1
|
Mai Y, Cheung V, Louie PKK, Leung K, Fung JCH, Lau AKH, Blake DR, Gu D. Characterization and source apportionment of volatile organic compounds in Hong Kong: A 5-year study for three different archetypical sites. J Environ Sci (China) 2025; 151:424-440. [PMID: 39481950 DOI: 10.1016/j.jes.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024]
Abstract
Initial success has been achieved in Hong Kong in controlling primary air pollutants, but ambient ozone levels kept increasing during the past three decades. Volatile organic compounds (VOCs) are important for mitigating ozone pollution as its major precursors. This study analyzed VOC characteristics of roadside, suburban, and rural sites in Hong Kong to investigate their compositions, concentrations, and source contributions. Here we show that the TVOC concentrations were 23.05 ± 13.24, 12.68 ± 15.36, and 5.16 ± 5.48 ppbv for roadside, suburban, and rural sites between May 2015 to June 2019, respectively. By using Positive Matrix Factorization (PMF) model, six sources were identified at the roadside site over five years: Liquefied petroleum gas (LPG) usage (33%-46%), gasoline evaporation (8%-31%), aged air mass (11%-28%), gasoline exhaust (5%-16%), diesel exhaust (2%-16%) and fuel filling (75-9%). Similarly, six sources were distinguished at the suburban site, including LPG usage (30%-33%), solvent usage (20%-26%), diesel exhaust (14%-26%), gasoline evaporation (8%-16%), aged air mass (4%-11%), and biogenic emissions (2%-5%). At the rural site, four sources were identified, including aged air mass (33%-51%), solvent usage (25%-30%), vehicular emissions (11%-28%), and biogenic emissions (6%-12%). The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site, while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites, respectively. These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
Collapse
Affiliation(s)
- Yuchen Mai
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Vincent Cheung
- Environmental Protection Department, Hong Kong 999077, China
| | - Peter K K Louie
- Environmental Protection Department, Hong Kong 999077, China
| | - Kenneth Leung
- Environment and Ecology Bureau, Hong Kong 999077, China
| | - Jimmy C H Fung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine 92617, USA
| | - Dasa Gu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| |
Collapse
|
2
|
Zhang Y, Zhu R, Zhong J, Quan Z, Zhu Y, Yang J, Liang P, Yong Lee J, Liu H. Ozone decomposition on transition-metal-atom anchored graphdiyne: Insights from computation and experiment. J Colloid Interface Sci 2024; 668:77-87. [PMID: 38669998 DOI: 10.1016/j.jcis.2024.04.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Transition-metal-atom anchored graphdiynes (TM@GDY, TM = Mn, Fe, Co, Ni and Cu) have already been synthesized and found applications in hydrogen evolution, nitrogen fixation and etc. By means of first-principle predictions and test experiments, we propose here that Fe@GDY and Co@GDY are efficient catalysts for the sustainable conversion of O3 to O2. These two catalysts can spontaneously chemisorb O3 with zero reaction barrier and have low O3 conversion barriers (0.31 eV and 0.19 eV, respectively). The O3 decomposition experiment in a continuous flow membrane reactor and electron paramagnetic resonance results verify that Fe@GDY and Co@GDY are efficient catalysts under humid conditions. Raman spectra prove the formation of the key Fe-O/Co-O and FeOO and CoOO intermediates. The hydrophobic nature of graphdiyne and the strongest chemisorption of O3 among tested ambient gases, make Fe@GDY and Co@GDY ideal catalysts under both dry and humid conditions. These findings would stimulate future explorations on metal anchored GDY-based catalysts for applications of toxic gas decomposition or fixation.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Rui Zhu
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Jiang Zhong
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Zhipeng Quan
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Yongjian Zhu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jingling Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Ping Liang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hongguang Liu
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China; School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
3
|
Liu G, Ma X, Li W, Chen J, Ji Y, An T. Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170836. [PMID: 38346658 DOI: 10.1016/j.scitotenv.2024.170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.
Collapse
Affiliation(s)
- Guanyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Cao T, Wang H, Li L, Lu X, Liu Y, Fan S. Fast spreading of surface ozone in both temporal and spatial scale in Pearl River Delta. J Environ Sci (China) 2024; 137:540-552. [PMID: 37980038 DOI: 10.1016/j.jes.2023.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
Surface ozone (O3) is a major air pollutant and draw increasing attention in the Pearl River Delta (PRD), China. Here, we characterize the spatial-temporal variability of ozone based on a dataset obtained from 57 national monitoring sites during 2013-2019. Our results show that: (1) the seasonal difference of ozone distribution in the inland and coastal areas was significant, which was largely affected by the wind pattern reversals related to the East Asian monsoon, and local ozone production and destruction; (2) the daily maximum 8hr average (MDA8 O3) showed an overall upward trend by 1.11 ppbv/year. While the trends in the nine cities varied differently by ranging from -0.12 to 2.51 ppbv/year. The hot spots of ozone were spreading to southwestern areas from the central areas since 2016. And ozone is becoming a year-round air pollution problem with the pollution season extending to winter and spring in PRD region. (3) at the central and southwestern PRD cities, the percentage of exceedance days from the continuous type (defined as ≥3 days) was increasing. Furthermore, the ozone concentration of continuous type was much higher than that of scattered exceedance type (<3 days). In addition, although the occurrence of continuous type starts to decline since 2017, the total number of exceedance days during the continuous type is increasing. These results indicate that it is more difficult to eliminate the continuous exceedance than the scatter pollution days and highlight the great challenge in mitigation of O3 pollution in these cities.
Collapse
Affiliation(s)
- Tianhui Cao
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China.
| | - Lei Li
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Yiming Liu
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China.
| |
Collapse
|
5
|
Yu B, Deng H, Lu Y, Pan T, Shan W, He H. Adsorptive interaction between typical VOCs and various topological zeolites: Mixture effect and mechanism. J Environ Sci (China) 2024; 136:626-636. [PMID: 37923471 DOI: 10.1016/j.jes.2023.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 11/07/2023]
Abstract
Adsorption is one of the most feasible and effective methods to alleviate the volatile organic compounds (VOCs) pollution. However, the mixture effect and mechanism for competitive adsorption of VOCs on zeolites are barely addressed. In this study, toluene, acetone, and ethyl acetate as prevalent VOCs species were removed by four potential zeolites (13X, USY, Beta, ZSM-5) in both single- and multi-component systems. The structure-property relationship between adsorbate-adsorbent pairs was revealed by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, X-ray fluorescence, N2 adsorption and density function theory calculation. The molecular polarity and volatility of VOCs species played key roles in adsorption and the dynamic uptakes were generally listed as follows: ethyl acetate > toluene > acetone. As for the above VOCs mixtures, 13X zeolite selectively adsorbed oxygenated VOCs rather than toluene. In contrast, USY exhibited a preference to trap toluene. Ethyl acetate could be readily enriched by ZSM-5 and Beta selectively. The possible explanations and implications are discussed based on the subtle change in electron density. The results obtained are vital for understanding the mixture effect of VOCs adsorption and may guide the selection of proper adsorbent for real applications.
Collapse
Affiliation(s)
- Bo Yu
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuqin Lu
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tingting Pan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Zuo H, Jiang Y, Yuan J, Wang Z, Zhang P, Guo C, Wang Z, Chen Y, Wen Q, Wei Y, Li X. Pollution characteristics and source differences of VOCs before and after COVID-19 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167694. [PMID: 37832670 DOI: 10.1016/j.scitotenv.2023.167694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
During the outbreak of the COVID-19, the change in the way of people's living and production provided the opportunity to study the influence of human activity on Volatile organic compounds (VOCs) in the atmosphere. Therefore, this study analyzed VOCs concentration and composition characteristics in urban area of Beijing from 2019 to 2020. The results showed that the concentration of VOCs in Chaoyang district in 2020 was 73.1ppbv, lower than that in 2019 (92.8ppbv), and alkanes (45 % and 47 %) were the most dominant components. The concentrations of isopentane, n-pentane, n-hexane, and OVOCs significantly increased in 2020. According to the results of the PMF model, the contribution of VOCs from vehicle and pharmaceutical-related emissions increased to 45.8 % and 27.1 % in 2020, while coal combustion decreased by 23.7 %. This is likely linked to the strict implementation of the coal conversion policy, as well as the increment in individual travel and pharmaceutical production during the pandemic. The calculation results of OFP and SOAFP indicated that toluene had an increased impact on the formation of O3 and SOA in the Chaoyang district in 2020. Notably, VOCs emitted by vehicles have the highest potential for secondary generation. In addition, VOCs from vehicles and industries pose the greatest health risks, together accounting for 77.4 % and 79.31 % of the total carcinogenic risk in 2019 and 2020. Although industrial emission with the high proportions of halocarbons was controlled to some extent during the pandemic, the carcinogenic risk in 2020 was 3.74 × 10-6, which still exceeded the acceptable level, and more attention and governance efforts should be given to.
Collapse
Affiliation(s)
- Hanfei Zuo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yuchun Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Ziqi Wang
- College of Arts and Sciences, University of Cincinnati, Cincinnati, State of Ohio 45221, USA
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ye Chen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Qing Wen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China.
| |
Collapse
|
7
|
Zhang Y, Gao J, Zhu Y, Liu Y, Li H, Yang X, Zhong X, Zhao M, Wang W, Che F, Zhou D, Wang S, Zhi G, Xue L, Li H. Evolution of Ozone Formation Sensitivity during a Persistent Regional Ozone Episode in Northeastern China and Its Implication for a Control Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:617-627. [PMID: 38112179 PMCID: PMC10786154 DOI: 10.1021/acs.est.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
In recent years, the magnitude and frequency of regional ozone (O3) episodes have increased in China. We combined ground-based measurements, observation-based model (OBM), and the Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model to analyze a typical persistent O3 episode that occurred across 88 cities in northeastern China during June 19-30, 2021. The meteorological conditions, particularly the wind convergence centers, played crucial roles in the evolution of O3 pollution. Daily analysis of the O3 formation sensitivity showed that O3 formation was in the volatile organic compound (VOC)-limited or transitional regime at the onset of the pollution episode in 92% of the cities. Conversely, it tended to be or eventually became a NOx-limited regime as the episode progressed in the most polluted cities. Based on the emission-reduction scenario simulations, mitigation of the regional O3 pollution was found to be most effective through a phased control strategy, namely, reduction of a high ratio of VOCs to NOx at the onset of the pollution and lower ratio during evolution of the O3 episode. This study presents a new possibility for regional O3 pollution abatement in China based on a reasonable combination of OBM and the WRF-CMAQ model.
