1
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2025; 70:79-101. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
2
|
Wang X, Lu Y, Li X, Wang M, Liu X, Huang H, Cao W, Liu Y, Ren L, Xu Y. Integrated metabolomics and transcriptomics analyses for understanding the mechanism underlying amantadine-induced toxicity in Laminaria japonica. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137616. [PMID: 39965339 DOI: 10.1016/j.jhazmat.2025.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The antiviral agent, amantadine, is widely present in marine ecosystems and poses a significant threat to marine organisms. However, studies on the toxicity of amantadine across the full life cycle of the brown alga Laminaria japonica, particularly during the microscopic gametophyte stage, remain lacking. A comprehensive approach combing biochemical analyses and multi-omics techniques was employed to investigate the mechanisms underlying amantadine-induced toxicity in L. japonica gametophytes. The development rate of algal cells was less than 3 % from 103 to 107 ng/L of amantadine. In total, 1049 differentially expressed genes and 215-231 differential metabolites were detected, with the majority involved in amino acid, lipid, and carbohydrate metabolism. Integrated analysis showed that alginate biosynthesis and glycerophospholipid metabolism were affected, suggesting damage to the cell wall and membrane structure. Key genes (e.g., SOD2) and metabolites (e.g., arachidonic acid and α-linolenic acid), associated with the antioxidant system and arachidonic acid metabolism, were identified, leading to oxidative stress in the algae. Furthermore, the downregulation of genes and metabolites involved in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, and the pentose phosphate pathway may inhibit ATP supply and NADPH generation, negatively affecting metabolic processes and inhibiting algal cell growth. In contrast to disrupting protein synthesis in juvenile sporophytes, amantadine primarily interferes with photosynthesis and carbohydrate metabolism in gametophytes. These findings offer new insights into the mechanisms by which amantadine impedes the growth and metabolism of algae throughout their life cycle in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaohan Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yao Lu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiaojie Li
- Shandong Oriental Ocean Sci-Tech Co., Ltd., Shandong Technology Innovation Center of Algae and Sea Cucumber, Yantai 264003, China
| | - Minglei Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiaojing Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Hui Huang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Wei Cao
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yongchun Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Lihua Ren
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China.
| |
Collapse
|
3
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
4
|
Gozai-Alghamdi SA, Aljbour SM, Amin SA, Agustí S. Photobiota of the Tropical Red Sea: Fatty Acid Profile Analysis and Nutritional Quality Assessments. Molecules 2025; 30:621. [PMID: 39942724 PMCID: PMC11820627 DOI: 10.3390/molecules30030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Photosynthetic organisms are primary sources of marine-derived molecules, particularly ω3 fatty acids (FAs), which influence the quality of marine foods. It is reported that tropical organisms possess lower FA nutritional quality than those from colder oceans. However, the high biodiversity known for tropical areas may help compensate for this deficiency by producing a high diversity of molecules with nutritional benefits for the ecosystem. Here we addressed this aspect by analyzing the FA profiles of 20 photosynthetic organisms from the salty and warm Red Sea, a biodiversity hot spot, including cyanobacteria, eukaryotic microalgae, macroalgae, mangrove leaves, as well as three selected reef's photosymbiotic zooxanthellate corals and jellyfish. Using direct transesterification, gas chromatography-mass spectrometry, FA absolute quantification, and nutritional indexes, we evaluated their lipid nutritional qualities. We observed interspecific and strain-specific variabilities in qualities, which the unique environmental conditions of the Red Sea may help to explain. Generally, eukaryotic microalgae exhibited the highest nutritional quality. The previously unanalyzed diatoms Leyanella sp. and Minutocellus sp. had the highest eicosapentaenoic acid (EPA) contents. The bioprospected Red Sea photobiota exhibited pharmaceutical and nutraceutical potential. By sourcing and quantifying these bioactive compounds, we highlight the untapped rich biodiversity of the Red Sea and showcase opportunities to harness these potentials.
Collapse
Affiliation(s)
- Sarah A. Gozai-Alghamdi
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Biological Sciences, Faculty of Science, University of Jeddah (UJ), Jeddah 21959, Saudi Arabia
| | - Samir M. Aljbour
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University (BAU), Al-Salt 19117, Jordan
| | - Saeed A. Amin
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Susana Agustí
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
| |
Collapse
|
5
|
Tounsi L, Ben Hlima H, Derbel H, Duchez D, Gardarin C, Dubessay P, Drira M, Fendri I, Michaud P, Abdelkafi S. Enhanced growth and metabolite production from a novel strain of Porphyridium sp. Bioengineered 2024; 15:2294160. [PMID: 38131141 PMCID: PMC10761138 DOI: 10.1080/21655979.2023.2294160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Microalgae are capable of generating numerous metabolites that possess notable biological activities and hold substantial promise for various industrial applications. Nevertheless, the taxonomic diversity of these photosynthetic microorganisms has not received thorough investigation. Using the 18S rRNA encoding gene, a recently discovered strain originating from the Tunisian coast (the governorate of Mahdia) was identified as a member of the Porphyridium genus. The growth response as well as the metabolite accumulation of Porphyridium sp. to different culture media (Pm, F/2, and Hemerick) was investigated over a period of 52 days. The highest biomass production was recorded with Pm medium (2 × 107 cell/mL). The apparent growth rates (µ) and the doubling time (Dt) were about 0.081 day-1 and 12.34 days, respectively. The highest chlorophyll a (0.678 ± 0.005 pg/cell), total carotenoids (0.18 ± 0.003 pg/cell), phycoerythrin (3.88 ± 0.003 pg/cell), and proteins (14.58 ± 0.35 pg/cell) contents were observed with F/2 medium. Cultivating Porphyridium sp. in both F/2 and Hemerick media yielded similar levels of starch accumulation. The Hemerick medium has proven to be the most suitable for the production of lipids (2.23% DW) and exopolysaccharides (5.41 ± 0.56 pg/cell).
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Hajer Ben Hlima
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Hana Derbel
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - David Duchez
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Christine Gardarin
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Nguyen AQ, Mohammadi M, Alian M, Muralitharan G, Chauhan VS, Balan V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques. Biotechnol Adv 2024; 77:108471. [PMID: 39437877 DOI: 10.1016/j.biotechadv.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Interest in red microalgae of the Porphyridium genus has surged due to their richness in phycobiliproteins, polyunsaturated fatty acids, and sulfated polysaccharides. These biomasses and their derivatives find applications across food, feed, nutraceutical, pharmaceutical, and cosmetic industries. A deeper understanding of their properties and extraction methods is essential to optimize downstream processing. This paper comprehensively reviews Porphyridium sp., focusing on cultivation techniques, bioproduct extraction, purification, and characterization. It delves into protein, lipid, and polysaccharide extraction, considering the influence of culture conditions on biomass yield. Various methods like chromatography, electrophoresis, and membrane-based techniques for cell lysis and bioproduct recovery are explored, highlighting their pros and cons. By offering diverse insights, this review aims to inspire innovative research and industry progress in red microalgae biotechnology, contributing to sustainable solutions across sectors.
