1
|
Wu Y, Li Y, Zhang X. The Future of Graphene: Preparation from Biomass Waste and Sports Applications. Molecules 2024; 29:1825. [PMID: 38675644 PMCID: PMC11053808 DOI: 10.3390/molecules29081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the main raw material for producing graphene is graphite ore. However, researchers actively seek alternative resources due to their high cost and environmental problems. Biomass waste has attracted much attention due to its carbon-rich structure and renewability, emerging as a potential raw material for graphene production to be used in sports equipment. However, further progress is required on the quality of graphene produced from waste biomass. This paper, therefore, summarizes the properties, structures, and production processes of graphene and its derivatives, as well as the inherent advantages of biomass waste-derived graphene. Finally, this paper reviews graphene's importance and application prospects in sports since this wonder material has made sports equipment available with high-strength and lightweight quality. Moreover, its outstanding thermal and electrical conductivity is exploited to prepare wearable sensors to collect more accurate sports data, thus helping to improve athletes' training levels and competitive performance. Although the large-scale production of biomass waste-derived graphene has yet to be realized, it is expected that its application will expand to various other fields due to the associated low cost and environmental friendliness of the preparation technique.
Collapse
Affiliation(s)
- Yueting Wu
- Graduate School, Harbin Sport University, Harbin 150008, China; (Y.W.)
| | - Yanlong Li
- Academic Theory Research Department, Harbin Sport University, Harbin 150008, China
| | - Xiangyang Zhang
- Graduate School, Harbin Sport University, Harbin 150008, China; (Y.W.)
| |
Collapse
|
2
|
François M, Lin KS, Rachmadona N, Khoo KS. Utilization of carbon-based nanomaterials for wastewater treatment and biogas enhancement: A state-of-the-art review. CHEMOSPHERE 2024; 350:141008. [PMID: 38154673 DOI: 10.1016/j.chemosphere.2023.141008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The management of environmental pollution and carbon dioxide (CO2) emissions is a challenge that has spurred increased research interest in determining sustainable alternatives to decrease biowaste. This state-of-the-art review aimed to describe the preparation and utilization of carbon-based nanomaterials (CNM) for biogas enhancement and wastewater contaminant (dyes, color, and dust particles) removal. The novelty of this review is that we elucidated that the performance of CNMs in the anaerobic digestion (AD) varies from one system to another. In addition, this review revealed that increasing the pyrolysis temperature can facilitate the transition from one CNM type to another and outlined the methods that can be used to develop CNMs, including arc discharge, chemical exfoliation, and laser ablation. In addition, this study showed that methane (CH4) yield can be slightly increased (e.g. from 33.6% to 60.89%) depending on certain CNM factors, including its type, concentration, and feedstock. Temperature is a fundamental factor involved in the method and carbon sources used for CNM synthesis. This review determined that graphene oxide is not a good additive for biogas and CH4 yield improvement compared with other types of CNM, such as graphene and carbon nanotubes. The efficacy of CNMs in wastewater treatment depends on the temperature and pH of the solution. Therefore, CNMs are good adsorbents for wastewater contaminant removal and are a promising alternative for CO2 emissions reduction. Further research is necessary to determine the relationship between CNM synthesis and preparation costs while accounting for other factors such as gas flow, feedstock, consumption time, and energy consumption.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
3
|
Villora-Picó JJ, González-Arias J, Baena-Moreno FM, Reina TR. Renewable Carbonaceous Materials from Biomass in Catalytic Processes: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:565. [PMID: 38591382 PMCID: PMC10856170 DOI: 10.3390/ma17030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
This review paper delves into the diverse ways in which carbonaceous resources, sourced from renewable and sustainable origins, can be used in catalytic processes. Renewable carbonaceous materials that come from biomass-derived and waste feedstocks are key to developing more sustainable processes by replacing traditional carbon-based materials. By examining the potential of these renewable carbonaceous materials, this review aims to shed light on their significance in fostering environmentally conscious and sustainable practices within the realm of catalysis. The more important applications identified are biofuel production, tar removal, chemical production, photocatalytic systems, microbial fuel cell electrodes, and oxidation applications. Regarding biofuel production, biochar-supported catalysts have proved to be able to achieve biodiesel production with yields exceeding 70%. Furthermore, hydrochars and activated carbons derived from diverse biomass sources have demonstrated significant tar removal efficiency. For instance, rice husk char exhibited an increased BET surface area from 2.2 m2/g to 141 m2/g after pyrolysis at 600 °C, showcasing its effectiveness in adsorbing phenol and light aromatic hydrocarbons. Concerning chemical production and the oxidation of alcohols, the influence of biochar quantity and pre-calcination temperature on catalytic performance has been proven, achieving selectivity toward benzaldehyde exceeding 70%.
Collapse
Affiliation(s)
- Juan J. Villora-Picó
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| | - Judith González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| | - Francisco M. Baena-Moreno
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
| | - Tomás R. Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| |
Collapse
|
4
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Yuan SJ, Wang JJ, Dong B, Dai XH. Biomass-Derived Carbonaceous Materials with Graphene/Graphene-Like Structures: Definition, Classification, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17169-17177. [PMID: 37859331 DOI: 10.1021/acs.est.3c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Biomass-derived carbonaceous materials with graphene/graphene-like structures (BGS) have attracted tremendous attention in the field of environmental remediation. The introduction of graphene/graphene-like structures into raw biochars can effectively improve their properties, such as electrical conductivity, surface functional groups, and catalytic activity. In 2021, the International Organization for Standardization defined graphene as a "single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure". Considering this definition, several studies have incorrectly referred to BGS (e.g., biomass-derived few-layer graphene or porous graphene-like nanosheets) as "graphene". The definitions and classifications of BGS and their applications in environmental remediation have not been assessed critically thus far. Comprehensive analysis and sufficient and robust evidence are highly desired to accurately determine the specific structures of BGS. In this perspective, we provide a systematic framework to define and classify the BGS. The state-of-the-art methods currently used to determine the structural properties of BGS are scrutinized. We then discuss the design and fabrication of BGS and how their distinctive features could improve the applicability of biomass-derived carbonaceous materials, particularly in environmental remediation. The environmental applications of these BGS are highlighted, and future research opportunities and needs are identified. The fundamental insights in this perspective provide critical guidance for the further development of BGS for a wide range of environmental applications.
