1
|
Ghorbani M, Prince E. Radical Ring-Opening Polymerization: Unlocking the Potential of Vinyl Polymers for Drug Delivery, Tissue Engineering, and More. Biomacromolecules 2025; 26:118-139. [PMID: 39733344 DOI: 10.1021/acs.biomac.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far. In recent years, radical ring-opening polymerization (rROP) has emerged as a promising strategy to render synthetic vinyl polymers biodegradable and bioresorbable. While rROP has long been touted as a strategy for preparing biodegradable vinyl polymers for biomedical applications, the translation of rROP into clinically approved treatments for disease has not yet been realized. This review highlights the opportunities for leveraging rROP to render vinyl polymers biodegradable and unlock their potential for use in biomedical applications.
Collapse
Affiliation(s)
- Mina Ghorbani
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| | - Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| |
Collapse
|
2
|
Lee J, Choi Y, Song J, Seong D, Jin S, Ju J, Son D, Shin M. Nerve-Mimetic Adhesive Hydrogel Electroceuticals: Tailoring In Situ Physically Entangled Domains in Singular Polymers. ACS NANO 2024; 18:34949-34961. [PMID: 39670562 DOI: 10.1021/acsnano.4c13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Implantable electrochemicals stand out as promising candidates for resolving peripheral nerve injuries. However, challenges persist in designing bioelectronic materials that mimic tissue due to modulus matching, conformal adhesion, and immune responses. Herein, we present a nerve-mimicking design rationale for biocompatible hydrogel-based electroceuticals with a tissue-like modulus, robust and conformal tissue adhesion, exceptional mechanical toughness, and efficient stress dissipation. Inspired by the hierarchical structure of the peripheral nerve, the hydrogel substrate features a structurally gradient bilayer transitioning from a dense to a loose polymeric network, utilizing alginate functionalized with either photo-cross-linkable methacrylate or tissue-adhesive phenylborate. Due to the varying water affinity of the tethering groups, a physically entangled interfacial domain is in situ formed during dehydration of the pre-gel film, resulting in enhanced mechanical toughness and strong adhesion. The hydrogel electroceuticals, when integrated with conducting polymeric electrodes, locally stimulate nerve tissue, improving tissue regeneration in a crushed nerve injury model.
Collapse
Affiliation(s)
- Jaebeom Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Yeonsun Choi
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Duhwan Seong
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaewon Ju
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Kopiasz RJ, Dranka M, Tomaszewski W, Kowalska P, Butruk-Raszeja B, Drężek K, Mierzejewska J, Ciach T, Jańczewski D. Antimicrobial Macrocycles - Synthesis, Characterization, and Activity Comparison with Their Linear Polycationic Analogues. Biomacromolecules 2024; 25:7814-7827. [PMID: 39513390 DOI: 10.1021/acs.biomac.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
One of the promising candidates for new antimicrobial agents is membrane-lytic compounds that kill microbes through cell membrane permeabilization, such as antimicrobial peptides (AMPs) and their synthetic mimics (SMAMPs). Although SMAMPs have been under investigation for nearly 30 years, a few challenges must be addressed before they can reach clinical use. In this work, a step-growth polymerization leading to already-known highly antimicrobial ionenes was redirected toward the formation of macrocyclic quaternary ammonium salts (MQAs) employing a high dilution principle. Antimicrobial assays and cytotoxicity studies revealed the high antimicrobial activity of MQAs and better selectivity than their polymeric analogues. Therefore, MQAs seem to be a new class of promising antibacterial agents. Additionally, membrane-lytic experiments using large unilamellar liposomes (LUVs) and whole cells revealed significant differences between MQAs and ionenes in their ability to adsorb onto the surface of LUVs and microbes as well as their ability to permeate the lipid bilayer.
Collapse
Affiliation(s)
- Rafał Jerzy Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Maciej Dranka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Patrycja Kowalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| |
Collapse
|
4
|
Spiridonov V, Lukmanova A, Pozdyshev D, Antonova Y, Kusaja V, Muronetz V, Yaroslavov A. Enzyme-induced degradation of natural and artificial linear polyanions. Carbohydr Res 2024; 546:109310. [PMID: 39541826 DOI: 10.1016/j.carres.2024.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Synthetic and natural polymers are widely used for constructing drug delivery systems. Biocompatibility, water solubility and non-toxicity make polymers a convenient matrix for encapsulation, delivery and release of bioactive compounds. Coupling of a drug with a biodegraded polymer matrix is a promising way for a controlled drug delivery. Along this line, the degradation of the four polymers in the presence of two enzymes in aqueous solutions was investigated. The following polymers were used: natural polysaccharides, sodium alginate and sodium hyaluronate, artificial (modified) sodium carboxymethylcellulose and synthetic sodium polyacrylate (control); their degradation was caused by the addition of alginate lyase and hyaluronidase. The first enzyme only cleaved the specific alginate substrate and left three other intact. Contrastingly, the second enzyme degraded all three polysaccharides, including artificial carboxymethylcellulose, but did not degrade synthetic polyacrylate. The biodegradation of polymers was accompanied by decreasing the size of polymer particles in solution from 100 to 200 nm down to 20-30 nm; the latter are capable of removing from the body through the kidneys. The initial polysaccharides showed the negative surface charge in aqueous solution, which changed but retained negative after biodegradation. The initial and biodegraded polysaccharides demonstrated negligible cytotoxicity during long exposure period. The obtained results are valuable for the development of polymer carriers for drug encapsulation and delivery.
