bio‐HealthBusanRepublic of Korea
| | - Kyoungho Suk
- Department of PharmacologyKyungpook National University School of MedicineDaeguRepublic of Korea
| | - Ho‐Won Lee
- Department of NeurologyKyungpook National University School of MedicineDaeguRepublic of Korea
| | - Bárbara Fernandes Gomes
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Seong Soo A. An
- Department of Bionano TechnologyGachon UniversitySeongnamRepublic of Korea
| | - SangYun Kim
- Department of NeurologySeoul National University College of Medicine and Clinical Neuroscience CenterSeoul National University Bundang HospitalSeongnamRepublic of Korea
| | | |
Collapse
|
20
|
Abbatecola AM, Giuliani A, Biscetti L, Scisciola L, Battista P, Barbieri M, Sabbatinelli J, Olivieri F. Circulating biomarkers of inflammaging and Alzheimer's disease to track age-related trajectories of dementia: Can we develop a clinically relevant composite combination? Ageing Res Rev 2024; 96:102257. [PMID: 38437884 DOI: 10.1016/j.arr.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Alzheimer's disease (AD) is a rapidly growing global concern due to a consistent rise of the prevalence of dementia which is mainly caused by the aging population worldwide. An early diagnosis of AD remains important as interventions are plausibly more effective when started at the earliest stages. Recent developments in clinical research have focused on the use of blood-based biomarkers for improve diagnosis/prognosis of neurodegenerative diseases, particularly AD. Unlike invasive cerebrospinal fluid tests, circulating biomarkers are less invasive and will become increasingly cheaper and simple to use in larger number of patients with mild symptoms or at risk of dementia. In addition to AD-specific markers, there is growing interest in biomarkers of inflammaging/neuro-inflammaging, an age-related chronic low-grade inflammatory condition increasingly recognized as one of the main risk factor for almost all age-related diseases, including AD. Several inflammatory markers have been associated with cognitive performance and AD development and progression. The presence of senescent cells, a key driver of inflammaging, has also been linked to AD pathogenesis, and senolytic therapy is emerging as a potential treatment strategy. Here, we describe blood-based biomarkers clinically relevant for AD diagnosis/prognosis and biomarkers of inflammaging associated with AD. Through a systematic review approach, we propose that a combination of circulating neurodegeneration and inflammatory biomarkers may contribute to improving early diagnosis and prognosis, as well as providing valuable insights into the trajectory of cognitive decline and dementia in the aging population.
Collapse
Affiliation(s)
- Angela Marie Abbatecola
- Alzheimer's Disease Day Clinic, Azienda Sanitaria Locale, Frosinone, Italy; Univesità degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Scienze Umane, Sociali e della Salute, Cassino, Italy
| | - Angelica Giuliani
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Bari Institute, Italy.
| | | | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Bari Institute, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
21
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
22
|
AlMansoori ME, Jemimah S, Abuhantash F, AlShehhi A. Predicting early Alzheimer's with blood biomarkers and clinical features. Sci Rep 2024; 14:6039. [PMID: 38472245 PMCID: PMC10933308 DOI: 10.1038/s41598-024-56489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder that leads to dementia. This study employs explainable machine learning models to detect dementia cases using blood gene expression, single nucleotide polymorphisms (SNPs), and clinical data from Alzheimer's Disease Neuroimaging Initiative (ADNI). Analyzing 623 ADNI participants, we found that the Support Vector Machine classifier with Mutual Information (MI) feature selection, trained on all three data modalities, achieved exceptional performance (accuracy = 0.95, AUC = 0.94). When using gene expression and SNP data separately, we achieved very good performance (AUC = 0.65, AUC = 0.63, respectively). Using SHapley Additive exPlanations (SHAP), we identified significant features, potentially serving as AD biomarkers. Notably, genetic-based biomarkers linked to axon myelination and synaptic vesicle membrane formation could aid early AD detection. In summary, this genetic-based biomarker approach, integrating machine learning and SHAP, shows promise for precise AD diagnosis, biomarker discovery, and offers novel insights for understanding and treating the disease. This approach addresses the challenges of accurate AD diagnosis, which is crucial given the complexities associated with the disease and the need for non-invasive diagnostic methods.
Collapse
Affiliation(s)
- Muaath Ebrahim AlMansoori
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Sherlyn Jemimah
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Ferial Abuhantash
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Aamna AlShehhi
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
24
|
Foley KE, Winder Z, Sudduth TL, Martin BJ, Nelson PT, Jicha GA, Harp JP, Weekman EM, Wilcock DM. Alzheimer's disease and inflammatory biomarkers positively correlate in plasma in the UK-ADRC cohort. Alzheimers Dement 2024; 20:1374-1386. [PMID: 38011580 PMCID: PMC10917006 DOI: 10.1002/alz.13485] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Protein-based plasma assays provide hope for improving accessibility and specificity of molecular diagnostics to diagnose dementia. METHODS Plasma was obtained from participants (N = 837) in our community-based University of Kentucky Alzheimer's Disease Research Center cohort. We evaluated six Alzheimer's disease (AD)- and neurodegeneration-related (Aβ40, Aβ42, Aβ42/40, p-tau181, total tau, and NfLight) and five inflammatory biomarkers (TNF𝛼, IL6, IL8, IL10, and GFAP) using the SIMOA-based protein assay platform. Statistics were performed to assess correlations. RESULTS Our large cohort reflects previous plasma biomarker findings. Relationships between biomarkers to understand AD-inflammatory biomarker correlations showed significant associations between AD and inflammatory biomarkers suggesting peripheral inflammatory interactions with increasing AD pathology. Biomarker associations parsed out by clinical diagnosis (normal, MCI, and dementia) reveal changes in strength of the correlations across the cognitive continuum. DISCUSSION Unique AD-inflammatory biomarker correlations in a community-based cohort reveal a new avenue for utilizing plasma-based biomarkers in the assessment of AD and related dementias. HIGHLIGHTS Large community cohorts studying sex, age, and APOE genotype effects on biomarkers are few. It is unknown how biomarker-biomarker associations vary through aging and dementia. Six AD (Aβ40, Aβ42, Aβ42/40, p-tau181, total tau, and NfLight) and five inflammatory biomarkers (TNFα, IL6, IL8, IL10, and GFAP) were used to examine associations between biomarkers. Plasma biomarkers suggesting increasing cerebral AD pathology corresponded to increases in peripheral inflammatory markers, both pro-inflammatory and anti-inflammatory. Strength of correlations, between pairs of classic AD and inflammatory plasma biomarker, changes throughout cognitive progression to dementia.