Collapse
Affiliation(s)
- Anh Quynh Nguyen
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Gangatharan Muralitharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, Tamilnadu, India; National Repository for Microalgae and Cyanobacteria - Freshwater and Marine (NRMC - F & M), Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, Karnataka, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA.
| |
Collapse
|
7
|
Luo X, Jiang JH, Liu SL, Gao JY, Zhou LW. Metabolomics analysis of rice fermented by medicinal fungi providing insights into the preparation of functional food. Food Chem 2024; 459:140372. [PMID: 38986207 DOI: 10.1016/j.foodchem.2024.140372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Rice, a primary staple food, may be improved in value via fermentation. Here, ten medicinal basidiomycetous fungi were separately applied for rice fermentation. After preliminary screening, Ganoderma boninense, Phylloporia pulla, Sanghuangporus sanghuang and Sanghuangporus weigelae were selected for further LC-MS based determination of the changes in metabolic profile after their fermentation with rice, and a total of 261, 296, 312, and 355 differential compounds were identified, respectively. Most of these compounds were up-regulated and involved in the metabolic pathways of amino acid metabolism, lipid metabolism, carbohydrate metabolism and the biosynthesis of other secondary metabolites. Sanghuangporus weigelae endowed the rice with the highest nutritional and bioactive values. The metabolic network of the identified differential compounds in rice fermented by S. weigelae illustrated their close relationships. In summary, this study provides insights into the preparation and application of potential functional food via the fermentation of rice with medicinal fungi.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Yun Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Carrasco F, Hernández W, Castro N, Guerrero M, Tamariz-Angeles C, Olivera-Gonzales P, Echevarría-Rodríguez D, Raposo C, Silva LA, Rodilla JM. Identification and determination of usnic acid and fatty acid from various lichen species in arequipa, Peru, as well as antibacterial and antioxidant capacity. Heliyon 2024; 10:e39703. [PMID: 39512456 PMCID: PMC11539319 DOI: 10.1016/j.heliyon.2024.e39703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Seven species of lichens such us Umbilicaria aff. calvescens, Hypotrachyna enderythraea, Punctelia graminicola, Cladonia chlorophaea, Xanthoparmelia farinose, Psiloparmelia distincta (rock and tree substrates; rs and ts), and Usnea durietzii were collected from the province of Arequipa - Peru. Their usnic acid (UA) and fatty acid (FA) amounts in methanol-acetone were determined by High-performance liquid chromatography with diode-array detection (HPLC-DAD) and Gas chromatography-flame ionization detector (GC-FID). The antimicrobial activities of these extracts were evaluated against Staphylococcus aureus ATCC strains (43300, 29213, 25923 and 700699), Escherichia coli strains (O157:H7 and ATCC 10536), Salmonella enterica sv typhimurium ATCC 14028, Candida albicans ATCC 90028 and Candida. tropicalis ATCC 750T. In addition, antioxidant capacity was also studied by Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) radical cation and Ferric Reducing Antioxidant Power (FRAP) assays. The UA contents in all the studied lichen species varied between 0.017 and 0.304 %. Among all the tested extracts, Usnea durietzii had the highest total FA concentration (5.81 mg/g). P. distincta (rs) was active against S. aureus strains (MIC = 0.02-0.2 mg/mL) as well as C. albicans (MIC = 4 mg/mL) and C. tropicalis (MIC = 3 mg/mL). P. distincta (ts) displayed moderate total phenol content (TPC = 29.1 ± 1.6 mg GAE/g) and antioxidant capacity evidenced by scavenging DPPH (IC50 = 1.45 ± 0.03 mg/mL) and ABTS (18.2 ± 0.2 mg TE/g) radicals, but it showed high values of FRAP (1953 ± 87 μM Fe2+/g). Our findings indicate that P. distincta (rs) could be considered as a potential antimicrobial metabolites source whereas P. distincta (ts) and Puntelia graminicole for polyphenols with antioxidant compound.
Collapse
Affiliation(s)
- Fernando Carrasco
- Facultad de Ingeniería, Universidad de Lima, Av. Javier Prado Este 4600, Lima, 33, Peru
- Departamento Académico de Química Orgánica, Escuela de Química, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Calle German Amezaga 375, Lima, Peru
| | - Wilfredo Hernández
- Facultad de Ingeniería, Universidad de Lima, Av. Javier Prado Este 4600, Lima, 33, Peru
| | - Nino Castro
- Departamento Académico de Química Orgánica, Escuela de Química, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Calle German Amezaga 375, Lima, Peru
| | - Marco Guerrero
- Departamento Académico de Química Orgánica, Escuela de Química, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Calle German Amezaga 375, Lima, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Huaraz, Ancash, Peru
| | | | - Cesar Raposo
- Mass Spectrometry Service, NUCLEUS, University of Salamanca, Spain
| | - Lúcia A. Silva
- Faculdade de Ciencias, Departamento de Quíımica and Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D’Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Jesus M. Rodilla
- Faculdade de Ciencias, Departamento de Quíımica and Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D’Ávila e Bolama, 6201-001, Covilhã, Portugal
| |
Collapse
|
9
|
Zhao S, Qian J, Lu B, Tang S, He Y, Liu Y, Yan Y, Jin S. Enhancing treatment performance of Chlorella pyrenoidosa on levofloxacin wastewater through microalgae-bacteria consortia: Mechanistic insights using the transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135670. [PMID: 39213769 DOI: 10.1016/j.jhazmat.2024.135670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.
Collapse
Affiliation(s)
- Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
10
|
Cai H, Shen Y. Metabolomic and Physiological Analyses Reveal the Effects of Different Storage Conditions on Sinojackia xylocarpa Hu Seeds. Metabolites 2024; 14:503. [PMID: 39330510 PMCID: PMC11434619 DOI: 10.3390/metabo14090503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUNDS Sinojackia xylocarpa Hu is a deciduous tree in the Styracaceae family, and it is classified as a Class II endangered plant in China. Seed storage technology is an effective means of conserving germplasm resources, but the effects of different storage conditions on the quality and associated metabolism of S. xylocarpa seeds remain unclear. This study analyzed the physiological and metabolic characteristics of S. xylocarpa seeds under four storage conditions. RESULTS Our findings demonstrate that reducing seed moisture content and storage temperature effectively prolongs storage life. Seeds stored under that condition exhibited higher internal nutrient levels, lower endogenous abscisic acid (ABA) hormone levels, and elevated gibberellic acid (GA3) levels. Additionally, 335 metabolites were identified under four different storage conditions. The analysis indicates that S. xylocarpa seeds extend seed longevity and maintain cellular structural stability mainly by regulating the changes in metabolites related to lipid, amino acid, carbohydrate, and carotenoid metabolic pathways under the storage conditions of a low temperature and low seed moisture. CONCLUSIONS These findings provide new insights at the physiological and metabolic levels into how these storage conditions extend seed longevity while also offering effective storage strategies for preserving the germplasm resources of S. xylocarpa.