Collapse
Affiliation(s)
- Vasily Spiridonov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia.
| | - Alina Lukmanova
- Lomonosov Moscow State University, Faculty of Materials Science, Leninskie gory 1-73, 119991, Moscow, Russia
| | - Denis Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992, Moscow, Russia
| | - Yulia Antonova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia
| | - Viktorija Kusaja
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia
| | - Vladimir Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992, Moscow, Russia
| | - Alexander Yaroslavov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia
| |
Collapse
|
5
|
Sakhaii P, Bohorc B, Olpp T, Mohnicke M, Rieke-Zapp J, Dhal PK. Radio frequency gradient enhanced diffusion-edited semi-solid state NMR spectroscopy for detailed structural characterization of chemically modified hyaluronic acid hydrogels. Sci Rep 2024; 14:28612. [PMID: 39562623 PMCID: PMC11577061 DOI: 10.1038/s41598-024-78731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Applications of functionalized hyaluronic acid (HA) hydrogels for numerous biomedical applications requires their detailed structural characterization. Since these materials are prepared by multistep chemical modifications in the solid phase and not amenable to characterization by standard analytical tools, we employed high-resolution solid-state NMR spectroscopy to gain detailed insights into the structures of the functionalized HA hydrogels. Divinyl sulfone crosslinked HA hydrogels were converted into maleimide-functionalized hydrogels, which were subjected to chemoselective thiol-maleimide reaction using L-cysteine as the protein mimetic thiol reagent. To overcome challenges associated with obtaining high-resolution NMR spectra of crosslinked hydrogels (such as line broadening and overlapping of signals of the hydrogel with those of residual reagents and solvents used during multi-step reaction processes on insoluble polymer matrices), we devised a radio frequency mediated diffusion-edited semi solid-state NMR technique. This technique enabled us to record NMR spectra of hydrogels exclusively by effectively suppressing signals associated with low molecular weight impurities. Thus, it became possible to perform in-depth characterization of these chemically modified HA hydrogels including quantification of reaction outcome for each reaction step.
Collapse
Affiliation(s)
- Peyman Sakhaii
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany.
| | - Bojan Bohorc
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Thomas Olpp
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Mandy Mohnicke
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Joerg Rieke-Zapp
- Manufacturing Science and Analytical Technology, Sanofi, Industrial Park Hoechst, D- 65926, Frankfurt/Main, Germany
| | - Pradeep K Dhal
- Global CMC Development, Global R&D, Sanofi, 350 Water Street, MA 02141, Cambridge, USA.
| |
Collapse
|
6
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
7
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
8
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
9
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
10
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
11
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
12
|
Bozuyuk U, Wrede P, Yildiz E, Sitti M. Roadmap for Clinical Translation of Mobile Microrobotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311462. [PMID: 38380776 DOI: 10.1002/adma.202311462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Medical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use. From the concept of a "magic bullet" to the physicochemical interactions of microrobots in complex biological environments in medical applications, there are several translational steps to consider. Clinical translation of mobile microrobots is only possible with a close collaboration between clinical experts and microrobotics researchers to address the technical challenges in microfabrication, safety, and imaging. The clinical application potential can be materialized by designing microrobots that can solve the current main challenges, such as actuation limitations, material stability, and imaging constraints. The strengths and weaknesses of the current progress in the microrobotics field are discussed and a roadmap for their clinical applications in the near future is outlined.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- School of Medicine and College of Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
13
|
Krishnan PD, Durai RD, Veluri S, B Narayanan VH. Semisolid extrusion 3D printing of Dolutegravir-Chitosan nanoparticles laden polymeric buccal films: personalized solution for pediatric treatment. Biomed Mater 2024; 19:025046. [PMID: 38364288 DOI: 10.1088/1748-605x/ad2a3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
In this work, the semi solid extrusion 3D printing process was utilized to incorporate anti-HIV drug Dolutegravir and its nanoparticles into the buccal film (BF) that was fabricated using the developed polymer ink. The composite made of polyvinyl alcohol (PVA) and sodium alginate was processed into a 3D printing polymer ink with optimum viscosity (9587 ± 219 cP) needed for the seamless extrusion through the nozzle of the 3D printer. The formulated BFs were assessed for its physical properties like weight (0.414 ± 0.3 g), thickness (1.54 ± 0.02 mm), swelling index (18.5 ± 0.91%), and mucoadhesiveness strength (0.165 ± 0.09 N) etc, The structural integrity and the surface morphology of the developed BFs were investigated by scanning electron microscopy analysis. The chemical stability and the solid-state nature of the drug in the BFs were assessed by Fourier transform infrared and x-ray diffraction analysis respectively. Further the BFs were assessed for drug dissolutionin-vitroandex-vivo, to study the effect of polymer composition and printing condition on the dissolution profile of the drug in the simulated salivary fluid. The results demonstrated that the developed PVA based polymer ink for 3D printing utilizing pressure is a versatile approach in the context of manufacturing mucoadhesive BFs customized in terms of shape and the amount of drug loaded.
Collapse
Affiliation(s)
- Priya Dharshini Krishnan
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Ramya Devi Durai
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Sivanjineyulu Veluri
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
14
|
Kasza K, Richards B, Jones S, Romero M, Robertson SN, Hardie KR, Gurnani P, Cámara M, Alexander C. Ciprofloxacin Poly(β-amino ester) Conjugates Enhance Antibiofilm Activity and Slow the Development of Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5412-5425. [PMID: 38289032 PMCID: PMC10859900 DOI: 10.1021/acsami.3c14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial biofilms are a particular concern in this context as they are responsible for over 80% of bacterial infections and are inherently more recalcitrant toward antimicrobial treatments. The high tolerance of biofilms to conventional antibiotics has been attributed to several factors, including reduced drug diffusion through the dense exopolymeric matrix and the upregulation of antimicrobial resistance machinery with successful biofilm eradication requiring prolonged high doses of multidrug treatments. A promising approach to tackle bacterial infections involves the use of polymer drug conjugates, shown to improve upon free drug toxicity and bioavailability, enhance drug penetration through the thick biofilm matrix, and evade common resistance mechanisms. In the following study, we conjugated the antibiotic ciprofloxacin (CIP) to a small library of biodegradable and biocompatible poly(β-amino ester) (PBAE) polymers with varying central amine functionality. The suitability of the polymers as antibiotic conjugates was then verified in a series of assays including testing of efficacy and resistance response in planktonic Gram-positive and Gram-negative bacteria and the reduction of viability in mono- and multispecies biofilm models. The most active polymer within the prepared PBAE-CIP library was shown to achieve an over 2-fold increase in the reduction of biofilm viability in a Pseudomonas aeruginosa monospecies biofilm and superior elimination of all the species present within the multispecies biofilm model. Hence, we demonstrate that CIP conjugation to PBAEs can be employed to achieve improved antibiotic efficacy against clinically relevant biofilm models.
