1
|
Huang Y, Li XT, Jiang Z, Liang ZL, Liu W, Liu ZH, Li LZ, Yang ZN, Zhang GQ, Yin HQ, Liang JL, Zhou N, Liu SJ, Jiang CY. Mineral types dominate microbiomes and biogeochemical cycling in acid mine drainage. WATER RESEARCH 2025; 278:123367. [PMID: 40020468 DOI: 10.1016/j.watres.2025.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Acid mine drainage (AMD) environments are typically used as models to study the crucial roles of acidophilic microbes in aquatic environments. Nevertheless, knowledge regarding microbial-driven biogeochemical cycling across mining regions remains limited. In this study, a metagenomics-based approach was employed to explore the diversity, composition, and ecological functions of microbiomes in global AMD environments with different mineral types. A total of 226 metagenomes, covering 12 mineral types of AMD, were analyzed. As a result, 2114 microbial metagenome-assembled genomes (MAGs) were obtained, representing members from 33 bacterial phyla and 8 archaeal phyla. The core taxa and functional groups in AMDs were identified. Additionally, twelve bacterial and two archaeal lineages were discovered for the first time in AMD environments. The specific metabolic potentials of these genomes were also determined. Our results revealed a high level of specialization in the diversity structures and ecological functions of AMD microbial communities based on mineral-type conditions. Mineral type significantly contributed to the dissimilarity in the AMD microbiomes, especially in water environments, underscoring the pivotal role of mineral types in shaping the microbial community in the AMD environment. Collectively, these findings provide novel perspectives on the ecology and metabolism of microbiomes in extreme AMD environments globally.
Collapse
Affiliation(s)
- Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zong-Ling Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wan Liu
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Science, PR China
| | - Zheng-Hua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410006, PR China
| | - Liang-Zhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410006, PR China
| | - Zhen-Ni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Guo-Qing Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Science, PR China
| | - Hua-Qun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410006, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Bouzid K, Bataillard P, Bekiri F, Boultif M, Boutaleb A, Chaib W, Henni B. Assessment of soil heavy metal pollution: a case study of the abandoned mine of Ichmoul, Algeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:354. [PMID: 40038152 DOI: 10.1007/s10661-025-13785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
This study aimed to assess and evaluate heavy metal contamination in the soil and sediment surrounding the Ichemoul lead mine northeast of Algeria. Soil and sediment samples were analyzed to determine the pH, particle size, organic matter (OM) content, and heavy metal (HM) concentration. The total HM concentration was determined by digestion in a mixture of strong acids. Flame atomic absorption spectrophotometry (FAAS) was used to determine the copper (Cu), lead (Pb), and zinc (Zn) contents in the obtained solutions. Major elements were analyzed by X-ray fluorescence spectrometry (XRF). X-ray diffraction (XRD) was used to determine the mineralogy of processing tailings, lead concentrates inside the abandoned plant, and the soil surrounding the mine. The potential environmental contamination was assessed by comparing the concentrations of Cu, Zn, and Pb with the geochemical background and using the following pollution indices: enrichment factor (EF), geoaccumulation index (Igeo), and Nemerow pollution index (NPI). Most soil samples had Cu, Pb, and Zn concentrations significantly exceeding local and regional background values. Spearman correlation, variance coefficient (VC), and HM spatial distribution suggested anthropic contamination in this area due to the storage of ore-rich sulfide minerals and ore extraction and processing. The EF showed that the soil was significantly enriched in Pb. The Igeo and NPI showed that the soil near the old abandoned plant was severely contaminated. The mineralogical and chemical composition of the concentrate showed the presence of galena, anglesite, barite, and chalcopyrite, with 78% of the lead as a product of the flotation processes prevalent at that time. Its presence under weathering processes has contributed significantly to the soil contamination surrounding the treatment plant with heavy metals, especially Pb. The chemical composition of ore processing waste indicated a deficiency in heavy metals, so it does not provide an environmental risk. The spatial interpolation results of the HMs indicate that high concentrations of these elements are closer to sources of contamination. The hotspots with high HMs concentrations are limited and localized due to the carbonate environment, neutral to alkaline pH, and fine soil fractions.
Collapse
Affiliation(s)
- Khadidja Bouzid
- Scientific & Technical Research Center on Arid Regions CRSTRA, Biskra, Algeria.
| | - Philippe Bataillard
- Department of Water, Environment, Processes and Analysis, French Geological Survey, BRGM, 3 Av. Claude-Guillemin, BP 36009, 45060 Cedex 2, Orlean, France
| | - Fedia Bekiri
- Scientific & Technical Research Center on Arid Regions CRSTRA, Biskra, Algeria
| | - Meriem Boultif
- Scientific & Technical Research Center on Arid Regions CRSTRA, Biskra, Algeria
| | - Abdelhak Boutaleb
- Laboratory of Metallogeny and Magmatism of Algeria (LMMA), Geology Department, Faculty of Earth Sciences, University of Sciences and Technology, Houari Boumediene, Algiers, Algeria
| | - Warda Chaib
- Scientific & Technical Research Center on Arid Regions CRSTRA, Biskra, Algeria
| | - Bachir Henni
- Department of Natural Sciences, Higher Normal School of Kouba (ENS), 16308, Algiers, Algeria
| |
Collapse
|
3
|
Nunn B, Lord R, Minto J, Davidson CM, Manzoor N. Surface soil-dust contamination of Phalaris arundinacea grown on former lead mine sites: Implications for biomass use, phytoremediation and phytomanagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178013. [PMID: 39671939 DOI: 10.1016/j.scitotenv.2024.178013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
This study evaluated the contribution of soil dust deposited on the surface of reed canary grass (Phalaris arundinacea) grown on historic lead (Pb) mine sites to the overall contamination of the biomass, with implications for phytoremediation, valorization and utilization. By applying a novel combination of imaging of plant material using X-ray computed tomography (XCT) and scanning electron microscopy (SEM), with washing experiments and bulk analysis, the research aimed to distinguish between (a) Pb uptake through biological processes (phyto-extraction), and (b) surficial dust and physical entrapment of Pb-rich dust on plants cultivated in contaminated soils (surface-contamination). The study established the presence and distribution of Pb-rich particles, which were difficult to remove even by means of sequential washing in 1 M hydrochloric acid and surfactant. Analysis confirmed that the majority of Pb contamination was due to dust, but with significant levels remaining even after intense washing. This questions the effectiveness of phytoremediation in reducing bioavailable soil Pb levels through phyto-extraction, compared to achieving mechanical stabilization or reducing dispersion during phyto-management, and may represent a challenge to the viability of subsequent processing and use of the biomass product. Site-specific variations in contamination levels were observed, underscoring the influence of both local environmental conditions and plant morphology on dust accumulation. These observations highlight the necessity for standardized washing protocols to be adopted and for better reporting of the actual washing methods used in phytoremediation research, so as to correctly assess levels of contaminant uptake and actual remediation. The conclusion is that residual surficial dust contamination of biomass may have been overlooked in many previous phytoremediation studies and as a consequence the reported phyto-extraction potential has been over-estimated.
Collapse
Affiliation(s)
- Benjamin Nunn
- Department of Civil and Environmental Engineering, University of Strathclyde, 73 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Richard Lord
- Department of Civil and Environmental Engineering, University of Strathclyde, 73 Montrose Street, Glasgow G1 1XJ, United Kingdom; Net Zero Industry Innovation Centre, Teesside University, Middlesbrough, TS2 1DJ, United Kingdom.
| | - James Minto
- Department of Civil and Environmental Engineering, University of Strathclyde, 73 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Christine M Davidson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Neelam Manzoor
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
4
|
Yin Y, Cheng GM, Cheng H. Variation of bacterial community diversity and composition in saline-alkali soils reclaimed with flood irrigation and crop cultivation is driven by salinity and edaphic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177865. [PMID: 39652992 DOI: 10.1016/j.scitotenv.2024.177865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025]
Abstract
Reclamation is crucial for improving the fertility and productivity of saline-alkali soils, but the evolution of soil bacterial communities during the course of reclamation, which is an important feedback of soil micro-ecosystem, has received little attention. This study was conducted to investigate the variation of bacterial community diversity and composition in reclaimed saline-alkali soils based on space-for-time substitution, elucidate the underlying ecological mechanisms of bacterial community assembly processes, and identify the key driving factors of bacterial community evolution. The soil bacterial communities in undeveloped saline-alkali land and farmlands with different reclamation history (1-4, 5-6, and 10-25 years) in the Yellow River Delta, China, was analyzed by 16S rRNA gene amplicon sequencing. Soil bacterial diversity was found to increase significantly with reclamation history, and the entire bacterial community composition varied remarkably in the saline-alkali soils at different stages of reclamation. Halophilic and halotolerant bacteria dominated in the soils of undeveloped saline-alkali land (33.7 %), but their abundance diminished largely in the reclaimed soils. Analysis of bacterial community assembly processes suggested that heterogeneous selection dominated the change of bacterial communities in the saline-alkali soils that had been reclaimed for 1-4 years (52.8 %), 5-6 years (93.1 %), and 10-25 years (94.4 %). Salinity, soil organic carbon, pH, and moisture content were found to be the key environmental factors driving the evolution of bacterial communities in the reclaimed saline-alkali soils. While salinity directly shaped the bacterial community diversity, the other key drivers primarily governed the composition of bacterial communities in the saline-alkali soils during reclamation. These findings shed light on the probable ecological mechanisms of assembly processes and the environmental factors driving the soil bacterial communities during reclamation of saline-alkali lands, which could help better understand the evolution of soil bacterial communities under declining saline stress and optimize strategies to improve the agroecosystem health of saline-alkali lands.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima 7315193, Japan; Center for HOlobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima 7398530, Japan
| | - Grace M Cheng
- The Affiliated High School of Peking University, Beijing 100190, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Jeong H, Lee Y, Lee B, Jung E, Lee JY, Lee S. Applications of geographically weighted machine learning models for predicting soil heavy metal concentrations across mining sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177667. [PMID: 39579881 DOI: 10.1016/j.scitotenv.2024.177667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The accurate prediction of soil heavy metal contamination is crucial for the effective environmental management of abandoned mining areas. However, conventional machine learning models (CMLMs) often fail to account for the spatial heterogeneity of soil contamination, which limits their predictive accuracy. This study evaluated the performance of geographically weighted machine learning models (GWMLMs) in predicting soil Cd and Pb concentrations in abandoned mines in the Republic of Korea. We compared two GWMLMs (Geographically Weighted Random Forest and Geographically Weighted Extreme Gradient Boosting) with four CMLMs (Random Forest, Gradient Boosting, Light Gradient Boosting, and extreme Gradient Boosting). The data used in this study included soil samples from six abandoned mining sites with various geographical and soil input variables. The results showed that the GWMLMs consistently outperformed the CMLMs in predicting heavy metal contamination. For Cd predictions, GWMLMs exhibited on average 0.02 lower root mean square error and mean absolute error values, with a 0.26 increase in R2 values compared to CMLMs. Similarly, for Pb predictions, the GWMLMs showed 0.18 and 0.13 lower root mean square error and mean absolute error values, respectively, and a 0.17 increase in R2 relative to the CMLMs. The findings demonstrate the usefulness of GWMLMs for predicting the spatial distribution of soil heavy metals. SHapley Additive exPlanations analysis exhibited elevation and distance from abandoned mining sites as the most influential factors in predicting both Cd and Pb concentrations. This study highlights the value of GWMLMs that incorporate spatial heterogeneity into CMLMs for enhancing prediction accuracy and providing crucial insights for environmental management in mining-impacted regions.