Collapse
Affiliation(s)
- Yujie Zhang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Gao
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Zhu
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Yi Liu
- Nanjing CLIMBLUE Technology Co., LTD., Nanjing 211135, China
| | - Hong Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuelian Zhong
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Min Zhao
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Wan Wang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Che
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Derong Zhou
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences & School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Shuai Wang
- China
National Environmental Monitoring Centre, Beijing 100012, China
| | - Guorui Zhi
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Likun Xue
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Haisheng Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Huang H, Wang Z, Dai C, Wu H, Guo J, Wang C, Zhang X. Species profile and reactivity of volatile organic compounds emission in solvent uses, industry activities and from vehicular tunnels. J Environ Sci (China) 2024; 135:546-559. [PMID: 37778826 DOI: 10.1016/j.jes.2022.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/03/2023]
Abstract
A survey was conducted of the volatile organic compounds (VOCs) released from sources of solvent use, industry activities and vehicle emissions in Guiyang, a capital city of China. Samples were collected by canisters and analyzed by GC-MS-FID. The species profiles of VOCs emitted from sources were obtained. Results showed that xylenes, ethylbenzene, acetone and dichloromethane were the characteristics species for painting, 2-propanol and ethyl acetate for printing, α-pinene for solid wood furniture manufacturing, and 2-butanone for biscuit baking. These characteristics species could be as tracers for the sources respectively. In most of samples from the solvent use, the benzene/toluene (B/T) ratio was less than 0.3, indicating that the ratio could be as the indicator for tracing the solvent use related sources. The results also suggested that the toluene/xylene (T/X) ratio be as the indicator to distinguish the VOCs sources of painting (<2) from the printing (>2). Aromatics contributed the most to ozone formation potential (OFP) of most painting and non-paper printing sources, and oxygen-containing VOCs (OVOCs) were major species contributing to OFP of the sources from food production and paper printing. The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes. The α-pinene could explain 56.94% and 32.54% of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing, which was rarely been involved in previous studies of VOCs source profiles, indicating that the species of concern for VOCs sources are still insufficient at present.
Collapse
Affiliation(s)
- Haimei Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunhao Dai
- Hunan Agricultural University, Changsha 430106, China
| | - Hai Wu
- National Institute of Metrology, Beijing 100029, China.
| | - Jia Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunjie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Feng X, Ma Y, Lin H, Fu TM, Zhang Y, Wang X, Zhang A, Yuan Y, Han Z, Mao J, Wang D, Zhu L, Wu Y, Li Y, Yang X. Impacts of Ship Emissions on Air Quality in Southern China: Opportunistic Insights from the Abrupt Emission Changes in Early 2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16999-17010. [PMID: 37856868 DOI: 10.1021/acs.est.3c04155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In early 2020, two unique events perturbed ship emissions of pollutants around Southern China, proffering insights into the impacts of ship emissions on regional air quality: the decline of ship activities due to COVID-19 and the global enforcement of low-sulfur (<0.5%) fuel oil for ships. In January and February 2020, estimated ship emissions of NOx, SO2, and primary PM2.5 over Southern China dropped by 19, 71, and 58%, respectively, relative to the same period in 2019. The decline of ship NOx emissions was mostly over the coastal waters and inland waterways of Southern China due to reduced ship activities. The decline of ship SO2 and primary PM2.5 emissions was most pronounced outside the Chinese Domestic Emission Control Area due to the switch to low-sulfur fuel oil there. Ship emission reductions in early 2020 drove 16 to 18% decreases in surface NO2 levels but 3.8 to 4.9% increases in surface ozone over Southern China. We estimated that ship emissions contributed 40% of surface NO2 concentrations over Guangdong in winter. Our results indicated that future abatements of ship emissions should be implemented synergistically with reductions of land-borne anthropogenic emissions of nonmethane volatile organic compounds to effectively alleviate regional ozone pollution.
Collapse
Affiliation(s)
- Xu Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yaping Ma
- National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China
| | - Haipeng Lin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen National Center for Applied Mathematics, Shenzhen 518055, Guangdong, China
- Center for Oceanic and Atmospheric Science at SUSTech (COAST), Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yan Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaolin Wang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Aoxing Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yupeng Yuan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zimin Han
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jingbo Mao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dakang Wang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yujie Wu
- School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544, United States
| | - Ying Li
- Center for Oceanic and Atmospheric Science at SUSTech (COAST), Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
10
|
Liang Y, Li D, Sheng Q, Zhu Z. Exogenous Salicylic Acid Alleviates NO 2 Damage by Maintaining Cell Stability and Physiological Metabolism in Bougainvillea × buttiana 'Miss Manila' Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3283. [PMID: 37765447 PMCID: PMC10535129 DOI: 10.3390/plants12183283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Exogenous substances can alleviate plant damage under adverse conditions. In order to explore whether different concentrations of salicylic acid (SA) can play a role in the resistance of Bougainvillea × buttiana 'Miss Manila' to nitrogen dioxide (NO2) stress and the relevant mechanisms of their effects, different concentrations of SA were applied locally under the control experiment condition of 4.0 μL·L-1 NO2, and the role of SA in alleviating injury was studied. The findings noted a significant increase in metabolic adaptations and antioxidant enzyme activities following 0.25-0.75 mM SA application (p < 0.05), except 1 mM. Superoxide dismutase (SOD) and catalase (CAT) in particular increased by 21.88% and 59.71%, respectively. Such an increase led to effective control of the reduction in photosynthetic pigments and the photosynthetic rate and protection of the structural stability of chloroplasts and other organelles. In addition, the activity of nitrate reductase (NR) increased by 83.85%, and the content of nitrate nitrogen (NO3--N) decreased by 29.23% in nitrogen metabolism. Concurrently, a principal component analysis (PCA) and a membership function analysis further indicated that 0.75 mM SA provided the most notable improvement in NO2 resistance among the different gradients. These findings suggest that 0.25-0.75 mM SA can relieve the stress at 4 μL·L-1 NO2 injury by effectively improving the antioxidant enzyme activity and nitrogen metabolizing enzyme activity, protecting the photosynthetic system and cell structure, but 1 mM SA had the opposite effect. In the future, the specific reasons for inhibition of SA at high concentrations and the comprehensive effects of the application of other exogenous compounds should be further studied.
Collapse
Affiliation(s)
- Yuxiang Liang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Dalu Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Bandara J, Narayana M, Bayer C. Computational investigation of NO x emission in biogas combustion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89548-89558. [PMID: 37454004 DOI: 10.1007/s11356-023-28607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Landfills and anaerobic digesters in the waste treatment processes generate biogas. Biogas can be used as a fuel and excess biogas is typically burned in a flare to reduce the greenhouse effect. However, burning biogas produces several pollutants, including CO2, NOx, and SO2. To minimize these emissions, the amount of excess air used in the combustion process needs to be considered, which has a significant impact on NOx emissions. This study developed a Computational Fluid Dynamics (CFD) model to simulate a small-scale biogas combustion system and analyses the effect of excess air on heat output and NOx emissions during biogas combustion. The GRI-Mech reaction mechanism was used to simulate reactions, and the model was validated by comparing it to experimental data from the DLR-Stuttgart CH4/H2/N2 Jet Flame. To reduce computational costs, a Tabulation of Dynamic Adaptive Chemistry (TDAC) algorithm was used to dynamically adapt the reaction mechanism in real time. Turbulence in the DLR flame was simulated using Reynolds-Averaged Navier-Stokes (RANS). The CFD model used a co-flow of a natural draft to provide additional air, while the air was premixed with fuel. The CFD model was used to simulate various premixed equivalent ratios, and the resulting emissions and heat outputs were compared. The study found that the optimal premixed equivalent ratio for the studied system was between 0.85 and 1.1, as this range produced the highest temperature and lowest NOx emissions. This model facilitates emission analysis of gas-phase combustion systems.
Collapse
Affiliation(s)
- Janaka Bandara
- Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka.
| | - Mahinsasa Narayana
- Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Christoph Bayer
- Technische Hochschule Nürnberg, Georg Simon Ohm, Nürnberg, Germany
| |
Collapse
|
12
|
Wang Z, Zhang P, Pan L, Qian Y, Li Z, Li X, Guo C, Zhu X, Xie Y, Wei Y. Ambient Volatile Organic Compound Characterization, Source Apportionment, and Risk Assessment in Three Megacities of China in 2019. TOXICS 2023; 11:651. [PMID: 37624157 PMCID: PMC10458435 DOI: 10.3390/toxics11080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
In order to illustrate pollution characterization, source apportionment, and risk assessment of VOCs in Beijing, Baoding, and Shanghai, field observations of CO, NO, NO2, O3, and volatile organic compounds (VOCs) were conducted in 2019. Concentrations of VOCs were the highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). Concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the three seasons tested, followed by summer (98.1 + 50.8 ppb) and autumn (75.5 + 33.4 ppb). Alkenes were the most reactive VOC species in all cities, accounting for 56.0%, 53.7%, and 39.4% of ozone formation potential in Beijing, Baoding, and Shanghai, respectively. Alkenes and aromatics were the reactive species, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. Vehicular exhaust was the principal source in all three cities, accounting for 27.0%, 30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Industrial manufacturing was the second largest source in Baoding (23.6%) and Shanghai (21.3%), and solvent utilization was the second largest source in Beijing (25.1%). The empirical kinetic modeling approach showed that O3 formation was limited by both VOCs and nitric oxides at Fangshan (the suburban site) and by VOCs at Xuhui (the urban site). Acrolein was the only substance with an average hazard quotient greater than 1, indicating significant non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10-4 and posed a definite carcinogenic risk.