Collapse
Affiliation(s)
- Karolina Kasza
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Brogan Richards
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Sal Jones
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Manuel Romero
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Shaun N. Robertson
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Kim R. Hardie
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Pratik Gurnani
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Miguel Cámara
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Cameron Alexander
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
15
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
16
|
Scherger M, Pilger YA, Komforth P, Räder HJ, Nuhn L. Reversible Polymer-Protein Functionalization by Stepwise Introduction of Amine-Reactive, Reductive-Responsive Self-Immolative End Groups onto RAFT-Derived Polymers. ACS Biomater Sci Eng 2024; 10:129-138. [PMID: 36695579 PMCID: PMC10777346 DOI: 10.1021/acsbiomaterials.2c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Many promising therapeutic protein or peptide drug candidates are rapidly excreted from an organism due to their small size or their inherent immunogenicity. One way to counteract these effects is PEGylation, in which the biopolymer is shielded by synthetic polymers exploiting their stealth properties. However, these modifications are often accompanied by a reduction in the biological function of the protein. By using responsive moieties that bridge the polymer to the protein, a reversible character is provided to this type of conjugation. In this regard, the reductive-responsive nature of disulfides can be exploited via self-immolative structures for reversible linkage to aminic lysine residues and the N-terminus on the protein surface. They enable a traceless release of the intact protein without any further modification and thus preserve the protein's bioactivity. In this study, we demonstrate how this chemistry can be made broadly accessible to RAFT-derived water-soluble polymers like poly(N,N-dimethylacrylamide) (pDMA) as a relevant PEG alternative. A terminal reactive imidazole carbamate with an adjacent self-immolative motif was generated in a gradual manner onto the trithiocarbonate chain transfer moiety of the polymer by first substituting it with a disulfide-bridged alcohol and subsequently converting it into an amine reactive imidazole carbamate. Successful synthesis and complete characterization were demonstrated by NMR, size exclusion chromatography, and mass spectrometry. Finally, two model proteins, lysozyme and a therapeutically relevant nanobody, were functionalized with the generated polymer, which was found to be fully reversible under reductive conditions in the presence of free thiols. This strategy has the potential to extend the generation of reversible reductive-responsive polymer-protein hybrids to the broad field of available functional RAFT-derived polymers.
Collapse
Affiliation(s)
- Maximilian Scherger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yannick A. Pilger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Chair
of Macromolecular Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Patric Komforth
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hans-Joachim Räder
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Chair
of Macromolecular Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| |
Collapse
|
17
|
Wintjens AGWE, Fransen PPKH, Lenaerts K, Liu H, van Almen GC, van Steensel S, Gijbels MJ, de Hingh IHJT, Dankers PYW, Bouvy ND. Development of a Supramolecular Hydrogel for Intraperitoneal Injections. Macromol Biosci 2024; 24:e2300005. [PMID: 36934315 DOI: 10.1002/mabi.202300005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Indexed: 03/20/2023]
Abstract
Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed. To establish the optimal formulation of the hydrogel and to study its feasibility, safety, and tissue compatibility, in vitro, postmortem, and in vivo experiments are performed. In vitro tests reveal that a hydrogelator formulation with pH ≥ 9 results in a constant viscosity of 0.1 Pa·s. After administration postmortem, the hydrogel covers the parietal and visceral peritoneum with a thin, soft layer. In the subsequent in vivo experiments, 14 healthy rats are subjected to intraperitoneal injection with the hydrogel. Fourteen and 28 days after implantation, the animals are euthanized. Intraperitoneal exposure to the hydrogel is not resulted in significant weight loss or discomfort. Moreover, no macroscopic adverse effects or signs of organ damage are detected. In several intra-abdominal tissues, vacuolated macrophages are found indicating a physiological degradation of the synthetic hydrogel. This study demonstrates that the supramolecular hydrogel is safe for intraperitoneal application and that the hydrogel shows good tissue compatibility in rats.