Collapse
Affiliation(s)
- Shi-Jie Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Water Saving and Water Environment Governance in the Yangtze River Delta of Ministrys of Water Resources, Shanghai 200092, China
| | - Jing-Jing Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiao-Hu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Olejnik A, Polaczek K, Szkodo M, Stanisławska A, Ryl J, Siuzdak K. Laser-Induced Graphitization of Polydopamine on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37915241 PMCID: PMC10658452 DOI: 10.1021/acsami.3c11580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements. Reactive molecular dynamics simulations confirm the possibility of graphitization in the nanosecond time scale with the evolution of NH3, H2O, and CO2 gases. A thorough exploration of the lasing parameter space (wavelength, pulse energy, and number of pulses) was conducted with the aim of improving either electrochemical activity or photocurrent generation. Whereas the 532 nm laser pulses interacted mostly with the PDA coating, the 365 nm pulses were absorbed by both PDA and the substrate nanotubes, leading to a higher graphitization degree. The majority of the photocurrent and quantum efficiency enhancement is observed in the visible light between 400 and 550 nm. The proposed composite is applied as a photoelectrochemical (PEC) sensor of serotonin in nanomolar concentrations. Because of the suppressed recombination and facilitated charge transfer caused by the laser graphitization, the proposed composite exhibits significantly enhanced PEC performance. In the sensing application, it showed superior sensitivity and a limit of detection competitive with nonprecious metal materials.
Collapse
Affiliation(s)
- Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| | - Krzysztof Polaczek
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
- Department
of Biomedical Chemistry, Faculty of Chemistry
University of Gdansk, Wita Stwosza 63 St, Gdańsk 80-308, Poland
| | - Marek Szkodo
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Alicja Stanisławska
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Katarzyna Siuzdak
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| |
Collapse
|
7
|
Chakraborty S, Saha R, Saha S. A critical review on graphene and graphene-based derivatives from natural sources emphasizing on CO 2 adsorption potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30093-8. [PMID: 37779125 DOI: 10.1007/s11356-023-30093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Accelerated release of carbon dioxide (CO2) into the atmosphere has become a critical environmental issue, and therefore, efficient methods for capturing CO2 are in high demand. Graphene and graphene-based derivatives have demonstrated promising potential as adsorbents due to their unique properties. This review aims to provide an overview of the latest research on graphene and its derivatives fabricated from natural sources which have been utilized and may be explored for CO2 adsorption. The necessity of this review lies in the need to explore alternative, sustainable sources of graphene that can contribute to the development of viable environmentally benign CO2 capture technologies. The review will aim to highlight graphene as an excellent CO2 adsorbent and the possible avenues, advantages, and limitations of the processes involved in fabricating graphene and its derivatives sourced from both industrial resources and organic waste-based naturally occurring carbon precursors for CO2 adsorption. This review will also highlight the CO2 adsorption mechanisms focusing on density functional theory (DFT) and molecular dynamics (MD)-based studies over the last decade.
Collapse
Affiliation(s)
- Saswata Chakraborty
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Ranadip Saha
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sudeshna Saha
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
8
|
Chakroborty S, Pal K, Nath N, Singh V, Barik A, Soren S, Panda P, Asthana N, Kyzas GZ. Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95039-95053. [PMID: 37580476 PMCID: PMC10482793 DOI: 10.1007/s11356-023-29235-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
More than 60% of India's population relies on agriculture as their primary source of income, making it the nation's most important economic sector. Rice husk (often abbreviated as RH) is one of the most typical by-products of agricultural production. Every five tonnes of rice that is harvested results in the production of one tonne of husk. The concept of recycling and reusing waste from agricultural production has received interest from a variety of environmental and industrial perspectives. A wide variety of nanomaterials, including nano-zeolite, nanocarbon, and nano-silica, have been discovered in agro-waste. From rice cultivation to the finished product, there was a by-product consisting of husk that comprised 20% of the overall weight, or RH. The percentage of silica in RH ash ranges from 60 to 40%, with the remaining percentage consisting of various minerals. As a direct consequence of this, several distinct approaches to generating and extracting nanomaterial from rice husk have been developed. Because it contains a significant amount of cellulose and lignin, RH is an excellent and economical source of carbon precursor. The goal of this chapter is to produce carbon-based nanomaterials from RH.
Collapse
Affiliation(s)
- Subhendu Chakroborty
- Department of Basic Sciences, IITM, IES University, Madhya Pradesh, Bhopal, 462044, India
| | - Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Nibedita Nath
- Department of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha, India, 768214
| | - Varun Singh
- Department of Chemistry, University Institute of Science (UIS), Chandigarh University, Mohali, Punjab, 140413, India
| | - Arundhati Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - Siba Soren
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Pravati Panda
- Department of Basic Sciences, RIE, Bhubaneswar, India
| | | | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece.
| |
Collapse
|
9
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
10
|
Balqis N, Mohamed Jan B, Simon Cornelis Metselaar H, Sidek A, Kenanakis G, Ikram R. An Overview of Recycling Wastes into Graphene Derivatives Using Microwave Synthesis; Trends and Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103726. [PMID: 37241354 DOI: 10.3390/ma16103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
It is no secret that graphene, a two-dimensional single-layered carbon atom crystal lattice, has drawn tremendous attention due to its distinct electronic, surface, mechanical, and optoelectronic properties. Graphene also has opened up new possibilities for future systems and devices due to its distinct structure and characteristics which has increased its demand in a variety of applications. However, scaling up graphene production is still a difficult, daunting, and challenging task. Although there is a vast body of literature reported on the synthesis of graphene through conventional and eco-friendly methods, viable processes for mass graphene production are still lacking. This review focuses on the variety of unwanted waste materials, such as biowastes, coal, and industrial wastes, for producing graphene and its potential derivatives. Among the synthetic routes, the main emphasis relies on microwave-assisted production of graphene derivatives. In addition, a detailed analysis of the characterization of graphene-based materials is presented. This paper also highlights the current advances and applications through the recycling of waste-derived graphene materials using microwave-assisted technology. In the end, it would alleviate the current challenges and forecast the specific direction of waste-derived graphene future prospects and developments.