Collapse
Affiliation(s)
- Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Libo Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Yuanyuan Xie
- Foreign Environmental Cooperation Centre, Ministry of Ecology and Environment, Beijing 100035, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| |
Collapse
|
13
|
Gao M, Liu W, An X, Nie L, Du Z, Chen P, Liu X. Emission factors and emission inventory of volatile organic compounds (VOCs) from hair products application in hair salons in Beijing through measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162996. [PMID: 36963673 DOI: 10.1016/j.scitotenv.2023.162996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/13/2023]
Abstract
Hair products application in hair salons is a potential VOCs emission source. 139 representative hair salons were investigated and 88 hair products were sampled to establish VOC emission factors and emission inventory. VOC emission factors were 6.75 g/kg for shampoo, 43.55 g/kg for hair mask, 27.62 g/kg for hair oil, 52.44 g/kg for hair dye, 32.01 g/kg for perm cream, 54.08 g/kg for elastin, 156.40 g/kg for hair styling gel, 78.88 g/kg for hair clay, 70.25 g/kg for hair wax, and 447.88 g/kg for hair styling spray. VOC emissions from hair products application in hair salons in Beijing had increased from 362.77 t in 2011 to 393.40 t in 2020. Hair styling spray, hair dye, perm cream and hair mask were the four largest contributors to total emissions, together accounting for 93.68 %. The high VOC emissions and emission intensity mainly located in six central urban districts. The per capita VOC emissions were 0.018 kg VOCs/person/year in 2020. Projection indicates it can reduce VOC emissions by 9.72 % by 2030 compared with that in 2020 if the VOC content limit standard of hair products will be implemented, otherwise, VOC emissions keep raising, urgently needing VOC control measures in hair products application.
Collapse
Affiliation(s)
- Meiping Gao
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| | - Wenwen Liu
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| | - Xiaoshuan An
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Lei Nie
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Zhenxia Du
- College of chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Panjin Chen
- College of chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| |
Collapse
|
14
|
Teng W, Liu W, Shao X, Wu Q. Emission characteristics, environmental impact assessment and priority control strategies derived from VOCs speciation sourcely through measurement for wooden furniture-manufacturing industry in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162287. [PMID: 36801329 DOI: 10.1016/j.scitotenv.2023.162287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 05/06/2023]
Abstract
Volatile organic compounds (VOCs) from wooden furniture-manufacturing industry is an important emission source. The VOC content levels, source profiles, emission factors and inventories, O3 and SOA formation, and priority control strategies were investigated from the source. One hundred sixty-eight representative woodenware coatings were sampled, and VOC species and contents were determined. The VOC, O3 and SOA emission factors per gram of coatings for three types of woodenware coatings were quantified. The total VOC, O3 and SOA emissions from wooden furniture-manufacturing industry in 2019 were 976,976 t/a, 2,840,282 t/a, 24,970 t/a, and solvent-based coatings accounted for 98.53 %, 99.17 % and 99.6 % of the total VOC, O3 and SOA emissions, respectively. Aromatics and esters were major organic groups, contributing 49.80 % and 36.03 % to total VOC emissions, respectively. Aromatics contributed 86.14 % and 100 % to total O3 and SOA emissions, respectively. The top 10 species contributing to VOC, O3 and SOA had been identified. Four benzene series, including o-Xylene, m-Xylene, toluene and ethylbenzene, were ranked as the first-class priority control species, accounting for 85.90 % and 99.89 % of the total O3 and SOA, respectively. Priority should be given to solvent-based coatings, aromatics and four benzene series for future O3 and SOA reduction for wooden furniture-manufacturing industry.
Collapse
Affiliation(s)
- Wei Teng
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100041, China
| | - Wenwen Liu
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Xia Shao
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| | - Qionghui Wu
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100041, China
| |
Collapse
|
15
|
Chen Y, Wang M, Yao Y, Zeng C, Zhang W, Yan H, Gao P, Fan L, Ye D. Research on the ozone formation sensitivity indicator of four urban agglomerations of China using Ozone Monitoring Instrument (OMI) satellite data and ground-based measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161679. [PMID: 36682570 DOI: 10.1016/j.scitotenv.2023.161679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Near surface ozone is a typical secondary pollutant, and is mostly generated by a series of complex photochemical reactions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the air under sunlight. At present, a large number of studies have applied FNR (a ratio of formaldehyde (HCHO) to nitrogen dioxide (NO2) retrieved by satellite) indicator to study the ozone formation sensitivity (OFS). OFS analysis is critical for taking targeted ozone pollution prevention and control measures. Regional OFS can be more accurately diagnosed by utilizing localized FNR threshold. In this study, localized FNR thresholds were established for four severe ozone polluted urban agglomerations in China (Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region, Pearl River Delta (PRD) region, and Chengdu-Chongqing (CY) region), based on the statistical analysis between FNR (obtained from OMI observation, with daily transit time of approximately 13:45 local standard time) and ΔO3/ΔNO2 (the ratio of ozone change to nitrogen dioxide change between two consecutive months, obtained from ground measurements) from 2014 to 2016. And these thresholds were verified by the statistical analysis between FNR and ΔO3/O3 (ozone change rate between two consecutive months), and between FNR and O3 concentration during the OFS significant shift months. Furthermore, the results were also compared and verified with the method proposed by previous studies. The results indicate that there are significant regional dependences in the FNR threshold, and the lower-upper limits for the four urban agglomerations are as follows: 0.65-1.21 for BTH, 0.64-1.48 for the YRD, 1.25-2.39 for the PRD, and 1.44-3.69 for CY (FNR < lower limit indicates VOCs-limited regime; lower limit < FNR < upper limit indicates transitional regime; FNR > upper limit indicates NOx-limited regime). This method eliminates the problems associated with the undifferentiated use of FNR thresholds in different regions and significantly reduces the deviations for OFS.
Collapse
Affiliation(s)
- Yuping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Meiyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yijuan Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunling Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wei Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hui Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ping Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liya Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for Volatile Organic Compounds Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for Volatile Organic Compounds Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China
| |
Collapse
|
16
|
Jiang C, Pei C, Cheng C, Shen H, Zhang Q, Lian X, Xiong X, Gao W, Liu M, Wang Z, Huang B, Tang M, Yang F, Zhou Z, Li M. Emission factors and source profiles of volatile organic compounds from typical industrial sources in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161758. [PMID: 36702262 DOI: 10.1016/j.scitotenv.2023.161758] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) are important precursors of ozone (O3) and fine particulate matter (PM2.5). An accurate depiction of the emission characteristics of VOCs is the key to formulating VOC control strategies. In this study, the VOC emission factors and source profiles in five industrial sectors were developed using large-scale field measurements conducted in Guangzhou, China (100 samples for the emission factors and 434 samples for the source profile measurements). The emission factors based on the actual measurement method and the material balance method were 1.6-152.4 kg of VOCs per ton of raw materials (kg/t) and 3.1-242.2 kg/t, respectively. The similarities between the emission factors obtained using these two methods were examined, which showed a coefficient of divergence (CD) of 0.34-0.72. Among the 33 subdivided VOC source profiles developed in this study, sources including light guide plate (LGP), photoresist mask, and plastic products were the first time developed in China. Due to regional diversities in terms of production technologies, materials, and products, the emission characteristics of the VOCs varied, even in the same sector, thereby demonstrating the importance of developing localized source profiles of VOCs. The ozone formation potential (OFP) of the shipbuilding and repair sector from fugitive emissions was the highest value among all the industrial sectors. Controlling the emissions of aromatics and OVOCs was critical to reducing the O3 growth momentum in industrial sectors. In addition, 1,2-dibromoethane showed high carcinogenic risk potentials (CRPs) during most of the industrial sectors and should be prioritized for controlling.
Collapse
Affiliation(s)
- Chunyan Jiang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510060, PR China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qianhua Zhang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510060, PR China
| | - Xiufeng Lian
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Xin Xiong
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Ming Liu
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Zixin Wang
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Bo Huang
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Mei Tang
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou, PR China
| | - Fan Yang
- Environmental Monitoring Station of Pudong New District, Shanghai, PR China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China.
| |
Collapse
|
17
|
Han S, Tan Y, Gao Y, Li X, Ho SSH, Wang M, Lee SC. Volatile organic compounds at a roadside site in Hong Kong: Characteristics, chemical reactivity, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161370. [PMID: 36621478 DOI: 10.1016/j.scitotenv.2022.161370] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) and oxygenated VOCs (OVOCs) play important roles in atmospheric chemistry and are recognized as the major pollutants in roadside microenvironments of metropolitan Hong Kong, China. In this study, the ambient VOCs and OVOCs were intensively monitored at a roadside site in Hong Kong for one month during morning and evening rush hours. The emission characterizations, as well as ozone formation potentials (OFP) and hydroxyl radical (OH) loss rates (LOH) were determined. Results from the campaign showed that the average concentrations of detected VOCs/OVOCs ranged from 0.21 to 9.67 ppb, and higher toluene to benzene (T/B) ratio was observed during evening sections due to the variation of fuel types in vehicle fleets and mix of additional emission sources in this site. On average, OVOCs had much higher concentrations than the targeted VOC species. Acetone, formaldehyde, and acetaldehyde were the three most abundant species, while formaldehyde showed the highest contributions to both OFP (32.20 %) and LOH (16.80 %). Furthermore, potential health hazards with inhalation exposure to formaldehyde, acetaldehyde, propionaldehyde, methyl ethyl ketone (MEK), 1,3-butadiene, toluene, benzene, and acrylonitrile were found. These results reveal that it is imperative to implement efficient control measures to reduce vehicle emissions for both primary and secondary pollutants and to protect both roadside workers and pedestrians.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yan Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xinwei Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA; Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Meng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
| |
Collapse
|
18
|
Williams ID, Blyth M. Autogeddon or autoheaven: Environmental and social effects of the automotive industry from launch to present. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159987. [PMID: 36372167 DOI: 10.1016/j.scitotenv.2022.159987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The automotive industry is one of the most significant and increasing sources of pollution worldwide. Previous studies examining its impacts focus on the post-1950 era as data available before this period is scarce. This study carefully reconstructs six datasets from the early 20th century to 2019 for the UK: annual number of motor cars, road lengths, road fatalities, NOx and CO emissions, and fuel consumption. Interpolation was prudently used to fill gaps in the data sets. Results highlight changing health, social and environmental effects throughout the growth of the automotive sector. Ratios of fatalities to cars indicate social ingraining of the car and rapid response to legislation. Significant emissions resulted from the early industry. Successful remediation of emissions occurred in the late 20th century. All variables studied were interrelated, but expansion of road networks particularly contributed to a range of both positive and (unintended) negative consequences. World War 2 appears to have been a landmark for the automotive industry, producing capacity for mass production, personal mobility and research and therefore a struggle between impacts and social policies. We have demonstrated that technological developments and regulatory interventions relating to the motor industry, alongside events that have catalysed societal change, have been crucial in terms of subsequently providing benefits to society whilst also acting to mitigate (but not prevent) the adverse and frequently devastating impacts of motor vehicles on human health and the environment. A periodic, regular, overarching, independent review (~ every 5 years) of the collective positive and negative impacts of the motor vehicle industry and appropriate interventions are essential to maintain and improve social benefits and public and environmental health, as well as supporting delivery of the United Nations' Sustainable Development Goals by 2030 and beyond.