Collapse
Affiliation(s)
- Anne G W E Wintjens
- Department of Surgery, Maastricht University Medical Center+, Maastricht, 6202AZ, The Netherlands
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6211LK, The Netherlands
| | | | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Center+, Maastricht, 6202AZ, The Netherlands
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6211LK, The Netherlands
| | - Hong Liu
- Department of Surgery, Maastricht University Medical Center+, Maastricht, 6202AZ, The Netherlands
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6211LK, The Netherlands
| | | | - Sebastiaan van Steensel
- Department of Surgery, Maastricht University Medical Center+, Maastricht, 6202AZ, The Netherlands
| | - Marion J Gijbels
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6211LK, The Netherlands
- Department of Pathology, Maastricht University Medical Center+, Maastricht, 6202AZ, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center, Amsterdam, 1081HV, The Netherlands
| | - Ignace H J T de Hingh
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6211LK, The Netherlands
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, 5623EJ, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Center+, Maastricht, 6202AZ, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center, Amsterdam, 1081HV, The Netherlands
| |
Collapse
|
18
|
Sartawi Z, Blackshields C, Ariamanesh A, Farag FF, Griffin B, Crean A, Devine K, Elkhashab M, Aldejohann AM, Kurzai O, Faisal W. Glass Microneedles: A Case Study for Regulatory Approval Using a Quality by Design Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305834. [PMID: 37950607 DOI: 10.1002/adma.202305834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In this paper, a roadmap is provided for the regulatory approval of one of the exciting and dynamic drug delivery fields, microneedles, by using a Quality by Design approach to pharmaceutical product development. In this regard, a quality target product profile (QTPP) and the critical quality attributes (CQA) of microneedles are identified. A case study of the recently patented method of fabricating glass microneedles entirely from a therapeutic agent, thus eliminating the requirement for additional excipients is discussed. The glass microneedle, ArrayPatch, is a propriety wearable device with platform potential consisting of an array of sharp, but painless, dissolvable microneedles manufactured with 100% drug. The microneedles penetrate the skin on application and dissolve to deliver a locally effective dose. The in vitro characterization of the microneedle CQAs under WHO-guided stability conditions will be described to assess the manufacturing readiness of ArrayPatch. A live technical video is also provided, presenting a unique procedure of jugular vein cannulation through the ear vein of a pig animal model to study the in vivo pharmacokinetics of ArrayPatch compared to standard-of-care marketed products.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | | | - Arefe Ariamanesh
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Fatma Fawzy Farag
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
- Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Brendan Griffin
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Abina Crean
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Ken Devine
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Mohamed Elkhashab
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Alexander Maximilian Aldejohann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080, Wuerzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745, Jena, Germany
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745, Jena, Germany
| | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
19
|
Schwarz R, Diesendruck CE. Semi-Telechelic Polymers from Mechanochemical C─C Bond Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304571. [PMID: 37870199 DOI: 10.1002/advs.202304571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Indexed: 10/24/2023]
Abstract
Unstrained C─C bond activation is attained in homopolymers through mechanochemical bond scission followed by functionalization to yield mostly semi-telechelic polymer chains. Ball milling poly(ethylene oxide) (PEO) in the presence of 1-(bromoacetyl)pyrene (BAPy) yields the pyrene terminated PEO. Similarly, milling with 2,4'-dibromoacetophenone followed by Suzuki coupling allows the introduction of various aryl end groups. PEOs with a molecular weight below 20 kDa show no functionalization, supporting a mechanochemical mechanism. The protocol is also tested with doxorubicin, yielding the drug-polymer conjugate. PEO halogenation is also demonstrated by milling PEO with iodine, N-bromosuccinimide, or N-iodosuccinimide, which can then be reacted with an amine substituted anthracene. Grinding additional carbon polymers with BAPy indicates that this functionalization method is general for different polymer chemistries.
Collapse
Affiliation(s)
- Rony Schwarz
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
20
|
Hemmrich E, McNeil S. Active ingredient vs excipient debate for nanomedicines. NATURE NANOTECHNOLOGY 2023; 18:692-695. [PMID: 37106055 DOI: 10.1038/s41565-023-01371-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Affiliation(s)
- Eva Hemmrich
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Scott McNeil
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Strasser P, Montsch B, Weiss S, Sami H, Kugler C, Hager S, Schueffl H, Mader R, Brüggemann O, Kowol CR, Ogris M, Heffeter P, Teasdale I. Degradable Bottlebrush Polypeptides and the Impact of their Architecture on Cell Uptake, Pharmacokinetics, and Biodistribution In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300767. [PMID: 36843221 PMCID: PMC11475343 DOI: 10.1002/smll.202300767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/02/2023]
Abstract
Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Silvia Weiss
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Haider Sami
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Christoph Kugler
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Robert Mader
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| |
Collapse
|
22
|
Pesenti T, Gillon E, Ishii S, Messaoudi S, Guillaneuf Y, Imberty A, Nicolas J. Increasing the Hydrophilicity of Cyclic Ketene Acetals Improves the Hydrolytic Degradation of Vinyl Copolymers and the Interaction of Glycopolymer Nanoparticles with Lectins. Biomacromolecules 2023; 24:991-1002. [PMID: 36724405 DOI: 10.1021/acs.biomac.2c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radical ring-opening polymerization (rROP) of cyclic ketene acetals (CKAs) with traditional vinyl monomers allows the synthesis of degradable vinyl copolymers. However, since the most commonly used CKAs are hydrophobic, most degradable vinyl copolymers reported so far degrade very slowly by hydrolysis under physiological conditions (phosphate-buffered saline, pH 7.4, 37 °C), which can be detrimental for biomedical applications. Herein, to design advanced vinyl copolymers by rROP with high CKA content and enhanced degradation profiles, we reported the copolymerization of 2-methylene-1,3,6-trioxocane (MTC) as a CKA with vinyl ether (VE) or maleimide (MI) derivatives. By performing a point-by-point comparison between the MTC/VE and MTC/MI copolymerization systems, and their counterparts based on 2-methylene-1,3-dioxepane (MDO) and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), we showed negligible impact on the macromolecular characteristics and similar reactivity ratios, suggesting successful substitution of MDO and BMDO by MTC. Interestingly, owing to the hydrophilicity of MTC, the obtained copolymers exhibited a faster hydrolytic degradation under both accelerated and physiological conditions. We then prepared MTC-based glycopolymers, which were formulated into surfactant-free nanoparticles, exhibiting excellent colloidal stability up to 4 months and complete degradation under enzymatic conditions. Importantly, MTC-based glyconanoparticles also showed a similar cytocompatibility toward two healthy cell lines and a much stronger lectin affinity than MDO-based glyconanoparticles.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Seika Ishii
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | | | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, 13397 Marseille, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
23
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
24
|
Kumar N, Ghosh B, Kumar A, Koley R, Dhara S, Chattopadhyay S. Multilayered “SMART” hydrogel systems for on-site drug delivery applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Almoshari Y. Osmotic Pump Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:1430. [PMID: 36422560 PMCID: PMC9697821 DOI: 10.3390/ph15111430] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 07/22/2023] Open
Abstract
In the last couple of years, novel drug delivery systems (NDDS) have attracted much attention in the food and pharmaceutical industries. NDDS is a broad term that encompasses many dosage forms, one of which is osmotic pumps. Osmotic pumps are considered to be the most reliable source of controlled drug delivery, both in humans and in animals. These pumps are osmotically controlled and release active agents through osmotic pressure. To a large extent, drug release from such a system is independent of gastric fluids. Based on such unique properties and advantages, osmotic pumps have made their mark on the pharmaceutical industry. This review summarizes the available osmotic devices for implantation and osmotic tablets for oral administration.