Collapse
Affiliation(s)
- Kate E. Foley
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zachary Winder
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Tiffany L. Sudduth
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Barbara J. Martin
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Pathology and Laboratory MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Gregory A. Jicha
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Neurology, College of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Jordan P. Harp
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Neurology, College of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Erica M. Weekman
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
25
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
26
|
Nygaard-Odeh K, Soloy-Nilsen H, Kristiansen MG, Brekke OL, Mollnes TE, Berk M, Bramness JG, Oiesvold T. Cytokines in hepatitis C-infected patients with or without opioid maintenance therapy. Acta Neuropsychiatr 2024:1-7. [PMID: 38173235 DOI: 10.1017/neu.2023.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Both chronic hepatitis C virus (HCV) infection and opioids cause altered blood levels of cytokines. Previous studies have investigated levels of selected groups of cytokines in patients on opioid maintenance treatment. Little is known about the levels of multiple cytokines in patients with chronic HCV infection on opioid maintenance treatment. Our aim was to investigate the cytokine profile in patients with active HCV infection with and without opioid maintenance treatment. METHODS We conducted a cross-sectional study in an out-patients population included upon referral for antiviral hepatitis C infection treatment. The level of 27 cytokines was measured in serum using multiplex technology. Patients were interviewed using a modified version of the European addiction severity index. Data pertaining to weight, height, current medication, smoking habits, allergies, previous medical history and ongoing withdrawal symptoms were collected. Non-parametric testing was used to investigate differences in levels of cytokines between the two groups. A 3-model hierarchical regression analysis was used to analyse associations between cytokines and confounding variables. RESULTS Out of 120 included patients, 53 were on opioid maintenance treatment. Median duration of opioid treatment was 68.4 months. There were no demographical differences between the two groups other than age. IL-1β was lower and eotaxin-1 higher in the group on opioid maintenance treatment than in the non-opioid group. No other inter-group differences in the remaining cytokine levels were found. CONCLUSION In HCV infection patients, the impact of chronic opioid administration on peripheral circulating cytokine level is minimal.
Collapse
Affiliation(s)
- Kristin Nygaard-Odeh
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Hedda Soloy-Nilsen
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Magnhild Gangsoy Kristiansen
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Ole Lars Brekke
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodoe, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- The National Centre of Excellence in Youth Mental Health, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Jorgen G Bramness
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway
- Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway
| | - Terje Oiesvold
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| |
Collapse
|
27
|
Chimthanawala NMA, Haria A, Sathaye S. Non-invasive Biomarkers for Early Detection of Alzheimer's Disease: a New-Age Perspective. Mol Neurobiol 2024; 61:212-223. [PMID: 37596437 DOI: 10.1007/s12035-023-03578-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the elderly population. It gradually leads to memory loss, loss of thinking ability, and an overall cognitive decline. However, exhaustive literature is available to suggest that pathological changes in the brain occur decades before the first clinical symptoms appear. This review provides insight into the non-invasive biomarkers for early detection of AD that have been successfully studied in populations across the globe. These biomarkers have been detected in the blood, saliva, breath, and urine samples. Retinal imaging techniques are also reported. In this study, PubMed and Google scholar were the databases employed using keywords "Alzheimer's disease," "neurodegeneration," "non-invasive biomarkers," "early diagnosis," "blood-based biomarkers," and "preclinical AD," among others. The evaluation of these biomarkers will provide early diagnosis of AD in the preclinical stages due to their positive correlation with brain pathology in AD. Early diagnosis with reliable and timely intervention can effectively manage this disease.