Collapse
Affiliation(s)
- Nuralmeera Balqis
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Akhmal Sidek
- Petroleum Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Crete, Greece
| | - Rabia Ikram
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Du X, Lin Z, Zhang Y, Li P. Microstructural tailoring of porous few-layer graphene-like biochar from kitchen waste hydrolysis residue in molten carbonate medium: Structural evolution and conductive additive-free supercapacitor application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162045. [PMID: 36754327 DOI: 10.1016/j.scitotenv.2023.162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biomass-derived graphene-like material is a promising candidate for supercapacitor electrodes, while it is critical to controllably convert biomass into structure-tunable graphene. Herein, few-layer graphene-like biochar (FLGBS) was successfully fabricated from waste biomass in molten carbonate medium. Molten carbonate acted as the effective catalyst for graphitizing and the liquid medium for microcrystal relinking to achieve the rearrangement of carbon structure. It was found that the stacking of graphene layer and formation of porous structure were influenced by the volume of reaction medium and biomass pre‑carbonation. Namely, increasing the dosage of molten K2CO3 was in favor to form few layer-type graphene structure, but excess dosage could destroy the nanopore structure to expand the aperture. In addition, pre‑carbonation at high temperature impeded the exfoliation of graphene layers. When FLGBSs were applied to fabricate conductive additive-free electrode, they displayed a superior supercapacitor performance (up to 237.4 F g-1 at 0.5 Ag-1). This excellent performance should be attributed to the large specific surface area, hierarchical pore structure and graphene-like structure. In short, this work could help to get insights into the structural evolution of biomass carbon to graphene-like biochar in molten carbonate medium and achieve the tailoring of microstructure for further application in energy storage.
Collapse
Affiliation(s)
- Xinhang Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhiwen Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
12
|
H 3PO 4/KOH Activation Agent for High Performance Rice Husk Activated Carbon Electrode in Acidic Media Supercapacitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010296. [PMID: 36615488 PMCID: PMC9822331 DOI: 10.3390/molecules28010296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
H3PO4/KOH combined solution is proposed as a new effective activation agent for activated carbon production from rice husk. Several activated carbon samples were produced by using different volumes of the utilized acid and alkali individually, in addition to the combined solution. FTIR results indicated that the mixed agent partially decomposed the chemical compounds on the rice husk char surface, resulting in an increase in the surface area. Moreover, XRD and EDS analyses showed the presence of a considerable amount of amorphous silica. Electrochemical measurements concluded that the volume of the activation agent solution should be optimized for both single and mixed activation agents. Numerically, for 0.3 g treated rice husk char, the maximum specific capacitance was observed at 7, 10 and 14 mL of H3PO4, KOH (3 M) and mixed (1:1 by volume) activation agents, respectively; the determined specific capacitance values were 73.5, 124.2 and 241.3 F/g, respectively. A galvanostatic charging/discharging analysis showed an approximate symmetrical triangular shape with linear voltage versus time profile which indicates very good electrochemical performance as an electrode in the supercapacitors application. The stability of the proposed activated carbon was checked by performing a cyclic voltammetry measurement for 1000 cycles at 2 mV/s and for 30,000 cycles at 10 mV/s. The results indicate an excellent specific capacitance retention, as no losses were observed.
Collapse
|
13
|
Béguerie T, Weiss-Hortala E, Nzihou A. Calcium as an innovative and effective catalyst for the synthesis of graphene-like materials from cellulose. Sci Rep 2022; 12:21492. [PMID: 36513722 PMCID: PMC9747789 DOI: 10.1038/s41598-022-25943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyrolysis of lignocellulosic biomass (hard carbon) produces poorly graphitic biochar. In this study, nano-structured biochars were produced from microcrystalline cellulose using calcium as a non-conventional catalyst. Calcium is abundant, environmental-friendly and widely accessible. Graphitization of calcium-impregnated cellulose was carried out at 1800 °C, a temperature below 2000 °C where the graphitization usually occurs. XRD, Raman spectroscopy, high-resolution TEM together with the in-house numerical tool developed enable the quantification of the graphene fringes in the biochars. The non-impregnated cellulose biochar was composed of short and poorly stacked graphene fringes. The impregnation with 2 wt.% of calcium led to the conversion of the initial structure into a well-organized and less defective graphene-like one. The graphene-like structures obtained were composed of tens of stacked graphene fringes with a crystallite size up to 20 nm and an average interlayer spacing equal to 0.345 nm, close to the reference value of standard hexagonal graphite (0.3354 nm). The increase of the calcium concentration did not significantly improve the crystallite sizes of the graphene-like materials but rather drastically improved their rate. Our results propose a mechanism and provide new insights on the synthesis of graphene-like materials from bio-feedstocks using calcium where the literature is focused on transition metals such as iron and nickel among others. The decrease of the graphitization temperature below 2000 °C should lower the production cost as well as the environmental impact of the thermal graphene-like materials synthesis using biomass. This finding should stimulate further research in the field and broaden the application perspectives.
Collapse
Affiliation(s)
- Théotime Béguerie
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, 81013, Albi Cedex 09, France
| | - Elsa Weiss-Hortala
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, 81013, Albi Cedex 09, France
| | - Ange Nzihou
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, 81013, Albi Cedex 09, France.
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08544, USA.
