1
|
Morbidelli M, Romio M, Chandorkar Y, Gogos A, Hirsch C, Kolrosova B, Trachsel L, Lorandi F, Badocco D, Pastore P, Arrigoni G, Franchin C, Tavano R, Hoogenboom R, Papini E, Benetti EM. The Topology of Poly(2-methyl-2-oxazine) Shells on Nanoparticles Determines Their Interaction with Serum and Uptake by Immune Cells. Biomacromolecules 2025; 26:556-566. [PMID: 39725524 DOI: 10.1021/acs.biomac.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Cyclic poly(2-methyl-2-oxazine) (c-PMOZI) brush shells on Au nanoparticles (NPs) exhibit enhanced stealth properties toward serum and different cell lines compared to their linear PMOZI (l-PMOZI) counterparts. While selectively recruiting immunoglobulins, c-PMOZI shells reduce overall human serum (HS) protein binding and alter the processing of complement factor 3 (C3) compared to chemically identical linear shells. Polymer cyclization significantly decreases NP uptake by nonphagocytic cells and macrophages in both complement-deficient fetal bovine serum (FBS) and complement-expressing HS, indicating ineffective functional opsonization. Even in serum-free media, c-PMOZI-coated NPs show reduced internalization by macrophages compared to l-PMOZI-coated NPs, suggesting lower opsonin-independent cell surface affinity. This study demonstrates that cyclic PMOZI suppresses interactions of NPs with proteins and cells, highlighting how control over chain topology expands the polymer chemistry toolbox for modulating the behavior of core-shell NPs within physiological environments.
Collapse
Affiliation(s)
- Maria Morbidelli
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Matteo Romio
- Biointerfaces Lab, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5 St. Gallen 9014, Switzerland
| | - Yashoda Chandorkar
- Biointerfaces Lab, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5 St. Gallen 9014, Switzerland
| | - Alexander Gogos
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Cordula Hirsch
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Barbora Kolrosova
- Biointerfaces Lab, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5 St. Gallen 9014, Switzerland
| | - Lucca Trachsel
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padua 35131, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padua 35131, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Cinzia Franchin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent S4 B-9000, Belgium
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| |
Collapse
|
2
|
Karnas E, Zając M, Kmiotek-Wasylewska K, Kamiński K, Yusa SI, Kędracka-Krok S, Dudek P, Szczubiałka K, Nowakowska M, Zuba-Surma EK. Polyelectrolytes Are Effective Cryoprotectants for Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70174-70186. [PMID: 39667739 DOI: 10.1021/acsami.4c11852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Extracellular vesicles (EVs) have been widely recognized as a heterogeneous group of membrane-coated submicrometer particles released by different types of cells, including stem cells (SCs). Due to their ability to harbor and transfer bioactive cargo into the recipient cells, EVs have been reported as important paracrine factors involved in the regulation of a variety of biological processes. Growing data demonstrate that EVs may serve as potential next-generation cell-free therapeutic factors. However, clinical application of EVs in tissue regeneration requires the development of standardized procedures for their long-term storage, without the loss of structural integrity and biological activity. In the current study, we developed a procedure of EV cryoprotection based on coating them with ultrathin polyelectrolyte bilayer consisting of cationic poly(ethylene glycol)-block- poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PEGn-b-PMAPTACm) and anionic of poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). Based on the nanoparticle tracking analysis, high-resolution flow cytometry, and mass spectrometry, we studied the vesicle integrity following single- or multiple freezing-thawing cycles and long-term storage. Additionally, we evaluated the effect of cryopreservation on the EVs functional activity in vitro. Obtained data indicate that coating with polyelectrolytes improves the structural integrity of EVs and preserves their biological activity in vitro. Additionally, proteomic analysis confirmed the effect of particle stabilization, as well as an enrichment in EV proteins in samples cryopreserved in the presence of tested polymers. Taking together, our study indicates that the application of polyelectrolytes may be a novel, effective way of facilitating long-term storage of EV preparations for their further use in the biomedical applications.
Collapse
Affiliation(s)
- Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mateusz Zając
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Katarzyna Kmiotek-Wasylewska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Kamil Kamiński
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Patrycja Dudek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
3
|
Khalifeh M, Egberink RO, Roverts R, Brock R. Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. Int J Pharm 2024:125109. [PMID: 39708847 DOI: 10.1016/j.ijpharm.2024.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Messenger RNA is a highly promising biotherapeutic modality with great potential in preventive and therapeutic vaccination, and in the modulation of cellular function through transient expression of therapeutic proteins. However, for cellular delivery, mRNA requires packaging into delivery vehicles that mediate uptake and also shield the mRNA against degradation. Lipid-coated calcium phosphate (LCP) nanoparticles encapsulate the mRNA in a calcium phosphate core, which is coated by a bilayer of structural lipids, positively charged lipids and pegylated lipid to mediate cellular uptake and achieve colloidal stabilization. Here, we show that such nanoparticles using positively charged lipids achieve cellular uptake but only poor cytosolic mRNA delivery. However, mRNA release could be greatly enhanced through incorporation of ionizable lipids into the outer leaflet of the lipid bilayer. We optimized the composition and molar ratios of ionizable lipids, positive lipid, cholesterol, and polyethylene glycol (PEG) and evaluated the potency of the formulations for the cellular delivery of mRNA. Whereas in lipid nanoparticles, the ionizable lipid has a main role in the complexation of the mRNA, our study provides a new paradigm for the employment of ionizable cationic lipids in nanocarriers other than lipid nanoparticles (LNPs) to boost the endosomal release of nucleic acids.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands
| | - Rik Oude Egberink
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands
| | - Rona Roverts
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, The Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
4
|
Awad S, Araújo M, Faria P, Sarmento B, Martins C. Chemical engineering of zein with polyethylene glycol and Angiopep-2 to manufacture a brain-targeted docetaxel nanomedicine for glioblastoma treatment. Drug Deliv Transl Res 2024; 14:3585-3598. [PMID: 39009933 PMCID: PMC11499337 DOI: 10.1007/s13346-024-01659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Glioblastoma (GBM) is the deadliest adult brain cancer. The current standard-of-care chemotherapy using orally administered temozolomide (TMZ) presents poor improvement in patient survival, emphasizing the compelling need for new therapies. A possible chemotherapeutic alternative is docetaxel (DTX), which possesses higher tumoricidal potency against GBM cells. However, its limited blood-brain barrier (BBB) permeability poses a constraint on its application. Nonetheless, nanomedicine offers promising avenues for overcoming this challenge. Angiopep-2 (ANG2) is a peptide that targets the BBB-overexpressed low-density lipoprotein receptor (LDLR). In this work, we managed, for the first time, to employ a pioneering approach of covalently linking zein protein with polyethylene glycol (PEG) and ANG2 prior to its formulation into nanoparticles (ZNPs) with enhanced stability and LDLR-mediated brain targetability, respectively. Carbodiimide and click chemistry approaches were optimized, resulting in functional modification of zein with around 25% PEG, followed by functional modification of PEG with nearly 100% ANG2. DTX-loaded ZNPs presented 100 nm average size, indicating high suitability for BBB crossing through receptor-mediated transcytosis. ZNPs maintained the cytotoxic effect of the loaded DTX against GBM cells, while demonstrating a safe matrix against BBB cells. Importantly, these brain-targeted ZNPs showcased up to fourfold enhancement in blood-to-brain permeability in a BBB in vitro model, highlighting the potential of this novel approach of BBB targeting in significantly improving therapeutic outcomes for GBM patients. The versatility of the system and the possibility of significantly increasing drug concentration in the brain open the door to its future application in a wide range of other brain-related diseases.
Collapse
Affiliation(s)
- Seem Awad
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal
| | - Marco Araújo
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal
| | - Paulo Faria
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal
| | - Bruno Sarmento
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal.
- IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, 4585-116, Portugal.
| | - Cláudia Martins
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal.
| |
Collapse
|
5
|
Heck AG, Medina-Montano C, Zhong Z, Deswarte K, Eigen K, Stickdorn J, Kockelmann J, Scherger M, Sanders NN, Lienenklaus S, Lambrecht BN, Grabbe S, De Geest BG, Nuhn L. PH-Triggered, Lymph Node Focused Immunodrug Release by Polymeric 2-Propionic-3-Methyl-maleic Anhydrides with Cholesteryl End Groups. Adv Healthc Mater 2024; 13:e2402875. [PMID: 39313985 DOI: 10.1002/adhm.202402875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Gaining spatial control over innate immune activation is of great relevance during vaccine delivery and anticancer therapy, where one aims at activating immune cells at draining lymphoid tissue while avoiding systemic off-target innate immune activation. Lipid-polymer amphiphiles show high tendency to drain to lymphoid tissue upon local administration. Here, pH-sensitive, cholesteryl end group functionalized polymers as stimuli-responsive carriers are introduced for controlled immunoactivation of draining lymph nodes. Methacrylamide-based monomers bearing pendant 2-propionic-3-methylmaleic anhydride groups are polymerized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization using a cholesterol chain-transfer agent (chol-CTA). The amine-reactive anhydrides are conjugated with various amines, however, while primary amines afforded irreversible imides, secondary amines provided pH-responsive conjugates that are released upon acidification. This can be applied to fluorescent dyes for irreversibly carrier labeling or immunostimulatory Toll-like receptor (TLR) 7/8 agonists as cargos for pH-responsive delivery. Hydrophilization of remaining anhydride repeating units with short PEG-chains yielded cholesteryl-polymer amphiphiles that showed efficient cellular uptake and increased drug release at endosomal pH. Moreover, reversibly conjugated TLR 7/8 agonist amphiphiles efficiently drained to lymph nodes and increased the number of effectively maturated antigen-presenting cells after subcutaneous injection in vivo. Consequently, cholesteryl-linked methacrylamide-based polymers with pH-sensitive 2-propionic-3-methylmaleic anhydride side groups provide ideal features for immunodrug delivery.