Collapse
Affiliation(s)
| | - Yongbao Shen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Yang W, Liu D, Gao P, Wu Q, Li Z, Li S, Zhu L. Oxidative stress and metabolic process responses of Chlorella pyrenoidosa to nanoplastic exposure: Insights from integrated analysis of transcriptomics and metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124466. [PMID: 38944181 DOI: 10.1016/j.envpol.2024.124466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Oxidative stress is a universal interpretation for the toxicity mechanism of nanoplastics to microalgae. However, there is a lack of deeper insight into the regulation mechanism in microalgae response to oxidative stress, thus affecting the prevention and control for nanoplastics hazard. The integrated analysis of transcriptomics and metabolomics was employed to investigate the mechanism for the oxidative stress response of Chlorella pyrenoidosa to nanoplastics and subsequently lock the according core pathways and driver genes induced. Results indicated that the linoleic acid metabolism, glycine (Gly)-serine (Ser)-threonine (Thr) metabolism, and arginine and proline metabolism pathways of C. pyrenoidosa were collectively involved in oxidative stress. The analysis of linoleic acid metabolism suggested that nanoplastics prompted algal cells to secrete more allelochemicals, thereby leading to destroy the immune system of cells. Gly-Ser-Thr metabolism and arginine and proline metabolism pathways were core pathways involved in algal regulation of cell membrane function and antioxidant system. Key genes, such as LOX2.3, SHM1, TRPA1, and proC1, are drivers of regulating the oxidative stress of algae cells. This investigation lays the foundation for future applications of gene editing technology to limit the hazards of nanoplastics on aquatic organism.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
12
|
Ventura G, Bianco M, Calvano CD, Bianco G, Di Capua A, Coniglio D, Losito I, Cataldi TRI. Mass spectrometric characterization of aminophospholipids containing N-(2-hydroxyethyl)glycine in kombu algae extracts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9843. [PMID: 38924168 DOI: 10.1002/rcm.9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE 1,2-Diacyl-sn-glycero-3-phospho-O-[N-(2-hydroxyethyl)glycines] (PHEGs) are a class of rare aminophospholipids found specifically in brown algae, including kombu seaweed. Despite their potential importance in algal physiology, a comprehensive mass spectrometry (MS) characterization, useful to understand their biological behaviour, is still lacking. METHODS To establish the structural regiochemical features of PHEGs, we employed hydrophilic interaction liquid chromatography (HILIC). Following separation, the isolated band of PHEGs was analyzed using MS techniques. This included multistage tandem MS experiments, performed in both positive and negative electrospray ionization modes at low and high resolution. RESULTS By comparing MS/MS and MS3 spectra acquired in negative ion mode, the regiochemical rules for PHEG identification were established. The most abundant PHEG species in kombu seaweed, from both Laminaria ochroleuca (European Atlantic) and Laminaria longissima (Japan), was identified as PHEG 20:4/20:4. Less abundant species included PHEG 20:4/20:5 and hydroxylated forms of both PHEG 20:4/20:4 (i.e. 40:8;O) and 20:4/20:5 (40:9;O). The presence of a lyso PHEG 20:4 was consistently detected but at very low levels. CONCLUSIONS This study employed MS analysis to elucidate the regiochemical patterns of PHEGs in kombu seaweed. We identified PHEG 20:4/20:4 as the dominant species, along with several less abundant variants, including hydroxylated forms. These findings provide valuable insights into the potential roles and metabolism of PHEGs in brown algae, paving the way for further investigation into their biological functions.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| | | | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Angela Di Capua
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Davide Coniglio
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
Khodadadianzaghmari F, Jahadi M, Goli M. Biochemical profile of Scenedesmus isolates, with a main focus on the fatty acid profile. Food Sci Nutr 2024; 12:5922-5931. [PMID: 39139969 PMCID: PMC11317656 DOI: 10.1002/fsn3.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 08/15/2024] Open
Abstract
Biochemical characterization of new microalgal strains that are isolated from diverse environmental conditions is an important starting point for the establishment of high-quality feedstock for nutraceutical and pharmaceutical applications. In this research study, the biochemical composition of three Iranian native subspecies of Scenedesmus microalgae (Scenedesmus obliquus, Scenedesmus bijugusi, and Scenedesmus sp.), with the main focus on fatty acid composition, was studied. The results showed that the strain Scenedesmus bijugusi had the highest biomass productivity (48 g/L/d), biomass (0.73%), carbohydrate (13.97%), fat (16.27%), protein (44.04%), chlorophyll-a (6.32 mg/g), and carotenoids (3.7 mg/g). The lipid profile also revealed that S. obliquus had the highest percentage of polyunsaturated fatty acid (46.52%), ratio of ∑n-3/∑n-6 (5.96), ratio of polyunsaturated fatty acid to saturated fatty acid (PUFA/SAF) (1.18), α-linolenic acid (22.74%), hypocholesterolemia index (1.61), and low atherogenic index (0.34). S. bijugusi and S. obliquus, thus, showed a great promise in nutraceutical and pharmaceutical applications due to their appropriate high productivity, biopigment, protein, lipid, antioxidant activity, long-chain polyunsaturated fatty acids, and α-linolenic acid.
Collapse
Affiliation(s)
- Faezeh Khodadadianzaghmari
- Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Mahshid Jahadi
- Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| |
Collapse
|
14
|
Auñon-Lopez A, Alberdi-Cedeño J, Pignitter M, Castejón N. Microalgae as a New Source of Oxylipins: A Comprehensive LC-MS-Based Analysis Using Conventional and Green Extraction Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16749-16760. [PMID: 39016675 PMCID: PMC11299188 DOI: 10.1021/acs.jafc.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.
Collapse
Affiliation(s)
- Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Alava), Spain
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Natalia Castejón
- Institute of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
15
|
Rodenburg SYA, de Ridder D, Govers F, Seidl MF. Oomycete Metabolism Is Highly Dynamic and Reflects Lifestyle Adaptations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:571-582. [PMID: 38648121 DOI: 10.1094/mpmi-12-23-0200-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The selective pressure of pathogen-host symbiosis drives adaptations. How these interactions shape the metabolism of pathogens is largely unknown. Here, we use comparative genomics to systematically analyze the metabolic networks of oomycetes, a diverse group of eukaryotes that includes saprotrophs as well as animal and plant pathogens, with the latter causing devastating diseases with significant economic and/or ecological impacts. In our analyses of 44 oomycete species, we uncover considerable variation in metabolism that can be linked to lifestyle differences. Comparisons of metabolic gene content reveal that plant pathogenic oomycetes have a bipartite metabolism consisting of a conserved core and an accessory set. The accessory set can be associated with the degradation of defense compounds produced by plants when challenged by pathogens. Obligate biotrophic oomycetes have smaller metabolic networks, and taxonomically distantly related biotrophic lineages display convergent evolution by repeated gene losses in both the conserved as well as the accessory set of metabolisms. When investigating to what extent the metabolic networks in obligate biotrophs differ from those in hemibiotrophic plant pathogens, we observe that the losses of metabolic enzymes in obligate biotrophs are not random and that gene losses predominantly influence the terminal branches of the metabolic networks. Our analyses represent the first metabolism-focused comparison of oomycetes at this scale and will contribute to a better understanding of the evolution of oomycete metabolism in relation to lifestyle adaptation. Numerous oomycete species are devastating plant pathogens that cause major damage in crops and natural ecosystems. Their interactions with hosts are shaped by strong selection, but how selection affects adaptation of the primary metabolism to a pathogenic lifestyle is not yet well established. By pan-genome and metabolic network analyses of distantly related oomycete pathogens and their nonpathogenic relatives, we reveal considerable lifestyle- and lineage-specific adaptations. This study contributes to a better understanding of metabolic adaptations in pathogenic oomycetes in relation to lifestyle, host, and environment, and the findings will help in pinpointing potential targets for disease control. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
16
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
17
|
Li T, Li J, Wang J, Xue KS, Su X, Qu H, Duan X, Jiang Y. The occurrence and management of fumonisin contamination across the food production and supply chains. J Adv Res 2024; 60:13-26. [PMID: 37544477 PMCID: PMC11156612 DOI: 10.1016/j.jare.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Fumonisins (FUMs) are among the most common mycotoxins in plant-derived food products. FUMs contamination has considerably impacted human and animal health, while causing significant economic losses. Hence, management of FUMs contamination in food production and supply chains is needed. The toxicities of FUMs have been widely investigated. FUMs management has been reported and several available strategies have been developed successfully to mitigate FUMs contamination present in foods. However, currently available management of FUMs contamination from different phases of food chains and the mechanisms of some major strategies are not comprehensively summarized. AIM OF REVIEW This review comprehensively characterize the occurrence, impacts, and management of FUMs contamination across food production and supply chains. Pre- and post-harvest strategies to prevent FUMs contamination also are reviewed, with an emphasis on the potential applications and the mechanisms of major mitigation strategies. The presence of modified FUMs products and their potential toxic effects are also considered. Importantly, the potential application of biotechnological approaches and emerging technologies are enunciated. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently available pre- and post-harvest management of FUMs contamination primarily involves prevention and decontamination. Prevention strategies are mainly based on limiting fungal growth and FUMs biosynthesis. Decontamination strategies are implemented through alkalization, hydrolysis, thermal or chemical transformation, and enzymatic or chemical degradation of FUMs. Concerns have been raised about toxicities of modified FUMs derivatives, which presents challenges for reducing FUMs contamination in foods with conventional methodologies. Integrated prevention and decontamination protocols are recommended to control FUMs contamination across entire value chains in developed countries. In developing countries, several other approaches, including cultivating, introducing Bt maize, simple sorting/cleaning, and dehulling, are suggested. Future studies should focus on biotechnological approaches, emerging technologies, and metagenomic/genomic identification of new degradation enzymes that could allow better opportunities to manage FUMs contamination in the entire food system.