Collapse
Affiliation(s)
- Yosif Almoshari
- The Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
26
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
27
|
Epshtein Y, Blau R, Pisarevsky E, Koshrovski-Michael S, Ben-Shushan D, Pozzi S, Shenbach-Koltin G, Fridrich L, Buzhor M, Krivitsky A, Dey P, Satchi-Fainaro R. Polyglutamate-based nanoconjugates for image-guided surgery and post-operative melanoma metastases prevention. Theranostics 2022; 12:6339-6362. [PMID: 36168618 PMCID: PMC9475454 DOI: 10.7150/thno.72941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 01/01/2023] Open
Abstract
Rationale: Cutaneous melanoma is the most aggressive and deadliest of all skin malignancies. Complete primary tumor removal augmented by advanced imaging tools and effective post-operative treatment is critical in the prevention of tumor recurrence and future metastases formation. Methods: To meet this challenge, we designed novel polymeric imaging and therapeutic systems, implemented in a two-step theranostic approach. Both are composed of the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The first system is a novel, fluorescent, Turn-ON diagnostic probe evaluated for the precise excision of the primary tumor during image-guided surgery (IGS). The fluorescence activation of the probe occurs via PGA degradation by tumor-overexpressed cathepsins that leads to the separation of closely-packed, quenched FRET pair. This results in the emission of a strong fluorescence signal enabling the delineation of the tumor boundaries. Second, therapeutic step is aimed to prevent metastases formation with minimal side effects and maximal efficacy. To that end, a targeted treatment containing a BRAF (Dabrafenib - mDBF)/MEK (Selumetinib - SLM) inhibitors combined on one polymeric platform (PGA-SLM-mDBF) was evaluated for its anti-metastatic, preventive activity in combination with immune checkpoint inhibitors (ICPi) αPD1 and αCTLA4. Results: IGS in melanoma-bearing mice led to a high tumor-to-background ratio and reduced tumor recurrence in comparison with mice that underwent surgery under white light (23% versus 33%, respectively). Adjuvant therapy with PGA-SLM-mDBF combined with ICPi, was well-tolerated and resulted in prolonged survival and prevention of peritoneal and brain metastases formation in BRAF-mutated melanoma-bearing mice. Conclusions: The results reveal the great clinical potential of our PGA-based nanosystems as a tool for holistic melanoma treatment management.
Collapse
Affiliation(s)
- Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidar Fridrich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marina Buzhor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Jensen VFH, Schefe LH, Jacobsen H, Mølck AM, Almholt K, Sjögren I, Dalsgaard CM, Kirk RK, Benie AJ, Petersen BO, Kyhn MS, Overgaard AJ, Bjørnsdottir I, Stannard DR, Offenberg HK, Egecioglu E. Normal Neurodevelopment and Fertility in Juvenile Male Rats Exposed to Polyethylene Glycol Following Dosing With PEGylated rFIX (Nonacog Beta Pegol, N9-GP): Evidence from a 10-Week Repeat-Dose Toxicity Study. Int J Toxicol 2022; 41:455-475. [DOI: 10.1177/10915818221121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N9-GP/Rebinyn®/Refixia® is an approved PEGylated (polyethylene glycol-conjugated) recombinant human factor IX intended for prophylactic and/or on-demand treatment in adults and children with haemophilia B. A juvenile neurotoxicity study was conducted in male rats to evaluate effects on neurodevelopment, sexual maturation, and fertility following repeat-dosing of N9-GP. Male rats were dosed twice weekly from Day 21 of age with N9-GP or vehicle for 10 weeks, followed by a dosing-free recovery period for 13 weeks and terminated throughout the dosing and recovery periods. Overall, dosing N9-GP to juvenile rats did not result in any functional or pathological effects, as measured by neurobehavioural/neurocognitive tests, including motor activity, sensory function, learning and memory as well as growth, sexual maturation, and fertility. This was further supported by the extensive histopathologic evaluation of brain tissue. Exposure and distribution of polyethylene glycol was investigated in plasma, choroid plexus, cerebrospinal fluid, and brain sections. PEG did not cross the blood brain barrier and PEG exposure did not result in any effects on neurodevelopment. In conclusion, dosing of N9-GP to juvenile rats did not identify any effects on growth, sexual maturation and fertility, clinical and histological pathology, or neurodevelopment related to PEG exposure and supports the prophylactic use of N9-GP in children.