Collapse
Affiliation(s)
- Alina G Heck
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Zifu Zhong
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, VIB Center for Inflammation Research, Ghent University, Ghent, 9052, Belgium
| | - Katharina Eigen
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Judith Stickdorn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Johannes Kockelmann
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | | | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625, Hanover, Germany
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, VIB Center for Inflammation Research, Ghent University, Ghent, 9052, Belgium
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Bruno G De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium
| | - Lutz Nuhn
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| |
Collapse
|
6
|
Banshoya K, Machida A, Kawamura S, Yamada T, Okada R, Kawamoto Y, Kimura H, Shibata S, Hieda Y, Kaneo Y, Tanaka T, Ohnishi M. Development of a Water-Soluble Nanomicellar Formulation Loaded with Trans-Resveratrol Using Polyethylene Glycol Monostearate for the Treatment of Intracerebral Hemorrhage. Pharmaceutics 2024; 16:1462. [PMID: 39598585 PMCID: PMC11597214 DOI: 10.3390/pharmaceutics16111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Trans-resveratrol (Res) has been reported to possess many biological activities, including neuroprotective effects, owing to its anti-inflammatory and antioxidant properties. However, Res has very low water solubility, which limits its therapeutic application. In this work, we formulated water-soluble micellar formulations incorporating Res using polyethylene glycol monostearate (stPEG). Methods: These formulations (stPEG/Res) were developed using five types of stPEG containing 10, 25, 40, 55 and 140 PEG repeat units. The formulations were characterized for Res content, water solubility, particle size, zeta potential, precipitation, biodistribution, and efficacy against neuronal and motor dysfunction in intracerebral hemorrhage (ICH). Results: Intravenous administration of stPEG40/Res, which demonstrated particle size, water solubility, and biodistribution properties suitable for intravenous administration, suppressed neurological and motor dysfunction following in a collagenase-induced ICH mouse model. These effects were inhibited by zinc protoporphyrin-9, an inhibitor of the antioxidant enzyme heme oxygenase-1, suggesting that Res contributes to antioxidant enzyme expression and anti-inflammatory activity. Conclusions: The stPEG/Res micellar formulation developed in this study may offer a promising therapeutic approach for ICH treatment.
Collapse
Affiliation(s)
- Kengo Banshoya
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Aoi Machida
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
- Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan
| | - Saki Kawamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Tetsuhiro Yamada
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Riko Okada
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Yui Kawamoto
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Hikaru Kimura
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
- Pharmacy Department, Yamaguchi University Hospital, Ube 755-8505, Yamaguchi, Japan
| | - Sachi Shibata
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja 719-1197, Okayama, Japan;
| | - Yuhzo Hieda
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Yoshiharu Kaneo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Tetsuro Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Masatoshi Ohnishi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
- Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan
| |
Collapse
|
7
|
Singh S, Lin YW, Wang WJ, Chang YC, Chien YH, Li WP. Precise Methylation Detection of Tumor Suppressor Gene Promoters by Magnetic Enrichment and Nano Silver Adduct-Promoted Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407517. [PMID: 39520342 DOI: 10.1002/smll.202407517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Noninvasive liquid biopsies can be used for early tumor diagnosis by identifying the methylation level of the tumor suppressor genes (TSGs)-a reliable index for cancer evaluation. However, identifying trace circulating genes from specimens remains challenging. This work introduces a novel method that combines magnetic isolation and surface-enhanced Raman scattering (SERS) to concentrate and detect the methylated TSG promotors. A superparamagnetic iron oxide nanoparticle modified with streptavidin is prepared as a universal magnetic bead. Biotin-terminated probe single-strand DNA (ssDNA) is immobilized on the magnetic beads through biotin-streptavidin bioconjugation. Artificial target ssDNA fragments with various methylation levels are applied as a promoter gene model. Concentrated double-strand DNA (dsDNA) is produced by a hybridizing probe and target ssDNA on magnetic nanobeads, as well as an additional magnetic isolation process. The well-prepared DNA adduct, which consists of 3 nm cisplatin-modified Ag nanoclusters, can specifically bind with guanine-cytosine base pairs of dsDNA. Ag-nanoparticle-induced localized SERS amplified signals of 5-methylcytosine (5-mC) from the dsDNA in Raman spectra, enabling accurate methylation level measurement in mixtures of 0-1 µm methylated DNA, with a detection limit of 0.05 µm. This method shows promise for enabling the methylation level evaluation of various TSGs and promoters in early cancer liquid biopsies.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Wei Lin
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, 407, Taiwan
| | - Yi-Hsin Chien
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, 407, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
8
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
9
|
Cerri L, Migone C, Vizzoni L, Grassiri B, Fabiano A, Piras AM, Zambito Y. Cross-Linked Thiolated Hydroxypropil-β-Cyclodextrin for Pulmonary Drug Delivery. Int J Mol Sci 2024; 25:9394. [PMID: 39273341 PMCID: PMC11395519 DOI: 10.3390/ijms25179394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-β-cyclodextrin (HP-β-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This study aims to stabilize CD nanoaggregates using bifunctional cross-linkers and evaluate their benefits for lung drug delivery compared to pristine HP-β-CD-SH. METHODS The effectiveness of cross-linked HP-β-CD-SH nanoparticles (HP-β-CD-SH-NP) was compared to transient nanoaggregates in enhancing the activity of dexamethasone (DMS) and olive leaf extracts (OLE). DMS, a poorly soluble drug commonly used in lung treatments, and OLE, known for its antioxidant properties, were chosen. Drug-loaded HP-β-CD-SH-NP were prepared and nebulized onto a lung epithelial Air-Liquid Interface (ALI) model, assessing drug permeation and activity. RESULTS HP-β-CD-SH with 25% thiolation was synthesized via microwave reaction, forming 150 nm nanoaggregates and stabilized 400 nm HP-β-CD-SH-NP. All carriers showed good complexing ability with DMS and OLE and were biocompatible in the lung ALI model. HP-β-CD-SH promoted DMS absorption, while stabilized HP-β-CD-SH-NP protected against oxidative stress. CONCLUSION HP-β-CD-SH is promising for lung delivery, especially as stabilized nanoaggregates, offering versatile administration for labile molecules like natural extracts.
Collapse
Affiliation(s)
- Luca Cerri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucia Vizzoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods "NUTRAFOOD", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Haddadzadegan S, To D, Matteo Jörgensen A, Wibel R, Laffleur F, Bernkop-Schnürch A. Comparative Analysis of PEG-Free and PEG-Based Self-Emulsifying Drug Delivery Systems for Enhanced Oral Bioavailability of Therapeutic (Poly) Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307618. [PMID: 38308358 DOI: 10.1002/smll.202307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Jeon M, Ryu JS, Kim SE, Seo JY, Cho HD, Kim S, Lee S, Kim S, Kim JW. Selective Binding of Tannic Acid-Conjugated Lipid Nanovesicles to Proline-Rich Proteins Enhances Transdermal Lipophilic-Antioxidant Delivery. ACS APPLIED BIO MATERIALS 2024; 7:3786-3795. [PMID: 38828920 DOI: 10.1021/acsabm.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Tannic acid (TA) possesses a notable ability to adhere to proline-rich proteins that make up skin cells and the extracellular matrix (ECM) in the skin tissue. Drug carriers with this specific adhesion ability exhibit improved drug delivery efficiency on the skin. Taking advantage of this, this study presents skin-adhesive TA-conjugated lipid nanovesicles (TANVs) for enhanced transdermal antioxidant delivery. We found that TANVs exhibited selective intermolecular interactions with keratinocyte proline-rich proteins (KPRPs) and collagen that makes up skin cells by hydrogen bonding and van der Waals interactions, further enabling the strong bonding to macroscopic skin itself and ECM. We used vitamin E (α-tocopherol), which is known to effectively reduce oxidative stress but has limited skin penetration, as a drug to verify improved in vitro delivery and therapeutic efficacy. The evaluation revealed that the antioxidant-loaded TANVs exerted excellent scavenging effects against reactive oxygen species induced by ultraviolet light or peroxides in the skin, thereby enabling the development of an active drug delivery system for dermal therapy.
Collapse
Affiliation(s)
- Minha Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Soo Ryu
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- New Technology Lab., Cosmecca Korea Co. Ltd, Seongnam 13488, Republic of Korea
| | - Se Eun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Yong Seo
- New Technology Lab., Cosmecca Korea Co. Ltd, Seongnam 13488, Republic of Korea
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Dae Cho
- New Technology Lab., Cosmecca Korea Co. Ltd, Seongnam 13488, Republic of Korea
| | - Sooyeon Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Pesce C, Goldoni L, Papa V, Palange AL, Di Mascolo D, Caliceti P, Decuzzi P. One-Step Precise Characterization of Drug Delivery Systems by PULCON Magnetic Resonance Spectroscopy. Mol Pharm 2024; 21:2937-2948. [PMID: 38750625 DOI: 10.1021/acs.molpharmaceut.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Polymers are extensively used for the realization of drug delivery systems across multiple scales, from nanomedicines to microparticles and macroscopic implantable devices, for their favorable biodegradation profiles and tunable physicochemical features. The accurate quantification of the polymer content is key to finely controlling drug loading and release and ensuring reproducibility, yet it continues to be a major challenge in the design and development of delivery systems. In this study, we introduce a novel protocol based on the PULCON technique to quantify, with a routine NMR spectroscopy analysis, the precise concentration of polymers in various delivery systems. Specifically, the PULCON protocol is applied to characterize the physicochemical and pharmaceutical properties of nanoparticles, microparticles, and implantable devices realized by combining three extensively used polymers, namely, poly(lactic-co-glycolic acid) (PLGA), poly(vinyl alcohol) (PVA), and poly(ethylene glycol) (PEG). Without using internal calibration procedures, in a single step, the PULCON protocol precisely quantifies the concentration of each polymer and the drug content. This approach can be readily implemented on standard NMR spectrometers, enabling accurate characterization of drug delivery systems and facilitating their effective development.