Collapse
Affiliation(s)
- Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiajia Li
- College of Tourism and Planning, Pingdingshan University, Pingdingshan 467000, China
| | - Jiasheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xinguo Su
- Tropical Agriculture and Forestry College, Guangdong AIB Polytechnic, No. 198, Yueken Road, Tianhe District, Guangzhou 510507, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
18
|
Helamieh M, Reich M, Rohne P, Riebesell U, Kerner M, Kümmerer K. Impact of green and blue-green light on the growth, pigment concentration, and fatty acid unsaturation in the microalga Monoraphidium braunii. Photochem Photobiol 2024; 100:587-595. [PMID: 37882377 DOI: 10.1111/php.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
The spectral composition of light is an important factor for the metabolism of photosynthetic organisms. Several blue light-regulated metabolic processes have already been identified in the industrially relevant microalga Monoraphidium braunii. However, little is known about the spectral impact on this species' growth, fatty acid (FA), and pigment composition. In this study, M. braunii was cultivated under different light spectra (white light: 400-700 nm, blue light: 400-550 nm, green light: 450-600 nm, and red light: 580-700 nm) at 25°C for 96 h. The growth was monitored daily. Additionally, the FA composition, and pigment concentration was analyzed after 96 h. The highest biomass production was observed upon white light and red light irradiation. However, green light also led to comparably high biomass production, fueling the scientific debate about the contribution of weakly absorbed light wavelengths to microalgal biomass production. All light spectra (white, blue, and green) that comprised blue-green light (450-550 nm) led to a higher degree of FA unsaturation and a greater concentration of all identified pigments than red light. These results further contribute to the growing understanding that blue-green light is an essential trigger for maximized pigment concentration and FA unsaturation in green microalgae.
Collapse
Affiliation(s)
- Mark Helamieh
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
- Strategic Science Consult Ltd., Hamburg, Germany
| | - Marco Reich
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| | - Philipp Rohne
- Institute of Pharmacy and Biochemistry, Therapeutical Life Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| |
Collapse
|
19
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
Sun F, Yang H, Zhang X, Tan F, Wang G, Shi Q. Metagenomic and metabolomic analysis of the effect of bleaching on unsaturated fatty acid synthesis pathways in coral symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169487. [PMID: 38142991 DOI: 10.1016/j.scitotenv.2023.169487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Unsaturated fatty acids (UFAs) are known to play a vital role in regulating stress resistance and metabolism in corals. Nevertheless, a comprehensive understanding of the microbial and functional composition of the UFA synthesis pathway (UFASP) remains lacking. This study employed metagenome and metabolome to investigate the microbial community, function, and metabolic response of UFASP in reef-building corals inhabiting the Nansha Islands. Our findings revealed significantly higher diversity for the UFASP microbe in bleached corals compared to unbleached corals. Furthermore, principal coordinates analysis (PCoA) and taxonomy assessments exhibited notable distinctions in the microbe between the two coral states. Notably, the dominant microorganisms involved in UFASP were Dinophyceae, Sordariomycetes, Ulvophyceae, and Chlorophyceae. Bleaching resulted in a considerable increase in fungal abundance within coral symbionts. A total of 12 KEGG Orthology (KO) were identified in UFASP, with PCoA analysis indicating significant differences in their abundance between bleached and unbleached corals. UFASP's beta-Oxidation module exhibited reduced abundance in bleached corals. Contribution analysis highlighted the participation of Symbiodiniaceae, Ascomycota, Chlorophyta, Proteobacteria, and Actinobacteria in UFASP. Notably, Symbiodiniaceae and Ascomycota were the major contributors to two UFASP modules, with the latter displaying greater involvement in bleached corals. Furthermore, significant differences in n3 and n6-family metabolites were observed between bleached and unbleached corals. Notably, bleaching induced a reduction in metabolites of Symbiodiniaceae, while an increase in the multiple UFAs abundance was detected in bleached corals. These findings suggest that bleaching-induced alterations coral symbionts composition directly impact the functionality of UFASP, ultimately affecting the corals' capacity to adapt to stress.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Fei Tan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Guan Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
21
|
Quintal Martínez JP, Quintal Ortiz IG, Alonso Salomón LG, García-Sosa K, Peña Rodríguez LM, Guerrero Analco JA, Monribot Villanueva JL, Vidal Limón AM, Segura Campos MR. Bioassay-guided identification of antithrombotic compounds from Cnidoscolus aconitifolius (Mill.) I. M. Jhonst.: molecular docking, bioavailability, and toxicity prediction. J Biomol Struct Dyn 2024; 42:1692-1710. [PMID: 37232450 DOI: 10.1080/07391102.2023.2214214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Conventional antithrombotic therapy has reported hemorrhagic accidents. Ethnobotanical and scientific reports point to Cnidoscolus aconitifolius as an antithrombotic adjuvant. Previously, C. aconitifolius leaves ethanolic extract displayed antiplatelet, anticoagulant, and fibrinolytic activities. This work aimed to identify compounds from C. aconitifolius with in vitro antithrombotic activity through a bioassay-guided study. Antiplatelet, anticoagulant, and fibrinolytic tests guided the fractionation. Ethanolic extract was subjected to a liquid-liquid partitioning, followed by vacuum liquid, and size exclusion chromatography to obtain the bioactive JP10B fraction. The compounds were identified through UHPLC-QTOF-MS, and their molecular docking, bioavailability, and toxicological parameters were determined computationally. Kaempferol-3-O-glucorhamnoside and 15(S)-HPETE were identified; both showed affinity for antithrombotic targets, low absorption, and safety for human consumption. Further in vitro and in vivo evaluations will better understand their antithrombotic mechanism. This bioassay-guided fractionation demonstrated that C. aconitifolius ethanolic extract has antithrombotic compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | - Karlina García-Sosa
- Organic Chemistry Group, Biotechnology Unit, Yucatan Scientific Research Center, Merida, Yucatan, Mexico
| | - Luis Manuel Peña Rodríguez
- Organic Chemistry Group, Biotechnology Unit, Yucatan Scientific Research Center, Merida, Yucatan, Mexico
| | - José Antonio Guerrero Analco
- Chemistry of Natural Products Laboratory, Network of Advanced Molecular Studies, Institute of Ecology AC, BioMimic® Scientific and Technological Cluster, Xalapa, Veracruz, Mexico
| | - Juan Luis Monribot Villanueva
- Chemistry of Natural Products Laboratory, Network of Advanced Molecular Studies, Institute of Ecology AC, BioMimic® Scientific and Technological Cluster, Xalapa, Veracruz, Mexico