Collapse
Affiliation(s)
- Ian D Williams
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, United Kingdom.
| | - Michael Blyth
- Faculty of Environmental and Life Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
19
|
Ding S, Jiang X, Wu C. Contrasting Near-Surface Ozone Pollution in Wet and Dry Year over China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:998. [PMID: 36673752 PMCID: PMC9859381 DOI: 10.3390/ijerph20020998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The near-surface ozone concentration was evaluated in two typical years with contrasting climatic impacts over the China region induced by El Niño-Southern Oscillation, which had either dry conditions (drought) with intense solar radiation and higher temperatures or wet conditions with opposite meteorological conditions. Surface ozone was observed to aggravate notably by 30% over Northern China in summer and by 50% over Eastern China in autumn in the dry year compared to the wet year. The ozone aggravation was found to be mainly ascribed to the reduced precipitation (relative humidity), enhanced solar radiation and increased temperature rather than primary emission (indicated by carbon monoxide). The health impacts showed the mortality attributable to ozone sharply increased by ~55% in Guangdong while the number of cases dying from ozone-related respiratory diseases per 100,000 population at risk was elevated by ~41% and ~17% for Guangdong (in the Pearl River Delta) and Jiangsu (in the Yangtze River Delta) province (two regions that have been reported to be highly influenced by surface ozone in China), respectively, in the dry year relative to the wet year, indicative of the significant adverse health effects of ozone aggravation. These results highlight the essential contribution of climate anomalies to surface ozone pollution. Efforts to suppress ozone aggravation can be beneficial to public health if extreme drought is predicted, and reasonable policy is implemented.
Collapse
Affiliation(s)
| | - Xiaotong Jiang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | | |
Collapse
|
20
|
Cheng Y, Huang XF, Peng Y, Tang MX, Zhu B, Xia SY, He LY. A novel machine learning method for evaluating the impact of emission sources on ozone formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120685. [PMID: 36400136 DOI: 10.1016/j.envpol.2022.120685] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
Collapse
Affiliation(s)
- Yong Cheng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yan Peng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Meng-Xue Tang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bo Zhu
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shi-Yong Xia
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
21
|
Hu Y, Shi B, Yuan X, Zheng C, Sha Q, Yu Y, Huang Z, Zheng J. VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China. J Environ Sci (China) 2023; 123:430-445. [PMID: 36522004 DOI: 10.1016/j.jes.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds (VOCs), VOC emission control has become a major concern in China. In response, emission caps to control VOC have been stipulated in recent policies, but few of them were constrained by the co-control target of PM2.5 and ozone, and discussed the factor that influence the emission cap formulation. Herein, we proposed a framework for quantification of VOC emission caps constrained by targets for PM2.5 and ozone via a new response surface modeling (RSM) technique, achieving 50% computational cost savings of the quantification. In the Pearl River Delta (PRD) region, the VOC emission caps constrained by air quality targets varied greatly with the NOx emission reduction level. If control measures in the surrounding areas of the PRD region were not considered, there could be two feasible strategies for VOC emission caps to meet air quality targets (160 µg/m3 for the maximum 8-hr-average 90th-percentile (MDA8-90%) ozone and 25 µg/m3 for the annual average of PM2.5): a moderate VOC emission cap with <20% NOx emission reductions or a notable VOC emission cap with >60% NOx emission reductions. If the ozone concentration target were reduced to 155 µg/m3, deep NOx emission reductions is the only feasible ozone control measure in PRD. Optimization of seasonal VOC emission caps based on the Monte Carlo simulation could allow us to gain higher ozone benefits or greater VOC emission reductions. If VOC emissions were further reduced in autumn, MDA8-90% ozone could be lowered by 0.3-1.5 µg/m3, equaling the ozone benefits of 10% VOC emission reduction measures. The method for VOC emission cap quantification and optimization proposed in this study could provide scientific guidance for coordinated control of regional PM2.5 and O3 pollution in China.
Collapse
Affiliation(s)
- Ya'nan Hu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China
| | - Bowen Shi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China
| | - Xin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China
| | - Chuanzeng Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China
| | - Qing'e Sha
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China
| | - Yufan Yu
- Guangdong Polytechnic of Environmental Protection Engineering, Guangzhou 528216, China
| | - Zhijiong Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China.
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
22
|
Fu C, Kuang D, Zhang H, Ren J, Chen J. Different components of air pollutants and neurological disorders. Front Public Health 2022; 10:959921. [PMID: 36518583 PMCID: PMC9742385 DOI: 10.3389/fpubh.2022.959921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
The harmful effects of air pollution can cause various diseases. Most research on the hazards of air pollution focuses on lung and cardiovascular diseases. In contrast, the impact of air pollution on neurological disorders is not widely recognized. Air pollution can cause various neurological conditions and diseases, such as neural inflammation, neurodegeneration, and cerebrovascular barrier disorder; however, the mechanisms underlying the neurological diseases induced by various components of air pollutants remain unclear. The present paper summarizes the effects of different components of air pollutants, including particulate matter, ozone, sulfur oxides, carbon oxides, nitrogen oxides, and heavy metals, on the nervous system and describes the impact of various air pollutants on neurological disorders, providing ideas for follow-up research.
Collapse
Affiliation(s)
- Chunlia Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Daibing Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - He Zhang
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinxin Ren
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Jialong Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
23
|
Zhang Y, Zhang Y, Liu Z, Bi S, Zheng Y. Analysis of Vertical Distribution Changes and Influencing Factors of Tropospheric Ozone in China from 2005 to 2020 Based on Multi-Source Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12653. [PMID: 36231952 PMCID: PMC9566697 DOI: 10.3390/ijerph191912653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The vertical distribution of the tropospheric ozone column concentration (OCC) in China from 2005 to 2020 was analysed based on the ozone profile product of the ozone monitoring instrument (OMI). The annual average OCC in the lower troposphere (OCCLT) showed an increasing trend, with an average annual increase of 0.143 DU. The OCC in the middle troposphere showed a downward trend, with an average annual decrease of 0.091 DU. There was a significant negative correlation between the ozone changes in the two layers. The monthly average results show that the peak values of OCCLT occur in May or June, the middle troposphere is significantly influenced by topographic conditions, and the upper troposphere is mainly affected by latitude. Analysis based on multi-source data shows that the reduction in nitrogen oxides (NOx) and the increase in volatile organic compounds (VOCs) weakened the titration of ozone generation, resulting in the increase in OCCLT. The increase in vegetation is closely related to the increase in OCCLT, with a correlation coefficient of up to 0.875. The near-surface temperature increased significantly, which strengthened the photochemical reaction of ozone. In addition, the increase in boundary layer height also plays a positive role in the increase in OCCLT.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yang Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zhihong Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Sijia Bi
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
- Meteorological Service Center of Xinjiang Uygur Autonomous Region, Urumqi 830002, China
| | - Yuni Zheng
- Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
24
|
Huang H, Wang Z, Dai C, Guo J, Zhang X. Volatile organic compounds emission in the rubber products manufacturing processes. ENVIRONMENTAL RESEARCH 2022; 212:113485. [PMID: 35577006 DOI: 10.1016/j.envres.2022.113485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) emission from rubber products manufacture processes, mixing, shaping and vulcanization were investigated in four rubber products factories in China. The source emission air was passively sampled by pre-vacuumized stainless steel canister and analyzed by gas chromatography-mass spectrometry-flame ionization detection (GC/MS-FID). The species profile of 107 VOCs in the emission processes were obtained. We calculated the photochemical ozone formation potential (OFP) and carcinogenic risk (CR) of the VOCs for each manufacture process. The results showed that mixing process mainly released dichloromethane (14.53%), carbon disulfide (CS2) (6.88%), styrene (5.72%), 4-methyl-2-pentanone (5.22%) and naphthalene (3.69%) for solvents used and raw rubber degradation in the process. The C6-C8 alkanes, especially heptane and isomers of heptane (44.71%), were dominated in shaping process. The major species released from vulcanization process were carbon disulfide (29.72%), naphthalene (8.17%), acetone (7.73%) and dichloromethane (4.26%). VOCs emitted from vulcanization process had the highest OFP, which contributed by naphthalene, m/p-xylene, o-xylene and carbon disulfide. VOCs emission from mixing process had the highest CR, and 1,2-dibromoethane, 1,2-dichlorethane and 1,3-butadiene were the main contributors to CR. We also estimated the total VOCs emissions into the atmosphere from tires manufacturing in China, which were 7.58 × 105 t in 2018 and contributed about 9% of total industry processes VOCs emissions.