Collapse
Affiliation(s)
- Vivi F. H. Jensen
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Line H. Schefe
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Helene Jacobsen
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Anne-Marie Mølck
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Kasper Almholt
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Ingrid Sjögren
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | | | - Rikke K Kirk
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Andrew J. Benie
- Department of Biophysics & Formulation 1, Novo Nordisk A/S, Måløv, Denmark
| | - Bent O. Petersen
- Department of Biophysics & Formulation 1, Novo Nordisk A/S, Måløv, Denmark
| | - Mette S. Kyhn
- Department of Non-clinical and Clinical Assay Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Anne J. Overgaard
- Department of Non-clinical and Clinical Assay Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Inga Bjørnsdottir
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | | | - Hanne K. Offenberg
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Emil Egecioglu
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
29
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
30
|
Tharmatt A, Chhina A, Saini M, Trehan K, Singh S, Bedi N. Novel Therapeutics Involving Antibiotic Polymer Conjugates for Treating Various Ailments: A Review. Assay Drug Dev Technol 2022; 20:137-148. [DOI: 10.1089/adt.2022.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Aashveen Chhina
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muskaan Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Karan Trehan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sahilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
31
|
Hawkins A, Joyce C, Brady K, Hold A, Smith A, Knight M, Howard C, van den Elsen J, Lawson AD, Macpherson A. The proximity of the N- and C- termini of bovine knob domains enable engineering of target specificity into polypeptide chains. MAbs 2022; 14:2076295. [PMID: 35634719 PMCID: PMC9154775 DOI: 10.1080/19420862.2022.2076295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cysteine-rich knob domains can be isolated from the ultralong heavy-chain complementarity-determining region (CDR) 3, which are unique to a subset of bovine antibodies, to create antibody fragments of ~4 kDa. Advantageously, the N- and C- termini of these small binding domains are in close proximity, and we propose that this may offer a practical route to engineer extrinsic binding specificity into proteins. To test this, we transplanted knob domains into various loops of rat serum albumin, targeting sites that were distal to the interface with the neonatal Fc receptor. Using knob domains raised against the clinically validated drug target complement component C5, we produced potent inhibitors, which exhibit an extended plasma half-life in vivo via attenuated renal clearance and neonatal Fc receptor-mediated avoidance of lysosomal catabolism. The same approach was also used to modify a Camelid VHH, targeting a framework loop situated at the opposing end of the domain to the CDRs, to produce a small, single-chain bispecific antibody and a dual inhibitor of Complement C3 and C5. This study presents new protein inhibitors of the complement cascade and demonstrates a broadly applicable method to engineer target specificity within polypeptide chains, using bovine knob domains.
Collapse
Affiliation(s)
| | - Callum Joyce
- Early Solutions UCB Biopharma UK, Slough, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Kevin Brady
- Early Solutions UCB Biopharma UK, Slough, UK
| | - Adam Hold
- Early Solutions UCB Biopharma UK, Slough, UK
| | - Alan Smith
- Biotech Solutions, UCB Biopharma UK, Slough, UK
| | | | | | | | | | | |
Collapse
|
32
|
Xiao J, Lu Y, Lu D, Chen W, Hu W, Zhao Y, Chen S. Co‐delivery of paclitaxel and
CXCL1 shRNA
via cationic polymeric micelles for synergistic therapy against ovarian cancer. POLYM INT 2022. [DOI: 10.1002/pi.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Xiao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yingying Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Deng Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai 200433 PR China
| | - Weiguo Hu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yuqing Zhao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Shouzhen Chen
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| |
Collapse
|
33
|
Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022; 12:500-525. [PMID: 34302274 PMCID: PMC8300981 DOI: 10.1007/s13346-021-01024-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - María Medel Gonzalez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain.
| |
Collapse
|
34
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Dinesen A, Winther A, Wall A, Märcher A, Palmfeldt J, Chudasama V, Wengel J, Gothelf KV, Baker JR, Howard KA. Albumin Biomolecular Drug Designs Stabilized through Improved Thiol Conjugation and a Modular Locked Nucleic Acid Functionalized Assembly. Bioconjug Chem 2022; 33:333-342. [PMID: 35129956 DOI: 10.1021/acs.bioconjchem.1c00561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Albumin-nucleic acid biomolecular drug designs offer modular multifunctionalization and extended circulatory half-life. However, stability issues associated with conventional DNA nucleotides and maleimide bioconjugation chemistries limit the clinical potential. This work aims to improve the stability of this thiol conjugation and nucleic acid assembly by employing a fast-hydrolyzing monobromomaleimide (MBM) linker and nuclease-resistant nucleotide analogues, respectively. The biomolecular constructs were formed by site-selective conjugation of a 12-mer oligonucleotide to cysteine 34 (Cys34) of recombinant human albumin (rHA), followed by annealing of functionalized complementary strands bearing either a fluorophore or the cytotoxic drug monomethyl auristatin E (MMAE). Formation of conjugates and assemblies was confirmed by gel shift analysis and mass spectrometry, followed by investigation of serum stability, neonatal Fc receptor (FcRn)-mediated cellular recycling, and cancer cell killing. The MBM linker afforded rapid conjugation to rHA and remained stable during hydrolysis. The albumin-nucleic acid biomolecular assembly composed of stabilized oligonucleotides exhibited high serum stability and retained FcRn engagement mediating FcRn-mediated cellular recycling. The MMAE-containing assembly exhibited cytotoxicity in the human MIA PaCa-2 pancreatic cancer cell line with an IC50 of 342 nM, triggered by drug release from breakdown of an acid-labile linker. In summary, this work presents rHA-nucleic acid module-based assemblies with improved stability and retained module functionality that further promotes the drug delivery potential of this biomolecular platform.
Collapse
Affiliation(s)
- Anders Dinesen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander Winther
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Archie Wall
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Vijay Chudasama
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - James R Baker
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Yin L, Pang Y, Shan L, Gu J. The in vivo pharmacokinetics of block copolymers containing polyethylene glycol used in nanocarrier drug delivery systems. Drug Metab Dispos 2022; 50:827-836. [DOI: 10.1124/dmd.121.000568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
|
37
|
Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang ET, Pethe K, Chan-Park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022; 13:345-364. [PMID: 35126968 PMCID: PMC8729810 DOI: 10.1039/d1sc05835e] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), β-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Wenbin Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Dicky Prananty
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Jianghua Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Chong Hui Koh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge Singapore 117585 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore 637551 Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
38
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Sulfonated Amphiphilic Poly(α)glutamate Amine—A Potential siRNA Nanocarrier for the Treatment of Both Chemo-Sensitive and Chemo-Resistant Glioblastoma Tumors. Pharmaceutics 2021; 13:pharmaceutics13122199. [PMID: 34959480 PMCID: PMC8705840 DOI: 10.3390/pharmaceutics13122199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Development of chemo-resistance is a major challenge in glioblastoma (GB) treatment. This phenomenon is often driven by increased activation of genes associated with DNA repair, such as the alkyl-removing enzyme O6-methylguanine-DNA methyltransferase (MGMT) in combination with overexpression of canonical genes related to cell proliferation and tumor progression, such as Polo-like kinase 1 (Plk1). Hereby, we attempt to sensitize resistant GB cells using our established amphiphilic poly(α)glutamate (APA): small interfering RNA (siRNA) polyplexes, targeting Plk1. Furthermore, we improved brain-targeting by decorating our nanocarrier with sulfonate groups. Our sulfonated nanocarrier showed superior selectivity towards P-selectin (SELP), a transmembrane glycoprotein overexpressed in GB and angiogenic brain endothelial cells. Self-assembled polyplexes of sulfonated APA and siPlk1 internalized into GB cells and into our unique 3-dimensional (3D) GB spheroids inducing specific gene silencing. Moreover, our RNAi nanotherapy efficiently reduced the cell viability of both chemo-sensitive and chemo-resistant GB cells. Our developed sulfonated amphiphilic poly(α)glutamate nanocarrier has the potential to target siRNA to GB brain tumors. Our findings may strengthen the therapeutic applications of siRNA for chemo-resistant GB tumors, or as a combination therapy for chemo-sensitive GB tumors.