Collapse
Affiliation(s)
- Niyamat M A Chimthanawala
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
28
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
29
|
Jiang J, Pan H, Shen F, Tan Y, Chen S. Ketogenic diet alleviates cognitive dysfunction and neuroinflammation in APP/PS1 mice via the Nrf2/HO-1 and NF-κB signaling pathways. Neural Regen Res 2023; 18:2767-2772. [PMID: 37449643 DOI: 10.4103/1673-5374.373715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease is a progressive neurological disorder characterized by cognitive decline and chronic inflammation within the brain. The ketogenic diet, a widely recognized therapeutic intervention for refractory epilepsy, has recently been proposed as a potential treatment for a variety of neurological diseases, including Alzheimer's disease. However, the efficacy of ketogenic diet in treating Alzheimer's disease and the underlying mechanism remains unclear. The current investigation aimed to explore the effect of ketogenic diet on cognitive function and the underlying biological mechanisms in a mouse model of Alzheimer's disease. Male amyloid precursor protein/presenilin 1 (APP/PS1) mice were randomly assigned to either a ketogenic diet or control diet group, and received their respective diets for a duration of 3 months. The findings show that ketogenic diet administration enhanced cognitive function, attenuated amyloid plaque formation and proinflammatory cytokine levels in APP/PS1 mice, and augmented the nuclear factor-erythroid 2-p45 derived factor 2/heme oxygenase-1 signaling pathway while suppressing the nuclear factor-kappa B pathway. Collectively, these data suggest that ketogenic diet may have a therapeutic potential in treating Alzheimer's disease by ameliorating the neurotoxicity associated with Aβ-induced inflammation. This study highlights the urgent need for further research into the use of ketogenic diet as a potential therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Jingwen Jiang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanxia Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Lab of Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| |
Collapse
|
30
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
31
|
Jain M, Dhariwal R, Patil N, Ojha S, Tendulkar R, Tendulkar M, Dhanda PS, Yadav A, Kaushik P. Unveiling the Molecular Footprint: Proteome-Based Biomarkers for Alzheimer's Disease. Proteomes 2023; 11:33. [PMID: 37873875 PMCID: PMC10594437 DOI: 10.3390/proteomes11040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis and prognosis due to their ability to reflect disease-specific molecular alterations. There is of great significance for biomarkers in AD diagnosis and management. It emphasizes the limitations of existing diagnostic approaches and the need for reliable and accessible biomarkers. Proteomics, a field that comprehensively analyzes the entire protein complement of cells, tissues, or bio fluids, is presented as a powerful tool for identifying AD biomarkers. There is a diverse range of proteomic approaches employed in AD research, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays. The challenges associated with identifying reliable biomarkers, such as sample heterogeneity and the dynamic nature of the disease. There are well-known proteins implicated in AD pathogenesis, such as amyloid-beta peptides, tau protein, Apo lipoprotein E, and clusterin, as well as inflammatory markers and complement proteins. Validation and clinical utility of proteome-based biomarkers are addressing the challenges involved in validation studies and the diagnostic accuracy of these biomarkers. There is great potential in monitoring disease progression and response to treatment, thereby aiding in personalized medicine approaches for AD patients. There is a great role for bioinformatics and data analysis in proteomics for AD biomarker research and the importance of data preprocessing, statistical analysis, pathway analysis, and integration of multi-omics data for a comprehensive understanding of AD pathophysiology. In conclusion, proteome-based biomarkers hold great promise in the field of AD research. They provide valuable insights into disease mechanisms, aid in early diagnosis, and facilitate personalized treatment strategies. However, further research and validation studies are necessary to harness the full potential of proteome-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Rupal Dhariwal
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Sandhya Ojha
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Reshma Tendulkar
- Vivekanand Education Society, College of Pharmacy, Chembur, Mumbai 400071, India;
| | - Mugdha Tendulkar
- Sardar Vallabhbhai Patel College of Science, Mira Rd (East), Thane 400071, India;
| | | | - Alpa Yadav
- Department of Botany, Indira Gandhi University, Meerpur, Rewari 122502, India;
| | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
32
|
Gonzales MM, Vela G, Philip V, Trevino H, LaRoche A, Wang CP, Parent DM, Kautz T, Satizabal CL, Tanner J, O'Bryant S, Maestre G, Tracy RP, Seshadri S. Demographic and Clinical Characteristics Associated With Serum GFAP Levels in an Ethnically Diverse Cohort. Neurology 2023; 101:e1531-e1541. [PMID: 37813589 PMCID: PMC10585700 DOI: 10.1212/wnl.0000000000207706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/09/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Elevations in circulating glial fibrillary acidic protein (GFAP), a putative marker of reactive astrocytosis, have been found to associate with cognitive decline and dementia status. Further validation in diverse cohorts and evaluation of potential health disparities are necessary for broader generalization. The goal of this study was to examine the associations between demographics, cardiovascular risk factors, and APOE ε4 status with serum GFAP levels among Mexican American and non-Hispanic White older adults across the continuum from cognitively unimpaired to Alzheimer disease dementia. METHODS Serum GFAP levels were assayed using a Simoa HD-1 analyzer in older adults enrolled in the observational Texas Alzheimer Research and Care Consortium. Associations between demographic and clinical characteristics with serum GFAP levels were evaluated using linear regression. The diagnostic accuracy of serum GFAP was further examined using area under the receiver operating characteristic curves (AUROC) in univariate and adjusted models, and optimal cut points were derived using the maximum Kolmogorov-Smirnov metric. All models were also stratified by ethnicity and disease stage. RESULTS A total of 1,156 Mexican American and 587 non-Hispanic White participants were included (mean age = 68 years, standard deviation = 10; 65% female). Older age (β = 0.562 (95% CI 0.515-0.609), p < 0.001), apolipoprotein ε4 status (β = 0.139 (95% CI 0.092-0.186), p < 0.001), and cognitive impairment (β = 0.150 (95% CI 0.103-0.197), p < 0.001) were positively associated with serum GFAP. By contrast, higher body mass index (β = -0.181 (95% CI -0.228 to -0.134), p < 0.001), diabetes (β = -0.065 (95% CI -0.112 to -0.018), p < 0.001), and tobacco use (β = -0.059 (95% CI -0.106 to -0.012), p < 0.001) were inversely associated with serum GFAP. AUROC values were generally comparable across ethnicities and model fit improved with inclusion of additional covariates. However, optimal cut-off values were consistently lower in Mexican Americans relative to non-Hispanic White participants. DISCUSSION The study results highlight the importance of understanding the role of broader demographic and clinical factors on circulating GFAP levels within diverse cohorts to enhance precision across clinical, research, and community settings.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville.