| | - Abraham Marcelino Vidal Limón
- Chemistry of Natural Products Laboratory, Network of Advanced Molecular Studies, Institute of Ecology AC, BioMimic® Scientific and Technological Cluster, Xalapa, Veracruz, Mexico
| | | |
Collapse
|
22
|
Petkova Z, Teneva O, Antova G, Angelova-Romova M, Gecheva G, Dimitrova-Dyulgerova I. Chemical Composition, Lipid-Soluble Bioactive Compounds and Potential Health Benefits of the Moss Hypnum cupressiforme Hedw. PLANTS (BASEL, SWITZERLAND) 2023; 12:4190. [PMID: 38140517 PMCID: PMC10747445 DOI: 10.3390/plants12244190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Hypnum cupressiforme Hedw. is the main species for Moss surveys (ICP Vegetation programme) in Southeastern Europe and is widely distributed in the region. In addition to their biomonitoring role, mosses are applied in some countries as a traditional medicine for the treatment of eczema, cuts, burns, eye diseases, etc. Therefore, the chemical and lipid composition of the moss H. cupressiforme is of interest to establish their possible application in different fields. The chemical composition of the moss was examined regarding total lipids, proteins, carbohydrates (i.e., fibres), ash, and moisture content. The main lipid-soluble bioactive components were determined as sterols, tocopherols, phospholipids and fatty acids. The major fatty acids were linoleic (14.9%), oleic (13.8%), palmitic (12.5%) and α-linolenic (11.3%) acids. Unsaturated fatty acids (56.4%) prevailed in the glyceride oil, in which the polyunsaturated ones constituted 32.5%. The lipid indices (atherogenicity, thrombogenicity, hypocholesterolemic/hypercholesterolemic ratio, peroxidability, and oxidation stability index) were also theoretically calculated based on the fatty acid composition of the moss lipids to establish their health benefits and the rate of oxidation. The primary results of this study revealed H. cupressiforme to be a promising alternative source of bioactive compounds that could be implemented in supplements with health-promoting effects.
Collapse
Affiliation(s)
- Zhana Petkova
- Department of Chemical Technology, Faculty of Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.); (M.A.-R.)
| | - Olga Teneva
- Department of Chemical Technology, Faculty of Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.); (M.A.-R.)
| | - Ginka Antova
- Department of Chemical Technology, Faculty of Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.); (M.A.-R.)
| | - Maria Angelova-Romova
- Department of Chemical Technology, Faculty of Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.); (M.A.-R.)
| | - Gana Gecheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria;
| | - Ivanka Dimitrova-Dyulgerova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
23
|
Akonjuen BM, Onuh JO, Aryee ANA. Bioactive fatty acids from non-conventional lipid sources and their potential application in functional food development. Food Sci Nutr 2023; 11:5689-5700. [PMID: 37823172 PMCID: PMC10563685 DOI: 10.1002/fsn3.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023] Open
Abstract
There is growing evidence that bioactive fatty acids (BFAs), including eicosapentaenoic acid (EPA; 20:5-3), docosahexaenoic acid (DHA; 22:6-3), and conjugated fatty acids offer multiple biological benefits and constitute ingredients in functional food development. Despite their potential, novel and alternative/nonconventional sources with unique bioactive properties to meet growing demand remain largely unexplored, poorly characterized, and their effects are not well understood. We systematically reviewed the literature to identify studies on alternative sources of BFAs, their functions, extraction, and application in the food and nutraceutical industry. Twenty studies delved into alternate sources such as plants, bacteria, and algae. Six studies found EPA and DHA as the dominant FA in algal sources, while ten studies reported several BFAs from plant sources. Five studies assessed the health benefits of docosapentaenoic acid (DPA), arachidonic acid (ARA), EPA, γ-linolenic acid (GLA), and linoleic acid (LA). Eleven studies compared the quality of oil recovered by green solvents, pressurized liquid, supercritical fluid, and assisted extraction methods. Three studies assessed the effects of assisted extraction methods and reported that these approaches improved oil yield and quality, but the findings may have limited applicability to other lipid sources. The quality of nonconventional lipids largely depends on extraction techniques. Four studies suggested methods like 1D and 2D NMR spectroscopy, LC-MS/MS; however, their analytical differences make accurate comparison inadequate. Five studies found that the incorporation of algal and seafood biolipids during product development increased EHA and DHA contents.
Collapse
Affiliation(s)
- Bessem M. Akonjuen
- Department of Human Ecology, Food Science & Biotechnology ProgramCollege of Agriculture, Science and Technology, Delaware State UniversityDoverDelawareUSA
| | - John O. Onuh
- Department of Food and Nutritional SciencesCollege of Agriculture, Environment and Nutrition Science, Tuskegee UniversityTuskegeeAlabamaUSA
| | - Alberta N. A. Aryee
- Department of Human Ecology, Food Science & Biotechnology ProgramCollege of Agriculture, Science and Technology, Delaware State UniversityDoverDelawareUSA
| |
Collapse
|
24
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Gorzelnik SA, Zhu X, Angelidaki I, Koski M, Valverde-Pérez B. Daphnia magna as biological harvesters for green microalgae grown on recirculated aquaculture system effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162247. [PMID: 36791858 DOI: 10.1016/j.scitotenv.2023.162247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The sustainability of recycling aquaculture systems (RAS) is challenged by nutrient discharges, which cause water eutrophication. Efficient treatments for RAS effluents are needed to mitigate its environmental impacts. Microalgae assimilate nutrients and dissolved carbon into microbial biomass with value as feed or food ingredient. However, they are difficult to harvest efficiently. Daphnia magna is an efficient filter feeder that grazes on microalgae at high rates and serves as valuable fish feed. Combining nutrient removal by microalgae and biomass harvesting by D. magna could be a cost-effective solution for wastewater valorization. Nutrient removal from unsterilized aquaculture wastewater was evaluated using the microalgae species Chlorella vulgaris, Scenedesmus dimorphus, and Haematococcus pluvialis. The first two algae were subsequently harvested using D. magna as a grazer, while H. pluvialis failed to grow stably. All phosphorus was removed, while only 50-70 % nitrogen was recovered, indicating phosphorus limitation. Shortening the hydraulic retention time (HRT) or phosphorus dosing resulted in increased nitrogen removal. C. vulgaris cultivation was unstable at 3 days HRT or when supplied with extra phosphorus at 5 days HRT. D. magna grew on produced algae accumulating protein at 20-30 % of dry weight, with an amino acid profile favorable for use as high value fish feed. Thus, this study demonstrates the application of a two steps multitrophic process to assimilate residual nutrients into live feeds suitable for fish.