Collapse
Affiliation(s)
- C Pesce
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - L Goldoni
- Materials Characterization Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - V Papa
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - A L Palange
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - D Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy
| | - P Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - P Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Division of Oncology, Department of Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, 94305 California, United States
| |
Collapse
|
13
|
Oh MJ, Kim JH, Kim J, Lee S, Xiang Z, Liu Y, Koo H, Lee D. Drug-loaded adhesive microparticles for biofilm prevention on oral surfaces. J Mater Chem B 2024; 12:4935-4944. [PMID: 38683039 PMCID: PMC11111112 DOI: 10.1039/d4tb00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The oral cavity, a warm and moist environment, is prone to the proliferation of microorganisms like Candida albicans (C. albicans), which forms robust biofilms on biotic and abiotic surfaces, leading to challenging infections. These biofilms are resistant to conventional treatments due to their resilience against antimicrobials and immune responses. The dynamic nature of the oral cavity, including the salivary flow and varying surface properties, complicates the delivery of therapeutic agents. To address these challenges, we introduce dendritic microparticles engineered for enhanced adhesion to dental surfaces and effective delivery of antifungal agents and antibiofilm enzymes. These microparticles are fabricated using a water-in-oil-in-water emulsion process involving a blend of poly(lactic-co-glycolic acid) (PLGA) random copolymer (RCP) and PLGA-b-poly(ethylene glycol) (PLGA-b-PEG) block copolymer (BCP), resulting in particles with surface dendrites that exhibit strong adhesion to oral surfaces. Our study demonstrates the potential of these adhesive microparticles for oral applications. The adhesion tests on various oral surfaces, including dental resin, hydroxyapatite, tooth enamel, and mucosal tissues, reveal superior adhesion of these microparticles compared to conventional spherical ones. Furthermore, the release kinetics of nystatin from these microparticles show a sustained release pattern that can kill C. albicans. The biodegradation of these microparticles on tooth surfaces and their efficacy in preventing fungal biofilms have also been demonstrated. Our findings highlight the effectiveness of adhesive microparticles in delivering therapeutic agents within the oral cavity, offering a promising approach to combat biofilm-associated infections.
Collapse
Affiliation(s)
- Min Jun Oh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Jae-Hyun Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Jaekyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Sunghee Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Zhenting Xiang
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Yuan Liu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Hyun Koo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Zhang ML, Zhang GP, Ma HS, Pan YZ, Liao XL. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:519-534. [PMID: 38265701 DOI: 10.1080/09205063.2024.2301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.
Collapse
Affiliation(s)
- Mao-Lan Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Gui-Ping Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hong-Shuo Ma
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yu-Zhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao-Ling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
15
|
Cai ZM, Li ZZ, Zhong NN, Cao LM, Xiao Y, Li JQ, Huo FY, Liu B, Xu C, Zhao Y, Rao L, Bu LL. Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives. J Nanobiotechnology 2024; 22:135. [PMID: 38553735 PMCID: PMC10979629 DOI: 10.1186/s12951-024-02408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.
Collapse
Affiliation(s)
- Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, 4066, Australia
| | - Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
16
|
Ashkenazi S, Matsanov P, Nassar-Marjiya E, Farah S, Weitz IS. Study of PEG- b-PLA/Eudragit S100 Blends on the Nanoencapsulation of Indigo Carmine Dye and Application in Controlled Release. ACS OMEGA 2024; 9:13382-13390. [PMID: 38524501 PMCID: PMC10956112 DOI: 10.1021/acsomega.3c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A nanocapsule shell of poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) mixed with anionic Eudragit S100 (90/10% w/w) was previously used to entrap and define the self-assembly of indigo carmine (IC) within the hydrophilic cavity core. In the present work, binary blends were prepared by solution mixing at different PEG-b-PLA/Eudragit S100 ratios (namely, 100/0, 90/10, 75/25, and 50/50% w/w) to elucidate the role of the capsule shell in tuning the encapsulation of the anionic dye (i.e., IC). The results showed that the higher content of Eudragit S100 in the blend decreases the miscibility of the two polymers due to weak intermolecular interactions between PEG-b-PLA and Eudragit S100. Moreover, with an increase in the amount of Eudragit S100, a higher thermal stability was observed related to the mobility restriction of PEG-b-PLA chains imposed by Eudragit S100. Formulations containing 10 and 25% Eudragit S100 exhibited an optimal interplay of properties between the negative surface charge and the miscibility of the polymer blend. Therefore, the anionic character of the encapsulating agent provides sufficient accumulation of IC molecules in the nanocapsule core, leading to dye aggregates following the self-assembly. At the same time, the blending of the two polymers tunes the IC release properties in the initial stage, achieving slow and controlled release. These findings give important insights into the rational design of polymeric nanosystems containing organic dyes for biomedical applications.
Collapse
Affiliation(s)
- Shaked Ashkenazi
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Pnina Matsanov
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Eid Nassar-Marjiya
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shady Farah
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Iris S. Weitz
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| |
Collapse
|
17
|
Triantafyllopoulou E, Selianitis D, Balafouti A, Lagopati N, Gazouli M, Valsami G, Pispas S, Pippa N. Fabricating hybrid DSPC:DOPC:P(OEGMA-co-LMA) structures: Self-assembly as the milestone of their performance. Colloids Surf A Physicochem Eng Asp 2024; 684:133015. [DOI: 10.1016/j.colsurfa.2023.133015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
18
|
França AP, Silva TA, Schulz D, Gomes-Pereira L, Cunha LMA, Gonçalves MP, Vieira JVS, Sanches MP, Koehler N, Maluf S, Poli A, da Silva-Santos JE, Assreuy J, Lemos-Senna E. Pharmacokinetics, biodistribution, and in vivo toxicity of 7-nitroindazole loaded in pegylated and non-pegylated nanoemulsions in rats. Eur J Pharm Sci 2024; 194:106695. [PMID: 38191063 DOI: 10.1016/j.ejps.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. The development of sepsis is associated with excessive nitric oxide (NO) production, which plays an important role in controlling vascular homeostasis. 7-nitroindazole (7-NI) is a selective inhibitor of neuronal nitric oxide synthase (NOS-1) with potential application for treating NO imbalance conditions. However, 7-NI exhibits a low aqueous solubility and a short plasma half-life. To circumvent these biopharmaceutical limitations, pegylated (NEPEG7NI) and non-pegylated nanoemulsions (NENPEG7NI) containing 7-NI were developed. This study evaluates the pharmacokinetic profiles and toxicological properties of 7-NI loaded into the nanoemulsions. After a single intravenous administration of the free drug and the nanoemulsions at a dose of 10 mg.kg-1 in Wistar rats, 7-NI was widely distributed in the organs. The pharmacokinetic parameters of Cmax, t1/2, and AUC0-t were significantly increased after administration of the NEPEG7NI, compared to both free 7-NI and NENPEG7NI (p < 0.05). No observable adverse effects were observed after administering the free 7-NI, NEPEG7NI, or NENPEG7NI in the animals after a single dose of up to 3.0 mg.kg-1. The results indicated that 7-NI-loaded nanoemulsions are safe, constituting a promising approach to treating sepsis.
Collapse
Affiliation(s)
- Angela Patricia França
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Thais Alves Silva
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Daniela Schulz
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo Gomes-Pereira
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Livia Melo Arruda Cunha
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Merita Pereira Gonçalves
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - João Victor Soares Vieira
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mariele Paludetto Sanches
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Natalia Koehler
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, 88040-900, Brazil
| | - Sharbel Maluf
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, 88040-900, Brazil
| | - Anicleto Poli
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - José Eduardo da Silva-Santos
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Jamil Assreuy
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Elenara Lemos-Senna
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
19
|
Park JS, Choi JH, Joung MY, Yang IG, Choi YS, Kang MJ, Ho MJ. Design of High-Payload Ascorbyl Palmitate Nanosuspensions for Enhanced Skin Delivery. Pharmaceutics 2024; 16:171. [PMID: 38399233 PMCID: PMC10891688 DOI: 10.3390/pharmaceutics16020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
A high-payload ascorbyl palmitate (AP) nanosuspension (NS) was designed to improve skin delivery following topical application. The AP-loaded NS systems were prepared using the bead-milling technique, and softly thickened into NS-loaded gel (NS-G) using hydrophilic polymers. The optimized NS-G system consisted of up to 75 mg/mL of AP, 0.5% w/v of polyoxyl-40 hydrogenated castor oil (Kolliphor® RH40) as the suspending agent, and 1.0% w/v of sodium carboxymethyl cellulose (Na.CMC 700 K) as the thickening agent, in citrate buffer (pH 4.5). The NS-G system was embodied as follows: long and flaky nanocrystals, 493.2 nm in size, -48.7 mV in zeta potential, and 2.3 cP of viscosity with a shear rate of 100 s-1. Both NS and NS-G provided rapid dissolution of the poorly water-soluble antioxidant, which was comparable to that of the microemulsion gel (ME-G) containing AP in solubilized form. In an ex vivo skin absorption study using the Franz diffusion cell mounted on porcine skin, NS-G exhibited faster absorption in skin, providing approximately 4, 3, and 1.4 times larger accumulation than that of ME-G at 3, 6, and 12 h, respectively. Therefore, the high-payload NS makes it a promising platform for skin delivery of the lipid derivative of ascorbic acid.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung-Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea; (J.-S.P.); (J.-H.C.); (M.-Y.J.); (I.-G.Y.); (Y.-S.C.)