| | - Gabriel Vela
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Vinu Philip
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Hector Trevino
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Ashley LaRoche
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Chen-Pin Wang
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Danielle M Parent
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Tiffany Kautz
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Claudia L Satizabal
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Jeremy Tanner
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Sid O'Bryant
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Gladys Maestre
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Russell P Tracy
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| | - Sudha Seshadri
- From the Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.M.G., G.V., V.P., H.T., A.L., C.-P.W., T.K., C.L.S., J.T., S.S.); Department of Neurology (M.M.G., J.T., S.S.); Department of Population Health Sciences (C.-P.W., C.L.S.), University of Texas Health Science Center, San Antonio; South Texas Veterans Health Care System (C.-P.W.), Geriatric Research, Education and Clinical Center, San Antonio; Departments of Pathology and Laboratory Medicine (D.M.P., R.P.T.), and Biochemistry, Larner College of Medicine, University of Vermont, Burlington; Department of Medicine (T.K.), University of Texas Health Science Center at San Antonio; Department of Neurology (C.L.S., S.S.), Boston University School of Medicine, MA; Institute for Translational Research and Department of Family Medicine (S.O.B.), University of North Texas Health Science Center, Fort Worth; Neurosciences Laboratory (G.M.), Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of Medicine, Universidad del Zulia, Maracaibo, Venezuela; and Department of Biomedical Sciences (G.M.), Division of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville
| |
Collapse
|
33
|
Tao Q, Zhang C, Mercier G, Lunetta K, Ang TFA, Akhter‐Khan S, Zhang Z, Taylor A, Killiany RJ, Alosco M, Mez J, Au R, Zhang X, Farrer LA, Qiu WWQ. Identification of an APOE ε4-specific blood-based molecular pathway for Alzheimer's disease risk. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12490. [PMID: 37854772 PMCID: PMC10579631 DOI: 10.1002/dad2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION The precise apolipoprotein E (APOE) ε4-specific molecular pathway(s) for Alzheimer's disease (AD) risk are unclear. METHODS Plasma protein modules/cascades were analyzed using weighted gene co-expression network analysis (WGCNA) in the Alzheimer's Disease Neuroimaging Initiative study. Multivariable regression analyses were used to examine the associations among protein modules, AD diagnoses, cerebrospinal fluid (CSF) phosphorylated tau (p-tau), and brain glucose metabolism, stratified by APOE genotype. RESULTS The Green Module was associated with AD diagnosis in APOE ε4 homozygotes. Three proteins from this module, C-reactive protein (CRP), complement C3, and complement factor H (CFH), had dose-dependent associations with CSF p-tau and cognitive impairment only in APOE ε4 homozygotes. The link among these three proteins and glucose hypometabolism was observed in brain regions of the default mode network (DMN) in APOE ε4 homozygotes. A Framingham Heart Study validation study supported the findings for AD. DISCUSSION The study identifies the APOE ε4-specific CRP-C3-CFH inflammation pathway for AD, suggesting potential drug targets for the disease.Highlights: Identification of an APOE ε4 specific molecular pathway involving blood CRP, C3, and CFH for the risk of AD.CRP, C3, and CFH had dose-dependent associations with CSF p-Tau and brain glucose hypometabolism as well as with cognitive impairment only in APOE ε4 homozygotes.Targeting CRP, C3, and CFH may be protective and therapeutic for AD onset in APOE ε4 carriers.
Collapse
Affiliation(s)
- Qiushan Tao
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
| | - Chao Zhang
- Section of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Gustavo Mercier
- Section of Molecular Imaging and Nuclear MedicineDepartment of RadiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Lunetta
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Ting Fang Alvin Ang
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Samia Akhter‐Khan
- Department of Health Service & Population ResearchKing's College London, LondonDavid Goldberg CentreLondonUK
| | - Zhengrong Zhang
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew Taylor
- Department of OphthalmologyBoston University School of MedicineBostonMassachusettsUSA
| | - Ronald J. Killiany
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Michael Alosco
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
| | - Rhoda Au
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Xiaoling Zhang
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Wendy Wei Qiao Qiu
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | | |
Collapse
|
34
|
Thaker AA, McConnell BV, Rogers DM, Carlson NE, Coughlan C, Jensen AM, Lopez-Paniagua D, Holden SK, Pressman PS, Pelak VS, Filley CM, Potter H, Solano DA, Heffernan KS, Bettcher BM. Astrogliosis, neuritic microstructure, and sex effects: GFAP is an indicator of neuritic orientation in women. Brain Behav Immun 2023; 113:124-135. [PMID: 37394144 PMCID: PMC10584366 DOI: 10.1016/j.bbi.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aβ42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Dustin M Rogers
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria M Jensen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Lopez-Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha K Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter S Pressman
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brianne M Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Abramova O, Zorkina Y, Ushakova V, Gryadunov D, Ikonnikova A, Fedoseeva E, Emelyanova M, Ochneva A, Morozova I, Pavlov K, Syunyakov T, Andryushchenko A, Savilov V, Kurmishev M, Andreuyk D, Shport S, Gurina O, Chekhonin V, Kostyuk G, Morozova A. Alteration of Blood Immune Biomarkers in MCI Patients with Different APOE Genotypes after Cognitive Training: A 1 Year Follow-Up Cohort Study. Int J Mol Sci 2023; 24:13395. [PMID: 37686198 PMCID: PMC10488004 DOI: 10.3390/ijms241713395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Many studies aim to detect the early phase of dementia. One of the major ways to achieve this is to identify corresponding biomarkers, particularly immune blood biomarkers. The objective of this study was to identify such biomarkers in patients with mild cognitive impairment (MCI) in an experiment that included cognitive training. A group of patients with MCI diagnoses over the age of 65 participated in the study (n = 136). Measurements of cognitive functions (using the Mini-Mental State Examination scale and Montreal Cognitive Assessment) and determination of 27 serum biomarkers were performed twice: on the first visit and on the second visit, one year after the cognitive training. APOE genotypes were also determined. Concentrations of EGF (F = 17; p = 0.00007), Eotaxin (F = 7.17; p = 0.008), GRO (F = 13.42; p = 0.0004), IL-8 (F = 8.16; p = 0.005), MCP-1 (F = 13.46; p = 0.0001) and MDC (F = 5.93; p = 0.016) increased after the cognitive training in MCI patients. All these parameters except IL-8 demonstrated a weak correlation with other immune parameters and were poorly represented in the principal component analysis. Differences in concentrations of IP-10, FGF-2, TGFa and VEGF in patients with MCI were associated with APOE genotype. Therefore, the study identified several immune blood biomarkers that could potentially be associated with changes in cognitive function.