Collapse
Affiliation(s)
- Stanley A Gorzelnik
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Marja Koski
- National Institute for Aquatic Resources, Technical University of Denmark, DTU, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Da Rós PCM, Pereira TA, Barbosa FG, Marcelino PRF, da Silva SS. An Environmentally Friendly Biosurfactant to Enhance the Enzymatic Hydrolysis for Production of Polyunsaturated Fatty Acids with Potential Application as Nutraceutical. Catal Letters 2023. [DOI: 10.1007/s10562-023-04313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
27
|
Vasquez-Sandoval C, Navarrete J, Herrera-Herrera P, Dantagnan P, Diaz-Navarrete P, Arancibia-Avila P, Oviedo C. Screening and Identification of Coastal Chilean Thraustochytrids for Arachidonic Acid Production: Biotechnological Potential of Ulkenia visurgensis Lng2-Strain. Microorganisms 2023; 11:microorganisms11030559. [PMID: 36985133 PMCID: PMC10056136 DOI: 10.3390/microorganisms11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Thraustochytrids are unicellular heterotrophic marine protists that have been described as producing a high content of polyunsaturated fatty acids (PUFAs). Among them, arachidonic acid (ARA) stands out as a precursor of several mediators of pivotal importance for the immune system. However, the biotechnological potential of thraustochytrids for ARA production has not been developed. The objective of this study is to isolate and identify native strains from different Chilean coastal environments and evaluate in vitro the effect of culture parameters such as C/N ratio (19 and 33) and temperature (15 °C and 23 °C) on biomass production and arachidonic acid content. A total of nine strains were identified and classified into four genera of the Thraustochitridae family. The Lng2 strain with 99% identity belongs to the species Ulkenia visurgenis and was the most prominent one for ARA production. Temperature had an effect on the PUFA profile but not on the ARA content nor on the biomass yield. Additionally, the C/N ratio has been identified as a key parameter. The ARA productivity increased by 92% (from 0.6 to 8.3 ARA mg/g-DW) and its total biomass by 62.7% (from 1.9 to 5.1 g/L) at a high C/N ratio (33) as compared to the control.
Collapse
Affiliation(s)
- Cinthia Vasquez-Sandoval
- Laboratorio de Bioprocesos y Biotratamientos, Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4081112, Chile
| | - José Navarrete
- Laboratorio de Bioprocesos y Biotratamientos, Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4081112, Chile
| | - Paula Herrera-Herrera
- Laboratorio de Bioprocesos y Biotratamientos, Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4081112, Chile
| | - Patricio Dantagnan
- Departamento de Ciencia Agropecuarias y Acuícolas, Núcleo de Investigación en Producción Alimentaria y Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4810302, Chile
| | - Paola Diaz-Navarrete
- Departamento de Ciencia Agropecuarias y Acuícolas, Núcleo de Investigación en Producción Alimentaria y Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4810302, Chile
| | - Patricia Arancibia-Avila
- Laboratorio de Ecofisiología y Microalgas, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile
| | - Claudia Oviedo
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
- Correspondence:
| |
Collapse
|
28
|
Soto-Sánchez O, Hidalgo P, González A, Oliveira PE, Hernández Arias AJ, Dantagnan P. Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. AQUACULTURE NUTRITION 2023; 2023:5110281. [PMID: 36860971 PMCID: PMC9973195 DOI: 10.1155/2023/5110281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Studies have shown that ancient cultures used microalgae as food for centuries. Currently, scientific reports highlight the value of nutritional composition of microalgae and their ability to accumulate polyunsaturated fatty acids at certain operational conditions. These characteristics are gaining increasing interest for the aquaculture industry which is searching for cost-effective replacements for fish meal and oil because these commodities are one of the most significant operational expenses and their dependency has become a bottleneck for their sustainable development of the aquaculture industry. This review is aimed at highlighting the use of microalgae as polyunsaturated fatty acid source in aquaculture feed formulations, despite their scarce production at industrial scale. Moreover, this document includes several approaches to improve microalgae production and to increase the content of polyunsaturated fatty acids with emphasis in the accumulation of DHA, EPA, and ARA. Furthermore, the document compiles several studies which prove microalgae-based aquafeeds for marine and freshwater species. Finally, the study explores the aspects that intervene in production kinetics and improvement strategies with possibilities for upscaling and facing main challenges of using microalgae in the commercial production of aquafeeds.
Collapse
Affiliation(s)
- Oscar Soto-Sánchez
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Pamela Hidalgo
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Aixa González
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia E. Oliveira
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Adrián J. Hernández Arias
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
29
|
Huang B, Cui J, Ran Y, Chen C, Li F, Zhang Y, Li Z, Xie E. Mechanism of macroalgae Gracilaria bailiniae responding to cadmium and lanthanum. FRONTIERS IN PLANT SCIENCE 2022; 13:1076526. [PMID: 36531398 PMCID: PMC9756850 DOI: 10.3389/fpls.2022.1076526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macroalgae can accumulate a wide array of metals, leading to their appliance as biomonitors of aquatic environments. With the rapid development of industrial and agricultural-based activities, Cd pollution in aquatic environments is considered an increasingly severe problem worldwide. Although La could alleviate the Cd stress in higher terrestrial plants, the response mechanisms of macroalgae to Cd and La are unknown. Along these lines, in this work, Cd significantly affected the growth, internal cellular structure, photosynthesis, pigment content, antioxidant enzyme activity, and lipid peroxidation level of G. bailiniae. However, the presence of La alleviated these adverse effects from Cd. Furthermore, the response mechanism of G. bailiniae to Cd was attributed to the self-antioxidant ability enhancement, membrane defense, and programmed-cellular regulation. However, the presence of La mediated the biosynthesis of both flavonoids and lipids, which inhibited the Cd accumulation, modulated algal stress signalling networks, renewed the impaired chlorophyll molecule, maintained the activity of the crucial enzyme, enhanced antioxidant ability, and maintained the stabilization of redox homeostasis, alleviating the adverse impact from Cd and improve the growth of G. bailiniae. The experimental results successfully demonstrate a new detoxicant to alleviate Cd stress, promoting a more comprehensive array of macroalgal applications.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Ran
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Chunli Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Feng Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Yulei Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Zailiang Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
30
|
Tsvetanova F, Yankov D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022; 10:2290. [PMID: 36422361 PMCID: PMC9693049 DOI: 10.3390/microorganisms10112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
Red microalgae represent a natural reservoir of beneficial substances with applications in different industrial sectors. They are rich in natural biomolecules known for their antihypertensive, antioxidant, antimicrobial, antiviral, anti-inflammatory, antitumor, and anticoagulant activities. Many red microalgae are a source of vitamins, minerals, photochemicals, polyunsaturated fatty acids, and a wide spectrum of polysaccharides. The content of their valuable compounds and their activities have turned red microalgae into cellular factories of special interest in food, nutraceutical, and pharmaceutical industries. Like all microalgae, the red ones are superior to traditional crops for the aims of biotechnology as they are renewable sources widely available in great quantities and are easy to culture. Moreover, some of the most studied red microalgae are generally recognized as safe. This review summarizes the valuable biochemicals from red microalgae and highlights their health and nutritional benefits.
Collapse
|
31
|
Alves RJM, Miranda TG, Pinheiro RO, de Souza Pinheiro WB, Andrade EHDA, Tavares-Martins ACC. Volatile chemical composition of Octoblepharum albidum Hedw. (Bryophyta) from the Brazilian Amazon. BMC Chem 2022; 16:76. [PMID: 36210431 PMCID: PMC9549691 DOI: 10.1186/s13065-022-00872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractBryophytes have a variety of bioactive compounds that can be used in biotechnological processes. The objective of this study was to know the volatile chemical composition of Octoblepharum albidum Hedw. from the Amazon and investigate its association with possible bioactive effects on insects. The volatile concentrate of O. albidum was obtained by micro-scale simultaneous distillation–extraction and analyzed by gas chromatography coupled to mass spectrometry and the identification of the compounds was based on system libraries and specialized literature. Twelve organic compounds (92.44% of the total) were identified. Hexadecanoic acid, oleic acid, E-isoeugenol, 1-octen-3-ol, and stearic acid were the major compounds. Most of the compounds have already been reported from bryophytes, while others have an unprecedented occurrence in the group. All identified compounds have biological activities reported in the literature and may participate in plant defense mechanisms against insects, causing mortality or developmental inhibition. In this study, we describe for the first time the volatile chemical composition of O. albidum from Brazil and provide evidence that this species is a source of bioactive compounds. The identified compounds have been reported in the literature to cause mortality or affect the biological parameters of insects, what suggests the possibility of their usage in the formulation of bioinsecticides.