Collapse
Affiliation(s)
- Hyemin Jeong
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Younghun Lee
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeongwon Lee
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Euisoo Jung
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jai-Young Lee
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Sangchul Lee
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Jia H, Luo J, Feng S, Ke X, Zhu Q, Zhang Y. The environmental capacity of rare heavy metal calculation in the Qinghai‒Tibet Plateau region via multifractal analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:919. [PMID: 39256236 DOI: 10.1007/s10661-024-13075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Accurate assessments of the soil environmental capacity are important for evaluating heavy metal pollution levels, facilitating effective prevention and control measures against such pollution. However, due to the lack of risk screening values for certain key elements, such as Rb, Sn, and Th, the assessment of the soil environmental capacity is not comprehensive. Therefore, in this study, the Menyuan-Huangzhong area of Qinghai Province was selected as the research area, and local background and risk values were established via multifractal analysis, thereby systematically examining the environmental capacity. The findings indicated that within the study area, the static environmental capacity values of 15 elements could be ranked as follows: Ba, Cu, Zn, Cr, Rb, Ni, La, Pb, Th, As, U, Sn, Tl, Cd, and Hg. In general, the residual capacity distribution of the various elements varied across the study area, with lower values primarily found in the northern and central regions and higher values obtained in the northwestern and southwestern regions. Between 2018 and 2068, there was a notable and rapid decline in the dynamic environmental capacity of Hg, Cu, and Cd in the study area. In the Menyuan-Huangzhong area of Qinghai, the average comprehensive soil environmental capacity index reached 0.91, indicating a moderate environmental capacity and slight associated health risks. The findings of this study could serve as a valuable reference for soil heavy metal pollution assessment, early warning, and management in this area; enhance the study of soil environmental capacity methods; and provide a theoretical foundation for subsequent research.
Collapse
Affiliation(s)
- Heran Jia
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Xinying Ke
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Qiaohui Zhu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuqi Zhang
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
7
|
Xiang Z, Wu S, Zhu L, Yang K, Lin D. Pollution characteristics and source apportionment of heavy metal(loid)s in soil and groundwater of a retired industrial park. J Environ Sci (China) 2024; 143:23-34. [PMID: 38644020 DOI: 10.1016/j.jes.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 04/23/2024]
Abstract
Heavy metal(loid)s (HMs) pollution has become a common and complex problem in industrial parks due to rapid industrialization and urbanization. Here, soil and groundwater were sampled from a retired industrial park to investigate the pollution characteristics of HMs. Results show that Ni, Pb, Cr, Zn, Cd, and Cu were the typical HMs in the soil. Source analysis with the positive matrix factorization model indicates that HMs in the topsoil stemmed from industrial activities, traffic emission, and natural source, and the groundwater HMs originated from industrial activities, groundwater-soil interaction, groundwater-rock interaction, and atmosphere deposition. The sequential extraction of soil HMs reveals that As and Hg were mainly distributed in the residue fraction, while Ni, Pb, Cr, Zn, Cd, and Cu mainly existed in the mobile fraction. Most HMs either in the total concentration or in the bioavailable fraction preferred to retain in soil as indicated by their high soil-water partitioning coefficients (Kd), and the Kd values were correlated with soil pH, groundwater redox potential, and dissolved oxygen. The relative stable soil-groundwater circumstance and the low active fraction contents limited the vertical migration of soil HMs and their release to groundwater. These findings increase our knowledge about HMs pollution characteristics of traditional industrial parks and provide a protocol for HMs pollution scrutinizing in large zones.
Collapse
Affiliation(s)
- Zijing Xiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijin Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
8
|
Shi YX, Bian DD, Liu X, Jiang JJ, Zhu XR, Zhang DZ, Liu QN, Tang BP, Dai LS. Transcriptome analysis provides new insight into the mechanism of Bombyx mori under zinc exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101320. [PMID: 39244797 DOI: 10.1016/j.cbd.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Zinc is a significant source of heavy metal pollution that poses risks to both human health and biodiversity. Excessive concentrations of zinc can hinder the growth and development of insects and trigger cell death through oxidative damage. The midgut is the main organ affected by exposure to heavy metals. The silkworm, a prominent insect species belonging to the Lepidoptera class and widely used in China, serves as a model for studying the genetic response to heavy metal stress. In this study, high-throughput sequencing technology was employed to investigate detoxification-related genes in the midgut that are induced by zinc exposure. A total of 11,320 unigenes and 14,723 transcripts were identified, with 553 differentially expressed genes (DEGs) detected, among which 394 were up-regulated and 159 were down-regulated. The Gene Ontology (GO) analysis revealed that 452 DEGs were involved in 18 biological process subclasses, 14 cellular component subclasses and 8 molecular functional subclasses. Furthermore, the KEGG analysis demonstrated enrichment in pathways such as Protein digestion, absorption and Lysosome. Validation of the expression levels of 9 detoxification-related DEGs through qRT-PCR confirmed the accuracy of the RNA-seq results. This study not only contributes new insights into the detoxification mechanisms mechanism of silkworms against zinc contamination, but also serves as a foundation basis for understanding the molecular detoxification processes in lepidopteran insects.
Collapse
Affiliation(s)
- Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
9
|
Wang L, Gao Y, Han X, Li Z, Mou F, Bi J, Zu Y, Wang J. Appropriate supply of sulfur alleviates lead toxicity and stimulates its accumulation in hyperaccumulator Arabis alpina. CHEMOSPHERE 2024; 362:142646. [PMID: 38897324 DOI: 10.1016/j.chemosphere.2024.142646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Widespread lead (Pb) contamination of agricultural soils is a global issue stemming from human activities. The remediation of Pb-contaminated soils used for agricultural purposes is critically important to safeguard food crop safety. Despite the modulating effects of sulfur (S) on plant responses to toxic heavy metals, the ecological, physiological, and molecular mechanisms driving such modulation in the Pb hyperaccumulator Arabis alpina L. remain unclear. Here, we investigated the effects of five S concentrations (0, 50, 100, 150, and 200 mg kg-1) on A. alpina grown in Pb-contaminated soil from a lead-zinc mining area. Under S50 (i.e., 50 mg kg-1) and S100 treatments, the Pb concentration in both shoots and roots of A. alpina significantly decreased compared to the control (S0). Specifically, the S50 treatment significantly enhanced Pb accumulation, plant biomass, and plant height, indicating that low S applications facilitate Pb accumulation from the soil and alleviate Pb toxicity. Additionally, S50, S100, and S150 treatments significantly improved photosynthetic rate, stomatal conductance, and intercellular CO2 concentration in A. alpina. Transcriptomic analysis showed that S50 and S100 treatments increased the expression of the LHCA, LHCB, psa, and psb genes, which had a significant impact on photosynthetic efficiency. S50 and S100 boosted glutathione (GSH) levels in A. alpina roots, and the increased expression of GST gene enhanced tolerance to environmental stress. In summary, these results suggest that an appropriate supply of S (S50 and S100) not only alleviates Pb toxicity by enhancing plant biomass, height, photosynthetic features, and sulfur metabolites but also stimulates Pb accumulation in the hyperaccumulator A. alpina. Our study elucidated the specific concentrations of sulfur that optimally enhance both Pb accumulation and stress tolerance in the hyperaccumulator A. alpina, providing novel insights into the practical application of sulfur in phytoremediation strategies and advancing our understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yuxuan Gao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Xiaohui Han
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Fengli Mou
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Jiayu Bi
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Jixiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
10
|
Bouzar B, Benzerzour M, Abriak NE. Innovative reuse of mineral waste for treatment of a contaminated soil by fluorine: synthesis of hydroxyapatite (HAP) and chemical performance assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34452-x. [PMID: 39066942 DOI: 10.1007/s11356-024-34452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This research aimed to introduce a novel method for the valorization of mineral waste, focusing on the development of hydroxyapatite (HAP) as an effective and economical adsorbent for immobilizing fluoride ions (F-) in soil. Hydroxyapatites were produced through the reaction between potassium dihydrogen phosphate (KH2PO4) and calcium-abundant limestone soil (CLS). X-ray diffraction analyses revealed that the primary phases in HAPCLS were brushite (CaHPO5·2H2O) and hydroxyapatite (Ca10(PO4)6(OH)2). The FTIR spectra exhibited characteristics akin to natural HAP, including the presence of orthophosphate groups (PO43-), hydroxyl groups (OH-), and both A/B types of carbonates in the apatite structure. The morphology of the synthesized HAP, as observed through SEM-EDS, was consistent with that of phosphocalcic hydroxyapatite crystals. The EDS results indicated a Ca/P atomic ratio of 1.7 for HAPCLS, aligning closely with the typical hydroxyapatite stoichiometry (Ca/P = 1.67). The application of HAP to reduce fluoride (F-) levels in soil proved to be successful; introducing 1% of various HAP formulations reduced the fluoride concentration from 51.4 mg/kg in untreated soil to levels below the IWSI limit (10 mg/kg), achieving a reduction to 8.1 mg/kg for HAPCLS. The sequential extraction of fluoride demonstrated that after soil treatment, fluoride was predominantly removed from the residual fraction (Fraction 4) and was effectively sequestered by the hydroxyapatites (Ca10(PO4)6(OH)2) through anionic exchange with hydroxide ions (OH-), resulting in the formation of stable and insoluble fluorapatite (Ca10(PO4)6F2).
Collapse
Affiliation(s)
- Bader Bouzar
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France.
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France.
| | - Mahfoud Benzerzour
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France
| | - Nor-Edine Abriak
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France
| |
Collapse
|
11
|
Ye Y, Shi YX, Jiang Q, Jin Y, Chen FX, Tang WH, Peng Q, Liu QN, Tang BP, Wang JL. Transcriptome Analysis Reveals Antioxidant Defense Mechanisms in the Silkworm Bombyx mori after Exposure to Lead. Animals (Basel) 2024; 14:1822. [PMID: 38929441 PMCID: PMC11201215 DOI: 10.3390/ani14121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.
Collapse
Affiliation(s)
- Yang Ye
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Qi Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Fan-Xing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
12
|
Wu Q, Li R, Chen J, Yang Z, Li S, Yang Z, Liang Z, Gao L. Historical construction, quantitative source identification and risk assessment of heavy metals contamination in sediments from the Pearl River Estuary, South China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120943. [PMID: 38701583 DOI: 10.1016/j.jenvman.2024.120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Historical reconstruction of heavy metals (HMs) contamination in sediments is a key for understanding the effects of anthropogenic stresses on water bodies and predicting the variation trends of environmental state. In this work, eighteen sediment cores from the Pearl River Estuary (PRE) were collected to determine concentrations and geochemical fractions of HMs. Then, their potential sources and the relative contributions during different time periods were quantitatively identified by integrating lead-210 (210Pb) radioisotope dating technique into positive matrix factorisation (PMF) method. Pollution levels and potential ecological risks (PERs) caused by HMs were accurately assessed by enrichment factors (EF) based on establishment of their geochemical baselines (GCBs) and multiparameter evaluation index (MPE). HMs concentrations generally showed a particle size- and organic matter-dependent distribution pattern. During the period of 1958-1978, HMs concentrations remained at low levels with agricultural activities and natural processes being identified as the predominant sources and averagely contributing >60%. Since the reform and opening-up in 1978, industrial and traffic factors become the primary anthropogenic sources of HMs (such as Cu, Zn, Cd, Pb, Cr, and Ni), averagely increasing from 22.1% to 28.1% and from 11.6% to 23.4%, respectively. Conversely, the contributions of agricultural and natural factors decreased from 37.0% to 28.5% and from 29.3% to 20.0%, respectively. Subsequently, implementation of environmental preservation policies was mainly responsible for the declining trend of HMs after 2010. Little enrichment of sediment Cu, Zn, Pb, Cr and Ni with EFs (0.15-1.43) was found in the PRE, whereas EFs of Cd (1.16-2.70) demonstrated a slight to moderate enrichment. MPE indices of Cu (50.7-252), Pb (52.0-147), Zn (35.5-130), Ni (19.6-71.5), Cr (14.2-68.8) and Cd (0-9.90) highlighted their potential ecological hazards due to their non-residual fractions and anthropogenic sources.