| | - Myoung-Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea; (J.-S.P.); (J.-H.C.); (M.-Y.J.); (I.-G.Y.); (Y.-S.C.)
| |
Collapse
|
20
|
Zawadzki S, Martín-Serrano Á, Okła E, Kędzierska M, Garcia-Gallego S, López PO, de la Mata FJ, Michlewska S, Makowski T, Ionov M, Pędziwiatr-Werbicka E, Bryszewska M, Miłowska K. Synthesis and biophysical evaluation of carbosilane dendrimers as therapeutic siRNA carriers. Sci Rep 2024; 14:1615. [PMID: 38238354 PMCID: PMC10796380 DOI: 10.1038/s41598-024-51238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Serafin Zawadzki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki St., 90-237, Lodz, Poland.
| | - Ángela Martín-Serrano
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
| | - Elżbieta Okła
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Sandra Garcia-Gallego
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Paula O López
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Francisco J de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
21
|
Erstling JA, Bag N, Gardinier TC, Kohle FFE, DomNwachukwu N, Butler SD, Kao T, Ma K, Turker MZ, Feuer GB, Lee R, Naguib N, Tallman JF, Malarkey HF, Tsaur L, Moore WL, Chapman DV, Aubert T, Mehta S, Cerione RA, Weiss RS, Baird BA, Wiesner UB. Overcoming Barriers Associated with Oral Delivery of Differently Sized Fluorescent Core-Shell Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305937. [PMID: 37689973 DOI: 10.1002/adma.202305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Oral delivery, while a highly desirable form of nanoparticle-drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi-total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco-2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C' dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C' dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C' dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health.
Collapse
Affiliation(s)
- Jacob A Erstling
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas C Gardinier
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ferdinand F E Kohle
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Naedum DomNwachukwu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Scott D Butler
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Teresa Kao
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kai Ma
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Melik Z Turker
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Grant B Feuer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel Lee
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nada Naguib
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - James F Tallman
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Henry F Malarkey
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Lieihn Tsaur
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - William L Moore
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dana V Chapman
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Tangi Aubert
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Saurabh Mehta
- Center for Precision Nutrition and Health, Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Wu J, Zhang X, Yuan H, Wei S, Gu X, Bu Y, He H, Shi Y, Ma M, Chen S, Wang X. Simply and Cheaply Prepared Liposomal Membrane for Nanocarriers: High Encapsulation Efficiency Based on Broad Regulation of Surface Charges and pH-Switchable Performance. Biomacromolecules 2023; 24:5687-5697. [PMID: 37973608 DOI: 10.1021/acs.biomac.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The zeta potential of nanoparticles impacts their distribution and metabolism in the body as well as their interaction with medications of varying charges, hence altering therapeutic efficacy and safety. In this paper, the external charges of liposomes were regulated by utilizing a simple and economical method based on competition for protons of cationic chitosan (CS) and anion hyaluronic acid (HA). The charge regulation of a liposomal membrane is generally accomplished by adjusting the ratio of charged lipids within a liposome (e.g., cationic DOTAP or anionic DOPS), the stability of which was maintained by the coating materials of cationic chitosan (CS) or anion hyaluronic acid (HA). A series of nanoparticles could respond to pH-stimulation with adjustable surface charge. Moreover, the sizes of liposomes coated with CS and HA remain within a narrow range. In vitro cytotoxicity tests revealed that the nanocarriers were safe, and the nanoparticles containing antitumor medicines were efficient in tumor therapy. Considering liposomes with different external surface charges could be aimed at diverse therapy purposes. The strategies for regulating liposomal surface charges with high encapsulation rates and certain release cycles reported here could provide a versatile platform as carriers for the delivery of drugs and other macromolecules into human bodies.
Collapse
Affiliation(s)
- Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xin Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Huili Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaokai Gu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yangfan Bu
- Hangzhou BOSOM New Materials Technology CO., Ltd. Hangzhou 311188, People's Republic of China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, People's Republic of China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
23
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
24
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
25
|
Liu L, Zhao J, Zhang G. Chemoselectivity Streamlines the Approach to Linear and Y-Shaped Thiol-Polyethers Starting from Thiocarboxylic Acids. ACS Macro Lett 2023; 12:1185-1192. [PMID: 37552569 DOI: 10.1021/acsmacrolett.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Thiol-functionalized polyethers, especially poly(ethylene oxide) (PEO), have extensive applications in biomedicine and materials sciences. Herein, we report a simple one-pot synthesis of α-thiol-ω-hydroxyl polyethers through ring-opening polymerization (ROP) of epoxides using thiocarboxylic acid initiators followed by in situ aminolysis. The efficient and chemoselective metal-free Lewis pair catalyst avoids transthioesterification thus achieving well-controlled molar mass, low dispersity, and high end-group fidelity. Kinetic and calculation results demonstrated a fast-initiation mode of the ROP for the strong nucleophilicity of the thiocarboxylate anion and its weak interaction with Lewis acid. The method is expanded for α-thiol-ω-dihydroxyl (Y-shaped) PEO by virtue of the stability of thioester during the ROP. The thiol functionality in linear/Y-shaped PEO is further corroborated by the intensified interaction with gold surface and the resultant protein resistance behavior.
Collapse
Affiliation(s)
- Lijun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
26
|
Wang H, Ding Y, Zhang Y, Shi X, Liu H. In situ decrypting plasmonic nanoparticle size-controlled phosphorylation of epidermal growth factor receptor in living cells. Chem Commun (Camb) 2023. [PMID: 37439663 DOI: 10.1039/d3cc02154h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Recently, interaction between epidermal growth factor receptor (EGFR) and EGFR-targeted nanoprobes is a hot topic. Here, we use dark field microscope (DFM) observe different aggregations of EGFR-targeted nanoprobes in diverticulum. Different aggregation states are related to phosphorylation of EGFR. EGFR phosphorylation can be adjusted by gold nanoparticles (GNPs) size.
Collapse
Affiliation(s)
- Hongyan Wang
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Yan Ding
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Yu Zhang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Xiaoqi Shi
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
27
|
Korake S, Bothiraja C, Pawar A. Design, development, and in-vitro/in-vivo evaluation of Docetaxel-loaded PEGylated Solid Lipid Nanoparticles in Prostate Cancer Therapy. Eur J Pharm Biopharm 2023:S0939-6411(23)00142-X. [PMID: 37270157 DOI: 10.1016/j.ejpb.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Docetaxel (DOC) is a potent anticancer molecule widely used to treat various cancers. However, its therapeutic efficacy as a potential anticancer agent has been limited owing to poor aqueous solubility, short circulation time, rapid reticuloendothelial system uptake, and high renal clearance, which consecutively showed poor bioavailability. In the present investigation, we developed polyethylene glycol (PEG) decorated solid lipid nanoparticles (SLN) using the solvent diffusion method to increase the biopharmaceutical properties of DOC. PEG monostearate (SA-PEG2000) was initially synthesized and characterized using various analytical techniques. Afterwards, DOC-loaded SLN was synthesized with and without SA-PEG2000and systematically characterized for in-vitro and in-vivo properties. Spherical-shaped SA-PEG2000-DOC SLN showed hydrodynamic diameter and zeta potential of 177 nm and -13 mV, respectively. During the in-vitro release study DOC-loaded SLN showed a controlledrelease of approximately 54.35 % ±5.46 within 12 h with Higuchi release kinetics in the tumor microenvironment (pH 5.5).In an in-vitro cytotoxicity study,SA-PEG2000-DOC SLN showedsignificantlylower IC50values(p < 0.001)compared to DOC-SLN and DOC aloneagainst prostate cancer cell lines (PC-3). Similarly, an in-vitro cellular uptake study showed a significant increase in intracellular DOC concentration for SA-PEG2000-DOC SLN. Additionally, inin-vivostudies,PEGylated SLN of DOC showed around 2- and 15-fold increase in the maximum concentration of drug (Cmax) and area under the curve (AUC), respectively, as compared to plain DOC solution due to the uniquehydrophilicity and hydrophobicity balance and electrical neutrality of specially designed PEG architect. The biological half-life (t1/2) and mean residence time (MRT) was found to increase from 8.55 and 11.43 to 34.96 and 47.68 h, respectively, with SA-PEG2000-DOC SLN. Moreover, the bio-distribution study indicates high DOC concentration in the plasma which signifies the more pronounced blood residence time of SA-PEG2000-DOC SLN. In a nutshell, SA-PEG2000-DOC SLNwasfound to bea promising and efficient drug delivery platform for the management of Metastatic Prostate cancer.