Collapse
|
32
|
Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha. Proc Natl Acad Sci U S A 2022; 119:e2202930119. [PMID: 36037336 PMCID: PMC9457472 DOI: 10.1073/pnas.2202930119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.
Collapse
|
33
|
Barsanti L, Birindelli L, Gualtieri P. Paramylon and Other Bioactive Molecules in Micro and Macroalgae. Int J Mol Sci 2022; 23:ijms23158301. [PMID: 35955428 PMCID: PMC9368671 DOI: 10.3390/ijms23158301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Many algae synthesize compounds that have exceptional properties of nutraceutical, pharmacological, and biomedical interest. Pigments, fatty acids, phenols, and polysaccharides are among the main compounds investigated so far. Polysaccharides are the most exploited compounds, widely used in pharmaceutical, food, and chemical industries, which are at present entering into more advanced applications by gaining importance, from a therapeutic point of view, as antioxidant, antimicrobial, antitumor, and immunomodulatory agents. Establishing algae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being. This review focuses on the proprieties and uses of the main micro- and macroalgae metabolites, describing their potential for application in the different industrial sectors, from food/feed to chemical and pharmacological. Further, current technologies involved in bioactive molecule extraction strategies are documented.
Collapse
|
34
|
Xiong JQ, Qi X, Qin JY. Transcriptomics unveiled metabolic perturbations in Desmodesmus quadricauda by sulfacetamide: Key functional genes involved in the tolerance and biodegradation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154436. [PMID: 35276146 DOI: 10.1016/j.scitotenv.2022.154436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic contamination in the environment has significant adverse effects on benthic microorganisms, which causes dysfunction of normal ecological processes. However, in-depth molecular mechanisms underlying the potential ecological impacts of these emerging pollutants are poorly understood. In this study, metabolic perturbations in a freshwater microalga, Desmodesmus quadricauda by sulfacetamide (SFM) were investigated using transcriptomics. The results found 28 genes in the tricarboxylic acid cycle and oxidative phosphorolysis pathways were significantly downregulated by 3.97 to 6.07, and 2.47 to 5.99 folds by 0.1 and 1 mg L-1 SFM, respectively. These results indicated that SFM disrupted the microalgal cellular activities through inhibition of energy metabolism. Whilst, the upregulated genes have been most enriched in porphyrin and chlorophyll metabolism (hemE, hemL, hemY, chlD, chlP, PAO, and CAO), and arachidonic acid metabolism (GGT1_5 and gpx). Expression of these genes was significantly upregulated by up to 3.36 times for tolerance against SFM. Moreover, the genes encoding decarboxylase, oxidoreductases, α-amylase, hydrolases, O-acetyltransferase, and lyase were upregulated by >2 folds, which can induce di/hydroxylation, decarboxylation, bond cleavage and deamination. These findings provide insights into the molecular mechanisms of the ecotoxicological effects of antibiotics on microalgae, and supply useful information for their environmental risk assessment and management.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Yushan, Qingdao, Shandong, China.
| | - Xin Qi
- College of Marine Life Sciences, Ocean University of China, Yushan, Qingdao, Shandong, China
| | - Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Yushan, Qingdao, Shandong, China
| |
Collapse
|
35
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
36
|
Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Helamieh M, Reich M, Bory S, Rohne P, Riebesell U, Kerner M, Kümmerer K. Blue-green light is required for a maximized fatty acid unsaturation and pigment concentration in the microalga Acutodesmus obliquus. Lipids 2022; 57:221-232. [PMID: 35460080 DOI: 10.1002/lipd.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Blue-green light is known to maximize the degree of fatty acid (FA) unsaturation in microalgae. However, knowledge on the particular waveband responsible for this stimulation of FA desaturation and its impact on the pigment composition in microalgae remains limited. In this study, Acutodesmus obliquus was cultivated for 96 h at 15°C with different light spectra (380-700 nm, 470-700 nm, 520-700 nm, 600-700 nm, and dark controls). Growth was monitored daily, and qualitative characterization of the microalgal FA composition was achieved via gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS). Additionally, a quantitative analysis of microalgal pigments was performed using high-performance liquid chromatography with diode array detection (HPLC-DAD). Spectra that included wavelengths between 470 and 520 nm led to a significantly higher percentage of the polyunsaturated fatty acids (PUFA) 18:3 and 16:4, compared to all other light conditions. However, no significant differences between the red light cultivations and the heterotrophic dark controls were observed for the FA 18:3 and 16:4. These results indicate, that exclusively the blue-green light waveband between 470 and 520 nm is responsible for a maximized FA unsaturation in A. obliquus. Furthermore, the growth and production of pigments were impaired if blue-green light (380-520 nm) was absent in the light spectrum. This knowledge can contribute to achieving a suitable microalgal pigment and FA composition for industrial purposes and must be considered in spectrally selective microalgae cultivation systems.
Collapse
Affiliation(s)
- Mark Helamieh
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany.,Strategic Science Consult Ltd, Hamburg, Germany
| | - Marco Reich
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| | - Sophie Bory
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| | - Philipp Rohne
- Institute of Pharmacy and Biochemistry, Therapeutical Life Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| |
Collapse
|
38
|
Contribution to the chemodiversity of ex Cystoseira sp. - Gongolaria barbata and Ericaria crinita from the Adriatic Sea: Volatiles, fatty acids and major pigments. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Voronkov A, Ivanova T. Significance of Lipid Fatty Acid Composition for Resistance to Winter Conditions in Asplenium scolopendrium. BIOLOGY 2022; 11:507. [PMID: 35453707 PMCID: PMC9024544 DOI: 10.3390/biology11040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Ferns are one of the oldest land plants. Among them, there are species that, during the course of evolution, have adapted to living in temperate climates and under winter conditions. Asplenium scolopendrium is one such species whose fronds are able to tolerate low subzero temperatures in winter. It is known that the resistance of ferns to freezing is associated with their prevention of desiccation via unique properties of the xylem and effective photoprotective mechanisms. In this work, the composition of A. scolopendrium lipid fatty acids (FAs) at different times of the year was studied by gas-liquid chromatography with mass spectrometry to determine their role in the resistance of this species to low temperatures. During the growing season, the polyunsaturated FA content increased significantly. This led to increases in the unsaturation and double-bond indices by winter. In addition, after emergence from snow, medium-chain FAs were found in the fronds. Thus, it can be speculated that the FA composition plays an important role in the adaptation of A. scolopendrium to growing conditions and preparation for successful wintering.