Collapse
Affiliation(s)
- Qirui Wu
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jianyao Chen
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhigang Yang
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoheng Li
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zaizhi Yang
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuobing Liang
- Carbon-Water Research Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Lei Gao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
13
|
He X, Wang Q, Jin Y, Chen Y, Huang L. Properties of biochar colloids and behaviors in the soil environment: Influencing the migration of heavy metals. ENVIRONMENTAL RESEARCH 2024; 247:118340. [PMID: 38309559 DOI: 10.1016/j.envres.2024.118340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Biochar pyrolyzed by biomass shows excellent application prospects for heavy metal (HM) remediation, but a part of biochar can be inevitably broken into micro- and nano-sized biochar colloids (BCs) under biological and physicochemical actions in soil. BCs derived in the process of remediation have rough surface, rich elemental species and contents, and multiple functional groups, which are similar to biochar. However, BCs have some unique colloidal properties because of their micro and nano scale size. Due to these properties, BCs exhibit strong mobilities in the soil environment, and the mobilities may be influenced by a combination of colloidal properties of BCs and environmental factors including soil colloids and other soil environmental conditions. In addition, BCs may have affinity effects on HMs through electrostatic adsorption, ion exchange, surface complexation, precipitation/co-precipitation, and redox because of the properties such as large specific surface area, and rich oxygen-containing functional groups and minerals on the surface. This review summarizes the physicochemical and migratory properties of BCs, and the internal and external factors affecting the migration of BCs in the soil environment, and the possible effects of BCs on HMs are high-lighted. This review provides a theoretical basis for the optimization of soil contaminated with HMs after remediation using biochar. Notably, the innovative idea that BCs may influence the presence of HMs in soil needs to be further confirmed by more targeted detection and analysis methods in future studies to prevent the possible environmental toxicities of the lateral and vertical diffusion of HM caused by BCs in soil.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yinie Jin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China.
| |
Collapse
|
14
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. Can rare earth elements be recovered from abandoned mine tailings by means of electrokinetic-assisted phytoextraction? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26747-26759. [PMID: 38456984 PMCID: PMC11052889 DOI: 10.1007/s11356-024-32759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Given the high impact of traditional mining, the recovery of rare earth elements (REEs) from hazardous waste materials could become an option for the future in accordance with the principles of the circular economy. In this work, the technical feasibility of REEs recovery from metal mine tailings has been explored using electrokinetic-assisted phytoremediation with ryegrass (Lolium perenne L.). Phytoextraction combined with both AC current and DC current with reversal polarity was applied (1 V cm-1, 8 h day-1) to real mine tailings containing a total concentration of REEs (Sc, Y, La, Ce, Pr, and Nd) of around 146 mg kg-1. Changes in REEs geochemical fractionation and their concentrations in the soil pore water showed the mobilization of REEs caused by plants and electric current; REE availability was increased to a higher extent for combined electrokinetic-assisted phytoextraction treatments showing the relevant role of plants in the process. Our results demonstrated the initial hypothesis that it is feasible to recover REEs from real metal mining waste by phytoextraction and that the performance of this technology can be significantly improved by applying electric current, especially of the AC type, which increased REE accumulation in ryegrass in the range 57-68% as compared to that of the treatment without electric field application.
Collapse
Affiliation(s)
- Hassay Lizeth Medina-Díaz
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, S/N, 13071, Ciudad Real, Spain
| | - Francisco Javier López-Bellido
- School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, S/N, 13003, Ciudad Real, Spain
| | - Jacinto Alonso-Azcárate
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/N, 45071, Toledo, Spain
| | - Francisco Jesús Fernández-Morales
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, S/N, 13071, Ciudad Real, Spain
| | - Luis Rodríguez
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, S/N, 13071, Ciudad Real, Spain.
| |
Collapse
|
15
|
Zhu S, Zhang Z, Wen C, Zhu S, Li C, Xu H, Luo X. Transport and transformations of cadmium in water-biofilm-sediment phases as affected by hydrodynamic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120368. [PMID: 38394874 DOI: 10.1016/j.jenvman.2024.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Hydrodynamic conditions play a crucial role in governing the fate, transport, and risks of metal elements. However, the contribution of hydrodynamic conditions to the fate and transport of heavy metals among water, sediment, and biofilm phases is poorly understood. In our study, we conducted experiments in controlled hydrodynamic conditions using a total of 6 two-phase and 9 three-phase mesocosms consisting of water, biofilm, and sediment. We also measured Cd (cadmium) specification in different phases to assess how hydrodynamic forces control Cd bioavailability. We found that turbulent flow destroyed the surface morphology of the biofilm and significantly decreased the content of extracellular polymeric substances (p < 0.05). This led to a decrease in the biofilm's adsorption capacity for Cd, with the maximum adsorption capacity (0.124 mg/g) being one-tenth of that under static conditions (1.256 mg/g). The Cd chemical forms in the biofilm and sediment were significantly different, with the highest amount of Cd in the biofilm being acid-exchangeable, accounting for up to 95.1% of the total Cd content. Cd was more easily released in the biofilm due to its weak binding state, while Cd in the sediment existed in more stable chemical forms. Hydrodynamic conditions altered the migration behavior and distribution characteristics of Cd in the system by changing the adsorption capacity of the biofilm and sediment for Cd. Cd mobility increased in laminar flow but decreased in turbulent flow. These results enhance our understanding of the underlying mechanisms that control the mobility and bioavailability of metals in aquatic environments with varying hydrodynamic conditions.
Collapse
Affiliation(s)
- Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Zixiang Zhang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shiqi Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chunyan Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Hansen Xu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
16
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. A new hyperaccumulator plant (Spergularia rubra) for the decontamination of mine tailings through electrokinetic-assisted phytoextraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169543. [PMID: 38145688 DOI: 10.1016/j.scitotenv.2023.169543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The screening of new effective metal hyperaccumulators is essential for the development of profitable phytoremediation projects in highly degraded environments such as mining areas. The goal of this research was to analyze the phytoextraction potential of the native plant Spergularia rubra to decontaminate and eventually recover metals (phytomining) from the mine tailings (belonging to an abandoned Pb/Zn Spanish mine) in which it grows spontaneously. To do so, the ability of this plant species to accumulate metals was evaluated both under natural conditions and through simple and electrokinetically assisted phytoextraction tests using alternating current and different combinations of voltage gradient (1/2 V cm-1) and application time (6/12 h per day). The complete duration of the greenhouse trial was 64 days, although alternating current was applied only during the last 14 days. The results obtained demonstrated the exceptional effectiveness of S. rubra for metal hyperaccumulation and growth without affecting toxicity in highly contaminated mining waste. Zn was the metal accumulated to a higher extent in the shoots, reaching concentrations up to 17,800 mg kg-1; Pb was mainly accumulated in the roots reaching a maximum concentration of 8709 mg kg-1. Cu and Cd were accumulated to a lesser extent but the bioconcentration factors were much >1. It has been proved that S. rubra is a hyperaccumulator species for Zn and Cd both in natural and greenhouse conditions and, very probably, Pb in wild conditions. The application of AC current did not significantly increase metal concentrations in plant tissues but it was able to increase the aerial biomass of S. rubra by 49.8 %. As a result, the phytoextraction yields of all metals were significantly improved as compared to wild conditions (up to 86 % for Zn). It could open new expectations about the economic viability of recovering high-value metals from mine tailings.
Collapse
Affiliation(s)
- Hassay Lizeth Medina-Díaz
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - Francisco Javier López-Bellido
- School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, s./n, 13003 Ciudad Real, Spain
| | - Jacinto Alonso-Azcárate
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, s/n, 45071 Toledo, Spain
| | - Francisco Jesús Fernández-Morales
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - Luis Rodríguez
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
17
|
Fernández-Martínez R, Corrochano N, Álvarez-Quintana J, Ordóñez A, Álvarez R, Rucandio I. Assessment of the ecological risk and mobility of arsenic and heavy metals in soils and mine tailings from the Carmina mine site (Asturias, NW Spain). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:90. [PMID: 38367139 PMCID: PMC10874346 DOI: 10.1007/s10653-023-01848-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/27/2023] [Indexed: 02/19/2024]
Abstract
An evaluation of the pollution, distribution, and mobility of arsenic and heavy metals in spoil heaps and soils surrounding the abandoned Carmina lead-zinc mine (Asturias, northern Spain) was carried out. Fractionation of arsenic was performed by an arsenic-specific sequential extraction method; while, heavy metal fractionations was carried out using the protocol of the Bureau Community of Reference (BCR) (now renamed Standards, Measurements and Testing Programme). Arsenic appeared predominantly associated with amorphous iron oxyhydroxides. Among the heavy metals, lead and zinc showed high availability since significant amounts were extracted in the nonresidual fractions; whereas, chromium, copper and nickel showed very low availability, indicating their lithogenic origins. The results showed that the extractability of heavy metals in soils is influenced mainly by the presence of iron and manganese oxides as well as by pH and Eh. Multiple pollution indices, including the enrichment factor (EF), geoaccumulation index (Igeo), ecological risk index (Er) and potential ecological risk index (PERI), were used to assess the degree of soil pollution in the mine area. All results showed that lead was the key factor causing the pollution and ecological risk in the studied area, and copper, zinc and arsenic also had significant contributions. Notably, the sites at higher risk coincided with those with high availability of arsenic and heavy metals. This study provides an integrative approach that serves as a powerful tool to evaluate the metal pollution status and potential threats to the local environment of abandoned mining areas, and the results are useful for making management decisions in these areas.