Collapse
Affiliation(s)
- Haimei Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangwei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunhao Dai
- Hunan Agricultural University, Changsha, 430106, China
| | - Jia Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoshan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Chen Y, Zhu Y, Lin CJ, Arunachalam S, Wang S, Xing J, Chen D, Fan S, Fang T, Jiang A. Response surface model based emission source contribution and meteorological pattern analysis in ozone polluted days. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119459. [PMID: 35568288 DOI: 10.1016/j.envpol.2022.119459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Urban and regional ozone (O3) pollution is a public health concern and causes damage to ecosystems. Due to the diverse emission sources of O3 precursors and the complex interactions of air dispersion and chemistry, identifying the contributing sources of O3 pollution requires integrated analysis to guide emission reduction plans. In this study, the meteorological characteristics leading to O3 polluted days (in which the maximum daily 8-h average O3 concentration is higher than the China Class II National O3 Standard (160 μg/m3)) in Guangzhou (GZ, China) were analyzed based on data from 2019. The O3 formation regimes and source apportionments under various prevailing wind directions were evaluated using a Response Surface Modeling (RSM) approach. The results showed that O3 polluted days in 2019 could be classified into four types of synoptic patterns (i.e., cyclone, anticyclone, trough, and high pressure approaching to sea) and were strongly correlated with high ambient temperature, low relative humidity, low wind speed, variable prevailing wind directions. Additionally, the cyclone pattern strongly promoted O3 formation due to its peripheral subsidence. The O3 formation was nitrogen oxides (NOx)-limited under the northerly wind, while volatile organic compounds (VOC)-limited under other prevailing wind directions. Anthropogenic emissions contributed largely to the O3 formation (54-78%) under the westerly, southwesterly, easterly, southeasterly, or southerly wind, but only moderately (35-47%) under the northerly or northeasterly wind. Furthermore, as for anthropogenic contributions, local emission contributions were the largest (39-60%) regardless of prevailing wind directions, especially the local NOx contributions (19-43%); the dominant upwind regional emissions contributed 12-46% (e.g., contributions from Dongguan were 12-20% under the southeasterly wind). The emission control strategies for O3 polluted days should focus on local emission sources in conjunction with the emission reduction of upwind regional sources.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yun Zhu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Che-Jen Lin
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX, 77710, USA
| | - Saravanan Arunachalam
- Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jia Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Duohong Chen
- Guangdong Environmental Monitoring Center, Guangzhou, 510308, China
| | - Shaojia Fan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519000, China
| | - Tingting Fang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Anqi Jiang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
26
|
Zhou M, Li Y, Zhang F. Spatiotemporal Variation in Ground Level Ozone and Its Driving Factors: A Comparative Study of Coastal and Inland Cities in Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159687. [PMID: 35955043 PMCID: PMC9367812 DOI: 10.3390/ijerph19159687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Variations in marine and terrestrial geographical environments can cause considerable differences in meteorological conditions, economic features, and population density (PD) levels between coastal and inland cities, which in turn can affect the urban air quality. In this study, a five-year (2016-2020) dataset encompassing air monitoring (from the China National Environmental Monitoring Centre), socioeconomic statistical (from the Shandong Province Bureau of Statistics) and meteorological data (from the U.S. National Centers for Environmental Information, National Oceanic and Atmospheric Administration) was employed to investigate the spatiotemporal distribution characteristics and underlying drivers of urban ozone (O3) in Shandong Province, a region with both land and sea environments in eastern China. The main research methods included the multiscale geographically weighted regression (MGWR) model and wavelet analysis. From 2016 to 2019, the O3 concentration increased year by year in most cities, but in 2020, the O3 concentration in all cities decreased. O3 concentration exhibited obvious regional differences, with higher levels in inland areas and lower levels in eastern coastal areas. The MGWR analysis results indicated the relationship between PD, urbanization rate (UR), and O3 was greater in coastal cities than that in the inland cities. Furthermore, the wavelet coherence (WTC) analysis results indicated that the daily maximum temperature was the most important factor influencing the O3 concentration. Compared with NO, NO2, and NOx (NOx ≡ NO + NO2), the ratio of NO2/NO was more coherent with O3. In addition, the temperature, the wind speed, nitrogen oxides, and fine particulate matter (PM2.5) exerted a greater impact on O3 in coastal cities than that in inland cities. In summary, the effects of the various abovementioned factors on O3 differed between coastal cities and inland cities. The present study could provide a scientific basis for targeted O3 pollution control in coastal and inland cities.
Collapse
Affiliation(s)
- Mengge Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengying Zhang
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|
27
|
He DC, Li FH, Wu M, Luo HL, Qiu LQ, Ma XR, Lu JW, Liu WR, Ying GG. Emission of volatile organic compounds (VOCs) from application of commercial pesticides in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115069. [PMID: 35447450 DOI: 10.1016/j.jenvman.2022.115069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Applying pesticides can result in emissions of volatile organic compounds (VOCs), but little is known about VOC emission characteristics and the quantities in particular regions. We investigated the use of pesticides in China based on a large-scale survey of 330 counties in 31 provinces and evaluated the national pesticide VOC emission potentials based on thermogravimetric analysis of 1930 commercial pesticides. The results showed that herbicides were the most extensively used pesticide category in China, accounting for 43.47%; emulsifiable concentrate (EC), suspension concentrate, and wettable powder were the dominant pesticide formulations, with proportions of 26.75%, 17.68%, and 17.31%, respectively. The VOC emission potential coefficient (EP) of the liquid formulations was higher than the solid formulations, and the maximum mean EP was 45.59% for EC and the minimum was 0.76% for WP. Among 437 high-VOC pesticide products used in China, EC accounted for 83.52%, and 16.93% of those contained abamectin. The total VOC emissions derived from commercial pesticides in China were 280 kt (kilotons) in 2018, and 65.35% of the contribution was derived from EC. Shandong, Hunan, and Henan were the three provinces with the highest pesticide VOC emissions (>21 kt/y). The emission rate of VOCs from pesticides was 24.80 t/d in China, which was higher than in San Joaquin Valley, California. These findings suggest that some comprehensive measures (e.g., perfecting pesticide management policy, strict supervision for pesticide production and use, and strengthening pesticide reduction publicity) should be taken to reduce VOC emissions from pesticide applications.
Collapse
Affiliation(s)
- De-Chun He
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Fang-Hong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Mian Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Hui-Li Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Li-Qing Qiu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Xiao-Rui Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Jia-Wei Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Wang-Rong Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China.
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
28
|
Long-Term Variations of Meteorological and Precursor Influences on Ground Ozone Concentrations in Jinan, North China Plain, from 2010 to 2020. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ground-level ozone (O3) pollution in the North China Plain has become a serious environmental problem over the last few decades. The influence of anthropogenic emissions and meteorological conditions on ozone trends have become the focus of widespread research. We studied the long-term ozone trends at urban and suburban sites in a typical city in North China and quantified the contributions of anthropogenic and meteorological factors. The results show that urban O3 increased and suburban O3 decreased from 2010 to 2020. The annual 90th percentile of the maximum daily 8-h average of ozone in urban areas increased by 3.01 μgm−3year−1 and, in suburban areas, it decreased by 3.74 μgm−3year−1. In contrast to the meteorological contributions, anthropogenic impacts are the decisive reason for the different ozone trends in urban and suburban areas. The rapid decline in nitrogen oxides (NOX) in urban and suburban areas has had various effects. In urban areas, this leads to a weaker titration of NOX and enhanced O3 formation, while in suburban areas, this weakens the photochemical production of O3. Sensitivity analysis shows that the O3 formation regime is in a transition state in both the urban and suburban areas. However, this tends to be limited to volatile organic compounds (VOCs) in urban areas and to NOX in suburban areas. One reasonable approach to controlling ozone pollution should be to reduce nitrogen oxide emissions while strengthening the control of VOCs.
Collapse
|
29
|
Wang J, Zhang Y, Wu Z, Luo S, Song W, Wang X. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. J Environ Sci (China) 2022; 114:322-333. [PMID: 35459495 DOI: 10.1016/j.jes.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 06/14/2023]
Abstract
The impact of reducing industrial emissions of volatile organic compounds (VOCs) on ozone (O3) pollution is of wide concern particularly in highly industrialized megacities. In this study, O3, nitrogen oxides (NOx) and VOCs were measured at an urban site in the Pearl River Delta region during the 2018 Chinese National Day Holidays and two after-holiday periods (one with ozone pollution and another without). O3 pollution occurred throughout the 7-day holidays even industrial emissions of VOCs were passively reduced due to temporary factory shutdowns, and the toluene to benzene ratios dropped from ∼10 during non-holidays to ∼5 during the holidays. Box model (AtChem2-MCM) simulations with the input of observation data revealed that O3 formation was all VOC-limited, and alkenes had the highest relative incremental reactivity (RIR) during the holiday and non-holiday O3 episodes while aromatics had the highest RIR during the non-pollution period. Box model also demonstrated that even aromatics decreased proportionally to levels with near-zero contributions of industrial aromatic solvents, O3 concentrations would only decrease by less than 20% during the holiday and non-holiday O3 episodes and ozone pollution in the periods could not be eliminated. The results imply that controlling emissions of industrial aromatic solvents might be not enough to eliminate O3 pollution in the region, and more attention should be paid to anthropogenic reactive alkenes. Isoprene and formaldehyde were among the top 3 species by RIRs in all the three pollution and non-pollution periods, suggesting substantial contribution to O3 formation from biogenic VOCs.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenfeng Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilu Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Li F, Tong S, Jia C, Zhang X, Lin D, Zhang W, Li W, Wang L, Ge M, Xia L. Sources of ambient non-methane hydrocarbon compounds and their impacts on O 3 formation during autumn, Beijing. J Environ Sci (China) 2022; 114:85-97. [PMID: 35459517 DOI: 10.1016/j.jes.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
The field observation of 54 non-methane hydrocarbon compounds (NMHCs) was conducted from September 1 to October 20 in 2020 during autumn in Haidian District, Beijing. The mean concentration of total NMHCs was 29.81 ± 11.39 ppbv during this period, and alkanes were the major components. There were typical festival effects of NMHCs with lower concentration during the National Day. Alkenes and aromatics were the dominant groups in ozone formation potential (OFP) and OH radical loss rate (LOH). The positive matrix factorization (PMF) running results revealed that vehicular exhaust became the biggest source in urban areas, followed by liquefied petroleum gas (LPG) usage, solvent usage, and fuel evaporation. The box model coupled with master chemical mechanism (MCM) was applied to study the impacts of different NMHCs sources on ozone (O3) formation in an O3 episode. The simulation results indicated that reducing NMHCs concentration could effectively suppress O3 formation. Moreover, reducing traffic-related emissions of NMHCs was an effective way to control O3 pollution at an urban site in Beijing.