Collapse
Affiliation(s)
- Alexander Voronkov
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, IPP RAS, 35 Botanicheskaya St., 127276 Moscow, Russia;
| | | |
Collapse
|
40
|
Abd Manan TSB, Khan T, Wan Mohtar WHM, Mohd Hanafiah Z, Latip ASA, Mustafa SFZ, Leong SY, Shamsuddin AS, Isa MH, Hassan AKR, Ahmad A, Wan Rasdi N, Mohamad H. Algae in medicine and human health. ALGAL BIOTECHNOLOGY 2022:323-334. [DOI: 10.1016/b978-0-323-90476-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
42
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
43
|
Zhang R, Zhu Z, Jia W. Time-Series Lipidomics Insights into the Progressive Characteristics of Lipid Constituents of Fresh Walnut during Postharvest Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13796-13809. [PMID: 34763422 DOI: 10.1021/acs.jafc.1c05120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high-throughput lipid profiling platform adopting an accurate quantification strategy was built based on Q-Orbitrap mass spectrometry. Lipid components of fresh walnut during postharvest storage were determined, and the fatty acid distributions in triacylglycerol and polar lipids were also characterized. A total of 554 individual lipids in fresh walnut were mainly glycerolipids (56.7%), glycerophospholipids (32.4%), and sphingolipids (11%). With the progress of postharvest storage, 16 lipid subclasses in the stored walnut sample were significantly degraded, in which 34 lipids changed significantly between the fresh and stored groups. The sphingolipid metabolism, glycerolipid metabolism, and linoleic acid metabolism pathways were significantly enriched. The oxidation and degradation mechanism of linoleic acid in walnut kernel during postharvest storage was proposed. The established lipidomics platform can supply reliable and traceable lipid profiling data, help to improve the understanding of lipid degradation in fresh walnut, and offer a framework for analyzing lipid metabolisms in other tree nuts.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
44
|
Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X. Research advancement and commercialization of microalgae edible oil: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5763-5774. [PMID: 34148229 DOI: 10.1002/jsfa.11390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaohui Xue
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shihao Li
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Medicinal Plant Laboratory, Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Gao
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Zheng
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
45
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT. Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 2021; 17:96. [PMID: 34669052 DOI: 10.1007/s11306-021-01847-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Non-target lipid profiling by using ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) has been used extensively in the past decades in plant studies. However, the lipidomes of bryophytes have only been scarcely studied, although they are the second largest group in plant kingdom. OBJECTIVES We evaluated the effects of different cell disruption methods (no disruption, shake, ultrasound, and bead beating), and storage conditions (air-dried, freeze-dried, and fresh frozen) of five moss species (including Racomitrium lanuginosum B and D, Philonotis fontana, Sphagnum teres, and Hylocomium splendens). METHODS The lipid profiling results of each extraction parameter were analyzed by using multivariate data analysis including unsupervised principal component analysis and supervised orthogonal projections to latent structures discriminant analysis. RESULTS The results showed that extraction with bead beating resulted in the highest lipid content and the most detected features, but these were caused by the contamination from plastic tubes. Minor lipid metabolite changes were found in shaking and ultrasonication methods when compared with no disruption method. Significant amounts of phosphatidylcholine, diacylglyceryltrimethylhomoserine and their lyso lipids were observed in air-dried moss tissues, whereas diacylglycerol, triacylglycerol and ceramide were mostly exclusively detected when fresh frozen tissues were used for extraction. CONCLUSION We concluded that lipid extraction using fresh frozen samples with ultrasound assistance provide the most original lipid composition and gave a relatively high lipid content.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
| | - Finnur Freyr Eiriksson
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
46
|
Effects of light intensity on the production of phycoerythrin and polyunsaturated fatty acid by microalga Rhodomonas salina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Du B, Kruse J, Winkler JB, Alfarraj S, Albasher G, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Metabolic responses of date palm (Phoenix dactylifera L.) leaves to drought differ in summer and winter climate. TREE PHYSIOLOGY 2021; 41:1685-1700. [PMID: 33607652 DOI: 10.1093/treephys/tpab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Drought negatively impacts growth and productivity of plants, particularly in arid and semi-arid regions. Although drought events can take place in summer and winter, differences in the impact of drought on physiological processes between seasons are largely unknown. The aim of this study was to elucidate metabolic strategies of date palms in response to drought in summer and winter season. To identify such differences, we exposed date palm seedlings to a drought-recovery regime, both in simulated summer and winter climate. Leaf hydration, carbon discrimination (${\Delta}$13C), and primary and secondary metabolite composition and contents were analyzed. Depending on season, drought differently affected physiological and biochemical traits of the leaves. In summer, drought induced significantly decreased leaf hydration, concentrations of ascorbate, most sugars, primary and secondary organic acids, as well as phenolic compounds, while thiol, amino acid, raffinose and individual fatty acid contents were increased compared with well-watered plants. In winter, drought had no effect on leaf hydration, ascorbate and fatty acids contents, but resulted in increased foliar thiol and amino acid levels as observed in summer. Compared with winter, foliar traits of plants exposed to drought in summer only partly recovered after re-watering. Memory effects on water relations, and primary and secondary metabolites seem to prepare foliar traits of date palms for repeated drought events in summer. Apparently, a well-orchestrated metabolic network, including the anti-oxidative system, compatible solutes accumulation and osmotic adjustment, and maintenance of cell-membrane stability strongly reduces the susceptibility of date palms to drought. These mechanisms of drought compensation may be more frequently required in summer.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, 621000 Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gadah Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing,China
| |
Collapse
|
48
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
49
|
Turolo S, Edefonti A, Mazzocchi A, Syren ML, Morello W, Agostoni C, Montini G. Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome. Int J Mol Sci 2021; 22:5452. [PMID: 34064238 PMCID: PMC8196840 DOI: 10.3390/ijms22115452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, we describe the main fields where they may play a significant role, particularly as it pertains to their effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell membrane fluidity and permeability, modulate platelet activity and coagulation, regulate lymphocyte activity and inflammation, preserve the permeability of the glomerular barrier, influence podocyte physiology, and play a role in renal fibrosis. We also provide suggestions regarding dietary measures that are able to prevent an imbalance between arachidonic acid and its parental compound linoleic acid, in order to counteract the inflammatory state which characterizes numerous kidney diseases. On this basis, studies of AA in kidney disease appear as an important field to explore, with possible relevant results at the biological, dietary, and pharmacological level, in the final perspective for AA to modulate INS clinical manifestations.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
| | - Alberto Edefonti
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
| | - Marie Louise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
| | - William Morello
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
| |
Collapse
|
50
|
Influence of Extremely Low Temperatures of the Pole of Cold on the Lipid and Fatty-Acid Composition of Aerial Parts of the Horsetail Family (Equisetaceae). PLANTS 2021; 10:plants10050996. [PMID: 34067613 PMCID: PMC8156520 DOI: 10.3390/plants10050996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
The lipid composition of two species of vascular plants, Equisetum variegatum Schleich. ex. Web. and E. scirpoides Michx., growing in the permafrost zone (Northeastern Yakutia, the Pole of Cold of the Northern Hemisphere), with average daily air temperatures in summer of +17.8 °C, in autumn of +0.6 °C, and in winter of −46.7 °C, was comparatively studied. The most significant seasonal trend of lipid composition was an accumulation of PA in both horsetail species in the autumn–winter period. Cold acclimation in autumn was accompanied by a decrease in the proportion of bilayer-forming lipids (phosphatidylcholine in the non-photosynthetic membranes and MGDG in photosynthetic membranes), an increase in the desaturation degree due to the accumulation of triene fatty acids (E. scirpoides), and an accumulation of betaine lipids O-(1,2-diacylglycero)-N,N,N-trimethylhomoserine (DGTS). The inverse changes in some parameters were registered in the winter period, including an increase in the proportion of “bilayer” lipids and decrease in the unsaturation degree. According to the data obtained, it can be concluded that high levels of accumulation of membrane lipids and polyunsaturated FAs (PUFAs), as well as the presence of Δ5 FAs in lipids, are apparently features of cold hardening of perennial herbaceous plants in the cryolithozone.
Collapse
|