Collapse
Affiliation(s)
- Swati Korake
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed to Be University (BVDU) Poona College of Pharmacy, Pune 411038, India
| | - C Bothiraja
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed to Be University (BVDU) Poona College of Pharmacy, Pune 411038, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed to Be University (BVDU) Poona College of Pharmacy, Pune 411038, India.
| |
Collapse
|
28
|
Triantafyllopoulou E, Selianitis D, Pippa N, Gazouli M, Valsami G, Pispas S. Development of Hybrid DSPC:DOPC:P(OEGMA 950-DIPAEMA) Nanostructures: The Random Architecture of Polymeric Guest as a Key Design Parameter. Polymers (Basel) 2023; 15:polym15091989. [PMID: 37177137 PMCID: PMC10181429 DOI: 10.3390/polym15091989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspective could promote the development of new nanoplatforms with well-defined features. In the current work, lipid/copolymer bilayers were formed in different lipid to copolymer ratios and examined via differential scanning calorimetry as a preformulation study to decipher the interactions between the biomaterials, followed by nanostructure preparation by the thin-film hydration method. Physicochemical and toxicological evaluations were conducted utilizing light scattering techniques, fluorescence spectroscopy, and MTS assay. 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in different weight ratios were the chosen lipids, while a linear random copolymer with pH- and thermoresponsive properties comprised of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA) in different ratios was used. According to our results, non-toxic hybrid nanosystems with stimuli-responsive properties were successfully formulated, and the main parameters influencing their overall performance were the hydrophilic/hydrophobic balance, lipid to polymer ratio, and more importantly the random copolymer topology. Hopefully, this investigation can promote a better understanding of the factors affecting the behavior of hybrid systems.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Dimitriοs Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine National and Kapodistrian, University of Athens, 11527 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
29
|
Alvarez-Venicio V, Castro-Beltrán R, Ramos-Ortiz G, Rodríguez M, Alba-Rosales JE, Gutiérrez-Juárez G, Santillán R, Ochoa ME, Flores-Villavicencio LL, Sabanero-López M. Red fluorescent benzothiadiazole derivative loaded in different nanoformulations: Optical properties and their use in bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122250. [PMID: 36566533 DOI: 10.1016/j.saa.2022.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Fluorophores with optimized nonlinear optical properties have become prominent as contrast labels in laser scanning microscopy (LSM). The purpose of this work is to report on a novel benzothiadiazole derivative, namely 4,7-bis(5-((9,9-dioctyl-9H-fluoren-2-yl)ethynyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (EFBT) and its optical performance when it is loaded into organic nanostructures intended as labels for LSM. Four different nanostructured labels were prepared: i) EFBT-loaded silica nanoparticles (SiNPs); ii) folate-bioconjugated SiNPs (SiNPs-FA); iii) EFBT-loaded PEGylated nanoparticles (NPs-PEG); and iv) EFBT-loaded folate-terminated PEGylated nanoparticles (NPs-PEG-FA). All these nanostructures are reported through a comparative study of their linear and nonlinear optical properties, including their performance as exogenous label agents in the cervical cancer cell line HeLa. This assessment of the performance of a specific fluorophore loaded into different nanostructured matrices (labels), and fairly compared under the same characterization conditions, including the LSM settings, is less common while previous reports had focused in comparing silica and PEGylated nanoparticles but loaded with different fluorophores. The results show that the internal molecular organization into each type of organic nanostructure impacted differently the properties of EFBT, where the silica matrix tend to preserve the optical performance of the fluorophore by preventing intermolecular interactions; in contrast, PEGylated nanoparticles favored molecular interactions and introduced non-radiative decay channels that degrades drastically the optical performance. Nevertheless, the use of functionalized ends entities produced a better cellular label uptake with PEGylated that with silica nanoparticles. In overall, the NPs-PEG-FA label produced the best HeLa imaging.
Collapse
Affiliation(s)
- V Alvarez-Venicio
- Centro de Investigaciones en Óptica A.P. 1-948, 37000 León, Gto., Mexico
| | - R Castro-Beltrán
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, México
| | - G Ramos-Ortiz
- Centro de Investigaciones en Óptica A.P. 1-948, 37000 León, Gto., Mexico.
| | - M Rodríguez
- Centro de Investigaciones en Óptica A.P. 1-948, 37000 León, Gto., Mexico.
| | - J E Alba-Rosales
- Centro de Investigaciones en Óptica A.P. 1-948, 37000 León, Gto., Mexico; Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, México
| | - G Gutiérrez-Juárez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, México
| | - R Santillán
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, 07000, Apdo. Postal. 14-740, México D.F., Mexico
| | - M E Ochoa
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, 07000, Apdo. Postal. 14-740, México D.F., Mexico
| | - L L Flores-Villavicencio
- Departamento de Biología, División de Ciencias Naturales y Exactas, campus Guanajuato, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - M Sabanero-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, campus Guanajuato, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
30
|
Robert J, S Chauhan D, Cherraj A, Buiel J, De Crescenzo G, Banquy X. Coiled-coil peptide-based assembly of a plasmonic core-satellite polymer-metal nanocomposite as an efficient photothermal agent for drug delivery applications. J Colloid Interface Sci 2023; 641:929-941. [PMID: 36989819 DOI: 10.1016/j.jcis.2023.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Polymer-metal nanocomposites have widespread applications in biomedical fields such as imaging, catalysis, and drug delivery. These particles are characterized by combined organic and inorganic properties. Specifically, photothermal nanocomposites incorporating polymeric and plasmonic nanoparticles (NPs) have been designed for both triggered drug release and as imaging agents. However, the usual design of nanocomposites confers characteristic issues, among which are the decrease of optical properties and resulting low photothermal efficiency, as well as interactions with loaded drugs. Herein, we report the design of a core-satellite polymer-metal nanocomposite assembled by coiled-coil peptides and its superior photothermal efficiency compared to electrostatic-driven nanocomposites which is the standard design. We also found that the orientation of gold nanorods on the surface of polymeric NPs is of importance in the final photothermal efficiency and could be exploited for various applications. Our findings provide an alternative to current wrapping and electrostatic assembly of nanocomposites with the help of coiled-coil peptides and an improvement of the control over core-satellite assemblies with plasmonic NPs. It paves the way to highly versatile assemblies due to the nature of coiled-coil peptides to be easily modified and sensitive to pH or temperature.
Collapse
Affiliation(s)
- Jordan Robert
- Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Deepak S Chauhan
- Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Amel Cherraj
- Faculty of Medicine, Université de Lorraine, Metz 57000, France
| | - Jonathan Buiel
- Department of Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada; Department of Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montréal H3T 1J4, Québec, Canada; Department of Chemistry, Faculty of Arts and Science, Université de Montréal, Montréal H3T 1J4, Québec, Canada.
| |
Collapse
|
31
|
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023; 313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As nanocarriers (NCs) can improve the solubility of drugs, prevent their degradation by gastrointestinal (GI) enzymes and promote their transport across the mucus gel layer and absorption membrane, the oral bioavailability of these drugs can be substantially enhanced. All these properties of NCs including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, polymeric nanoparticles, inorganic nanoparticles and polymeric micelles depend mainly on their surface chemistry. In particular, interaction with food, digestive enzymes, bile salts and electrolytes, diffusion behaviour across the mucus gel layer and fate on the absorption membrane are determined by their surface. Bioinert surfaces limiting interactions with gastrointestinal fluid and content as well as with mucus, adhesive surfaces providing an intimate contact with the GI mucosa and absorption enhancing surfaces can be designed. Furthermore, charge converting surfaces shifting their zeta potential from negative to positive directly at the absorption membrane and surfaces providing a targeted drug release are advantageous. In addition to these passive surfaces, even active surfaces cleaving mucus glycoproteins on their way through the mucus gel layer can be created. Within this review, we provide an overview on these different surfaces and discuss their impact on the performance of NCs in the GI tract.
Collapse
Affiliation(s)
- Helen Spleis
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| |
Collapse
|
32
|
Bi D, Unthan DM, Hu L, Bussmann J, Remaut K, Barz M, Zhang H. Polysarcosine-based lipid formulations for intracranial delivery of mRNA. J Control Release 2023; 356:1-13. [PMID: 36803765 DOI: 10.1016/j.jconrel.2023.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
Messenger RNA (mRNA) is revolutionizing the future of therapeutics in a variety of diseases, including neurological disorders. Lipid formulations have shown to be an effective platform technology for mRNA delivery and are the basis for the approved mRNA vaccines. In many of these lipid formulations, polyethylene glycol (PEG)-functionalized lipid provides steric stabilization and thus plays a key role in improving the stability both ex vivo and in vivo. However, immune responses towards PEGylated lipids may compromise the use of those lipids in some applications (e.g., induction of antigen specific tolerance), or within sensitive tissues (e.g., central nervous system (CNS)). With respect to this issue, polysarcosine (pSar)-based lipopolymers were investigated as an alternative to PEG-lipid in mRNA lipoplexes for controlled intracerebral protein expression in this study. Four polysarcosine-lipids with defined sarcosine average molecular weight (Mn = 2 k, 5 k) and anchor diacyl chain length (m = 14, 18) were synthesized, and incorporated into cationic liposomes. We found that the content, pSar chain length and carbon tail lengths of pSar-lipids govern the transfection efficiency and biodistribution. Increasing carbon diacyl chain length of pSar-lipid led up to 4- and 6-fold lower protein expression in vitro. When the length of either pSar chain or lipid carbon tail increased, the transfection efficiency decreased while the circulation time was prolonged. mRNA lipoplexes containing 2.5% C14-pSar2k resulted in the highest mRNA translation in the brain of zebrafish embryos through intraventricular injection, while C18-pSar2k-liposomes showed a comparable circulation with DSPE-PEG2k-liposomes after systemic administration. To conclude, pSar-lipid enable efficient mRNA delivery, and can substitute PEG-lipids in lipid formulations for controlled protein expression within the CNS.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Dennis Mark Unthan
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Lili Hu
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands; Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands.