Collapse
|
40
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
41
|
Su R, Zhang Y, Zhang J, Wang H, Luo Y, Chan HF, Tao Y, Chen Z, Li M. Nanomedicine to advance the treatment of bacteria-induced acute lung injury. J Mater Chem B 2021; 9:9100-9115. [PMID: 34672317 DOI: 10.1039/d1tb01770e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria-induced acute lung injury (ALI) is associated with a high mortality rate due to the lack of an effective treatment. Patients often rely on supportive care such as low tidal volume ventilation to alleviate the symptoms. Nanomedicine has recently received much attention owing to its premium benefits of delivering drugs in a sustainable and controllable manner while minimizing the potential side effects. It can effectively improve the prognosis of bacteria-induced ALI through targeted delivery of drugs, regulation of multiple inflammatory pathways, and combating antibiotic resistance. Hence, in this review, we first discuss the pathogenesis of ALI and its potential therapeutics. In particular, the state-of-the-art nanomedicines for the treatment of bacteria-induced ALI are highlighted, including their administration routes, in vivo distribution, and clearance. Furthermore, the available bacteria-induced ALI animal models are also summarized. In the end, future perspectives of nanomedicine for ALI treatment are proposed.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca 14853, USA
| | - Jiabin Zhang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
42
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
43
|
Niazian M, Molaahmad Nalousi A, Azadi P, Ma'mani L, Chandler SF. Perspectives on new opportunities for nano-enabled strategies for gene delivery to plants using nanoporous materials. PLANTA 2021; 254:83. [PMID: 34559312 DOI: 10.1007/s00425-021-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Engineered nanocarriers have great potential to deliver different genetic cargos to plant cells and increase the efficiency of plant genetic engineering. Genetic engineering has improved the quality and quantity of crops by introducing desired DNA sequences into the plant genome. Traditional transformation strategies face constraints such as low transformation efficiency, damage to plant tissues, and genotype dependency. Smart nanovehicle-based delivery is a newly emerged method for direct DNA delivery to plant genomes. The basis of this new approach of plant genetic transformation, nanomaterial-mediated gene delivery, is the appropriate protection of transferred DNA from the nucleases present in the cell cytoplasm through the nanocarriers. The conjugation of desired nucleic acids with engineered nanocarriers can solve the problem of genetic manipulation in some valuable recalcitrant plant genotypes. Combining nano-enabled genetic transformation with the new and powerful technique of targeted genome editing, CRISPR (clustered regularly interspaced short palindromic repeats), can create new protocols for efficient improvement of desired plants. Silica-based nanoporous materials, especially mesoporous silica nanoparticles (MSNs), are currently regarded as exciting nanoscale platforms for genetic engineering as they possess several useful properties including ordered and porous structure, biocompatibility, biodegradability, and surface chemistry. These specific features have made MSNs promising candidates for the design of smart, controlled, and targeted delivery systems in agricultural sciences. In the present review, we discuss the usability, challenges, and opportunities for possible application of nano-enabled biomolecule transformation as part of innovative approaches for target delivery of genes of interest into plants.
Collapse
Affiliation(s)
- Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Jam-e Jam Cross Way, P. O. Box 741, Sanandaj, 66169-36311, Iran.