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
14
|
El-Maghrabi N, Fawzy M, Mahmoud AED. Efficient Removal of Phosphate from Wastewater by a Novel Phyto-Graphene Composite Derived from Palm Byproducts. ACS OMEGA 2022; 7:45386-45402. [PMID: 36530337 PMCID: PMC9753538 DOI: 10.1021/acsomega.2c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 05/17/2023]
Abstract
The increased demand for clean water especially in overpopulated countries is of great concern; thus, the development of eco-friendly and cost-effective techniques and materials that can remediate polluted water for possible reuse in agricultural purposes can offer a life-saving solution to improve human welfare, especially in view of climate change impacts. In the current study, the agricultural byproducts of palm trees have been used for the first time as a carbon source to produce graphene functionalized with ferrocene in a composite form to enhance its water treatment potential. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), ultraviolet-visible, Fourier transform infrared spectroscopy, zeta potential, thermogravimetric analysis, and Raman techniques have been used to characterize the produced materials. SEM investigations confirmed the formation of multiple sheets of the graphene composite. Data collected from the zeta potential revealed that graphene was supported with a negative surface charge that maintains its stability while XRD elucidated that graphene characteristic peaks were evident at 2θ = 22.4 and 22.08° using palm leaves and fibers, respectively. Batch adsorption experiments were conducted to find out the most suitable conditions to remove PO4 3- from wastewater by applying different parameters, including pH, adsorbent dose, initial concentration, and time. Their effect on the adsorption process was also investigated. Results demonstrated that the best adsorption capacity was 58.93 mg/g (removal percentage: 78.57%) using graphene derived from palm fibers at 15 mg L-1 initial concentration, pH = 3, dose = 10 mg, and 60 min contact time. Both linear and non-linear forms of kinetic and isotherm models were investigated. The adsorption process obeyed the pseudo-second-order kinetic model and was well fitted to the Langmuir isotherm.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- ,
| | - Manal Fawzy
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- National
Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo11694, Egypt
| | - Alaa El Din Mahmoud
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
| |
Collapse
|
15
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Tharani S, Durgalakshmi D, Balakumar S, Rakkesh RA. Futuristic Advancements in Biomass‐Derived Graphene Nanoassemblies: Versatile Biosensors for Point‐of‐Care Devices. ChemistrySelect 2022. [DOI: 10.1002/slct.202203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. Tharani
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600 025 TN India
- Department of Physics Ethiraj College for Women Chennai 600 008 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600 025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
17
|
Omenesa Idris M, Guerrero–Barajas C, Kim HC, Ali Yaqoob A, Nasir Mohamad Ibrahim M. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Jiang G, Liu L, Xiong J, Luo Y, Cai L, Qian Y, Wang H, Mu L, Feng X, Lu X, Zhu J. Advanced Material-oriented Biomass Precise Reconstruction: A Review on Porous Carbon with Inherited Natural Structure and Created Artificial Structure by Post-treatment. Macromol Biosci 2022; 22:e2100479. [PMID: 35286776 DOI: 10.1002/mabi.202100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Manufacturing of porous carbon with biomass resources has been intensively investigated in recent decades. The diversity of biomass species and great variety of processing methods enable the structural richness of porous carbon as well as their wide applications. In this review, we specifically focused on the structure of biomass-derived porous carbon either inherited from natural biomass or created by post-treatment. The intrinsic structure of plant biomass was briefly introduced and the utilization of the unique structures at different length-scales were discussed. In term of post-treatment, the structural features of activated carbon by traditional physical and chemical activation were summarized and compared in a wide spectrum of biomass species, statistical analysis were performed to evaluate the effectiveness of different activation methods in creating specific pore structures. The similar pore structure of biomass-derived carbon and coal-derived carbon suggested a promising replacement with more sustainable biomass resources in producing porous carbon. In summary, using biomass as porous carbon precursor endows the flexibility of using its naturally patterned micro-structure and the tunability of controlled pore-creation by post treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guancong Jiang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Li Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Jingjing Xiong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yiming Luo
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Liangcheng Cai
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yu Qian
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Hao Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Liwen Mu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Xin Feng
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Jiahua Zhu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
19
|
Zakaria NZJ, Rozali S, Mubarak NM, Ibrahim S. A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-32. [PMID: 35194538 PMCID: PMC8853439 DOI: 10.1007/s13399-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Grown only in humid tropical conditions, the palm tree provides high-quality oil essential for cooking and personal care or biofuel in the energy sector. After the refining process, this demand could cause numerous oil palm biomass waste management problems. However, the emergence of carbon nanomaterials or CNMs could be a great way to put this waste to a good cause. The composition of the palm waste can be used as a green precursor or starting materials for synthesizing CNMs. Hence, this review paper summarizes the recent progress for the CNMs production for the past 10 years. This review paper extensively discusses the method for processing CNMs, chemical vapor deposition, pyrolysis, and microwave by the current synthesis method. The parameters and conditions of the synthesis are also analyzed. The application of the CNMs from palm oil and future recommendations are also highlighted. Generally, this paper could be a handy guide in assisting the researchers in exploring economic yet simple procedures in synthesizing carbon-based nanostructured materials derived from palm oil that can fulfill the required applications. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Nurul Zariah Jakaria Zakaria
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shaifulazuar Rozali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | - Suriani Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Blessy Rebecca PN, Durgalakshmi D, Balakumar S, Rakkesh RA. Biomass‐Derived Graphene‐Based Nanocomposites: A Futuristic Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202104013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P. N. Blessy Rebecca
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600025 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
21
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
22
|
Saha JK, Dutta A. A Review of Graphene: Material Synthesis from Biomass Sources. WASTE AND BIOMASS VALORIZATION 2021; 13:1385-1429. [PMID: 34548888 PMCID: PMC8446731 DOI: 10.1007/s12649-021-01577-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/08/2021] [Indexed: 05/30/2023]
Abstract
Single-atom-thick graphene is a particularly interesting material in basic research and applications owing to its remarkable electronic, mechanical, chemical, thermal, and optical properties. This leads to its potential use in a multitude of applications for improved energy storage (capacitors, batteries, and fuel cells), energy generation, biomedical, sensors or even as an advanced membrane material for separations. This paper provided an overview of research in graphene, in the area of synthesis from various sources specially from biomass, advanced characterization techniques, properties, and application. Finally, some challenges and future perspectives of graphene are also discussed.
Collapse
Affiliation(s)
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Canada
| |
Collapse
|
23
|
Zhang C, Wu Z, Jan S, Wang Z, Bennaceur S, Kim HK, Jin X. Glucose-derived hollow microsphere graphite with a nanosheets-constructed porous shell for improved lithium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Yan Y, Meng Y, Zhao H, Lester E, Wu T, Pang CH. Miscanthus as a carbon precursor for graphene oxide: A possibility influenced by pyrolysis temperature. BIORESOURCE TECHNOLOGY 2021; 331:124934. [PMID: 33798864 DOI: 10.1016/j.biortech.2021.124934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the potential of producing graphene oxide (GO) from biomass via green (comparatively) processing and the impact of graphitization temperature on GO quality. Our findings show that it is possible to convert biomass into highly pyrolytic biochar, followed by shear exfoliation to produce few-layer GO. However, pyrolysis temperature is key in ensuring that the biochar is suited for effective exfoliation. Low temperatures (<1000 °C) would preserve undesirable heterogenous, complex cellular structure of biomass whilst excessive temperatures (≥1300 °C) result in uncontrolled melting, coalescence and loss of functional groups. Results show 1200 °C to be the optimum graphitization temperature for miscanthus, where the resultant biochar is highly aromatic with sufficient functional groups to weaken van der Waals forces, thus facilitating exfoliation to form 6-layer GO with specific surface area of 545.3 m2g-1. This study demonstrates the potential of producing high quality, fit-for-purpose graphene materials from renewable sources.