| |
Collapse
|
33
|
Discovery of two biotin-PEG4‑diarylidenyl piperidone prodrugs as potent antitumor agents with good efficacy, limited toxicity, and low resistance. Bioorg Chem 2023; 131:106323. [PMID: 36538834 DOI: 10.1016/j.bioorg.2022.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Two biotin-polyethylene glycol (PEG)4‑diarylidenyl piperidone (DAP) prodrugs, compounds 3a and 3b, were designed as antineoplastic agents and synthesized by coupling biotin to bifluoro- and binitro-substituted DAP derivatives (DAP-F and DAP-NO2) through a PEG4 linker, respectively. The results of the MTT (3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide) assay and a SW480 xenograft model identified compounds 3a and 3b as candidate antitumor agents with good efficacy, limited toxicity, and low resistance, as compared to the original drugs (DAP-F and DAP-NO2), cisplatin, and doxorubicin (dox). The results of a preliminary pharmacokinetic study showed that compounds 3a and 3b slowly released their original drug DAP-F and DAP-NO2 within 12 h after intraperitoneal injection, respectively. Western blot analysis and computer docking simulations indicated that DAP-F, DAP-NO2, and compounds 3a and 3b were indeed inhibitors of signal transducer and activator of transcription 3 (STAT3) and the antitumor effects of compounds 3a and 3b were exerted by sequentially interacting with the SH2-binding domain followed by the DNA-binding domain after releasing the original drugs DAP-F and DAP-NO2, respectively. These results suggest that the targeted prodrug model led to good antitumor efficacy with reduced toxicity, while a dual STAT3-binding model may promote antitumor efficacy and resistance.
Collapse
|
34
|
Hou J, Li N, Zhang W, Zhang W. Exploring the impact of PEGylation on the cell-nanomicelle interactions by AFM-based single-molecule force spectroscopy and force tracing. Acta Biomater 2023; 157:310-320. [PMID: 36535567 DOI: 10.1016/j.actbio.2022.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
PEGylation has been considered the gold standard method for the modification of various drug delivery systems since the last century. However, the impact of PEGylation on the dynamic interaction between drug carriers and cell membranes has not been quantitatively clarified. Herein, the cellular binding and receptor-mediated endocytosis of a model PEGylated polypeptide nanomicelle were systematically investigated at the single-particle level using AFM-based single-molecule force spectroscopy (SMFS) and force tracing. A self-assembled elastin-like polypeptide (ELP) nanomicelle, which is capable of cross-linking, gastrin-releasing peptide (GRP) modification, and PEGylation was prepared. The cross-linked ELP-based nanomicelles exhibited outstanding stability in a broad temperature range of 4-40 °C, which facilitate the drug loading, as well as our cell-nanomicelle study at the single particle level. The unbinding force between the cross-linked ELP-based nanomicelles and the GRP receptor (GRPR)-containing cell (PC-3) membranes was quantitatively measured by AFM-SMFS. It is found that the PEGylated GRP-displaying nanomicelles exhibit the highest unbinding force, indicating the enhanced specific binding effect of PEGylation. Furthermore, the receptor-mediated endocytosis of the cross-linked ELP-based nanomicelles was monitored with the help of force tracing based on AFM-SMFS. Our results show that PEGylation decreases the endocytic force, duration, and engulfment depth of the PEGylated GRP-displaying nanomicelles, but increases their endocytic velocity, which results from the elimination of non-specific interactions during endocytosis. These observations demonstrate the diverse and complex roles of PEGylation on the interaction of polypeptide nanomicelles to cell membranes and may shed light on the rational design of organic polymer-based drug delivery systems aiming for active and passive targeting strategies. STATEMENT OF SIGNIFICANCE: A self-assembled elastin-like polypeptide (ELP) nanomicelle, which can be easily cross-linked, gastrin-releasing peptide (GRP) modified, and PEGylated, is designed. The AFM-SMFS experiment shows that PEGylation can enhance specific binding of the nanomicelles to the receptors on cell membranes. The force tracing experiment indicates that PEGylation decreases the endocytic force as well as engulfment depth of the nanomicelles through the elimination of non-specific interactions. PEGylation can benefit the drug delivery systems aiming at active targeting, while might not be an ideal modification for drug carriers designed for passive targeting, whose cellular uptake mainly depends on non-specific interactions.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Li
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
35
|
Sforzi J, Lanfranco A, Stefania R, Alberti D, Bitonto V, Parisotto S, Renzi P, Protti N, Altieri S, Deagostino A, Geninatti Crich S. A novel pH sensitive theranostic PLGA nanoparticle for boron neutron capture therapy in mesothelioma treatment. Sci Rep 2023; 13:620. [PMID: 36635364 PMCID: PMC9837127 DOI: 10.1038/s41598-023-27625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
This study aims to develop poly lactic-co-glycolic acid (PLGA) nanoparticles with an innovative imaging-guided approach based on Boron Neutron Capture Therapy for the treatment of mesothelioma. The herein-reported results demonstrate that PLGA nanoparticles incorporating oligo-histidine chains and the dual Gd/B theranostic agent AT101 can successfully be exploited to deliver a therapeutic dose of boron to mesothelioma cells, significantly higher than in healthy mesothelial cells as assessed by ICP-MS and MRI. The selective release is pH responsive taking advantage of the slightly acidic pH of the tumour extracellular environment and triggered by the protonation of imidazole groups of histidine. After irradiation with thermal neutrons, tumoral and healthy cells survival and clonogenic ability were evaluated. Obtained results appear very promising, providing patients affected by this rare disease with an improved therapeutic option, exploiting PLGA nanoparticles.
Collapse
Affiliation(s)
- Jacopo Sforzi
- grid.7605.40000 0001 2336 6580Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy
| | - Alberto Lanfranco
- grid.7605.40000 0001 2336 6580Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| | - Rachele Stefania
- grid.16563.370000000121663741Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Diego Alberti
- grid.7605.40000 0001 2336 6580Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy
| | - Valeria Bitonto
- grid.7605.40000 0001 2336 6580Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy
| | - Stefano Parisotto
- grid.7605.40000 0001 2336 6580Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| | - Polyssena Renzi
- grid.7605.40000 0001 2336 6580Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| | - Nicoletta Protti
- grid.8982.b0000 0004 1762 5736Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy ,Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy
| | - Saverio Altieri
- grid.8982.b0000 0004 1762 5736Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy ,Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
36
|
Rabanel JM, Mirbagheri M, Olszewski M, Xie G, Le Goas M, Latreille PL, Counil H, Hervé V, Silva RO, Zaouter C, Adibnia V, Acevedo M, Servant MJ, Martinez VA, Patten SA, Matyjaszewski K, Ramassamy C, Banquy X. Deep Tissue Penetration of Bottle-Brush Polymers via Cell Capture Evasion and Fast Diffusion. ACS NANO 2022; 16:21583-21599. [PMID: 36516979 DOI: 10.1021/acsnano.2c10554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Drug nanocarriers (NCs) capable of crossing the vascular endothelium and deeply penetrating into dense tissues of the CNS could potentially transform the management of neurological diseases. In the present study, we investigated the interaction of bottle-brush (BB) polymers with different biological barriers in vitro and in vivo and compared it to nanospheres of similar composition. In vitro internalization and permeability assays revealed that BB polymers are not internalized by brain-associated cell lines and translocate much faster across a blood-brain barrier model compared to nanospheres of similar hydrodynamic diameter. These observations performed under static, no-flow conditions were complemented by dynamic assays performed in microvessel arrays on chip and confirmed that BB polymers can escape the vasculature compartment via a paracellular route. BB polymers injected in mice and zebrafish larvae exhibit higher penetration in brain tissues and faster extravasation of microvessels located in the brain compared to nanospheres of similar sizes. The superior diffusivity of BBs in extracellular matrix-like gels combined with their ability to efficiently cross endothelial barriers via a paracellular route position them as promising drug carriers to translocate across the blood-brain barrier and penetrate dense tissue such as the brain, two unmet challenges and ultimate frontiers in nanomedicine.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marziye Mirbagheri
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Marine Le Goas
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Pierre-Luc Latreille
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Hermine Counil
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vincent Hervé
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Rummenigge Oliveira Silva
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Charlotte Zaouter
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vahid Adibnia
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mariana Acevedo
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marc J Servant
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, United Kingdom EH9 3FD
| | - Shunmoogum A Patten
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Charles Ramassamy
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Xavier Banquy
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
37
|
Zhao K, Li M, Zhang P, Cui J. Sticktight-inspired PEGylation for low-fouling coatings. Chem Commun (Camb) 2022; 58:13735-13738. [PMID: 36415979 DOI: 10.1039/d2cc04938d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyethylene glycol (PEG) has been widely used for modifying surfaces to reduce non-specific interactions with biomolecules, microorganisms, and cells. Herein, we report a sticktight-inspired PEGylation strategy to fabricate low-fouling coatings. The influence of PEG molecular architectures on the PEG density and biological adhesion were studied. Notably, an increase in the number of arms resulted in improved surface PEGylation and an improved antifouling ability against the adhesion of proteins, mammalian cells and bacteria. The molecular architecture-dependent PEGylation strategy is an attractive approach for developing advanced low-fouling coatings.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
- Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
38
|
Aleemardani M, Trikić MZ, Green NH, Claeyssens F. Elastomeric, bioadhesive and pH-responsive amphiphilic copolymers based on direct crosslinking of poly(glycerol sebacate)- co-polyethylene glycol. Biomater Sci 2022; 10:7015-7031. [PMID: 36342181 DOI: 10.1039/d2bm01335e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(glycerol sebacate) (PGS), a synthetic biorubber, is characterised by its biocompatibility, high elasticity and tunable mechanical properties; however, its inherent hydrophobicity and insolubility in water make it unsuitable for use in advanced biomaterials like hydrogels fabrication. Here, we developed new hydrophilic PGS-based copolymers that enable hydrogel formation through use of two different types of polyethylene glycol (PEG), polyethylene glycol (PEG2) or glycerol ethoxylate (PEG3), combined at different ratios. A two-step polycondensation reaction was used to produce poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) copolymers that were then crosslinked thermally without the use of initiators or crosslinkers, resulting in PGS-co-PEG2 and PGS-co-PEG3 amphiphilic polymers. It has been illustrated that the properties of PGS-co-PEG copolymers can be controlled by altering the type and amount of PEG. PGS-co-PEG copolymers containing PEG ≥ 40% showed high swelling, flexibility, stretching, bioadhesion and biocompatibility, and good enzymatic degradation and mechanical properties. Also, the addition of PEG created hydrogels that demonstrated pH-responsive behaviours, which can be used for bioapplications requiring responding to physicochemical dynamics. Interestingly, PGS-co-40PEG2 and PGS-co-60PEG3 had the highest shear strengths, 340.4 ± 49.7 kPa and 336.0 ± 35.1 kPa, and these are within the range of commercially available sealants or bioglues. Due to the versatile multifunctionalities of these new copolymer hydrogels, they can have great potential in soft tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Michael Zivojin Trikić
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK.