Collapse
Affiliation(s)
- Rodolfo Fernández-Martínez
- Departamento de Tecnología, División de Química, Unidad de Espectroscopía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain.
| | - Noelia Corrochano
- Departamento de Tecnología, División de Química, Unidad de Espectroscopía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain
| | - Jessica Álvarez-Quintana
- Escuela de Ingeniería de Minas, Energía y Materiales, Dpto. de Explotación y Prospección de Minas, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain
| | - Almudena Ordóñez
- Escuela de Ingeniería de Minas, Energía y Materiales, Dpto. de Explotación y Prospección de Minas, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain
| | - Rodrigo Álvarez
- Escuela de Ingeniería de Minas, Energía y Materiales, Dpto. de Explotación y Prospección de Minas, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain
| | - Isabel Rucandio
- Departamento de Tecnología, División de Química, Unidad de Espectroscopía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain
| |
Collapse
|
18
|
Chen Z, Chen Y, Liang J, Sun Z, Zhao H, Huang Y. The Release and Migration of Cr in the Soil under Alternating Wet-Dry Conditions. TOXICS 2024; 12:140. [PMID: 38393235 PMCID: PMC10891877 DOI: 10.3390/toxics12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
In recent decades, chromium contamination in soil has emerged as a serious environmental issue, demanding an exploration of chromium's behavioral patterns in different soil conditions. This study aims to simulate the release, migration, and environmental impact of chromium (Cr) in contaminated soils under natural rainfall conditions (wet-dry cycles). Clean soils sourced from Panzhihua were used to cultivate chromium-containing soils. Simulated rainfall, prepared in the laboratory, was applied to the cultivated chromium-containing soils in indoor simulated leaching experiments. The experiments simulated three years of rainfall in Panzhihua. The results indicate that soils with higher initial Cr contents result in higher Cr concentrations in the leachate, but all soils exhibit a low cumulative Cr release. The leachate shows similar patterns in total organic carbon (TOC), pH, electrical conductivity, and Cr content changes. An analysis of the speciation of Cr in the soil after leaching reveals a significant decrease in the exchangeable fraction for each Cr species, while the residual and oxidizable Cr fractions exhibit notable increases. The wet-dry cycle has the following effects on the soil: it induces internal reduction reactions in the soil, leading to the reduction of Cr(VI) to Cr(III); it alters the binding of Cr ions to the soil, affecting the migration of chromium; and it involves microorganisms in chemical processes that consume organic matter in the soil. After three years of rainwater leaching, chromium-containing soils released a relatively low cumulative amount of total chromium, resulting in a reduced potential risk of groundwater system contamination. Most of the chromium in the chromium-containing soil is fixed within the soil, leading to less biotoxicity.
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
| | - Ying Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
| | - Jing Liang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; (J.L.); (Z.S.)
| | - Zhiyu Sun
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; (J.L.); (Z.S.)
| | - Haoren Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; (J.L.); (Z.S.)
| |
Collapse
|
19
|
Du Y, Tian Z, Zhao Y, Wang X, Ma Z, Yu C. Exploring the accumulation capacity of dominant plants based on soil heavy metals forms and assessing heavy metals contamination characteristics near gold tailings ponds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119838. [PMID: 38145590 DOI: 10.1016/j.jenvman.2023.119838] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Heavy metal contamination of soil commonly accompanies problems around gold mine tailings ponds. Fully investigating the distribution characteristics of heavy metals and the survival strategies of dominant plants in contaminated soils is crucial for effective pollution management and remediation. This study aims to investigate the contamination characteristics, sources of heavy metals (As, Cd, Pb, Hg, Cu, Zn, Cr, and Ni) in soils around gold mine tailings ponds areas (JHH and WZ) and to clarify the form distribution of heavy metals (As, Cd, Pb, Hg) in contaminated plots as well as their accumulation and translocation in native dominant plants. The results of the study showed that the concentrations of As, Pb, Cd, Cu, and Zn in soil exceeded the national limits at parts of the sampling sites in both study areas. The Nemerow pollution index showed that both study areas reached extreme high pollution levels. Spatial analysis showed that the main areas of contamination were concentrated around metallurgical plants and tailings ponds, with Cd exhibiting the most extensive area of contamination. In the JHH, As (74%), Cd (66%), Pb (77%), Zn (47%) were mainly from tailings releases, and Cu (52%) and Hg (51%) were mainly from gold ore smelting. In the WZ, As (42%), Cd (41%), Pb (73%), Cu (47%), and Zn (41%) were mainly from tailings releases. As, Cd, Pb, and Hg were mostly present in the residue state, and the proportion of water-soluble, ion-exchangeable, and carbonate-bound forms of Cd (19.93%) was significantly higher than that of other heavy metals. Artemisia L. and Amaranthus L. are the primary dominating plants, which exhibited superior accumulation of Cd compared to As, Pb, and Hg, and Artemisia L. demonstrated a robust translocation capacity for As, Pb, and Hg. Compared to the concentrations of other forms of soil heavy metals, the heavy metal content in Artemisia L correlates significantly better with the total soil heavy metal concentration. These results offer additional systematic data support and a deeper theoretical foundation to bolster pollution-control and ecological remediation efforts in mining areas.
Collapse
Affiliation(s)
- Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zhijun Tian
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Yunfeng Zhao
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Xinrong Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zizhen Ma
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
20
|
Alizadeh A, Ghorbani J, Motamedi J, Vahabzadeh G, van der Ent A, Edraki M. Soil contamination around porphyry copper mines: an example from a semi-arid climate. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:204. [PMID: 38279033 DOI: 10.1007/s10661-024-12384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Extraction and processing of disseminated metalliferous ores, porphyry copper in particular, results in significant tonnages of waste and can cause severe disturbances and contamination in natural ecosystems. This is particularly important in semi-arid climates where natural soils are often deprived of organic matter and nutrients. This study was conducted on seven sites around Sungun Copper Mine, northwest Iran. Soil texture, EC, pH, and concentrations of nutrients, organic matter, along with 16 metal and metalloids were measured in 94 soil samples. Results showed a gradient of contamination from low contamination in natural hillsides to high contamination in mine waste depositories, Waste Dump and Oxide Dump, alongside Pakhir and Sungun Rivers. Nutrient deficiency occurred in disturbed sites. The main contaminant point sources were Waste Dump, mine pit drainage, and Oxide Dump. The results of Non-metric multidimensional scaling ordination showed elevated Cd, Zn, Fe, Cu, Pb, As, Mo, Mn, Co, S concentrations, high EC, and higher sand percentage in the sites affected by mine waste and acid mine drainage. Geo-Accumulation and Potential Ecological Risk Indices indicated that Pakhir riverside, Sungun riverside, and Oxide Dump have severe to moderate levels of environmental risks. Positive correlations between certain metal elements suggest common sources and similar reaction pathways, which may contribute to their similar geochemical behaviour in transport, deposition, and interdependence. Overall, the deficiency of organic matter and nutrients along with the soil sandy texture in contaminated sites of Sungun Copper Mine are the main limiting factors in managing metal mobility and soil remediation.
Collapse
Affiliation(s)
- Arezu Alizadeh
- Department of Rangeland Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Jamshid Ghorbani
- Department of Rangeland Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
- Department of Earth, Ocean, and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK.
| | - Javad Motamedi
- Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Ghorban Vahabzadeh
- Department of Watershed Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Antony van der Ent
- Center for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Shi J, Jiang L, Yang J, Guo Z, Li K, Peng Y, Ibrahim N, Liu H, Liang Y, Yin H, Liu X. Transport Behavior of Cd 2+ in Highly Weathered Acidic Soils and Shaping in Soil Microbial Community Structure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:73-89. [PMID: 38117305 DOI: 10.1007/s00244-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd2+ in acid smelting site soils at different depths was examined. The remodeling effect of Cd2+ migration behavior on microbial community structure and the dominant microorganisms in lead-zinc sites soils was analyzed using high-throughput sequencing of 16S rRNA gene amplicons. The results revealed a specific flow rate in the range of 0.3-0.5 mL/min that the convection and dispersion have no obvious effect on Cd2+ migration. The variation of packing porosity could only influence the migration behavior by changing the average pore velocity, but cannot change the adsorption efficiency of soil particles. The Cd has stronger migration capacity under the reactivation of acidic seepage fluid. However, in the alkaline solution, the physical properties of soil, especially pores, intercept the Cd compounds, further affecting their migration capacity. The acid-site soil with high content of SOM, amorphous Fe oxides, crystalline Fe/Mn/Al oxides, goethite, and hematite has stronger ability to adsorb and retain Cd2+. However, higher content of kaolinite in acidic soil will increase the potential migration of Cd2+. Besides, the migration behavior of Cd2+ results in simplified soil microbial communities. Under Cd stress, Cd-tolerant genera (Bacteroides, Sphingomonas, Bradyrhizobium, and Corynebacterium) and bacteria with both acid-Cd tolerance (WCHB 1-84) were distinguished. The Ralstonia showed a high enrichment degree in alkaline Cd2+ infiltration solution (pH 10.0). Compared to the influence of Cd2+ stress, soil pH had a stronger ability to shape the microbial community in the soil during the process of Cd2+ migration.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Nazidi Ibrahim
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
22
|
Acosta Hernández I, Muñoz Morales M, Fernández Morales FJ, Rodríguez Romero L, Villaseñor Camacho J. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics. ENVIRONMENTAL RESEARCH 2023; 238:117183. [PMID: 37769830 DOI: 10.1016/j.envres.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.
Collapse
Affiliation(s)
- Irene Acosta Hernández
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Martín Muñoz Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Francisco Jesús Fernández Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Luis Rodríguez Romero
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - José Villaseñor Camacho
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain.
| |
Collapse
|
23
|
Zúñiga-Vázquez D, Armienta MA, Cruz O, Aguayo A, Pérez-Martínez I, Morales-Arredondo JI. Edaphic properties as pieces of evidence of tailings deposit on soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9175-9197. [PMID: 37356036 PMCID: PMC10673738 DOI: 10.1007/s10653-023-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Mine tailings are one of the primary contaminant sources of heavy metals and metalloids in the soil. Besides increasing the concentration of potentially toxic elements (PTEs), tailings may modify the edaphic conditions and decrease the buffer capacity of impacted soils. The influence of tailings may reach distances far from the impoundments depending on the transport path and the specific transport mean: air, rain (runoff and infiltration), or acid mine drainage. In this study, soil samples from various horizons were collected in trial pits along a transect, at different distances from sulfide tailings. Soil analysis included texture, organic matter, alkalinity, porous space, carbonates, pH, electrical conductivity, real density, apparent density, total sulfur, main mineralogy, and total concentrations of As, Cd, Pb, Fe, and Zn. Graphical and statistical interpretation of the results showed that real density and porous space are the leading indicators of the tailings dispersion and accumulation and that pH is not a significant parameter (all values were above the neutrality) due to the limestone abundance in the area. However, Zn and Cd concentrations had an inverse relation with pH. Differences in the concentrations of PTEs between the superficial and deep layers that increased toward the tailings were also observed. Gypsum was only present in the closest samples to the tailings and may also be an indicator of tailings' influence on soils. This study allowed us to identify general edaphic parameters as a first and quick means to determine the tailings contamination of soils.
Collapse
Affiliation(s)
- Diana Zúñiga-Vázquez
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico
| | - María Aurora Armienta
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico.
| | - Olivia Cruz
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico
| | - Alejandra Aguayo
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico
| | | | | |
Collapse
|
24
|
Cuevas JG, Faz A, Martínez-Martínez S, Gabarrón M, Beltrá JC, Martínez J, Acosta JA. Spatial distribution and pollution evaluation in dry riverbeds affected by mine tailings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9157-9173. [PMID: 36645626 PMCID: PMC10673978 DOI: 10.1007/s10653-022-01469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The objective of this study was to evaluate the level of pollution, sources and potential risk of heavy metals (Zn, Cu, Mn, Cd, Cr, Ni, Fe and Pb) and arsenic (As) in four dry riverbeds affected by mine tailing, which drain into one of the biggest coastal lagoon of Europe (Mar Menor). El Beal, La Carrasquilla, Las Matildes and Ponce dry riverbeds sediments were sampled along its course (20, 18, 13, 19 samples were collected, respectively), and total/soluble metal(loid)s, water soluble ions, nitrogen, and organic/inorganic carbon contents were analyzed. Spatial distribution, principal component analysis (PCA), hierarchical cluster analysis (HCA), contamination factor (Cf), pollution load index (PLI) and potential ecological risk index (RI) were used to identify the possible sources of metal(loid)s and to assess the sediment pollution status. The results showed that the mean total concentrations of As, Cu, Cd, Mn, Zn and Pb exceeded the natural background levels of the study area, with the highest values located close to the mining areas. Correlation and cluster analysis identified that Cd and Zn were associated mainly with anthropogenic activities for all riverbeds, while Cr and Ni come from parent. PLI graded the four riverbeds as contaminated by heavy metals, while RI manifested that 100% of samples located in El Beal, La Carrasquilla and Las Matildes had a significantly high ecological risk. Therefore, this study suggests that mine wastes are the main source of metal(loids) contamination in the dry riverbeds, which results can be used to design actions and measures to reduce the environmental impact of metal(loid)s in the Mar Menor coastal lagoon.