Collapse
Affiliation(s)
- Yuxin Yan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Yang Meng
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, PR China
| | - Haitao Zhao
- MITMECHE, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward Lester
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tao Wu
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, PR China; Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, PR China; Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo 315100, China.
| |
Collapse
|
25
|
Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation. SUSTAINABILITY 2021. [DOI: 10.3390/su13073990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The agriculture sector produces significant amounts of organic residues and the choice of the management strategy of these flows affects the environmental sustainability of the sector. The scientific literature is rich with innovative processes for the production of bio-based products (BBP) from agriculture residues, aimed at the implementation of circular economy principles. Based on literature data, the present paper performed a life cycle assessment and assessed the environmental sustainability of five processes for the exploitation of rice and wheat straw, tomato pomace, and orange peel. The analysis identified as significant issues the high energy demand and the use of high impact organic solvent. The comparison of BBP with conventional products showed higher environmental loads for the innovative processes that used organic residues (except for rice straw case). The obtained results do not want to discourage the circular strategy in the agriculture sector, but rather to draw the attention of all stakeholders to the environmental sustainability aspects, focusing on the necessity to decrease the electricity demand and identify ecological agents to use in BBP manufacturing, in agreement with the most recent European policies.
Collapse
|
26
|
Roy A, Kar S, Ghosal R, Naskar K, Bhowmick AK. Facile Synthesis and Characterization of Few-Layer Multifunctional Graphene from Sustainable Precursors by Controlled Pyrolysis, Understanding of the Graphitization Pathway, and Its Potential Application in Polymer Nanocomposites. ACS OMEGA 2021; 6:1809-1822. [PMID: 33521422 PMCID: PMC7841780 DOI: 10.1021/acsomega.0c03550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The key feature of the present work is the dexterous utilization of an apparently destructive process, pyrolysis, for the synthesis of the most esteemed nanomaterial, graphene. This work is an attempt to synthesize graphene from nonconventional sources such as tannic acid, alginic acid, and green tea by a controlled pyrolysis technique. The precursors used in this work are not petroleum-derived and hence are green. A set of pyrolysis experiments was carried out at different temperatures, followed by a thorough step-by-step analysis of the product morphology, enabling the optimization of the graphitization conditions. A time-dependent morphological analysis was also carried out along with isothermal thermogravimetric studies to optimize the ideal pyrolysis time for graphitization. The specific capacitance of the graphene obtained from alginic acid was 315 F/g, which makes it fairly suitable for application as green supercapacitors. The same graphene was also used to fabricate a rubber-latex-based flexible supercapacitor film with 137 F/g specific capacitance. The graphene and graphene-based latex film exhibited room-temperature magnetic hysteresis, indicating their ferromagnetic nature, which also supports their spintronic applications.
Collapse
Affiliation(s)
- Amrita Roy
- Rubber
Technology Centre, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Saptarshi Kar
- Birla
Carbon India Private Limited, MIDC Taloja, Raigad, Maharashtra 410208, India
| | - Ranjan Ghosal
- Birla
Carbon India Private Limited, MIDC Taloja, Raigad, Maharashtra 410208, India
| | - Kinsuk Naskar
- Rubber
Technology Centre, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anil K. Bhowmick
- Rubber
Technology Centre, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
27
|
Poorna AR, Saravanathamizhan R, Balasubramanian N. Graphene and graphene‐like structure from biomass for Electrochemical Energy Storage application‐ A Review. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- AR. Poorna
- Department of Chemical Engineering A.C. Tech Anna University Chennai India
| | | | - N. Balasubramanian
- Department of Chemical Engineering A.C. Tech Anna University Chennai India
| |
Collapse
|
28
|
Mugadza K, Stark A, Ndungu PG, Nyamori VO. Synthesis of Carbon Nanomaterials from Biomass Utilizing Ionic Liquids for Potential Application in Solar Energy Conversion and Storage. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3945. [PMID: 32906574 PMCID: PMC7558495 DOI: 10.3390/ma13183945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Considering its availability, renewable character and abundance in nature, this review assesses the opportunity of the application of biomass as a precursor for the production of carbon-based nanostructured materials (CNMs). CNMs are exceptionally shaped nanomaterials that possess distinctive properties, with far-reaching applicability in a number of areas, including the fabrication of sustainable and efficient energy harnessing, conversion and storage devices. This review describes CNM synthesis, properties and modification, focusing on reports using biomass as starting material. Since biomass comprises 60-90% cellulose, the current review takes into account the properties of cellulose. Noting that highly crystalline cellulose poses a difficulty in dissolution, ionic liquids (ILs) are proposed as the solvent system to dissolve the cellulose-containing biomass in generating precursors for the synthesis of CNMs. Preliminary results with cellulose and sugarcane bagasse indicate that ILs can not only be used to make the biomass available in a liquefied form as required for the floating catalyst CVD technique but also to control the heteroatom content and composition in situ for the heteroatom doping of the materials.
Collapse
Affiliation(s)
- Kudzai Mugadza
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Annegret Stark
- SMRI/NRF SARChI Research Chair in Sugarcane Biorefining, School of Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Vincent O. Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
29
|
Recent developments in the synthesis of graphene and graphene-like structures from waste sources by recycling and upcycling technologies: a review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41127-020-00033-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Sukmana IF, Widiatmoko P, Nurdin I, Devianto, Prakoso T. Effect of ZnCl2 on properties of graphene produced from palm empty fruit bunch. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/778/1/012011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
The production of palm oil in Indonesia is increasing every year. Along with the increase in production, the waste generated by the palm oil mill is also increasing. Waste from the production of palm oil can be used as raw material for high value-added products such as graphene. Graphene is the two dimensional hexagonal lattice of sp2 carbon atoms. Due to its excellent electrical conductivity and high theoretical surface area, graphene has very promising applications in nanoelectronics components including transistors, lithium ion batteries and supercapacitor. This study aims to characterize the effect of activating agent ZnCl2: biomass ratio on the structure and properties of graphene production from palm oil waste with catalyst FeCl3 via two-stage pyrolysis. Experiment results showed that surface properties of graphene sheets depend on the ZnCl2: biomass ratio. The effective surface area increased with increasing ZnCl2: biomass ratio. Graphene sheets shows favourable features such as nanosheet frameworks (2-4 atomic layers), graphite-like interlayer spacing (0.3380 nm) and also high crystalline degree (IG/ID = 9.35).
Collapse
|
31
|
Zhu J, Roscow J, Chandrasekaran S, Deng L, Zhang P, He T, Wang K, Huang L. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors. CHEMSUSCHEM 2020; 13:1275-1295. [PMID: 32061148 DOI: 10.1002/cssc.201902685] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/30/2019] [Indexed: 05/13/2023]
Abstract
In the past decade, the rapid development of portable electronic devices, electric vehicles, and electrical devices has stimulated extensive interest in fundamental research and the commercialization of electrochemical energy-storage systems. Biomass-derived carbon has garnered significant research attention as an efficient, inexpensive, and eco-friendly active material for energy-storage systems. Therefore, high-performance carbonaceous materials, derived from renewable sources, have been utilized as electrode materials in sodium-ion batteries and sodium-ion capacitors. Herein, the charge-storage mechanism and utilization of biomass-derived carbon for sodium storage in batteries and capacitors are summarized. In particular, the structure-performance relationship of biomass-derived carbon for sodium storage in the form of batteries and capacitors is discussed. Despite the fact that further research is required to optimize the process and application of biomass-derived carbon in energy-storage devices, the current review demonstrates the potential of carbonaceous materials for next-generation sodium-related energy-storage applications.