Collapse
Affiliation(s)
- Fangjie Li
- College of Chemistry, Liaoning University, Shenyang 110036, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chenhui Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinran Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng Lin
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Oasis Ecology, College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China.
| |
Collapse
|
31
|
Huang WZ, He WY, Knibbs LD, Jalaludin B, Guo YM, Morawska L, Heinrich J, Chen DH, Yu YJ, Zeng XW, Yu HY, Yang BY, Hu LW, Liu RQ, Feng WR, Dong GH. Improved morbidity-based air quality health index development using Bayesian multi-pollutant weighted model. ENVIRONMENTAL RESEARCH 2022; 204:112397. [PMID: 34798120 DOI: 10.1016/j.envres.2021.112397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The widely used Air Quality Index (AQI) has been criticized due to its inaccuracy, leading to the development of the air quality health index (AQHI), an improvement on the AQI. However, there is currently no consensus on the most appropriate construction strategy for the AQHI. OBJECTIVES In this study, we aimed to evaluate the utility of AQHIs constructed by different models and health outcomes, and determine a better strategy. METHODS Based on the daily time-series outpatient visits and hospital admissions from 299 hospitals (January 2016-December 2018), and mortality (January 2017-December 2019) in Guangzhou, China, we utilized cumulative risk index (CRI) method, Bayesian multi-pollutant weighted (BMW) model and standard method to construct AQHIs for different health outcomes. The effectiveness of AQHIs constructed by different strategies was evaluated by a two-stage validation analysis and examined their exposure-response relationships with the cause-specific morbidity and mortality. RESULTS Validation by different models showed that AQHI constructed with the BMW model (BMW-AQHI) had the strongest association with the health outcome either in the total population or subpopulation among air quality indexes, followed by AQHI constructed with the CRI method (CRI-AQHI), then common AQHI and AQI. Further validation by different health outcomes showed that AQHI constructed with the risk of outpatient visits generally exhibited the highest utility in presenting mortality and morbidity, followed by AQHI constructed with the risk of hospitalizations, then mortality-based AQHI and AQI. The contributions of NO2 and O3 to the final AQHI were prominent, while the contribution of SO2 and PM2.5 were relatively small. CONCLUSIONS The BMW model is likely to be more effective for AQHI construction than CRI and standard methods. Based on the BMW model, the AQHI constructed with the outpatient data may be more effective in presenting short-term health risks associated with the co-exposure to air pollutants than the mortality-based AQHI and existing AQIs.
Collapse
Affiliation(s)
- Wen-Zhong Huang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne VIC, 3004, Australia
| | - Wei-Yun He
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW, 2037, Australia; Ingham Institute for Applied Medial Research, Liverpool, NSW, 2170, Australia; School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Yu-Ming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne VIC, 3004, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland, 4001, Australia
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, 80336, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, 80336, Germany
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
32
|
He Z, Liu P, Zhao X, He X, Liu J, Mu Y. Responses of surface O 3 and PM 2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019: A study based on multiple linear regression and WRF-Chem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150792. [PMID: 34619192 DOI: 10.1016/j.scitotenv.2021.150792] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Owing to the implementation of air pollution control actions, anthropogenic emissions in Beijing have changed in recent years. Understanding the impact of changes in anthropogenic emissions on O3 and PM2.5 trends is helpful for developing air quality management strategies. Herein, we investigated the variations of air pollutants in summer over Beijing using long-term data sets from 2014 to 2019, and explored the responses of O3 and PM2.5 trends to changes in anthropogenic emissions based on multiple linear regression (MLR) analysis and WRF-Chem model. The results indicated a significant decrease in PM2.5, but a near constant level of O3 during 2014-2019. The decrease rate of PM2.5, which was lower than that of SO2, might be due to the effect of NO2 on atmospheric PM2.5. Both the slightly increasing correlations between PM2.5 and NO2 and the WRF-Chem model simulations implied that atmospheric PM2.5 in Beijing is trending to be more sensitive to NOx than SO2. The emissions of NOx and VOCs from industry and transportation were found to make great contribution to O3 production in Beijing. Due to the titration of NOx in VOC-limited regime, the relatively low emission ratios of NOx and VOCs from industry and transportation in Beijing provided convincing evidence for the persistently high O3 concentrations during 2014-2019. However, the noticeable increase of the O3 trends in other areas (e.g., Hebei, Tianjin) could be explained by the significant decline in the emission ratios of NOx and VOCs from anthropogenic emissions especially industry during 2014-2019. Controlling the emission of NOx can substantially reduce PM2.5 pollution, but may aggravate O3 pollution, and thus effective VOC emission control strategies need to be considered for simultaneously controlling O3 and PM2.5 pollution in Beijing and other regions of China.
Collapse
Affiliation(s)
- Zhouming He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Regional Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 100049, China
| | - Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 100049, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Regional Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Regional Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
33
|
Preparation and structures of PEBA gas separation membrane modified by fumed silica for oil vapor separation. Sci Rep 2022; 12:1025. [PMID: 35046510 PMCID: PMC8770463 DOI: 10.1038/s41598-022-05064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Composite membranes were fabricated with polyethersulfone as a microporous substrate and polyether block amide (PEBA) as a selective layer to achieve efficient recovery of volatile organic compounds (VOCs). Fumed silica was mixed into PEBA for modification. The top thin layers with different percentage of fumed silica in PEBA were prepared by spin-coating. Structure and performance of membranes with and without a modification were characterized. The results showed that fumed silica in an ultra-thin selective layer significantly influenced the hydrophobicity of the membranes. The higher the content of fumed silica, the higher the hydrophobicity of the membranes was. The maximum content of added fumed silica was 0.6 wt%. When the proportion of fumed silica reached 0.6 wt%, the contact angle could reach 95.8°, which was 56% higher than that of the unmodified one. The structure of the membrane remained unchanged. Moreover, the separation performance was evaluated by removing VOCs from a mixture of oil vapor and nitrogen. The VOCs permeance tended to grow with an increase in the content of fumed silica. When the content was 0.6 wt%, the membrane exhibited better comprehensive performance. Its vapor flux rate was 117.8 ml/min, which was 153% higher than that without a modification. Its separation coefficients for ethane, propane, cyclopropane, isobutane and n-butane were 29.3, 29.9, 24.9, 30.7, and 34.0 respectively.
Collapse
|
34
|
Lei R, Sun Y, Zhu S, Jia T, He Y, Deng J, Liu W. Investigation on Distribution and Risk Assessment of Volatile Organic Compounds in Surface Water, Sediment, and Soil in a Chemical Industrial Park and Adjacent Area. Molecules 2021; 26:molecules26195988. [PMID: 34641531 PMCID: PMC8512396 DOI: 10.3390/molecules26195988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The occurrences, distributions, and risks of 55 target volatile organic compounds (VOCs) in water, sediment, sludge, and soil samples taken from a chemical industrial park and the adjacent area were investigated in this study. The Σ55-VOCs concentrations in the water, sediment, sludge, and soil samples were 1.22–5449.21 μg L−1, ND–52.20 ng g−1, 21.53 ng g−1, and ND–11.58 ng g−1, respectively. The main products in this park are medicines, pesticides, and novel materials. As for the species of VOCs, aromatic hydrocarbons were the dominant VOCs in the soil samples, whereas halogenated aliphatic hydrocarbons were the dominant VOCs in the water samples. The VOCs concentrations in water samples collected at different locations varied by 1–3 orders of magnitude, and the average concentration in river water inside the park was obviously higher than that in river water outside the park. However, the risk quotients for most of the VOCs indicated a low risk to the relevant, sensitive aquatic organisms in the river water. The average VOCs concentration in soil from the park was slightly higher than that from the adjacent area. This result showed that the chemical industrial park had a limited impact on the surrounding soil, while the use of pesticides, incomplete combustion of coal and biomass, and automobile exhaust emissions are all potential sources of the VOCs in the environmental soil. The results of this study could be used to evaluate the effects of VOCs emitted from chemical production and transportation in the park on the surrounding environment.
Collapse
Affiliation(s)
- Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yamei Sun
- Chinese Academy of Environmental Planning, Beijing 100012, China
- Correspondence: (Y.S.); (W.L.); Tel.: +86-10-62849356 (W.L.); Fax: +86-10-62923563 (Y.S.)
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China;
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (T.J.); (Y.H.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Correspondence: (Y.S.); (W.L.); Tel.: +86-10-62849356 (W.L.); Fax: +86-10-62923563 (Y.S.)
| |
Collapse
|
35
|
Lv D, Lu S, He S, Song K, Shao M, Xie S, Gong Y. Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. CHEMOSPHERE 2021; 281:130653. [PMID: 34289639 DOI: 10.1016/j.chemosphere.2021.130653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/28/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
A volatile organic compound (VOC) emissions inventory of the petroleum refinery in Hebei was established. This refinery emits 1859.2 tons of VOCs per year, with wastewater collection and treatment system being the largest emissions source, accounting for 59.6% individually, followed by the recirculating cooling water system (13.4%), storage tanks (11.1%), and equipment leaks (9.4%). Organized and fugitive samples were collected simultaneously for different processes of each emissions source. A total of 100 VOC species were characterized and quantified using a gas chromatography-mass spectrometry/flame ionization detection system. The VOC emissions concentrations and chemical composition of each process were quite different. Most of the processes used alkanes as the main chemome. We concluded from the composite source profile weighted by the amount of VOC emissions that the characteristic species of this petroleum refinery were ethane (15.4%), propylene (11.7%), propane (8.5%), iso-pentane (8.3%), and toluene (4.7%). The ozone (O3) formation potential (OFP) and secondary organic aerosol formation potential (SOAP) were evaluated, and the results indicated that alkenes (mainly propylene) and aromatics (mainly toluene) were the priority control compounds. This study clarifies the current status of VOC emissions in the refinery in terms of emissions intensity, emissions components, and O3 and SOA reactivity. The key emissions sources and species screened provide scientific support for reducing refined emissions from the petrochemical industry.
Collapse
Affiliation(s)
- Daqi Lv
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Sihua Lu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Shuyu He
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Kai Song
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Min Shao
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, PR China
| | - Shaodong Xie
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Yuanzheng Gong
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| |
Collapse
|
36
|
Ma J, Cao R, Dang Y, Wang J. A recent progress of room–temperature airborne ozone decomposition catalysts. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Sun S, Liu W, Guan W, Zhu S, Jia J, Wu X, Lei R, Jia T, He Y. Effects of air pollution control devices on volatile organic compounds reduction in coal-fired power plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146828. [PMID: 33839653 DOI: 10.1016/j.scitotenv.2021.146828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Air pollution control devices (APCDs) have been fitted to many coal-fired power plants to decrease the impacts of pollutants generated during coal combustion. APCDs remove conventional pollutants but also decrease volatile organic compound (VOC) emissions. In this study, flue gas samples were collected from different points in seven typical coal-fired power and two industrial boilers, and the VOC concentrations in the flue gas samples were determined by gas chromatography-mass spectrometry (GC-MS). Selective catalytic reduction (SCR) systems and electrostatic precipitators (ESP) can synergistically remove VOCs, the mean removal rate of VOCs by ESP was 42% ± 9%. This was caused by the catalyst in SCR systems and the condensation process in the ESP. Wet flue gas desulfurization (WFGD) affected different VOCs in different ways, increasing the halogenated hydrocarbons and aromatic hydrocarbons concentrations but decreasing the oxygenated VOCs concentrations by 12%. Wet electrostatic precipitators (WESP) increased VOC emissions. By calculating Ozone formation potential (OFP), aromatic hydrocarbons are important contributors to ozone production. The emission factor of the power plant was 0.69 g/GJ, and the Chinese annual emission was about 1.2 × 104 t. VOCs emissions in different regions were affected by factors such as the economy and population. VOC emissions can be decreased by using the most appropriate unit load and improving the VOC removal efficiencies of the APCDs.