| | - Nicola Helen Green
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
39
|
Zhou X, Ma G, Wan Z, Wang S. Label-Free Multimetric Measurement of Molecular Binding Kinetics by Electrical Modulation of a Flexible Nanobiolayer. ACS Sens 2022; 7:3461-3469. [PMID: 36273329 PMCID: PMC10358282 DOI: 10.1021/acssensors.2c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most label-free techniques rely on measuring refractive index or mass change on the sensor surface. Thus, it is challenging for them to measure small molecules or enzymatic processes that only induce a minor mass change on the analyte molecules. Here, we have developed a technique by combining Surface Plasmon Resonance sensing with an Oscillating Biomolecule Layer approach (SPR-OBL) to enhance the sensitivity of traditional SPR. In addition to the inherent mass sensitivity, SPR-OBL is also sensitive to the charge and conformational change of the analyte; hence it overcomes the mass limit and is able to detect small molecules. We show that the multimetric SPR-OBL measurement allows for sensing any changes regarding mass, charge, and conformation, which expands the detection capability of SPR.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Guangzhong Ma
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
40
|
Thai VP, Nguyen HD, Saito N, Takahashi K, Sasaki T, Kikuchi T. Precise size-control and functionalization of gold nanoparticles synthesized by plasma-liquid interactions: using carboxylic, amino, and thiol ligands. NANOSCALE ADVANCES 2022; 4:4490-4501. [PMID: 36341298 PMCID: PMC9595108 DOI: 10.1039/d2na00542e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Using gold nanoparticles (GNPs) in high-standard applications requires GNPs to be fabricated with high-quality size and surface properties. Plasma-liquid interactions (PLIs) have the unique ability to synthesize GNPs without using any reducing agents, and the GNP surface is free of stabilizing agents. It is an extreme advantage that ensures success for the subsequent functionalization processes for GNPs. However, fabricating GNPs via PLIs at the desired size has still been a challenge. Here, we present a simple approach to achieving the precise size-control of GNPs synthesized by PLIs. By adding suitable ligands to the precursor solution, the ligands wrap GNPs which interrupts and slows down the rapid growth of GNPs under PLIs. This way, the size of the GNPs can be precisely controlled by adjusting the ligand concentration. Our results showed that the size of the GNPs in the range of 10-60 nm can be fitted to reciprocal functions of the ligand concentration. The potency of the size-control depends on the type of ligands in the order of thiol > amine > carboxylate. The size-control has been well investigated with four common ligands: l-cysteine, glucosamine, salicylic acid, and terephthalic acid. XPS, FTIR, and zeta potential techniques confirmed the presence of these ligands on GNPs. The results indicated that functionalized ligands could be utilized to control the size and functionalize the GNP surface. Hence our approach could simultaneously achieve two goals: precise size-control and functionalization of GNPs without the ligand-exchange step.
Collapse
Affiliation(s)
- Van-Phuoc Thai
- Faculty of Mechanical Engineering, HCMC University of Technology and Education Ho Chi Minh City 71307 Vietnam
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Hieu Duy Nguyen
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Nobuo Saito
- Department of Materials Science and Bioengineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Kazumasa Takahashi
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Toru Sasaki
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology Nagaoka 940-2188 Japan
| | - Takashi Kikuchi
- Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology Nagaoka 940-2188 Japan
- Department of Nuclear Technology, Nagaoka University of Technology Nagaoka 940-2188 Japan
- Extreme Energy-Density Research Institute, Nagaoka University of Technology Nagaoka 940-2188 Japan
| |
Collapse
|
41
|
Rajesh S, Leiske MN, Leitch V, Zhai J, Drummond CJ, Kempe K, Tran N. Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.04.158
expr 856459513 + 838290945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
42
|
|
43
|
Efiana NA, Fürst A, Saleh A, Shahzadi I, Bernkop-Schnürch A. Phosphate decorated lipid-based nanocarriers providing a prolonged mucosal residence time. Int J Pharm 2022; 625:122096. [PMID: 35963286 DOI: 10.1016/j.ijpharm.2022.122096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop phosphate decorated lipid-based nanocarriers including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to extend their mucosal residence time. All nanocarriers contained tetradecyltrimethylammonium bromide (TTAB) and polyoxyethylene (9) nonylphenol monophosphate ester (PNPP) for surface decoration. Zeta potential, cytotoxicity, charge conversion and phosphate release studies using isolated intestinal alkaline phosphatase (IAP) and Caco-2 cells were performed. Moreover, the residence time of nanocarriers was determined on porcine intestinal mucosa. Results showed a shift from negative to positive zeta potential due to the addition of TTAB and charge conversion back to a negative zeta potential when also PNPP was added. Up to a concentration of 0.3 %, lipid-based nanocarriers were not toxic. Charge conversion studies with IAP revealed the highest zeta potential shift for NLCTTAB-PNPP with almost Δ22 mV. Phosphate release studies using isolated IAP as well as Caco-2 cells showed a fast phosphate release for SEDDSTTAB-PNPP, SLNTTAB-PNPP and NLCTTAB-PNPP. SLN TTAB-PNPP and NLC TTAB-PNPP provided the highest increase in mucosal residence time that was 4-fold more prolonged than that of blank formulations. In conclusion, phosphate modified lipid-based nanocarriers can essentially prolong the intestinal residence time of their payload.
Collapse
Affiliation(s)
- Nuri Ari Efiana
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, Jl. Jend. A.H. Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Tomeh MA, Hadianamrei R, Xu D, Brown S, Zhao X. Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9. Colloids Surf B Biointerfaces 2022; 216:112549. [PMID: 35636321 DOI: 10.1016/j.colsurfb.2022.112549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Silk fibroin is an FDA approved biopolymer for clinical applications with great potential in nanomedicine. However, silk-based nanoformulations are still facing several challenges in processing and drug delivery efficiency (such as reproducibility and targetability), especially in cancer therapy. To address these challenges, robust and controllable production methods are required for generating nanocarriers with desired properties. This study aimed to develop a novel method for the production of peptide-functionalized magnetic silk nanoparticles with higher selectivity for cancer cells for targeted delivery of the hydrophobic anticancer agent ASC-J9. A new microfluidic device with a swirl mixer was designed to fabricate magnetic silk nanoparticles (MSNP) with desired size and narrow size distribution. The surface of MSNPs was functionalized with a cationic amphiphilic anticancer peptide, G(IIKK)3I-NH2 (G3), to enhance their selectivity towards cancer cells. The G3-MSNPs increased the cellular uptake and anticancer activity of G3 in HCT 116 colorectal cancer cells compared to free G3. Moreover, the G3-MSNPs exhibited considerably higher cellular uptake and cytotoxicity in HCT 116 colorectal cancer cells compared to normal cells (HDFs). Encapsulating ASC-J9 in G3-MSNPs resulted in augmented anticancer activity compared to free ASC-J9 and non-functionalized ASC-J9 loaded MSNPs within its biological half-life. Hence, functionalizing MSNPs with G3 enabled targeted delivery of ASC-J9 to cancer cells and enhanced its anticancer effect. Functionalization of nanoparticles with anticancer peptides could be regarded as a new strategy for targeted delivery and enhanced efficiency of anticancer drugs. Furthermore, the microfluidic device introduced in this paper offers a robust and reproducible method for fabrication of small sized homogenous nanoparticles.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S1 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
45
|
|
46
|
Gao Z, Li X, Zhao K, Geng H, Zhang P, Ju Y, Huda P, Howard CB, Thurecht KJ, Ashokkumar M, Hao J, Cui J. Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chem Commun (Camb) 2022; 58:7777-7780. [PMID: 35731091 DOI: 10.1039/d2cc01874h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Confined sono-polymerization is developed to prepare poly(ethylene glycol) nanoparticles within water-in-oil microemulsion, followed by post-functionalization with a bispecific antibody (anti HER2 and anti PEG) for targeted delivery of photosensitizers (i.e., indocyanine green). The nanoparticles could specifically target to breast cancer cells (i.e., SKBR3) that overexpress HER2 receptors for the inhibition of cancer cell growth under 808 nm laser irradiation. This study highlights a facile and controllable method to fabricate therapeutic nanoparticles capable of targeted delivery.