Collapse
Affiliation(s)
- J G Cuevas
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
| | - A Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - S Martínez-Martínez
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - M Gabarrón
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - J C Beltrá
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - J Martínez
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - J A Acosta
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| |
Collapse
|
25
|
Prartono T, Natih NMN, Hartanto MT, Atmadipoera AS, Afifah R, Susanti S, Yolanda DS, Maulana E, Lestari L, Suteja Y, Purwiyanto AIS. Multi-metals analysis in sediment of the North Sumatra coast, Indonesia: The environmental status. MARINE POLLUTION BULLETIN 2023; 196:115666. [PMID: 37857058 DOI: 10.1016/j.marpolbul.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
This study aims to analyze multi-metals in marine sediment to provide the relative nature of metal concentrations. Sediment samples were collected in representative coasts of natural and more developing zones. The Sequential Extraction method was used to treat four metal associated hosts determined using the ICP-OES. Geo-accumulation index, Enrichment Factor and Principal Component analysis were used to evaluate. The metal concentrations varied and most of them appeared to show a gradual decrease from east, west to the isle coasts. The coastal environment has been recognized to contain non-residual associated metals suggesting the influence of anthropogenic metal input. These bioavailable fractions also show gradual decrease from the East coast to West and Isle coast. The environmental assessment reveals that most of these areas were categorized as unpolluted and concentration of some elements west and isle coast are relatively close to those of nature sediment.
Collapse
Affiliation(s)
- Tri Prartono
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia.
| | - Nyoman Metta Nyanakumara Natih
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Mochamad Tri Hartanto
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Agus Soleh Atmadipoera
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Rifdina Afifah
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Santi Susanti
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Dewy Septiyanti Yolanda
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Erwin Maulana
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Lestari Lestari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih I, Jakarta 14430, Indonesia
| | - Yulianto Suteja
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University, Jl, Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia
| | - Anna Ida Sunaryo Purwiyanto
- Marine Science Department, Faculty of Mathemathic and Natural Science, Sriwijaya University, Palembang 30862, Indonesia
| |
Collapse
|
26
|
He K, Wang J, Geng H, Qin Z, Li N, Zhang Y, Yang R, Feng S, Wang B. Will different land uses affect heavy metal pollution in soils of roadside trees? An empirical study from Shanghai. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1388. [PMID: 37897518 DOI: 10.1007/s10661-023-12021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Heavy metal pollution in roadside soil may harm humans, animals, plants, and local ecosystems. This study aimed to explore the sources and potential ecological risks of heavy metals in soils of roadside trees under different land uses, using soil samples collected from 136 roads across 16 administrative districts in Shanghai. The contents, pollution characteristics, potential ecological risks, and sources of seven heavy metals were analyzed, including Cr, Ni, Cd, Pb, As, Cu, and Zn. Results showed that (1) land use patterns affected the heavy metal contents, with industrial and construction areas showing higher contents while agricultural and forestry areas lower; (2) the ranking of heavy metal pollution levels was Cd > As > Pb > Cu > Ni > Cr > Zn. Cd exhibited the highest potential ecological risk, falling within the moderate to considerable potential ecological risk interval; (3) the sources of Cu, Zn, Cr, Ni, Cd, and Pb were associated with traffic emissions, whereas As had independent other sources and Pb in industrial and construction areas was also influenced by industrial emissions. These results provide valuable references on the control of heavy metal pollutants and the management of land uses in megacities.
Collapse
Affiliation(s)
- Kun He
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junjie Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Hefang Geng
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China
| | - Zhenyan Qin
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Nan Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yanting Zhang
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China
| | - Ruiqing Yang
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China
| | - Shucheng Feng
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China.
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China.
| | - Benyao Wang
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China.
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China.
| |
Collapse
|
27
|
Liu B, Jiang S, Guan DX, Song X, Li Y, Zhou S, Wang B, Gao B. Geochemical fractionation, bioaccessibility and ecological risk of metallic elements in the weathering profiles of typical skarn-type copper tailings from Tongling, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164859. [PMID: 37336397 DOI: 10.1016/j.scitotenv.2023.164859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Nonferrous metal tailings have long posed a significant threat to the surrounding environment and population. Previous studies have primarily focused on heavy metal pollution in the vicinity of sulfide tailings, while little attention was given to metal mobility and bioavailability within skarn-type tailings profile during weathering. Therefore, this study aimed to investigate the fractionation, bioaccessibility, and ecological risk associated with metallic elements (MEs, including Pb, Cd, Cr, Zn, and Cu) in two representative weathering copper-tailings profiles of Tongling mine (China). This was achieved through the use of mineralogical analyses, BCR extractions (F1: exchangeable, F2: reducible, F3: oxidizable, F4: residual fraction), in-vitro gastrointestinal simulation test (PBET) and risk assessment models. The mineral compositions of two weathering profiles were similar, with quartz and calcite being the dominant minerals, along with minor amounts of siderite, hematite and spangolite. The mean concentration in the tailings profile was approximately 0.31 (Cr), 1.8 (Pb), 12 (Zn), 33 (Cd) or 34 (Cu) times of the local background values (LBVs). The mean content of the bottom weakly-weathering layer in profile was about 0.36 (Cr), 0.91 (Pb), 1.91 (Cd), 2.73 (Zn) or 2.68 (Cu) times of the surface oxide layer, indicating a strong weathering-leaching effect. The average proportion of BCR-F1 fraction for Cd (30.94 %) was the highest among the five MEs, possibly due to its association with calcite. The PBET-extracted fractions for Cd, Zn and Cu were significantly positively correlated with the F1, F2 and F3 fractions of BCR, suggesting that these elements have higher bioavailability/bioaccessibility. The assessment results indicated that Cd posed a higher health risk, while the risk of Cu, Zn, and Pb is relatively low and Cr is safe. In conclusion, this study provides valuable insights into the environmental geochemical behavior and potential risks of MEs in skarn-type non-ferrous metal tailings ponds.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China.
| | - Shuo Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaopeng Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Bo Gao
- Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
28
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Insights on the assembly processes and drivers of soil microbial communities in different depth layers in an abandoned polymetallic mining district. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132043. [PMID: 37453349 DOI: 10.1016/j.jhazmat.2023.132043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Soil microbes, which play crucial roles in maintaining soil functions and restoring degraded lands, are impacted by heavy metal pollution. This study investigated the vertical distribution of bacterial communities along the soil profiles across four types of areas (heavy metal pollution level: tailings heap area > phytoremediation area > natural restoration area > original forest area) in an abandoned polymetallic mining district by 16S rRNA sequencing, and aimed to disentangle the assembly mechanisms and key drivers of the vertical variation in bacterial community structure. Bacterial diversity and composition were found to vary remarkably between the depth layers in all types of areas, with heterogeneous selection dominated the vertical distribution pattern of soil bacterial communities. Pearson correlation analysis and partial Mantel test revealed that soil nutrients mainly shaped the vertical distribution of bacterial microbiota along soil profiles in the original forest and natural restoration areas. Ni, As, and bioavailable As were the key drivers regulating the vertical variation of bacterial assemblages in the phytoremediation area, whereas Pb, pH, soil organic carbon, and available nitrogen were crucial drivers in the tailings heap area. These findings reveal the predominant assembly mechanisms and drivers governing the vertical distribution of soil bacterial microbiota and indicate the efficiency of phytoremediation and ecological restoration on ameliorating edaphic micro-ecosystems in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
29
|
Li X, Xu J, Li L, Zhang X, Shen Y, Li H, Wan Y, Gao T. Environmental Parameters Determine the Structure of Soil Bacteria under Different Land use Types in Tailings Area. GEOMICROBIOLOGY JOURNAL 2023; 40:640-653. [DOI: 10.1080/01490451.2023.2227617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/14/2023] [Indexed: 03/06/2025]
Affiliation(s)
- Xiaoxiao Li
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Jing Xu
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Lu Li
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Xinyue Zhang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Yuanyuan Shen
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Haijuan Li
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Yingna Wan
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| | - Tianpeng Gao
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, P.R. China
| |
Collapse
|
30
|
Modabberi S, Tashakor M, Rajabian N, Khorasanipour M, Esmaeilzadeh E, Ambrosino M, Cicchella D. Characterization and chemical fractionation of potentially toxic elements in soils of a pre-mining mineralized area; an evaluation of mobility and environmental risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4795-4815. [PMID: 36941446 DOI: 10.1007/s10653-023-01537-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/08/2023] [Indexed: 05/25/2023]
Abstract
The environmental geochemical characterization of mineralized areas prior to mining does not receive adequate attention. This study shows trace element distribution in soils of two unexploited porphyry copper deposits located in Darreh-Zereshk and Ali-Abad in central Iran. The study was carried out using a compositional data analysis (CoDa) approach and combination of multivariate statistics and clustering techniques, which made it possible to identify the geochemical associations representing the different areas of the mineral deposits. The results of the chemical analyses, performed by ICP-MS, revealed high concentrations of those elements typically associated with porphyry deposits (As, Co, Cu, Mo, Ni, Pb, and Zn). The typical zonal pattern with an anomaly of Cu in central parts of the system and the prevalence of epithermal elements (Ag, Cd, Pb, and Zn) toward the peripheral propylitic alteration zone were recognized. The XRD analysis of selected soil samples allowed us to determine the distribution of elements within the different carrier minerals. Afterward, geochemical speciation patterns were investigated by a four-step sequential extraction procedure based on BCR protocol. The residual fraction consisting of primary resistant minerals was found to be the main host for As (73-93.4%), Cr (65.1-79.6%), Cu (54.3-81.4%), Ni (58.9-80.6%), V (75.9-88%), and Zn (56.5-60.5%) in the studied soils. Even though these elements are not readily leachable, their behavior and distribution could be largely affected by the mining operation and consequent changes in the physicochemical properties of the soil. The soluble-exchangeable phase was only less than 15% of the total extractions for all elements, except for Cd. With respect to the mobility factor (MF), Cd was the most mobile element followed by Sb and Pb. The measured risk assessment code (RAC) presented the following risk order: Cd > Sb > Ni > Co > Pb > Cr > As > Zn > Cu > V. This study reveals that the acquisition of pre-mining geo-environmental data of trace elements is very important to establish pre-mining backgrounds and baselines for evaluating post-mining or post-reclamation geochemical signatures.