Collapse
Affiliation(s)
- Shurui Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Water Resources and Environment, Chang'an University, Xi'an 710054, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weisheng Guan
- College of Water Resources and Environment, Chang'an University, Xi'an 710054, China
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Jing Jia
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
|
39
|
Ke Y, Liu R, Chen X, Feng Y, Gao P, Huang H, Fan L, Ye D. Volatile organic compounds concentration profiles and control strategy in container manufacturing industry: Case studies in China. J Environ Sci (China) 2021; 104:296-306. [PMID: 33985733 DOI: 10.1016/j.jes.2020.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs), important precursors of ozone (O3) and fine particulate matter (PM2.5), are the key to curb the momentum of O3 growth and further reducing PM2.5 in China. Container manufacturing industry is one of the major VOC emitters, and more than 96% containers of the world are produced in China, with the annual usage of coatings of over 200,000 tons in recent years. This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry, including concentration and ozone formation potential (OFP) of each species. The result shows that the largest amounts of VOCs are emitted during the pretreatment process, followed by the paint mixing process and primer painting process, and finally other sprays process. The average VOC concentrations in the workshops, the exhausts before treatment and the exhausts after treatment are ranging from 82.67-797.46 , 170-1,812.65 , 66.20-349.63 mg/m3, respectively. Benzenes, alcohols and ethers are main species, which contribute more than 90% OFP together. Based on the emission characteristics of VOCs and the technical feasibility, it is recommended to set the emission limit in standard of benzene to 1.0 mg/m3, toluene to 10 mg/m3, xylene to 20 mg/m3, benzenes to 40 mg/m3, alcohols and ethers to 50 mg/m3, and VOCs to 100 mg/m3. The study reports the industry emission characteristics and discusses the standard limits, which is a powerful support to promote VOCs emission reduction, and to promote the coordinated control of PM2.5 and O3 pollution.
Collapse
Affiliation(s)
- Yunting Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ruiyuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaofang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yang Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ping Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510006, China
| | - Liya Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal (SCUT), Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal (SCUT), Guangzhou 510006, China.
| |
Collapse
|
40
|
Shen H, Liu Y, Zhao M, Li J, Zhang Y, Yang J, Jiang Y, Chen T, Chen M, Huang X, Li C, Guo D, Sun X, Xue L, Wang W. Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144031. [PMID: 33387762 DOI: 10.1016/j.scitotenv.2020.144031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Carbonyl compounds are ubiquitous in the troposphere, yet their contributions to ambient ozone (O3) formation have rarely been quantified in China. To better understand their roles in O3 pollution, a field campaign was conducted at an urban site of Shantou, a coastal city in eastern China, during 7th-29th October 2019. Seven carbonyls were quantified (average ± standard deviation: 14.42 ± 3.05 ppbv), among which formaldehyde (4.12 ± 1.02 ppbv), acetaldehyde (1.57 ± 0.30 ppbv), acetone (7.55 ± 2.10 ppbv), and methyl ethyl ketone (0.94 ± 0.28 ppbv) were the most abundant species. Relative incremental reactivity (RIR) analysis indicated that O3 formation in Shantou was VOC-limited, specifically most sensitive to carbonyls, and formaldehyde showed the largest RIR values in terms of individual species. Budgets of O3 and ROx (OH, HO2, and RO2) radicals were elucidated with a chemical box model. Carbonyls played a vital role in both the primary formation and recycling of the ROx; more than 80% of the primary source of HO2 and RO2 came from photolysis of formaldehyde and other oxygenated VOCs. Zero-out sensitivity studies showed that the seven measured carbonyls accounted for 37% of the peak net O3 production rate, mainly by affecting the concentrations of HO2 and RO2. These results highlight the significance of carbonyls, especially formaldehyde, to photochemical O3 formation, and carbonyls should be paid more attention to mitigate the worsening O3 pollution in China.
Collapse
Affiliation(s)
- Hengqing Shen
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yuhong Liu
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Min Zhao
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Juan Li
- Shantou Environmental Protection Monitoring Station, Shantou 515041, China.
| | - Yingnan Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Juan Yang
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ying Jiang
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Tianshu Chen
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Miao Chen
- Shantou Environmental Protection Monitoring Station, Shantou 515041, China
| | - Xianbing Huang
- Shantou Environmental Protection Monitoring Station, Shantou 515041, China
| | - Chengliu Li
- Shenzhen OnePoint Environmental Consultant Co., Ltd, Shenzhen 518000, China
| | - Danling Guo
- Shenzhen OnePoint Environmental Consultant Co., Ltd, Shenzhen 518000, China
| | - Xiaoyan Sun
- Jinan Environmental Monitoring Center Station, Ji'nan, Shandong 250014, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
41
|
Zhao K, Luo H, Yuan Z, Xu D, Du Y, Zhang S, Hao Y, Wu Y, Huang J, Wang Y, Jiang R. Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region. J Environ Sci (China) 2021; 102:373-383. [PMID: 33637263 PMCID: PMC7575429 DOI: 10.1016/j.jes.2020.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/23/2023]
Abstract
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.
Collapse
Affiliation(s)
- Kaihui Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huihong Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Danni Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yi Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuqi Hao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wu
- The City College of New York (CCNY), New York, NY 10031, USA; NOAA-Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies, New York, NY 10031, USA
| | - Jianping Huang
- NOAA-NCEP Environmental Modeling Center and IM System Group Inc., College Park, MD 720740, USA; Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Wang
- Xianyang Meteorological Bureau, Xianyang 712000, China
| | - Rongsheng Jiang
- Climate, Environment and Sustainability Center, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
42
|
Zhang T, Tang M. The Impact of the COVID-19 Pandemic on Ambient Air Quality in China: A Quasi-Difference-in-Difference Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073404. [PMID: 33806039 PMCID: PMC8036792 DOI: 10.3390/ijerph18073404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
The novel coronavirus (COVID-19) pandemic has provided a distinct opportunity to explore the mechanisms by which human activities affect air quality and pollution emissions. We conduct a quasi-difference-in-differences (DID) analysis of the impacts of lockdown measures on air pollution during the first wave of the COVID-19 pandemic in China. Our study covers 367 cities from the beginning of the lockdown on 23 January 2020 until April 22, two weeks after the lockdown in the epicenter was lifted. Static and dynamic analysis of the average treatment effects on the treated is conducted for the air quality index (AQI) and six criteria pollutants. The results indicate that, first, on average, the AQI decreased by about 7%. However, it was still over the threshold set by the World Health Organization. Second, we detect heterogeneous changes in the level of different pollutants, which suggests heterogeneous impacts of the lockdown on human activities: carbon monoxide (CO) had the biggest drop, about 30%, and nitrogen dioxide (NO2) had the second-biggest drop, 20%. In contrast, ozone (O3) increased by 3.74% due to the changes in the NOx/VOCs caused by the decrease in NOx, the decrease of O3 titration, and particulate matter concentration. Third, air pollution levels rebounded immediately after the number of infections dropped, which indicates a swift recovery of human activities. This study provides insights into the implementation of environmental policies in China and other developing countries.
Collapse
Affiliation(s)
- Tuo Zhang
- Graduate School of Economics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto 606-8501, Japan;
| | - Maogang Tang
- School of Business, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Correspondence:
| |
Collapse
|
43
|
Volatile Organic Compounds Monitored Online at Three Photochemical Assessment Monitoring Stations in the Pearl River Delta (PRD) Region during Summer 2016: Sources and Emission Areas. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Volatile organic compounds (VOCs) were monitored online at three photochemical assessment monitoring stations (MDS, WQS and HGS) in the Pearl River Delta region during the summer of 2016. Measured levels of VOCs at the MDS, WQS and HGS sites were 34.78, 8.54 and 8.47 ppbv, respectively, with aromatics and alkenes as major ozone precursors and aromatics as major precursors to secondary organic aerosol (SOA). The positive matrix factorization (PMF) model revealed that VOCs at the sites mainly came from vehicle exhaust, petrochemical industry, and solvent use. Vehicle exhaust and industrial processes losses contributed most to ozone formation potentials (OFP) of VOCs, while industrial processes losses contributed most to SOA formation potentials of VOCs. Potential source contribution function (PSCF) analysis revealed a north-south distribution for source regions of aromatics occurring at MDS with emission sources in Guangzhou mainly centered in the Guangzhou central districts, and source regions of aromatics at WQS showed an east-west distribution across Huizhou, Dongguan and east of Guangzhou, while that at HGS showed a south-north distribution across Guangzhou, Foshan, Zhaoqing and Yangjiang. This study demonstrates that multi-point high time resolution data can help resolve emission sources and locate emission areas of important ozone and SOA precursors.
Collapse
|
44
|
Ur Rehman S, Ahmed R, Ma K, Xu S, Aslam MA, Bi H, Liu J, Wang J. Ammonium nitrate is a risk for environment: A case study of Beirut (Lebanon) chemical explosion and the effects on environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111834. [PMID: 33401200 DOI: 10.1016/j.ecoenv.2020.111834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
An attempt has been made in correspondence to explain the consequences of chemical pollution after the explosion of ammonium nitrate (AN) in Beirut (capital of Lebanon). The effects of chemicals in the air, soil, and water have been discussed. In addition, the study emphasizes on the research to restore the environment and enhanced safety measurements.