Collapse
Affiliation(s)
- Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Konstantin Pavlov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Timur Syunyakov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, 443016 Samara, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Denis Andreuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Svetlana Shport
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
36
|
Qi X, Liu Y, Chi H, Yang Y, Xiong Q, Li M, Yao R, Sun H, Li Z, Zhang J. Complement proteins in serum astrocyte-derived exosomes are associated with mild cognitive impairment in type 1 diabetes mellitus patients. Neurosci Lett 2023; 810:137318. [PMID: 37271220 DOI: 10.1016/j.neulet.2023.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The complement system plays a crucial role in cognitive impairment. The aim of this study is to investigate the correlation between the complement proteins levels in serum astrocyte-derived exosomes (ADEs) and mild cognitive impairment (MCI) in type 1 diabetes mellitus (T1DM) patients. METHODS In this cross-sectional study, the patients with immune-mediated T1DM were enrolled. Healthy subjects matched for age and sex with T1DM patients were selected as controls. The cognitive function was evaluated by a Beijing version of the Montreal Cognitive Assessment (MoCA) questionnaire. The complement proteins including C5b-9, C3b and Factor B in serum ADEs were measured by ELISA kits. RESULTS This study recruited 55 subjects immune-mediated T1DM patients without dementia, including 31 T1DM patients with MCI, 24 T1DM patients without MCI. 33 healthy subjects were enrolled as controls. The results showed higher complement proteins including C5b-9, C3b and Factor B levels in ADEs from T1DM patients with MCI than those in the controls (P < 0.001, P < 0.001, P = 0.006) and T1DM patients without MCI (P = 0.02, P = 0.02, P = 0.03). The C5b-9 levels in ADEs were independently associated with MCI in T1DM patients(OR: 1.20, 95% CI: 1.00-1.44, P = 0.04). The C5b-9 levels in ADEs were significantly correlated with global cognitive scores (β = -0.360, P<0.001) and visuo-executive (β = -0.132, P<0.001), language(β = -0.036, P = 0.026) and delayed recall score (β = -0.090,P = 0.007). There was no correlation between the C5b-9 levels in ADEs and the fasting glucose, HbA1c, fasting c-peptide and GAD65 antibody in T1DM patients. Furthermore, the C5b-9, C3b and Factor B levels in ADEs exhibited a fair combined diagnostic value for MCI, with an area under the curve of 0.76 (95% CI: 0.63-0.88, P = 0.001). CONCLUSION The elevated C5b-9 levels in ADEswere significantly associated with theMCI in T1DM patients. The C5b-9 in ADEs may be used as a marker of MCI in T1DM patients.
Collapse
Affiliation(s)
- Xiaoxiao Qi
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yingxiao Liu
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Haiyan Chi
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yachao Yang
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Qiao Xiong
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
37
|
Liu J, Liu S, Zeng L, Tsilioni I. Amyloid Beta Peptides Lead to Mast Cell Activation in a Novel 3D Hydrogel Model. Int J Mol Sci 2023; 24:12002. [PMID: 37569378 PMCID: PMC10419190 DOI: 10.3390/ijms241512002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease and the world's primary cause of dementia among the elderly population. The aggregation of toxic amyloid-beta (Aβ) is one of the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as one of the major features of AD, which involves a network of interactions between immune cells. The mast cell (MC) is an innate immune cell type known to serve as a first responder to pathological changes and crosstalk with microglia and neurons. Although an increased number of mast cells were found near the sites of Aβ deposition, how mast cells are activated in AD is not clear. We developed a 3D culture system to culture MCs and investigated the activation of MCs by Aβ peptides. Because collagen I is the major component of extracellular matrix (ECM) in the brain, we encapsulated human LADR MCs in gels formed by collagen I. We found that 3D-cultured MCs survived and proliferated at the same level as MCs in suspension. Additionally, they can be induced to secrete inflammatory cytokines as well as MC proteases tryptase and chymase by typical MC activators interleukin 33 (IL-33) and IgE/anti-IgE. Culturing with peptides Aβ1-42, Aβ1-40, and Aβ25-35 caused MCs to secrete inflammatory mediators, with Aβ1-42 inducing the maximum level of activation. These data indicate that MCs respond to amyloid deposition to elicit inflammatory responses and demonstrate the validity of collagen gel as a model system to investigate MCs in a 3D environment to understand neuroinflammation in AD.
Collapse
Affiliation(s)
- Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| | - Sihan Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
- Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Program in Pharmacology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Orthopaedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| |
Collapse
|
38
|
Veteleanu A, Stevenson-Hoare J, Keat S, Daskoulidou N, Zetterberg H, Heslegrave A, Escott-Price V, Williams J, Sims R, Zelek WM, Carpanini SM, Morgan BP. Alzheimer's disease-associated complement gene variants influence plasma complement protein levels. J Neuroinflammation 2023; 20:169. [PMID: 37480051 PMCID: PMC10362776 DOI: 10.1186/s12974-023-02850-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) has been associated with immune dysregulation in biomarker and genome-wide association studies (GWAS). GWAS hits include the genes encoding complement regulators clusterin (CLU) and complement receptor 1 (CR1), recognised as key players in AD pathology, and complement proteins have been proposed as biomarkers. MAIN BODY To address whether changes in plasma complement protein levels in AD relate to AD-associated complement gene variants we first measured relevant plasma complement proteins (clusterin, C1q, C1s, CR1, factor H) in a large cohort comprising early onset AD (EOAD; n = 912), late onset AD (LOAD; n = 492) and control (n = 504) donors. Clusterin and C1q were significantly increased (p < 0.001) and sCR1 and factor H reduced (p < 0.01) in AD plasma versus controls. ROC analyses were performed to assess utility of the measured complement biomarkers, alone or in combination with amyloid beta, in predicting AD. C1q was the most predictive single complement biomarker (AUC 0.655 LOAD, 0.601 EOAD); combining C1q with other complement or neurodegeneration makers through stepAIC-informed models improved predictive values slightly. Effects of GWS SNPs (rs6656401, rs6691117 in CR1; rs11136000, rs9331888 in CLU; rs3919533 in C1S) on protein concentrations were assessed by comparing protein levels in carriers of the minor vs major allele. To identify new associations between SNPs and changes in plasma protein levels, we performed a GWAS combining genotyping data in the cohort with complement protein levels as endophenotype. SNPs in CR1 (rs6656401), C1S (rs3919533) and CFH (rs6664877) reached significance and influenced plasma levels of the corresponding protein, whereas SNPs in CLU did not influence clusterin levels. CONCLUSION Complement dysregulation is evident in AD and may contribute to pathology. AD-associated SNPs in CR1, C1S and CFH impact plasma levels of the encoded proteins, suggesting a mechanism for impact on disease risk.