Collapse
Affiliation(s)
- Soroush Modabberi
- School of Geology, College of Science, University of Tehran, Tehran, Iran.
| | - Mahsa Tashakor
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Najmeh Rajabian
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Khorasanipour
- Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmat Esmaeilzadeh
- Research and Development Division, Sarcheshmeh Copper Complex, Kerman, Iran
| | - Maurizio Ambrosino
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| |
Collapse
|
31
|
Lin C, Wang Y, Hu G, Yu R, Huang H. Source apportionment and transfer characteristics of Pb in a soil-rice-human system, Jiulong River Basin, southeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121489. [PMID: 36958662 DOI: 10.1016/j.envpol.2023.121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The source apportionment and transfer of Pb in a paddy soil-rice-human system within the Jiulong River Basin in southeast China was investigated by analyzing (1) the chemical fractionation of Pb in paddy soils using a modified BCR four-step sequential extraction procedure, and (2) the bioaccessibility of Pb in both paddy soils and rice grains using a Simple Bioaccessibility Extraction Test method. In addition, a qualitative Pb isotopic model was used in combination with IsoSource software to quantify the contribution of potential Pb sources. The results show the enrichment of Pb in agro-ecosystems in the Jiulong River Basin. Contaminant Pb in paddy soils was mainly present in the reducible (42.9%) and the residual fractions (27.1%). The average bioaccessibility of Pb in rice grains was significantly higher than that in paddy soil, with values of 77.85% and 37.44%, respectively. Lead in paddy soils was primarily derived from agricultural (35.3%), natural (25.5%), industrial (24.5%) and coal combustion sources (14.7%), while Pb in rice grains was primarily derived from coal combustion (54.1%), agricultural (35.1%), industrial (6.0%) and natural sources (4.8%). The bioaccessible Pb was mainly derived from anthropogenic sources [agricultural (42.3% for soil and 25.3% for grain) and coal combustion sources (25.3% for soil and 59.3% for grain)]. Lead isotopic ratios are an effective tracer of Pb transfer from potential sources to rice plants and within the rice plants. Rice plants absorb Pb from the soil and the atmosphere through the roots and leaves, respectively. Most of the Pb was accumulated in roots. The integrated use of chemical fractionation, bioaccessibility and Pb isotopic data provides an effective method to study the source apportionment and transfer characteristics of Pb in paddy soil-rice-human systems.
Collapse
Affiliation(s)
- Chengqi Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China; Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China
| | - Yanyun Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China; Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China.
| |
Collapse
|
32
|
Zhang Y, Li T, Guo Z, Xie H, Hu Z, Ran H, Li C, Jiang Z. Spatial heterogeneity and source apportionment of soil metal(loid)s in an abandoned lead/zinc smelter. J Environ Sci (China) 2023; 127:519-529. [PMID: 36522082 DOI: 10.1016/j.jes.2022.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
Metal smelting have brought severe metal(loid)s contamination to the soil. Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied. The results showed that soil was contaminated heavily with metal(loid)s. The mean of lead (Pb), arsenic (As), cadmium (Cd), mercury (Hg) and antimony (Sb) content in topsoil is 9.7, 8.2, 5.0, 2.3, and 1.2 times higher than the risk screening value for soil contamination of development land of China (GB36600-2018), respectively. Cd is mainly enriched in the 0-6 m depth of site soil while As and Pb mainly deposited in the 0-4 m layer. The spatial distribution of soil metal(loid)s is significantly correlated with the pollution source in the different functional areas of smelter. As, Hg, Sb, Pb and copper (Cu) were mainly distributed in pyrometallurgical area, while Cd, thallium (Tl) and zinc (Zn) was mainly existed in both hydrometallurgical area and raw material storage area. Soil metal(loid)s pollution sources in the abandoned smelter are mainly contributed to the anthropogenic sources, accounting for 84.5%. Specifically, Pb, Tl, As, Hg, Sb and Cu mainly from atmospheric deposition (55.9%), Cd and Zn mainly from surface runoff (28.6%), While nickel (Ni) mainly comes from parent material (15.5%). The results clarified the spatial distribution and their sources in different functional areas of the smelter, providing a new thought for the risk prevention and control of metal(loid)s in polluted site soil.
Collapse
Affiliation(s)
- Yunxia Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tianshuang Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Huimin Xie
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihao Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Changzhou Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
33
|
Zeng F, Jiang Z. Spatial and temporal evolution of mine dust research: visual knowledge mapping analysis in Web of Science from 2001 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62170-62200. [PMID: 36940022 PMCID: PMC10025797 DOI: 10.1007/s11356-023-26332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
Dust pollution control is the basic guarantee of mine safety production, which has been widely concerned by scholars. Based on a total of 1786 publications collected by the Web of Science Core Collection (WOSCC) from 2001 to 2021, this paper analyzes the spatial-temporal distribution characteristics, hot topics, and frontier trends of the international mine dust field during the past 20 years by using Citespace and VOSviewer knowledge graph technology. The research shows that the study of mine dust can be divided into three stages: initial period (2001 ~ 2008), stable transition period (2009 ~ 2016), and boom period (2017 ~ 2021). The journals and disciplines which belong to mine dust research mainly focus on environmental science and engineering technology. A stable core group of authors and institutions have been preliminarily formed in the dust research field. The main themes of the study contained the whole process of mine dust generation, transport, prevention, and control, as well as the consequences of disaster. At present, the hot research fields mainly focus on mine dust particle pollution, multi-stage dust prevention, and emission reduction technologies, and mine occupational protection, monitoring, and early warning. In the future, the research should focus on the mechanism of dust production and transportation, the theory of efficient prevention and control, the technology and equipment of precise prevention and control of dust, and the high-precision monitoring and early warning of dust concentration. Future research should be concerned with dust control in underground mines and deep concave open-pit mines with complicated and treacherous environments, and strengthen research institutions, interdisciplinary cooperation, and interaction so as to promote the integration and application of mine dust and automation, information, and intelligent technology.
Collapse
Affiliation(s)
- Fabin Zeng
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhongan Jiang
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
34
|
Zhang J, Wei R, Guo Q. Impacts of mining activities on the spatial distribution and source apportionment of soil organic matter in a karst farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163627. [PMID: 37087010 DOI: 10.1016/j.scitotenv.2023.163627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Worldwide mining activities produce vast quantities of mine tailings, which pose a threat to soil quality, crop yields, and the regional environment in the adjacent agricultural soil, but little is known about the impact of mining activities on the SOM source and migration. In this study, soil samples of the topsoil (0-15 cm) and soil profiles (0-50 cm), as well as the potential sources samples (C3 plants, C4 plants and mining tailings) were collected from mine-contaminated karst farmland of four different pollution levels (NP, non-polluted; SP, slightly polluted; MP, moderately polluted; and HP, heavily polluted). Total organic carbon (TOC), total organic nitrogen (TON), and stable isotopic compositions (δ13Corg and δ15Norg) of soil and potential sources samples were determined. In the topsoil, the concentrations of TOC (1.9 ± 1.4 %) and TON (0.1 ± 0.1 %), and the value of δ13Corg (-25.4 ± 0.9 ‰) and δ15Norg (-3.6 ± 3.6 ‰), were not significantly different among HP, MP and SP farmland (P > 0.05). C3 plants (42.1 %-49.9 %) and mine tailings (32.3 %-40.1 %) were identified as the dominant source of topsoil SOM. In the soil profile, TOC%, TON%, δ13Corg, and δ15Norg were affected by soil depth and pollution level. TOC% and TON% in the soil profiles of NP changed slightly with soil depth, while that in the other soil profiles was decreased with the increasing of soil depth. The δ15Norg value in the SP soil dropped sharply when the soil depth was >15 cm, while that in the HP and MP soil was fluctuated and no obvious vertical pattern. Our findings provide valuable information regarding the impact of mining activities on SOM distribution and source apportionment in karst farmlands. The effects of mine tailings on SOM should be considered when the soil quality was estimated in the mine-grain composite area.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Liu H, Yao J, Liu B, Li M, Liu J, Jiang S, Yu W, Zhao Y, Duran R. Active tailings disturb the surrounding vegetation soil fungal community: Diversity, assembly process and co-occurrence patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161133. [PMID: 36566868 DOI: 10.1016/j.scitotenv.2022.161133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Soil fungi play an important role in the soil biogeochemical cycle and are important biological indicators for the ecological remediation of mine tailings contaminated sites, therefore understanding the characteristics of soil fungal communities is a key aspect of pollution remediation. However, the influence of biological factors on the characteristics of fungal community diversity; assembly mechanisms and co-occurrence patterns of fungal community along environmental gradients around tailings are not well understood. In this study, soil samples from forest, agriculture and grass around tailings were collected to reveal the assembly mechanisms and co-occurrence patterns of soil fungal community and to quantify the contribution of abiotic and biotic factors to fungal diversity. The results suggest that vegetation types and Cu concentration together drive the distribution of fungal diversity. We found that Exophiala has potential as a biomarker species indicative of restoration progress. Increased environmental stress accelerates the process of changing fungal community assemblages from stochastic to deterministic, while also allowing fungal communities tend to resist tailings-induced environmental stresses through species coexistence. Together, this study provides new insights into the influence of biological factors on fungal community diversity, as well as revealing mechanisms of fungal community assembly and co-occurrence patterns, which are important for understanding the maintenance mechanisms of fungal community diversity and ecological remediation of tailings-contaminated soils.
Collapse
Affiliation(s)
- Houquan Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Miaomiao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shun Jiang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Wenjing Yu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Yuhui Zhao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
36
|
Liu Z, Wang J, Xie J, Yao D, Yang S, Ge J. Interactions among heavy metals and methane-metabolizing microorganisms and their effects on methane emissions in Dajiuhu peatland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37415-37426. [PMID: 36572772 DOI: 10.1007/s11356-022-24868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Peatlands play a crucial role in mediating the emissions of methane through active biogeochemical cycling of accumulated carbon driven by methane-metabolizing microorganisms; meanwhile, they serve as vital archives of atmospheric heavy metal deposition. Despite many edaphic factors confirmed as determinants to modulate the structure of methanotrophic and methanogenic communities, recognition of interactions among them is limited. In this study, peat soils were collected from Dajiuhu peatland to assess the presence of heavy metals, and methanotrophs and methanogens were investigated via high-throughput sequencing for functional genes mcrA and pmoA. Further analyses of the correlations between methane-related functional groups were conducted. The results demonstrated that both methane-metabolizing microorganisms and heavy metals have prominent vertical heterogeneity upward and downward along the depth of 20 cm. Pb, Cd, and Hg strongly correlated with methanotrophs and methanogens across all seasons and depths, serving as forceful factors in structural variations of methanogenic and methanotrophic communities. Particularly, Pb, Cd, and Hg were identified as excessive elements in Dajiuhu peatland. Furthermore, seasonal variations of networks among methane-related functional groups and environmental factors significantly affected the changes of methane fluxes across different seasons. Concretely, the complicated interactions were detrimental to methane emissions in the Dajiuhu peatland, leading to the minimum methane emissions in winter. Our study identified the key heavy metals affecting the composition of methane-metabolizing microorganisms and linkages between seasonal variations of methane emissions and interaction among heavy metals and methane-metabolizing microorganisms, which provided much new reference and theoretical basis for integrated management of natural peatlands.
Collapse
Affiliation(s)
- Ziwei Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Jiumei Wang
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Jinlin Xie
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Dong Yao
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Shiyu Yang
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Jiwen Ge
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China.
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China.
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China.