Collapse
Affiliation(s)
- Sajid Ur Rehman
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei, Anhui 230031, PR China
| | - Rida Ahmed
- School of Physics & Material Science, Anhui University, Hefei 230601, PR China
| | - Kun Ma
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei, Anhui 230031, PR China
| | - Shuai Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei, Anhui 230031, PR China
| | - Muhammad Adnan Aslam
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei, Anhui 230031, PR China
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China.
| | - Jianguo Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
45
|
Quantification of Regional Ozone Pollution Characteristics and Its Temporal Evolution: Insights from Identification of the Impacts of Meteorological Conditions and Emissions. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ozone (O3) pollution has become the major new challenge after the suppression of PM2.5 to levels below the standard for the Pearl River Delta (PRD). O3 can be transported between nearby stations due to its longevity, leading stations with a similar concentration in a state of aggregation, which is an alleged regional issue. Investigations in such regional characteristics were rarely involved ever. In this study, the aggregation (reflected by the global Moran’s I index, GM), its temporal evolution, and the impacts from meteorological conditions and both local (i.e., produced within the PRD) and non-local (i.e., transported from outside the PRD) contributions were explored by spatial analysis and statistical modeling based on observation data. The results from 2007 to 2018 showed that the GM was positive overall, implying that the monitoring stations were surrounded by stations with similar ozone levels, especially during ozone seasons. State of aggregation was reinforced from 2007 to 2012, and remained stable thereafter. Further investigations revealed that GM values were independent of meteorological conditions, while closely related to local and non-local contributions, and its temporal variations were driven only by local contributions. Then, the correlation (R2) between O3 and meteorology was identified. Result demonstrated that the westerly belonged to temperature (T) and surface solar radiation (SSR) sensitive regions and the correlation between ozone and the two became intense with time. Relative humidity (RH) showed a negative correlation with ozone in most areas and periods, whereas correlations with u and v were positive for northerly winds and negative for southerly winds. Two important key points of such investigation are that, firstly, we defined the features of ozone pollution by characterizing the temporal variations in spatial discrepancies among all stations, secondly, we highlighted the significance of subregional cooperation within the PRD and regional cooperation with external environmental organizations.
Collapse
|
46
|
Liu X, Wang N, Lyu X, Zeren Y, Jiang F, Wang X, Zou S, Ling Z, Guo H. Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141812. [PMID: 32906035 DOI: 10.1016/j.scitotenv.2020.141812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
To explore the photochemical O3 pollution over the Pearl River Estuary (PRE), intensive measurements of O3 and its precursors, including trace gases and volatile organic compounds (VOCs), were simultaneously conducted at a suburban site on the east bank of PRE (Tung Chung, TC) in Hong Kong and a rural site on the west bank (Qi'ao, QA) in Zhuhai, Guangdong in autumn 2016. Throughout the sampling period, 3 days with high O3 levels (maximum hourly O3 > 100 ppbv) were captured at both sites (pattern 1) and 13 days with O3 episodes occurred only at QA (pattern 2). It was found that O3 formation at TC was VOC-limited in both patterns because of the large local NOx emissions. However, the O3 formation at QA was co-limited by VOCs and NOx in pattern 1, but VOC-limited in pattern 2. In both patterns, isoprene, formaldehyde, xylenes and trimethylbenzenes were the top 4 VOCs that modulated local O3 formation at QA, while they were isoprene, formaldehyde, xylenes and toluene at TC. In pattern 1, the net O3 production rate at QA (13.1 ± 1.6 ppbv h-1) was high, and comparable (p = 0.40) to that at TC (12.1 ± 1.5 ppbv h-1), so was the hydroxyl radical (i.e., OH), implying high atmospheric oxidative capacity over PRE. In contrast, the net O3 production rate was significantly higher (p < 0.05) at QA (16.3 ± 0.4 ppbv h-1) than that at TC (4.7 ± 0.2 ppbv h-1) in pattern 2, and the OH concentration and cycling rate were also higher, indicating much stronger photochemical reactions at QA. These findings enhanced our understanding of O3 photochemistry in the Pearl River estuary, which could be extended to other estuaries.
Collapse
Affiliation(s)
- Xufei Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Nan Wang
- Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou, China
| | - Xiaopu Lyu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Yangzong Zeren
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Fei Jiang
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, China
| | - Xinming Wang
- Guangzhou Institute of Geochemistry, Chines Academy of Sciences, Guangzhou, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhenhao Ling
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
47
|
Li Y, Yin S, Yu S, Bai L, Wang X, Lu X, Ma S. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. J Environ Sci (China) 2021; 99:354-368. [PMID: 33183714 DOI: 10.1016/j.jes.2020.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
In this study, we conducted an observation experiment from May 1 to June 30, 2018 in Zhengzhou, a major city in central China, where ground ozone (O3) pollution has become serious in recent years. The concentrations of O3 and its precursors, as well as H2O2 and meteorological data were obtained from the urban site (Yanchang, YC), suburban (Zhengzhou University, ZZU) and background sites (Ganglishuiku, GLSK). Result showed that the rates of O3 concentration exceeded Chinese National Air Quality Standard Grade II (93.3 ppbv) were 59.0%, 52.5%, and 55.7% at the above three sites with good consistency, respectively, indicating that O3 pollution is a regional problem in Zhengzhou. The daily peak O3 appeared at 15:00-16:00, which was opposite to VOCs, NOx, and CO and consistent with H2O2. The exhaustive statistical analysis of meteorological factors and chemical effects on O3 formation at YC was advanced. The high concentration of precursors, high temperature, low relative humidity, and moderately high wind speed together with the wind direction dominated by south and southeast wind contribute to urban O3 episodes in Zhengzhou. O3 formation analysis showed that reactive alkenes such as isoprene and cis-2-butene contributed most to O3 formation. The VOCs/NOx ratio and smog production model were used to determine O3-VOC-NOx sensitivity. The O3 formation in Zhengzhou during early summer was mainly under VOC-limited and transition regions alternately, which implies that the simultaneous emission reduction of alkenes and NOx is effective in reducing O3 pollution in Zhengzhou.
Collapse
Affiliation(s)
- Yasong Li
- Research Institute of Environmental Science College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Yin
- Research Institute of Environmental Science College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shijie Yu
- Research Institute of Environmental Science College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ling Bai
- Research Institute of Environmental Science College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xudong Wang
- Research Institute of Environmental Science College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuan Lu
- Research Institute of Environmental Science College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuangliang Ma
- Henan Environmental Monitoring Center, Zhengzhou, 450004, China
| |
Collapse
|
48
|
Liang X, Sun X, Xu J, Ye D. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140838. [PMID: 32721613 DOI: 10.1016/j.scitotenv.2020.140838] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3) pollution is becoming increasingly serious in China. Reactivity-based control of volatile organic compounds (VOCs) is an efficient method of alleviating O3 pollution. In this study, an improved industrial VOCs emissions inventory for China from 2011 to 2018 and local source profiles for six specific industries were developed to improve estimation of ozone formation potential (OFP). The results indicated that average annual growth rate for industrial VOCs emissions during 2015-2018 was lower than 2011-2014, which could be related to China's industrial structural upgrade and implementation of VOCs source control during the 13th Five-Year Plan period. The industrial coating, printing, basic organic chemical, gasoline storage and transport, and oil refinery industries were the key sources of VOCs emissions. M/p-xylene, toluene, ethyl benzene, propene, o-xylene, ethene, 1,2,4-trimethylbenzene, m-ethyl toluene, isopentane, and 1-butene were the top 10 species in terms of OFP. The top 20 species based on OFP accounted for an estimated 85% of total OFP and only 59% of emissions. The industrial coating, printing, basic organic chemical, oil refinery industries and other five sectors were the top 10 sources in terms of OFP, which together contributed 81% of total OFP. Priority should be given to the top 20 or more species with high reactivity and the top 10 sources based on OFP for future O3 reductions in China.
Collapse
Affiliation(s)
- Xiaoming Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Xibo Sun
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jiantie Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
49
|
Wang Y, Wild O, Chen X, Wu Q, Gao M, Chen H, Qi Y, Wang Z. Health impacts of long-term ozone exposure in China over 2013-2017. ENVIRONMENT INTERNATIONAL 2020; 144:106030. [PMID: 32798800 DOI: 10.1016/j.envint.2020.106030] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 05/27/2023]
Abstract
Increasing ozone concentrations are becoming a severe problem for air pollution in China and have an adverse impact on human health. Here we evaluate premature deaths attributable to long-term exposure to ambient ozone in China between 2013 and 2017 with an air quality model at 5 km resolution and the latest estimates of the relative risk to health. We use a modified inverse distance weighting method to bias-correct the key model-simulated ozone metrics. We find that on a 5-year average basis there are 186,000 (95% Confidence Interval: 129,000-237,000) respiratory deaths and 125,000 (42,000-204,000) cardiovascular deaths attributable to ozone exposure. Sichuan exhibits the largest per capita respiratory mortality (0.31‰) among all provinces. We find that there are 73,000 (51,000-93,000) premature respiratory deaths in urban areas, accounting for 39% of total deaths. Between 2013 and 2017 the population-weighted annual average maximum daily 8-h average ozone (AMDA8) and premature respiratory deaths increased by 14% and 31%, respectively, at a national level. Changes in precursor emissions explain most of these increases, with differences in meteorology accounting for 21% and 16% respectively. Interannual variations in population-weighted ozone and premature respiratory deaths at a provincial level are much larger than those at a national level, particularly in northern, central and eastern China. These findings emphasize that ozone should be an important focus of future air quality policies in China, and tighter controls of precursor emissions are urgently needed.
Collapse
Affiliation(s)
- Yuanlin Wang
- The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Lancaster Environment Centre, Lancaster University, LA1 4YQ, United Kingdom; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Oliver Wild
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, United Kingdom
| | - Xueshun Chen
- The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qizhong Wu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Huansheng Chen
- The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yi Qi
- School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China
| | - Zifa Wang
- The State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Centre for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. SUSTAINABILITY 2020. [DOI: 10.3390/su12219045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The existence of indoor air pollutants—such as ozone, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen dioxide, particulate matter, and total volatile organic compounds—is evidently a critical issue for human health. Over the past decade, various international agencies have continually refined and updated the quantitative air quality guidelines and standards in order to meet the requirements for indoor air quality management. This paper first provides a systematic review of the existing air quality guidelines and standards implemented by different agencies, which include the Ambient Air Quality Standards (NAAQS); the World Health Organization (WHO); the Occupational Safety and Health Administration (OSHA); the American Conference of Governmental Industrial Hygienists (ACGIH); the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); the National Institute for Occupational Safety and Health (NIOSH); and the California ambient air quality standards (CAAQS). It then adds to this by providing a state-of-art review of the existing low-cost air quality sensor (LCAQS) technologies, and analyzes the corresponding specifications, such as the typical detection range, measurement tolerance or repeatability, data resolution, response time, supply current, and market price. Finally, it briefly reviews a sequence (array) of field measurement studies, which focuses on the technical measurement characteristics and their data analysis approaches.
Collapse
|