| | - Ayoub Molaahmad Nalousi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | | |
Collapse
|
44
|
Bhadale RS, Londhe VY. A systematic review of carbohydrate-based microneedles: current status and future prospects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:89. [PMID: 34331594 PMCID: PMC8325649 DOI: 10.1007/s10856-021-06559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 06/01/2023]
Abstract
Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
45
|
Kaneko M, Ishikawa M, Nakanishi S, Ishihara K. Anticancer Activity of Cell-Penetrating Redox Phospholipid Polymers. ACS Macro Lett 2021; 10:926-932. [PMID: 35549201 DOI: 10.1021/acsmacrolett.1c00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Redox-active molecules are promising anticancer compounds because cancer cells are vulnerable to oxidative stress. Anticancer drugs are often incorporated into synthetic polymers to improve water solubility, stability, and retention in the body. Most conventional redox-active polymers are regarded as stimuli-responsive polymers, which induce the release of anticancer drugs in response to the surrounding redox environment. Here, we prepared redox phospholipid polymers composed of 2-methacryloyloxyethyl phosphorylcholine units and ferrocene or quinone units as anticancer redox polymers. Redox phospholipid polymers can disturb the intracellular redox state owing to their redox activity and cell membrane permeability. We observed that the redox potential of the polymers affected the reactivity with intracellular redox species and O2, resulting in a different impact on the viability of human cancer and normal cells. Notably, the polymer with moderate reactivity with the intracellular redox species and O2 was shown to suppress the viability of the cancer cells selectively.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560−8531, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
46
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
47
|
The Pharmacological Activity of the Wenjing Decoction in Recurrent Spontaneous Abortion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8861394. [PMID: 33936247 PMCID: PMC8060116 DOI: 10.1155/2021/8861394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
Background Recurrent spontaneous abortion (RSA) is intractable infertility and can be ameliorated with the use of traditional Chinese medicine preparation, the Wenjing decoction. This study aimed to identify the therapeutic mechanism of Wenjing decoction on specific target proteins involved in RSA. Methods Wenjing decoction contains Wuzhuyu, Danggui, Chuanxiong, Guizhi, Shengjiang, Banxia, Gancao, Ejiao, Mudanpi, Chishao, Dangshen, and Maidong. Using TCMSP and BATMAN databases, we queried for active ingredients and predicted their target proteins by BATMAN. Using the edgeR package, we analyzed the differentially expressed genes (DEGs) in the GSE121950 database between control samples and RSA (n = 3). The interaction between DEGs and the predicted target proteins was identified by the Venn diagram. Using the Cytoscape software and clusterProfiler package, enrichment analysis was conducted for the intersected target proteins. Additionally, the protein-protein interaction (PPI) network and pharmacological network were generated using the Cytoscape software. Results In total, 31, 2, 7, 7, 5, 13, 93, 11, 29, and 21 active ingredients were identified from Wuzhuyu, Danggui, Chuanxiong, Guizhi, Shengjiang, Banxia, Gancao, Mudanpi, Chishao, and Dangshen, respectively. Additionally, 100 intersected target proteins were revealed by the Venn diagram. Moreover, 98 functional terms and 24 pathways (including C-type lectin receptor signaling pathway, chemokine signaling pathway, leukocyte transendothelial migration, fluid shear stress, and atherosclerosis, and AGE-RAGE signaling pathway in diabetic complications) were enriched. In the PPI network, 10 proteins involved in these five pathways were identified, namely, TNF-α (tumor necrosis factor-α), IL-10 (interleukin-10), TLR4 (Toll-like receptor 4), JUN (Jun proto-oncogene), IL-1B (interleukin-1-beta), CYBB (cytochrome b558 heavy chain gene), PTGS2 (prostaglandin-endoperoxide synthase 2), APOE (apolipoprotein E), SPI1 (salmonella pathogenicity island 1), and MPO (myeloperoxidase) which showed higher degrees. Conclusion The abovementioned genes and pathways might be involved in the pharmacological activity of Wenjing decoction in RSA.
Collapse
|
48
|
Akbari-Alavijeh S, Shaddel R, Jafari SM. In vivo assessments for predicting the bioavailability of nanoencapsulated food bioactives and the safety of nanomaterials. Crit Rev Food Sci Nutr 2021; 62:7460-7478. [PMID: 33938781 DOI: 10.1080/10408398.2021.1915239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Use of nano-sized materials to design novel delivery systems is actually a double-edged sword regarding the enhancement of absorption and bioavailability of encapsulated bioactives as well as the unpredictable phenomena inside the living cells causing health concerns. So, comprehensive investigations on the use of nanomaterials in foods and their biological fate are needed. To reach this goal, both in vitro and in vivo techniques have been extensively applied. Besides the in vitro models such as cell culture and yeast/bacteria, different live animal models like mice, rat, Drosophila melanogaster, Caenorhabditis elegans, Zebrafish and dog can be applied to study bioavailability and safety of nanodelivery systems. However, considering the low correlation between the achieved results of in vitro and in vivo assays, in vivo tests are the first priority due to providing a real physiological condition. On the other hand, uncorrelated results by in vivo assays represent a serious problem to compare them. To defeat the issues in setting an in vivo research for the nanodelivery systems, all restrictions and FDA regulations is likely to be considered to improve the assays authenticity. This review takes a comprehensive look at the different types of in vivo assays and model organisms that has been utilized for the investigation of bioavailability, release profile and possible toxicity of food-based nanomaterials so far.
Collapse
Affiliation(s)
- Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
49
|
Flynn J, Durack E, Collins MN, Hudson SP. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J Mater Chem B 2021; 8:4029-4038. [PMID: 32195520 DOI: 10.1039/d0tb00169d] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteriocins, which are antimicrobial peptides, are a potential alternative to current ineffective antimicrobial therapies. They can inhibit the growth of clinically relevant pathogens but their proteinaceous nature renders them susceptible to degradation and deactivation in vivo. We have designed injectable polysaccharide hydrogels for the controlled release of an incorporated bacteriocin, nisin. Nisin was encapsulated into these hydrogels which were composed of varying percentages of oxidised dextran, alginate functionalised with hydrazine groups and glycol chitosan. The nisin gels exhibited antimicrobial activity against Staphylococcus aureus up to 10 days. The incorporation of a deacetylated chitosan and the reduction of alginate-hydrazine could be used to tune the gel's swelling behaviour, strength and the subsequent release profile of nisin. Glycol chitosan also shows synergistic inhibition of S. aureus with nisin.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland.
| | - Edel Durack
- Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland.
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Co., Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland.
| |
Collapse
|
50
|
Böhmer VI, Szymanski W, Feringa BL, Elsinga PH. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol Med 2021; 27:379-393. [PMID: 33436332 DOI: 10.1016/j.molmed.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
The rapidly developing field of molecular medical imaging focuses on specific visualization of (patho)physiological processes through the application of imaging agents (IAs) in multiple clinical modalities. Although our understanding of the principles underlying efficient IAs design has increased tremendously, many IAs still show poor in vivo imaging performance because of low binding affinity and/or specificity. These limitations can be addressed by taking advantage of multivalency, in which multiple copies of a ligand are employed to strengthen the interaction. We critically address specific challenges associated with the application of multivalent compounds in molecular imaging, and we give directions for a stepwise approach to the design of multivalent imaging probes to improve their target binding and pharmacokinetics (PK) for improved diagnostic potential.
Collapse
Affiliation(s)
- Verena I Böhmer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands; Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands; Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|