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China.
| |
Collapse
|
37
|
Sheng Y, Wang Z, Feng X. Potential ecological risk and zoning control strategies for heavy metals in soils surrounding core water sources: A case study from Danjiangkou Reservoir, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114610. [PMID: 36764071 DOI: 10.1016/j.ecoenv.2023.114610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals in soils can migrate into the food chain and affect human health. In particular, they can be released into water supplies through interactions between soils and water. It is therefore important to study the concentrations of heavy metals in soils surrounding sources of drinking water, but there is a lack of research in this area. A total of 7656 topsoil samples surrounding the core water source of Danjiangkou Reservoir in China were collected and analyzed for As, Hg and Pb. Moran's I index and semivariograms were used to analyze the spatial correlation and variation of these heavy metals. The potential ecological risk index was used to evaluate heavy metal pollution. Fifteen natural and human factors were selected to explore the sources of heavy metal pollution using the GeoDetector model. The positive matrix factorization (PMF) model verified the reasonableness of the main factors identified by the GeoDetector model and further quantified two main sources of soil heavy metals. As, Hg and Pb were enriched to varying degrees in the soils. The potential ecological risk of Hg in soils was the most serious, with 24.67% of the area at high or very high risk. As and Pb both had a low potential ecological risk. The results of GeoDetector model and PMF model showed that the contributions of factor 1 (fertilizer application and automobile exhaust emissions) and factor 2(industrial waste) of soil heavy metal pollution were 49.8% and 50.2%, respectively. At last, the zoning control strategies were proposed in order to provide scientific reference for the management of soil heavy metal pollution.
Collapse
Affiliation(s)
- Ye Sheng
- School of Public Administration, China University of Geosciences, Wuhan 430074, China
| | - Zhanqi Wang
- School of Public Administration, China University of Geosciences, Wuhan 430074, China; Key Laboratory for Rule of Law Research, Ministry of Natural Resources, Wuhan 430074, China.
| | - Xu Feng
- School of Public Administration, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
38
|
Gu S, Zhang W, Wang F, Meng Z, Cheng Y, Geng Z, Lian F. Particle size of biochar significantly regulates the chemical speciation, transformation, and ecotoxicity of cadmium in biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121100. [PMID: 36669715 DOI: 10.1016/j.envpol.2023.121100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The pyrolysis of biomass containing excessive heavy metals is likely to produce heavy metal contaminated biochar (BC). Although multiple lines of evidence indicate that higher charring temperature leads to enhanced immobilization of heavy metals in BC, we find that particle size could also play a critical role in the content of heavy metals in BC and BC ecotoxicity. Here, BC derived from cadmium (Cd) enriched rice straw was prepared at different temperatures (300-600 °C) and divided into macro-, colloidal-, and nano-sized fractions, respectively. The content and chemical forms of Cd in BC fractions as well as related algal toxicity were examined. The results show that for the same temperature BC the content of Cd followed an order of colloidal-BC > macro-BC > nano-BC; and the residual fractions of Cd significantly decreased (3.47-16.08%) while that of acid soluble and reducible fractions significantly increased (4.13-16.51% and 0.24-1.71%, respectively) with decreasing particle size of BC. Consistently, colloidal-BC exhibited the highest ecotoxicity for Scenedesmus obliquus. The acid soluble fractions of Cd in macro- and colloidal-BC played a dominating role in their algal toxicity (p < 0.05). However, the ecotoxicity of nano-BC was more dependent on the total content of Cd than specific fractions probably due to the phagocytosis by algal cells. These results indicate that the chemical forms and ecotoxicity of Cd in BC could be remarkably modified by its particle size, which has profound implications for understanding the behavior and potential risk of heavy metal contaminated BC in the environment.
Collapse
Affiliation(s)
- Shiguo Gu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, Anhui, 239000, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhanhang Meng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yu Cheng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zexuan Geng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
39
|
Lazo P, Lazo A, Hansen HK, Ortiz-Soto R, Hansen ME, Arévalo F, Gutiérrez C. Removal of Heavy Metals from Mine Tailings in Central Chile Using Solidago chilensis Meyen, Haplopappus foliosus DC, and Lycium chilense Miers ex Bertero. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2749. [PMID: 36768113 PMCID: PMC9916048 DOI: 10.3390/ijerph20032749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Mining activities have been a part of the history of Chile since time immemorial, generating pollution and environmental liabilities. Due to the lack of regulation, many tailings are deposited close to rivers or/and on unstable ground, near which towns have been built, generally in locations with no budget for their treatment. This study tested three plant species from Northern and Central Chile to remove total chromium, nickel, and zinc from tailings: Solidago chilensis, Haplopappus foliosus, and Lycium chilense, which complements the few existing studies on heavy metals removal with native or endemic Chilean shrubs. The experiments were conducted ex situ, and the initial and final concentrations of metals were determined in tailings and plants to obtain the removal efficiency, translocation and bioconcentration factors. Among these species, the best performance was obtained using Solidago chilensis, achieving removal efficiencies of 24% for Cr, 19% for Ni, and 17% for Zn, showing the ability to phytostabilize chromium and the higher resistance concerning the toxicity threshold. Haplopappus foliosus and Lycium chilense presented a slight tendency to stabilize chromium. Only Solidago chilensis showed little ability to extract Zn.
Collapse
Affiliation(s)
- Pamela Lazo
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile
| | - Andrea Lazo
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Henrik K. Hansen
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Rodrigo Ortiz-Soto
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2162, Valparaíso 2340025, Chile
| | - Marcela E. Hansen
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Felipe Arévalo
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Claudia Gutiérrez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
40
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. COMPREHENSIVE STUDY OF ELECTROKINETIC-ASSISTED PHYTOEXTRACTION OF METALS FROM MINE TAILINGS BY APPLYING DIRECT AND ALTERNATE CURRENT. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
41
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130063. [PMID: 36182879 DOI: 10.1016/j.jhazmat.2022.130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
42
|
Yao Y, Tong L, Zhao R, Wang Q, Qiu J, Wang F, Li J, Yan Y, He Y, Li S. Leaching of heavy metal(loid)s from historical Pb-Zn mining tailing in abandoned tailing deposit: Up-flow column and batch tests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116572. [PMID: 36419286 DOI: 10.1016/j.jenvman.2022.116572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study aims to investigate the water-leaching characteristics of heavy metal(loid)s (HMs) from historical Pb-Zn mine tailing of an abandoned tailing deposit in eastern China. Up-flow column and batch leaching tests were conducted at different liquid-to-solid (L/S) ratios to estimate the releases of HMs and investigate the controlling mechanisms. Calcite and silicate were the dominant minerals in the tailing and the HMs contents followed the order of Zn (2371 mg/kg) > Pb (2061 mg/kg) > Cu (109 mg/kg) > Cr (47.8 mg/kg) > As (15.9 mg/kg) > Cd (5.1 mg/kg). Moreover, considerable fractions of Pb, Zn, and Cd existed in the acid-soluble forms (41-47%). Column and batch leaching tests consistently showed that limited quantities (<0.002%) of HMs could be leached from this historical tailing. In particular, variations in column conditions (e.g., length, flow rate, and initial saturation) significantly affected the release fluxes from the columns but had a relatively limited effect on the leaching mechanisms. The estimated results of HM release suggested that the leaching process was predominantly solubility-controlled and the dissolution of Ca-bearing minerals (e.g., calcite) primarily controlled the release of HMs. The studied tailing had a limited impact on the quality of the surrounding aquatic environments because the water-leaching concentrations of HMs were generally lower than the Chinese standards for drinking water. Only for Pb, the leaching results in column tests were significantly lower than those in batch tests; whereas the results in column tests for other HMs were comparable to those in batch tests to a certain extent. Based on the column test results, the amounts of HMs potentially released from the abandoned tailing deposit (height, 10 m; footprint area, 30,000 m2; tailing dry density, 1.9 × 103 kg/m3) followed a decreasing order of Zn (4.2 × 105 kg) > Cu (2.3 × 104 kg) > Pb (1.4 × 104 kg) > Cr (2.3 × 104 kg) > Cd (1.6 × 103 kg) > As (1.2 × 103 kg) over the 75-year assessment period (corresponding to an L/S ratio of 10 L/kg with an annual precipitation of 1500 mm).
Collapse
Affiliation(s)
- Yuan Yao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu province, 210023, China
| | - Lizhi Tong
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong province, 510655, China
| | - Ruolin Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu province, 210023, China
| | - Qianhui Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu province, 210023, China
| | - Jinli Qiu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu province, 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu province, 210023, China.
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu province, 210023, China.
| | - Yifan Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu province, 210042, China
| | - Yue He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu province, 210042, China
| | - Shuqin Li
- Sinosteel Maanshan General Institute of Mining Research Co., Ltd, Maanshan, Anhui province, 243000, China
| |
Collapse
|
43
|
Nassiri O, Rhoujjati A, Moreno-Jimenez E, Hachimi MLEL. Assessment of metallic trace elements mobility from mine tailing and soils around abandoned Pb mine site in North East Morocco. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Oumayma Nassiri
- Laboratoire Géoressources, Unité Associée au CNRST (URAC 42), Faculté des Sciences et Techniques Marrakech, Guéliz Marrakech, Morocco
| | - Ali Rhoujjati
- Laboratoire Géoressources, Unité Associée au CNRST (URAC 42), Faculté des Sciences et Techniques Marrakech, Guéliz Marrakech, Morocco
| | | | | |
Collapse
|
44
|
Wang L, Shen L, Sun W, Ji B, Tang H. The effects of natural weathering ages on mineralogical, physical, and chemical properties of stacking molybdenum tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87817-87827. [PMID: 35821324 DOI: 10.1007/s11356-022-21934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the influence of natural weathering on the mineralogical, physical, and chemical properties of molybdenum tailings from Shaanxi Province, China, stored at different stacking ages. The results showed that the mineralogical and chemical compositions of the molybdenum tailings remained stable after stacking for different years. The analysis of bulk density, porosity, field moisture capacity, and aggregate characteristics indicated that the physical structure of the molybdenum tailings was similar to a nearby soil with increasing stacking age in spite of a time-consuming process. In addition, 10 years of the natural weathering process resulted in the formation of more aggregates with the surface of microaggregates roughened, and displayed more debris and fine particles than stocking for 1 year. The findings showed that the bulk density of molybdenum tailings reduced from 1.45 to 1.42 g/cm3 after 10 years of storage, while its porosity rose from 46.5 to 49.4%. The fraction of large aggregate (> 0.25 mm) and mean weight diameter increased from 7.91 to 42.07% and from 0.1482 to 0.1864 mm, respectively, which demonstrated that the natural weathering significantly improved the physical properties of the aggregate and enhanced the structural stability. Thus, natural weathering provides an ecological basis for restoring and reconstructing the soil ecosystem in molybdenum tailings. The results confirmed that long-term deposition can improve the soil structure of tailings, which provides a reference for further research on restoring and reconstructing the soil ecosystem in molybdenum tailings.
Collapse
Affiliation(s)
- Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China
| | - Lingfeng Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China
| | - Bin Ji
- Department of Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Honghu Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
45
|
Kharazian P, Fernández-Ondoño E, Jiménez MN, Sierra Aragón M, Aguirre-Arcos A, Bacchetta G, Cappai G, De Giudici G. Pinus halepensis in Contaminated Mining Sites: Study of the Transfer of Metals in the Plant-Soil System Using the BCR Procedure. TOXICS 2022; 10:728. [PMID: 36548561 PMCID: PMC9785362 DOI: 10.3390/toxics10120728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The study aimed at evaluating the geochemical fractions of Zn, Pb, Cd and their bioavailability in soil in-depth and around the root of Pinus halepensis grown on heavily contaminated mine tailing in south-western Sardinia, Italy. The contaminated substrates were partly investigated in a previous study and are composed of pyrite, dolomite, calcite, quartz, gypsum, barite, iron-sulfate and iron-oxide. The geochemical fractions and bioavailability of Zn, Pb and Cd were measured through the BCR extractions method. Cadmium in the superficial contaminated substrates was mainly found in the exchangeable BCR fraction. Zinc and lead were often found in the residual BCR fraction. PCA confirmed that the uppermost alkaline-calcareous layers of mine waste were different with respect to the deeper acidic layers. We demonstrated that Pb and Zn were less present in the exchangeable form around the roots of P. halepensis and in soil depth. This can be due to uptake or other beneficial effect of rhizospheres interaction processes. Further studies will shed light to confirm if P. halepensis is a good candidate to apply phytostabilization in mine tailing.