Collapse
Affiliation(s)
- Aurora Veteleanu
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | | | - Samuel Keat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, WC1E6BT UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Psychology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London, London, WC1E6BT UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG UK
| | | | - Julie Williams
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF244HQ UK
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Bryan Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
39
|
Kodosaki E, Zetterberg H, Heslegrave A. Validating blood tests as a possible routine diagnostic assay of Alzheimer's disease. Expert Rev Mol Diagn 2023; 23:1153-1165. [PMID: 38018372 DOI: 10.1080/14737159.2023.2289553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION In recent years, exciting developments in disease modifying treatments for Alzheimer's disease (AD) have made accurate and timely diagnosis of this disease a priority. Blood biomarkers (BBMs) for amyloid pathology using improved immunoassay and mass spectrometry techniques have been an area of intense research for the last 10 years and are coming to the fore, as a real prospect to be used in the clinical diagnostics of the disease. AREAS COVERED The following review will update and discuss blood biomarkers that will be most useful in diagnosing AD and the context necessary for their implementation. EXPERT OPINION It is clear we now have BBMs, and technology to measure them, that are capable of detecting amyloid pathology in AD. The challenge is to validate them across platforms and populations to incorporate them into clinical practice. It is important that implementation comes with education, we need to give clinicians the tools for appropriate use and interpretation. It is feasible that BBMs will be used to screen populations, initially for clinical trial entry but also therapeutic intervention in the foreseeable future. We now need to focus BBM research on other pathologies to ensure we accelerate the development of therapeutics for all neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wisconsin Alzheimer's Disease Research Centre, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology,Dementia Research Institute at UCL, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
| |
Collapse
|
40
|
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, Hemphill A, Dotson VM, Wharton W. Intersectionality in Alzheimer's Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer's Disease. Neurotherapeutics 2023; 20:1019-1036. [PMID: 37490246 PMCID: PMC10457280 DOI: 10.1007/s13311-023-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
It is well known that vascular factors and specific social determinants of health contribute to dementia risk and that the prevalence of these risk factors differs according to race and sex. In this review, we discuss the intersection of sex and race, particularly female sex and Black American race. Women, particularly Black women, have been underrepresented in Alzheimer's disease clinical trials and research. However, in recent years, the number of women participating in clinical research has steadily increased. A greater prevalence of vascular risk factors such as hypertension and type 2 diabetes, coupled with unique social and environmental pressures, puts Black American women particularly at risk for the development of Alzheimer's disease and related dementias. Female sex hormones and the use of hormonal birth control may offer some protective benefits, but results are mixed, and studies do not consistently report the demographics of their samples. We argue that as a research community, greater efforts should be made to not only recruit this vulnerable population, but also report the demographic makeup of samples in research to better target those at greatest risk for the disease.
Collapse
Affiliation(s)
- Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Bruno Hammerschlag
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Chinkuli Munkombwe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Arianna Bird
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Mercedes Fyffe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Asia Hemphill
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
41
|
Wu S, Yang F, Chao S, Wang B, Wang W, Li H, Yu L, He L, Li X, Sun L, Qin S. Altered DNA methylome profiles of blood leukocytes in Chinese patients with mild cognitive impairment and Alzheimer's disease. Front Genet 2023; 14:1175864. [PMID: 37388929 PMCID: PMC10300350 DOI: 10.3389/fgene.2023.1175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Objective: DNA methylation plays a potential role in the pathogenesis of Alzheimer's disease (AD). However, little is known about the global changes of blood leukocyte DNA methylome profiles from Chinese patients with mild cognitive impairment (MCI) and with AD, or the specific DNA methylation-based signatures associated with MCI and AD. In this study, we sought to dissect the characteristics of blood DNA methylome profiles in MCI- and AD-affected Chinese patients with the aim of identifying novel DNA methylation biomarkers for AD. Methods: In this study, we profiled the DNA methylome of peripheral blood leukocytes from 20 MCI- and 20 AD-affected Chinese patients and 20 cognitively healthy controls (CHCs) with the Infinium Methylation EPIC BeadChip array. Results: We identified significant alterations of the methylome profiles in MCI and AD blood leukocytes. A total of 2,582 and 20,829 CpG sites were significantly and differentially methylated in AD and MCI compared with CHCs (adjusted p < 0.05), respectively. Furthermore, 441 differentially methylated positions (DMPs), aligning to 213 unique genes, were overlapped by the three comparative groups of AD versus CHCs, MCI versus CHCs, and AD versus MCI, of which 6 and 5 DMPs were continuously hypermethylated and hypomethylated in MCI and AD relative to CHCs (adjusted p < 0.05), respectively, such as FLNC cg20186636 and AFAP1 cg06758191. The DMPs with an area under the curve >0.900, such as cg18771300, showed high potency for predicting MCI and AD. In addition, gene ontology and pathway enrichment results showed that these overlapping genes were mainly involved in neurotransmitter transport, GABAergic synaptic transmission, signal release from synapse, neurotransmitter secretion, and the regulation of neurotransmitter levels. Furthermore, tissue expression enrichment analysis revealed a subset of potentially cerebral cortex-enriched genes associated with MCI and AD, including SYT7, SYN3, and KCNT1. Conclusion: This study revealed a number of potential biomarkers for MCI and AD, also highlighted the presence of epigenetically dysregulated gene networks that may engage in the underlying pathological events resulting in the onset of cognitive impairment and AD progression. Collectively, this study provides prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Fan Yang
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Shan Chao
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Bo Wang
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wuqian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - He Li