Collapse
Affiliation(s)
- Jianhui Zhu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shannxi, 710055, P.R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - James Roscow
- Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sundaram Chandrasekaran
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Peixin Zhang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shannxi, 710055, P.R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Tingshu He
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shannxi, 710055, P.R. China
| | - Kuo Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Licong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
32
|
An Overview of the Oil Palm Industry: Challenges and Some Emerging Opportunities for Nanotechnology Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increase in the world’s oil demand due to the rise of the global population urges more research into the production of sustainable vegetable oilseeds, among which palm oil is the most suitable candidate as it is the most efficient oilseed crop in the world. In an effort to drive the oil palm industry in the areas of food safety and security nanotechnology could offer a sustainable alternative. However, the utilization of nanotechnology in the oil palm industry is still limited. In this review, we aim to encourage the researchers to fully utilize nanotechnology as an alternative solution to tackle the challenges faced by the oil palm industry. Moreover, we also aim to highlight the opportunities for nanotechnology development in oil palm-based related research. The major points are as follows: (1) Nanosensing enables real-time monitoring of plantation status and crop progression, including soil, water and nutrient management, early pest/disease detection, and the spreading of pests/diseases. The use of nanosensing conveniently extends into advanced breeding topics, such as the development of disease-tolerant plants; (2) Nanotechnology could be the answer for the development of integrated management of pest and disease. Active agricultural ingredients can be entrapped or encapsulated into nanocarrier systems to improve their solubility, stability, enhance their efficient delivery to site-specific targets, with longer shelf life, and consequently improved efficacy; (3) Valuable nanomaterials can be isolated and generated from oil palm biomass waste. The utilization of oil palm biomass waste could overcome the issue of the massive production of waste in the oil palm industry and palm oil mills, where oil only accounts for 10% of the biomass, while 90% is comprised of the generated biowastes. (4) Palm oil can be utilized as a green alternative as a capping and stabilizing agent in the biosynthesis of metallic and non-metallic nanoparticles. In addition, nanoemulsion formulations using palm oil in drug delivery systems offer advantages such as low toxicity, enhance bioavailability and solubility of the drugs, apart from being inexpensive and environmentally friendly.
Collapse
|
33
|
Yang K, Yan J, He R, Li D, Li Y, Li T, Ren B. Nitrogen-doped porous carbon was prepared from peony shell for the cathode material of lithium‑sulfur battery. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Yu X, Liu Z, Wang Y, Luo H, Tang X. Fabrication of corncob-derived biomass charcoal decorated g-C3N4photocatalysts for removing 2-mercaptobenzothiazole. NEW J CHEM 2020. [DOI: 10.1039/d0nj04057f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insights into active sites and charge transport behavior are challenging topics for fabricating composite photocatalysts and investigating their photocatalytic degradation reaction mechanisms.
Collapse
Affiliation(s)
- Xiuna Yu
- Department of Materials Science and Engineering
- Jilin Jianzhu University
- Changchun
- P. R. China
- Jilin Polytechnic of Water Resources and Electric Engineering
| | - Zhixiang Liu
- School of Mechanical and Transportation Engineering
- Guangxi University of Science and Technology
- Liuzhou
- P. R. China
| | - Yemei Wang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Hongyu Luo
- Jilin Polytechnic of Water Resources and Electric Engineering
- Changchun
- P. R. China
| | - Xu Tang
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|
35
|
Moro G, Bottari F, Van Loon J, Du Bois E, De Wael K, Moretto LM. Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosens Bioelectron 2019; 146:111758. [PMID: 31605984 DOI: 10.1016/j.bios.2019.111758] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022]
Abstract
The numerous advantages of disposable and screen-printed electrodes (SPEs) particularly in terms of portability, sensibility, sensitivity and low-cost led to the massive application of these electroanalytical devices. To limit the electronic waste and recover precious materials, new recycling processes were developed together with alternative SPEs fabrication procedures based on renewable, biocompatible sources or waste materials, such as paper, agricultural byproducts or spent batteries. The increased interest in the use of eco-friendly materials for electronics has given rise to a new generation of highly performing green modifiers. From paper based electrodes to disposable electrodes obtained from CD/DVD, in the last decades considerable efforts were devoted to reuse and recycle in the field of electrochemistry. Here an overview of recycled and recyclable disposable electrodes, sustainable electrode modifiers and alternative fabrication processes is proposed aiming to provide meaningful examples to redesign the world of disposable electrodes.
Collapse
Affiliation(s)
- Giulia Moro
- LSE Research Group, Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Mestre, Italy; AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fabio Bottari
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Joren Van Loon
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Els Du Bois
- Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Ligia Maria Moretto
- LSE Research Group, Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Mestre, Italy.
| |
Collapse
|
36
|
He J, Jiang L, Chen Y, Luo Z, Yan Z, Wang J. Facile direct synthesis of graphene-wrapped ZnO nanospheres from cyanobacterial cells. Chem Commun (Camb) 2019; 55:11410-11413. [PMID: 31482869 DOI: 10.1039/c9cc04951g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene-based composite materials are versatile but not easily procurable. Cyanobacterial cells, an outgrowth of eutrophic freshwater lake, were simultaneously employed as a template for the growth of ZnO nanoparticles and as a biomass carbon source for graphene sheets, resulting in chlorophyll-containing graphene-wrapped ZnO nanospheres.