Collapse
Affiliation(s)
- Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China. .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoyu Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Jinan, Shandong 250100, China. .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
47
|
Kim CH, Kim BD, Lee TH, Kim HK, Lyu MJ, Yoon YI, Goo YT, Kang MJ, Lee S, Choi YW. Synergistic co-administration of docetaxel and curcumin to chemoresistant cancer cells using PEGylated and RIPL peptide-conjugated nanostructured lipid carriers. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A targeted co-administration system of docetaxel (DTX) and curcumin (CUR) using a PEG-modified RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated nanostructured lipid carrier (P/R-NLC) was constructed to exert synergistic anticancer effects against chemoresistant breast cancer.
Results
DTX- or CUR-loaded NLCs and P/R-NLCs were prepared using the solvent emulsification–evaporation method. NLCs showed homogeneous spherical morphology with nano-sized dispersion (< 210 nm) with zeta potential varying from − 16.4 to − 19.9 mV. DTX or CUR was successfully encapsulated in the NLCs: encapsulation efficiency (> 95%); drug loading (8 − 18%). All NLC formulations were stable for 4 weeks under the storage conditions at 4 °C. Drug release was diffusion-controlled, revealing the best fit to the Higuchi equation. DTX- or CUR-loaded formulations showed dose-dependent cytotoxicity. The DTX/CUR combination (1:3 w/w) in P/R-NLC formulations exhibited the strongest synergism in both MCF7 and MCF7/ADR cells with combination index values of 0.286 and 0.130, respectively. Co-treatment with DTX- or CUR-P/R-NLCs increased apoptosis in both cell lines exhibited the superior synergistic inhibitory effect on MCF7/ADR three-dimensional spheroids. Finally, in OVCAR3-xenografted mouse models, co-treatment with DTX- or CUR-loaded P/R-NLCs significantly suppressed tumor growth compared to the other treatment groups.
Conclusions
Co-administration of DTX/CUR (1:3 w/w) using P/R-NLCs induced a synergistic effect against chemoresistant cancer cells.
Graphical Abstract
Collapse
|
48
|
Wang YQ, Huang C, Ye PJ, Long JR, Xu CH, Liu Y, Ling XL, Lv SY, He DX, Wei H, Yu CY. Prolonged blood circulation outperforms active targeting for nanocarriers-mediated enhanced hepatocellular carcinoma therapy in vivo. J Control Release 2022; 347:400-413. [PMID: 35577150 DOI: 10.1016/j.jconrel.2022.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 01/10/2023]
Abstract
Successful hepatocellular carcinoma (HCC) therapy in vivo remains a significant challenge due to the down-regulated expression of the receptors on the surface of tumor cells for compromised active targeting efficiency and cellular uptake of nanoparticles (NPs)-based drug delivery systems (DDSs) and "accelerated blood clearance" and premature unpackaging of NPs in vivo induced by the poly(ethylene glycol)ylation (PEGylation). Inspired by the repeatedly highlighted prolonged blood circulation property of RBCm-camouflaged NPs, we hypothesis that the prolonged blood circulation property resulting from RBCm coating outperforms the active targeting mechanisms of various targeting ligands for enhanced HCC therapy in vivo. Clarification of this hypothesis is therefore of great significance and urgency to break the afore mentioned bottlenecks that hamper the efficient HCC treatment in vivo. For this purpose, we reported in this study the first identification of a determining factor of nanocarriers for enhanced HCC therapy in vivo by the use of the previously fabricated pectin-doxorubicin nanoparticles (PDC-NPs) as a typical example, i.e., the natural RBCm was used as a stealth coating of PDC-NPs for the fabrication of biomimetic DDSs, PDC@RBC-NPs via hypotonic dialysis and mechanical co-extrusion methods. Comprehensive in vitro and in vivo evaluation and comparison of the properties and performance of PDC@RBC-NPs and PDC-NPs were performed in terms of colloidal stability, biosafety, drug release profiles, macrophage escape, anti-HCC effect. The resulting PDC@RBC-NPs outperformed PDC-NPs for HCC therapy in vitro and in vivo. Notably, PDC@RBC-NPs-treated BALB/c nude mice showed a significantly smaller final average tumor volume of 613 mm3 after 16 days than the PDC-NPs-treated group with an average value of 957 mm3. Therefore, the PDC@RBC-NPs developed herein showed great potential for clinical transformations due to the facile preparation and superior therapeutic efficiency against HCC. Most importantly, prolonged blood circulation was identified as a determining factor of nanocarriers instead of active targeting for enhanced HCC therapy in vivo, which could be used to direct the future design and development of advanced DDSs with greater therapeutic efficiency for HCC.
Collapse
Affiliation(s)
- Yue-Qing Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Peng-Ju Ye
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Rong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cheng-Hu Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Xiao-Li Ling
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Shao-Yang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
49
|
Long-term anti-inflammatory effects of injectable celecoxib nanoparticle hydrogels for Achilles tendon regeneration. Acta Biomater 2022; 144:183-194. [PMID: 35331938 DOI: 10.1016/j.actbio.2022.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
The treatment of chronic Achilles tendonitis (AT) often requires prolonged therapy and invasive therapeutic methods such as surgery or therapeutic endoscopy. To prevent the progression of chronic AT, excessive inflammation must be alleviated at an early stage. Corticosteroids or nonsteroidal anti-inflammatory drugs are generally prescribed to control inflammation; however, the high doses and long therapeutic periods required may lead to serious side effects. Herein, a local injectable poly(organophosphazene) (PPZ) - celecoxib (CXB) nanoparticle (PCNP) hydrogel system with long-term anti-inflammatory effects was developed for the treatment of tendonitis. The amphiphilic structure and thermosensitive mechanical properties of PPZ means that the hydrophobic CXB can be easily incorporated into the hydrophobic core to form PCNP at 4 °C. Following the injection of PCNP into the AT, PCNP hydrogel formed at body temperature and induced long-term local anti-inflammatory effects via sustained release of the PCNP. The therapeutic effects of the injectable PCNP system can alleviate excessive inflammation during the early stages of tissue damage and boost tissue regeneration. This study suggests that PCNP has significant potential as a long-term anti-inflammatory agent through sustained nonsteroidal anti-inflammatory drugs (NSAIDs) delivery and tissue regeneration boosting. STATEMENT OF SIGNIFICANCE: In the treatment of Achilles tendinitis, a long-term anti-inflammatory effect is needed to alleviate excessive inflammation and induce regeneration of the damaged Achilles tendon. Injectable poly(organophosphazene)(PPZ)-celecoxib(CXB) nanoparticles (PCNP) generated a long-term, localized-anti-inflammatory effect in the injected region, which successfully induced the expression of anti-inflammatory cytokines and suppressed pro-inflammatory cytokines, while the PCNPs degraded completely. Accordingly, regeneration of the damaged Achilles tendon was achieved through the long-term anti-inflammatory effect induced by a single PCNP injection. The PCNP system therefore has great potential in long-term NSAIDs delivery for various tissue engineering applications.
Collapse
|
50
|
Wu Y, Wang W, Yu Z, Yang K, Huang Z, Chen Z, Yan X, Hu H, Wang Z. Mushroom-brush transitional conformation of mucus-inert PEG coating improves co-delivery of oral liposome for intestinal metaplasia therapy. BIOMATERIALS ADVANCES 2022; 136:212798. [PMID: 35929326 DOI: 10.1016/j.bioadv.2022.212798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The blocking of gastric mucosal intestinal metaplasia (IM) has been considered to be the pivotal method to control the occurrence of gastric cancer. However, there is still a lack of effective therapeutic agent. Here, we developed mucus-penetrating liposome system by covering surface with polyethylene glycol (PEG) chains (hydrophilic and electroneutral mucus-inert material) to co-delivery candidate drugs combination. Then studied the impact on the transmucus performance of different conformations, which were constructed by controlling the density of PEG chains on the surface. The results showed that the particle size of 5%PEG-Lip was less than 120 nm, the polydispersity index was less than 0.3, and the surface potential tended to be neutral. The D value (long chain spacing) of 5% PEG-Lip was 3.25 nm, which was close to the RF value (diameter of spherical PEG long chain group without external force interference) of 3.44 nm, and the L value (extended length) was slightly larger than 3.44 nm. In this case, PEG showed mushroom-brush transitional conformation on the surface of liposomes. This conformation was not only promoted stable delivery, but also shielded the capture of mucus more favorably, leading to a more unrestricted transportation in mucus. The further in vivo experimental results demonstrated the rapid distribution of liposomes, which gradually appeared both in the superficial and deep glandular of mucosa and gland cells at 1 h and absorbed into the cell cytoplasm at 6 h. The 5% PEG-Lip with the mushroom-brush transitional configuration recalled abnormal organ index and improved inflammation and intestinal metaplasia. The modified PEG conformation assay presented here was more suitable for liposomes. This PEG-modified liposome system has potential of mucus-penetrating and provides a strategy for local treatment of gastric mucosal intestinal metaplasia.
Collapse
Affiliation(s)
- Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Yan
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhanguo Wang
- Collaborative Innovation Laboratory of Metabonomics, Standard Research and Extension Base & Collaborative Innovation Center of Qiang Medicine, School of Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|