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
- Shanghai Mental Health Center, Editorial Office, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
43
|
Kloske CM, Barnum CJ, Batista AF, Bradshaw EM, Brickman AM, Bu G, Dennison J, Gearon MD, Goate AM, Haass C, Heneka MT, Hu WT, Huggins LKL, Jones NS, Koldamova R, Lemere CA, Liddelow SA, Marcora E, Marsh SE, Nielsen HM, Petersen KK, Petersen M, Piña-Escudero SD, Qiu WQ, Quiroz YT, Reiman E, Sexton C, Tansey MG, Tcw J, Teunissen CE, Tijms BM, van der Kant R, Wallings R, Weninger SC, Wharton W, Wilcock DM, Wishard TJ, Worley SL, Zetterberg H, Carrillo MC. APOE and immunity: Research highlights. Alzheimers Dement 2023; 19:2677-2696. [PMID: 36975090 DOI: 10.1002/alz.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
Abstract
INTRODUCTION At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
Collapse
Affiliation(s)
| | | | - Andre F Batista
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mary D Gearon
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alison M Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA
| | - Lenique K L Huggins
- Department of Biology, Duke University, Durham, North Carolina, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Nahdia S Jones
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Radosveta Koldamova
- EOH, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shane A Liddelow
- Neuroscience Institute and Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's disease, Dept. of Genetics & Genomic Sciences, Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kellen K Petersen
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Petersen
- Department of Family Medicine, Institute of Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stefanie D Piña-Escudero
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco, California, USA
| | - Wei Qiao Qiu
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yakeel T Quiroz
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
- Banner Research, Phoenix, Arizona, USA
| | | | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Tcw
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rebecca Wallings
- CTRND, Department of Neuroscience, University of Florida, Florida, USA
| | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tyler James Wishard
- Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
44
|
Daskoulidou N, Shaw B, Torvell M, Watkins L, Cope EL, Carpanini SM, Allen ND, Morgan BP. Complement receptor 1 is expressed on brain cells and in the human brain. Glia 2023; 71:1522-1535. [PMID: 36825534 PMCID: PMC10953339 DOI: 10.1002/glia.24355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Genome wide association studies (GWAS) have highlighted the importance of the complement cascade in pathogenesis of Alzheimer's disease (AD). Complement receptor 1 (CR1; CD35) is among the top GWAS hits. The long variant of CR1 is associated with increased risk for AD; however, roles of CR1 in brain health and disease are poorly understood. A critical confounder is that brain expression of CR1 is controversial; failure to demonstrate brain expression has provoked the suggestion that peripherally expressed CR1 influences AD risk. We took a multi-pronged approach to establish whether CR1 is expressed in brain. Expression of CR1 at the protein and mRNA level was assessed in human microglial lines, induced pluripotent stem cell (iPSC)-derived microglia from two sources and brain tissue from AD and control donors. CR1 protein was detected in microglial lines and iPSC-derived microglia expressing different CR1 variants when immunostained with a validated panel of CR1-specific antibodies; cell extracts were positive for CR1 protein and mRNA. CR1 protein was detected in control and AD brains, co-localizing with astrocytes and microglia, and expression was significantly increased in AD compared to controls. CR1 mRNA expression was detected in all AD and control brain samples tested; expression was significantly increased in AD. The data unequivocally demonstrate that the CR1 transcript and protein are expressed in human microglia ex vivo and on microglia and astrocytes in situ in the human brain; the findings support the hypothesis that CR1 variants affect AD risk by directly impacting glial functions.
Collapse
Affiliation(s)
| | - Bethany Shaw
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Lewis Watkins
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Emma L. Cope
- School of Biosciences, Cardiff UniversityCardiffUK
| | | | - Nicholas D. Allen
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
- School of Biosciences, Cardiff UniversityCardiffUK
| | - B. Paul Morgan
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| |
Collapse
|
45
|
Abdel Bar FM, Mira A, Foudah AI, Alossaimi MA, Alkanhal SF, Aldaej AM, ElNaggar MH. In Vitro and In Silico Investigation of Polyacetylenes from Launaea capitata (Spreng.) Dandy as Potential COX-2, 5-LOX, and BchE Inhibitors. Molecules 2023; 28:molecules28083526. [PMID: 37110760 PMCID: PMC10145610 DOI: 10.3390/molecules28083526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Diverse secondary metabolites are biosynthesized by plants via various enzymatic cascades. These have the capacity to interact with various human receptors, particularly enzymes implicated in the etiology of several diseases. The n-hexane fraction of the whole plant extract of the wild edible plant, Launaea capitata (Spreng.) Dandy was purified by column chromatography. Five polyacetylene derivatives were identified, including (3S,8E)-deca-8-en-4,6-diyne-1,3-diol (1A), (3S)-deca-4,6,8-triyne-1,3-diol (1B), (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1,3-diol (2), bidensyneoside (3), and (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1-ol-3-O-β-D-glucopyranoside (4). These compounds were investigated for their in vitro inhibitory activity against enzymes involved in neuroinflammatory disorders, including cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and butyrylcholinesterase (BchE) enzymes. All isolates recorded weak-moderate activities against COX-2. However, the polyacetylene glycoside (4) showed dual inhibition against BchE (IC50 14.77 ± 1.55 μM) and 5-LOX (IC50 34.59 ± 4.26 μM). Molecular docking experiments were conducted to explain these results, which showed that compound 4 exhibited greater binding affinity to 5-LOX (-8.132 kcal/mol) compared to the cocrystallized ligand (-6.218 kcal/mol). Similarly, 4 showed a good binding affinity to BchE (-7.305 kcal/mol), which was comparable to the cocrystallized ligand (-8.049 kcal/mol). Simultaneous docking was used to study the combinatorial affinity of the unresolved mixture 1A/1B to the active sites of the tested enzymes. Generally, the individual molecules showed lower docking scores against all the investigated targets compared to their combination, which was consistent with the in vitro results. This study demonstrated that the presence of a sugar moiety (in 3 and 4) resulted in dual inhibition of 5-LOX and BchE enzymes compared to their free polyacetylenes analogs. Thus, polyacetylene glycosides could be suggested as potential leads for developing new inhibitors against the enzymes involved in neuroinflammation.