Collapse
Affiliation(s)
- Jiao He
- School of Chemical Sciences & Technology, National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
| | - Liang Jiang
- School of Chemical Sciences & Technology, National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
| | - Yongjuan Chen
- School of Chemical Sciences & Technology, National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
| | - Zhifang Luo
- School of Chemical Sciences & Technology, National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
| | - Zhiying Yan
- School of Chemical Sciences & Technology, National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
| |
Collapse
|
37
|
Chaudhari KN, Yu JS. Efficient electrode material for electrochemical energy storage from organic waste. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04244-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Rahbar Shamskar K, Rashidi A, Aberoomand Azar P, Yousefi M, Baniyaghoob S. Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3643-3650. [PMID: 30535738 DOI: 10.1007/s11356-018-3799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Few-layer graphene was synthesized by in situ catalytic carbon vapor deposition (CCVD) method, using reed as a carbon source and Ni, Cu, and Mg salts as the catalyst compounds. The synthesized graphene was also used for adsorption of VOCs. Furthermore, the effect of organic additives, sorbitol, and citric acid on catalyst compounds was investigated by temperature-programmed reduction analysis (H2-TPR). The products' properties were characterized by thermo-gravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analysis. TEM and FE-SEM images confirmed the formation of graphene sheets. Activation of the graphene by phosphoric acid at 500 °C and then by CO2 at 800 °C increased the surface area from 298 to 568 m2/g. Gasoline working capacity of the activated graphene was 65.24 g/ladsorbent. Graphical abstract Few-layer graphene was synthesized by in situ catalytic carbon vapor deposition (CCVD) method using reed as a carbon source and Ni, Cu, and Mg salts as the catalyst compounds and used for adsorption of VOCs.
Collapse
Affiliation(s)
- Kobra Rahbar Shamskar
- Department of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, 14778-93855, Iran
- Nanotechnology Research Centre, Research Institute of Petroleum Industry, Tehran, 14857-33111, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Centre, Research Institute of Petroleum Industry, Tehran, 14857-33111, Iran.
| | - Parviz Aberoomand Azar
- Department of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, 14778-93855, Iran
| | - Mohammad Yousefi
- Department of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, 14778-93855, Iran
| | - Sahar Baniyaghoob
- Department of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, 14778-93855, Iran
| |
Collapse
|
39
|
Ou J, Yang L, Zhang Z. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for Lithium/Sodium ion batteries. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.11.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Gomez-Martin A, Martinez-Fernandez J, Ruttert M, Heckmann A, Winter M, Placke T, Ramirez-Rico J. Iron-Catalyzed Graphitic Carbon Materials from Biomass Resources as Anodes for Lithium-Ion Batteries. CHEMSUSCHEM 2018; 11:2776-2787. [PMID: 29870144 DOI: 10.1002/cssc.201800831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Graphitized carbon materials from biomass resources were successfully synthesized with an iron catalyst, and their electrochemical performance as anode materials for lithium-ion batteries (LIBs) was investigated. Peak pyrolysis temperatures between 850 and 2000 °C were covered to study the effect of crystallinity and microstructural parameters on the anodic behavior, with a focus on the first-cycle Coulombic efficiency, reversible specific capacity, and rate performance. In terms of capacity, results at the highest temperatures are comparable to those of commercially used synthetic graphite derived from a petroleum coke precursor at higher temperatures, and up to twice as much as that of uncatalyzed biomass-derived carbons. The opportunity to graphitize low-cost biomass resources at moderate temperatures through this one-step environmentally friendly process, and the positive effects on the specific capacity, make it interesting to develop more sustainable graphite-based anodes for LIBs.
Collapse
Affiliation(s)
- Aurora Gomez-Martin
- Dpto. Física de la Materia Condensada and, Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Avda. Reina Mercedes SN, 41012, Seville, Spain
| | - Julian Martinez-Fernandez
- Dpto. Física de la Materia Condensada and, Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Avda. Reina Mercedes SN, 41012, Seville, Spain
| | - Mirco Ruttert
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstraße 46, 48149, Münster, Germany
| | - Andreas Heckmann
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstraße 46, 48149, Münster, Germany
| | - Martin Winter
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstraße 46, 48149, Münster, Germany
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany
| | - Tobias Placke
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstraße 46, 48149, Münster, Germany
| | - Joaquin Ramirez-Rico
- Dpto. Física de la Materia Condensada and, Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Avda. Reina Mercedes SN, 41012, Seville, Spain
| |
Collapse
|
41
|
Green and facile synthesis of few-layer graphene via liquid exfoliation process for Lithium-ion batteries. Sci Rep 2018; 8:9766. [PMID: 29950565 PMCID: PMC6021450 DOI: 10.1038/s41598-018-27922-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
A green and facile method using jet cavitation (JC) was utilized to prepare few layer graphene (FLG) derived from artificial graphite delamination without adding any strong acids and oxidants. The JC method not only provides high quality FLG with high yield but also demonstrate excellent electrochemical performance as anode materials for Li-ion batteries. Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) as well as BET isotherms and XPS are carried out in this study. The results of atomic force microscopy (AFM) further revealed that up to 85% of the prepared FLG were less than 10 layers. This exfoliation process happened mainly due to the cavitation-induced intensive tensile stress acting on the layered materials. Electrochemical measurements demonstrate that graphite anode delivered only 240 mAh/g while FLG anode achieved more than 322 mAh/g at 5C rate test. These results indicate that JC method not only paves the way for cheaper and safer production of graphene but also holds great potential applications in energy-related technology.
Collapse
|
42
|
Chen F, Ma L, Ren J, Zhang M, Luo X, Li B, Song Z, Zhou X. Wheat Straw-Derived N-, O-, and S-Tri-doped Porous Carbon with Ultrahigh Specific Surface Area for Lithium-Sulfur Batteries. MATERIALS 2018; 11:ma11060989. [PMID: 29891822 PMCID: PMC6025088 DOI: 10.3390/ma11060989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
Recently, lithium-sulfur (Li-S) batteries have been greeted by a huge ovation owing to their very high theoretical specific capacity (1675 mAh·g−1) and theoretical energy density (2600 Wh·kg−1). However, the full commercialization of Li-S batteries is still hindered by dramatic capacity fading resulting from the notorious “shuttle effect” of polysulfides. Herein, we first describe the development of a facile, inexpensive, and high-producing strategy for the fabrication of N-, O-, and S-tri-doped porous carbon (NOSPC) via pyrolysis of natural wheat straw, followed by KOH activation. The as-obtained NOSPC shows characteristic features of a highly porous carbon frame, ultrahigh specific surface area (3101.8 m2·g−1), large pore volume (1.92 cm3·g−1), good electrical conductivity, and in situ nitrogen (1.36 at %), oxygen (7.43 at %), and sulfur (0.7 at %) tri-doping. The NOSPC is afterwards selected to fabricate the NOSPC-sulfur (NOSPC/S) composite for the Li-S batteries cathode material. The as-prepared NOSPC/S cathode delivers a large initial discharge capacity (1049.2 mAh·g−1 at 0.2 C), good cycling stability (retains a reversible capacity of 454.7 mAh·g−1 over 500 cycles at 1 C with a low capacity decay of 0.088% per cycle), and superior rate performance (619.2 mAh·g−1 at 2 C). The excellent electrochemical performance is mainly attributed to the synergistic effects of structural restriction and multidimensional chemical adsorptions for cooperatively repressing the polysulfides shuttle.