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Mira
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shatha F Alkanhal
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alanoud M Aldaej
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
46
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
47
|
Chandra PK, Braun SE, Maity S, Castorena-Gonzalez JA, Kim H, Shaffer JG, Cikic S, Rutkai I, Fan J, Guidry JJ, Worthylake DK, Li C, Abdel-Mageed AB, Busija DW. Circulating Plasma Exosomal Proteins of Either SHIV-Infected Rhesus Macaque or HIV-Infected Patient Indicates a Link to Neuropathogenesis. Viruses 2023; 15:794. [PMID: 36992502 PMCID: PMC10058833 DOI: 10.3390/v15030794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood-brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers-possibly associated with viral reactivation and neuropathogenesis-that may elucidate the etiology of HAND.
Collapse
Affiliation(s)
- Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Stephen E. Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sudipa Maity
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University, New Orleans, LA 70112, USA
| | - Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jessie J. Guidry
- Proteomics Core Facility, Louisiana State University, New Orleans, LA 70112, USA
| | - David K. Worthylake
- Proteomics Core Facility, Louisiana State University, New Orleans, LA 70112, USA
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Asim B. Abdel-Mageed
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David W. Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
48
|
Zorkina Y, Abramova O, Ushakova V, Andreyuk D, Andriushchenko N, Pavlov K, Savilov V, Soloveva K, Kurmishev M, Syunyakov T, Karpenko O, Andryushchenko A, Gurina O, Kostyuk G, Morozova A. Inflammatory biomarkers and lipid metabolism parameters in women with mild cognitive impairment and dementia. Women Health 2023; 63:285-295. [PMID: 36882933 DOI: 10.1080/03630242.2023.2185750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The detection of specific markers of dementia and mild cognitive decline (MCI) could be the key to disease prevention and forehanded treatment. Female gender is one of the major risk factor for dementia. The aim of our study was to compare serum concentration of some factors related to lipid metabolism and the immune system in patients with MCI and dementia. The study was performed on women >65 years old: controls (n = 75), diagnosed with dementia (n = 73) and MCI (n = 142). Patients were evaluated using Mini-Mental State Examination, Clock Drawing Test and Montreal Cognitive Assessment scales in the period 2020-2021. The level of Apo A1 and HDL was significantly decreased in patients with dementia; the level of Apo A1 was also decreased in MCI. EGF, eotaxin-1, GRO-α, and IP-10 were elevated in patients with dementia compared to the controls. IL-8, MIP-1β, sCD40L, and TNF-α levels were decreased in MCI patients and increased in patients with dementia compared to the control. Serum VEGF levels were decreased in MCI and dementia patients in comparison with the control. We hypothesize that no single marker can indicate a neurodegenerative process. Future research should focus on identifying markers to determine possible diagnostic combinations that can reliably predict neurodegeneration.
Collapse
Affiliation(s)
- Yana Zorkina
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia.,Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Olga Abramova
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia.,Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia.,Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Denis Andreyuk
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Nika Andriushchenko
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong, China
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Victor Savilov
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Kristina Soloveva
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Marat Kurmishev
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Timur Syunyakov
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Olga Karpenko
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Alisa Andryushchenko
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Georgiy Kostyuk
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Anna Morozova
- Research Centre for Neuropsychiatry, Mental-Health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia.,Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
49
|
Royall DR, Palmer RF. Multiple Adipokines Predict Dementia Severity as Measured by δ: Replication Across Biofluids and Cohorts. J Alzheimers Dis 2023; 92:639-652. [PMID: 36776066 DOI: 10.3233/jad-221052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND We have explored dementia's blood-based protein biomarkers in the Texas Alzheimer's Research and Care Consortium (TARCC) study. Among them are adipokines, i.e., proteins secreted by adipose tissue some of which have been associated with cognitive impairment. OBJECTIVE To associate adipokines with dementia severity and replicate their association across cohorts and biofluids (serum /plasma). METHODS We used eight rationally chosen blood-based protein biomarkers as indicators of a latent variable, i.e., "Adipokines". We then associated that construct with dementia severity as measured by the latent dementia-specific phenotype "δ" in structural equation models (SEM). Significant factor loadings and Adipokines' association with δ were replicated across biofluids in the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS Eight adipokine proteins loaded significantly on the Adipokines construct. Adipokines measured in plasma (ADNI) or serum (TARCC) explained 24 and 70% of δ's variance, respectively. An Adipokine composite score, derived from the latent variables, rose significantly across clinical diagnoses and achieved high areas under the receiver operating characteristic curve (ROC/AUC) for discrimination of Alzheimer's disease from normal controls (NC) or cases of mild cognitive impairment (MCI) and between NC and MCI. CONCLUSION These results again suggest that SEM can be used to create latent biomarker classifiers that replicate across samples and biofluids, and that a substantial fraction of dementia's variance is attributable to peripheral blood-based protein levels via the patterns codified in those latent constructs.
Collapse
Affiliation(s)
- Donald R Royall
- Department of Psychiatry, the University of Texas Health Science Center, San Antonio, TX, USA.,Department of Medicine, the University of Texas Health Science Center, San Antonio, TX, USA.,Department of Family and Community Medicine, the University of Texas Health Science Center, San Antonio, TX, USA.,The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Disease, the University of Texas Health ScienceCenter, San Antonio, TX, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, the University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
50
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|