Collapse
Affiliation(s)
- Feng Chen
- School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.
| | - Lulu Ma
- School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.
| | - Jiangang Ren
- School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.
| | - Mou Zhang
- School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.
| | - Xinyu Luo
- School of Metallurgy and Environment, Central South University, Lushan South Street 932, Yuelu District, Changsha 410083, China.
| | - Bing Li
- School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.
| | - Zhiming Song
- School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.
| | - Xiangyang Zhou
- School of Metallurgy and Environment, Central South University, Lushan South Street 932, Yuelu District, Changsha 410083, China.
| |
Collapse
|
43
|
Purkait T, Singh G, Singh M, Kumar D, Dey RS. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep 2017; 7:15239. [PMID: 29127348 PMCID: PMC5681691 DOI: 10.1038/s41598-017-15463-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Carbonaceous materials with high surface area and a sheet-like structure promote fast ion-transport kinetics, making them an ideal choice to be used in supercapacitors. Few-layer graphene (FLG)-like nanosheets with abundance of micro as well as mesopores are achieved via mechanical exfoliation method from an agricultural waste biomass: peanut shell (PS). A well-known elementary method of probe-sonication, for the achievement of FLG sheets from renewable sources, is introduced in this study for the very first time. The Peanut shell-derived FLG (PS-FLG) possesses remarkably high specific surface area (2070 m2 g-1) with a sufficiently large pore volume of 1.33 cm3 g-1. For the fabrication of a binder-free supercapacitor, the PS-FLG-based electrodes exhibited a high specific capacity of 186 F g-1 without the use of any binder in 1 M H2SO4 as supporting electrolyte. The highest energy density of 58.125 W h Kg-1 and highest power density of 37.5 W Kg-1 was achieved by the material. Surprisingly, the working potential increased to 2.5 V in an organic electrolyte leading to an obvious increase in the energy density to 68 W h Kg-1. Solid-state-supercapacitor was fabricated with this material for the possible use of low-cost, high energy promising energy storage device.
Collapse
Affiliation(s)
- Taniya Purkait
- Institute of Nano Science and Technology (INST), Mohali, 160062, Punjab, India
| | - Guneet Singh
- Institute of Nano Science and Technology (INST), Mohali, 160062, Punjab, India
| | - Mandeep Singh
- Institute of Nano Science and Technology (INST), Mohali, 160062, Punjab, India
| | - Dinesh Kumar
- Institute of Nano Science and Technology (INST), Mohali, 160062, Punjab, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Mohali, 160062, Punjab, India.
| |
Collapse
|
44
|
Helical mesoporous carbon nanoribbons as high performance lithium ion battery anode materials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Jinlong L, Wang Z, Tongxiang L, Meng Y, Suzuki K, Miura H. The effect of graphene coated nickel foam on the microstructures of NiO and their supercapacitor performance. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Yang J, Li X, Han S, Huang R, Wang QQ, Qu J, Yu ZZ. Hierarchical Porous Graphene/Ni Foam Composite with High Performances in Energy Storage Prepared by Flame Reduction of Graphene Oxide. ChemElectroChem 2017. [DOI: 10.1002/celc.201700405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Yang
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Xiaofeng Li
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Shuang Han
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Ruling Huang
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Qian-Qian Wang
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
47
|
Yi X, He W, Zhang X, Yue Y, Yang G, Wang Z, Zhou M, Wang L. Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Yi X, Zhang Y, He W, Zhang X, Yang G, Wang Z, Wang Y, Cheng Q. Low-Temperature Synthesis of Graphene/SiC Nanocomposite Anodes with Super-Long Cycling Stability. ChemElectroChem 2017. [DOI: 10.1002/celc.201700028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinli Yi
- College of Material Science and Engineering; Qilu University of Technology; Jinan 250353 China
| | - Yang Zhang
- School of Information Science and Technology; Tsinghua University; Beijing 100084 China
| | - Wen He
- College of Material Science and Engineering; Qilu University of Technology; Jinan 250353 China
| | - Xudong Zhang
- College of Material Science and Engineering; Qilu University of Technology; Jinan 250353 China
| | - Guihua Yang
- Key Laboratory of Pulp and Paper; Science and Technology ofMinistry of Education; Qilu University of Technology; Jinan 250353 China
| | - Zhaoyang Wang
- College of Material Science and Engineering; Qilu University of Technology; Jinan 250353 China
| | - Yaoyao Wang
- College of Material Science and Engineering; Qilu University of Technology; Jinan 250353 China
| | - Qiaohuan Cheng
- College of Material Science and Engineering; Qilu University of Technology; Jinan 250353 China
| |
Collapse
|
49
|
Liu S, Hou H, Liu X, Duan J, Yao Y, Liao Q, Li J, Yang Y. Recycled hierarchical tripod-like CuCl from Cu-PCB waste etchant for lithium ion battery anode. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:357-364. [PMID: 27887815 DOI: 10.1016/j.jhazmat.2016.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/08/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Hierarchical CuCl with high economic value added (EVA) was successfully recycled with 85% recovery from the acid Cu printed circuit board (Cu-PCB) waste etchant via facile liquid chemical reduction. The micro-structure and morphology of the recycled hierarchical CuCl were systematically characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). Furthermore, the corresponding electrochemical performances as lithium ion battery (LIB) anode were also investigated in terms of galvanostatic charge/discharge, cyclic voltammetry (CV) and AC impedance. As expected, the recycled CuCl displayed a hierarchical tripod-like structure and large specific surface area of 21.2m2/g. As the anode in LIB, the reversible discharge capacity was about 201.4 mAh/g even after 100 cycles, implying the satisfactory cycle performance. Clearly, the satisfactory results may open a new avenue to develop the sustainable industry, which is very important in terms of both the resource recovery and the environmental protection.
Collapse
Affiliation(s)
- Song Liu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China
| | - Hongying Hou
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China.
| | - Xianxi Liu
- Faculty of Mechanical and Electronic Engineering, Kunming University of Science and Technology, Kunming 650093 China
| | - Jixiang Duan
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China
| | - Yuan Yao
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China
| | - Qishu Liao
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China
| | - Jing Li
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China
| | - Yunzhen Yang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China
| |
Collapse
|
50
|
Wang J, Ren Y, Huang X, Ding J. Inverse spinel transition metal oxides for lithium-ion storage with different discharge/charge conversion mechanisms. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|