Collapse
Affiliation(s)
- Pegah Kharazian
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-Blocco A, 09042 Monserrato CA, Italy
- Department of Soil Science and Agricultural Chemistry, Faculty of Science, University of Granada, C/Severo Ochoa, s/n, 18071 Granada, Spain
| | - Emilia Fernández-Ondoño
- Department of Soil Science and Agricultural Chemistry, Faculty of Science, University of Granada, C/Severo Ochoa, s/n, 18071 Granada, Spain
| | - María Noelia Jiménez
- Department of Botany, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Manuel Sierra Aragón
- Department of Soil Science and Agricultural Chemistry, Faculty of Science, University of Granada, C/Severo Ochoa, s/n, 18071 Granada, Spain
| | - Antonio Aguirre-Arcos
- Department of Soil Science and Agricultural Chemistry, Faculty of Science, University of Granada, C/Severo Ochoa, s/n, 18071 Granada, Spain
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, Centre for the Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant’Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Piazza d’Armi 1, 09123 Cagliari, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-Blocco A, 09042 Monserrato CA, Italy
| |
Collapse
|
46
|
Song L, Qian J, Zhang F, Kong X, Li H, Luan S, Zhang Q, Kang Z, Han Z, Zhang Z. An ecological remediation model combining optimal substrate amelioration and native hyperaccumulator colonization in non-ferrous metal tailings pond. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116141. [PMID: 36067665 DOI: 10.1016/j.jenvman.2022.116141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The vegetation deterioration and pollution expansion from non-ferrous metal tailings pond have been found in many countries leading to water soil erosion and human health risk. Conventional ecological remediation technologies of mine tailings such as capping were costly and elusive. This study provided an economic and effective model as an alternative by substrate amelioration and vegetation restoration. A field experiment was carried out on a silver tailings pond in southwest China. Tailings substrate was ameliorated by adding organic matter (decomposed chicken manure, DCM), structural conditioner (polyacrylamide, PAM), water-retaining agent (acrylic acid-bentonite water-retaining agent, AAB), and heavy metal immobilizer (biofuel ash, BFA), which were optimized by laboratory experiment. Native heavy metal hyperaccumulator, Bidens pilosa, was colonized. Vegetation coverage and plant height of Bidens pilosa reached about 80% and over 30 cm respectively after 3 months, and the turbidity of tailings leaching solution decreased by 60%. The practice showed that the proportion of available heavy metals in tailings substrate was significantly lower than that in the soil surrounding mining area. Immobilization didn't have stabilization effect on Cd, Zn, and Pb, and As was only 0.002%, phytoremediation had stabilization effect of Cd, Zn, As, and Pb were 2.5-3.5%, 1-2%, 0.25-0.5%, and 0.25-0.75%. Phytoremediation was more effective significantly in controlling heavy metal pollution risk of tailings than immobilization. These results provided a new ecological remediation OSA-NHC model, meaning a combination of optimal substrate amelioration and native hyperaccumulator colonization, which could achieve vegetation restoration and augment heavy metal pollution control in non-ferrous metal tailings pond.
Collapse
Affiliation(s)
- Le Song
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiazhong Qian
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fawang Zhang
- Center of Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, China
| | - Xiangke Kong
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Hui Li
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Song Luan
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Qinjun Zhang
- Guangxi Institute of Geological Survey, Nanning 530023, China
| | - Zhiqiang Kang
- Guangxi Bureau of Geology & Mineral Prospecting & Exploitation, Nanning 530023, China
| | - Zhantao Han
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 10012, China.
| | - Zhaoji Zhang
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| |
Collapse
|
47
|
Robins K, McCann CM, Zhou XY, Su JQ, Cooke M, Knapp CW, Graham DW. Bioavailability of potentially toxic elements influences antibiotic resistance gene and mobile genetic element abundances in urban and rural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157512. [PMID: 35872194 DOI: 10.1016/j.scitotenv.2022.157512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) that can encode resistance traits in bacteria are found across the environment. While it is often difficult to discern their origin, their prevalence and diversity depends on many factors, one of which is their exposure to potentially toxic elements (PTE, i.e., metals and metalloids) in soils. Here, we investigated how ambient ARGs and mobile genetic elements (MGEs) relate to the relative bioavailability of different PTEs (total versus exchangeable and carbonate-bound PTE) in rural and urban soils in northeast England. The average relative abundances of ARGs in rural sites varied over a 3-log range (7.24 × 10-7 to 1.0 × 10-4 genes/16S rRNA), and relative ARG abundances in urban sites varied by four orders of magnitude (1.75 × 10-6 to 2.85 × 10-2 genes/16S rRNA). While beta-lactam and aminoglycoside resistance genes dominated rural and urban sites, respectively, non-specific ARGs, also called multidrug-resistance genes, were significantly more abundant in urban sites (p < 0.05). Urban sites also had higher concentrations of total and exchangeable forms of PTE than rural sites, whereas rural sites were higher in carbonate-bound forms. Significant positive Spearman correlations between PTEs, ARGs and MGEs were apparent, especially with bioavailable PTE fractions and at urban sites. This study found significant positive correlations between ARGs and beryllium (Be), which has not previously been reported. Overall, our results show that PTE bioavailability is important in explaining the relative selection of ARGs in soil settings and must be considered in future co-selection and ARG exposure studies.
Collapse
Affiliation(s)
- Katie Robins
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Clare M McCann
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Xin-Yuan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| | - Martin Cooke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom.
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
48
|
Guimarães RHE, Wallner-Kersanach M, Correa JAM. Assessment of anthropogenic metals in shipyard sediment in the Amazon delta estuary in northern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77007-77025. [PMID: 35675010 DOI: 10.1007/s11356-022-20960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Shipyard activities have contributed to the release of anthropogenic metals in sediment in the Amazon delta estuary, but no studies of the issue have been carried out in northern Brazil. This study evaluated the sediment that is under the influence of shipyard activities in the Guajará Bay and in the channel of the Maguari River, in Belém, Pará (PA) state, northern Brazil. Sediment samples were collected in the vicinity of the shipyards, while samples of paint and metal fragments were collected from hulls of abandoned vessels. Metals under analysis were Cu, Zn, Pb, Ni, Cr, Ba, V, Li, Fe and Al. Mean Cu concentrations found in the sediment in two shipyards - 28.3 mg kg-1 and 41.0 mg kg-1 - were above the threshold effect level (TEL) for the amphipod Hyalella azteca. The highest concentrations of metals found in paint fragments from abandoned vessels were 29,588 mg kg-1 Ba, 9,350 mg kg-1 Zn, 1,097 mg kg-1 Pb and 548 mg kg-1 Cr. This fact suggests that vessel abandonment is a major source of contamination in shipyard areas. The principal component analysis (PCA) showed that most metals under study are closely related to sediment contamination in the shipyards. Geoaccumulation index and screening concentrations of inorganic contaminants for metals in freshwater ecosystems confirmed that a shipyard was contaminated by copper. Results may support further studies of contamination and application of waste management to shipyards and vessel graveyards around the world.
Collapse
Affiliation(s)
| | - Mônica Wallner-Kersanach
- Laboratório de Hidroquímica, Instituto de Oceanografia, Universidade Federal de Rio Grande, Rio Grande, RS, 96203-000, Brazil.
| | | |
Collapse
|
49
|
Xie S, Liu C, He B, Chen M, Gao T, Wei X, Liu Y, Xia Y, Sun Q. Geochemical Fractionation and Source Identification of Pb and Cd in Riparian Soils and River Sediments from Three Lower Reaches Located in the Pearl River Delta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13819. [PMID: 36360697 PMCID: PMC9657673 DOI: 10.3390/ijerph192113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Pb and Cd accumulation in riparian soils and river sediments in river basins is a challenging pollution issue due to the persistence and bioaccumulation of these two trace metals. Understanding the migration characteristics and input sources of these metals is the key to preventing metal pollution. This study was conducted to explore the contents, geochemical fractionation, and input sources of Pb and Cd in riparian soils and river sediments from three lower reaches of the Pearl River Delta located in the Guangdong-Hong Kong-Macao Greater Bay Area. The total concentration of all Pb and Cd values exceeded the background values to varying degrees, and the exchangeable fraction of Cd in riparian soils and river sediments accounted for the largest proportion, while that of Pb was dominated by the residual fraction. Geoaccumulation index calculations showed that in the riparian soils, the average accumulation degree of Pb (0.52) in the Beijiang River (BJR) was the highest, while that of Cd (2.04) in the Xijiang River (XJR) was the highest. Unlike that in riparian soils, the maximum accumulation of Pb (0.76) and Cd (3.01) in river sediments both occurred in the BJR. Furthermore, the enrichment factor results also showed that Pb and Cd in the riparian soils and river sediments along the BJR were higher than those in the XJR and Dongjiang River (DJR). The relationship between enrichment factors and nonresidual fractions further proved that the enrichment factors of Cd were significantly correlated with the nonresidual fractions of Cd, which may imply various anthropogenic sources of Cd in the three reaches. Moreover, source identification based on principal component analysis (PCA) and Pb isotope ratio analysis indicated that riparian soils and river sediments have inconsistent pollution source structures. The PCA results showed that Pb and Cd were homologous inputs in the DJR, and there were significant differences only in the riparian soils and river sediments. Pb isotope tracing results further showed that the bedrock of high geological background from upstream may be the main reason for Cd accumulation in the XJR. However, the ultrahigh accumulation of Cd in the BJR is mainly caused by the input of the upstream mining and metallurgy industry. The control of upstream input sources will be the key to the prevention of trace metal pollution in these regions.
Collapse
Affiliation(s)
- Shaowen Xie
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinghu Wei
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qianying Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
50
|
Differential Response of Soil Microbial Community Structure in Coal Mining Areas during Different Ecological Restoration Processes. Processes (Basel) 2022. [DOI: 10.3390/pr10102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Micro-organisms play important roles in promoting soil ecosystem restoration, but much of the current research has been limited to changes in microbial community structure in general, and little is known regarding the more sensitive and indicative microbial structures or the responses of microbial diversity to environmental change. In this study, based on high-throughput sequencing and molecular ecological network analyses, the structural characteristics of bacterial communities were investigated in response to four different ecological restoration modes in a coal mining subsidence area located in northwest China. The results showed that among soil nutrients, nitrate-nitrogen and fast-acting potassium were the most strongly associated with microbial community structure under different ecological restoration types. Proteobacteria, Actinobacteria, and Acidobacteria were identified as important phyla regarding network connectivity and structural composition. The central natural recovery zone was found to have the smallest network size and low complexity, but high modularity and good microbial community stability. Contrastingly, a highly complex molecular ecological network of soils in the photovoltaic economic zone existed beneath the photovoltaic modules, although no key species, strong bacterial competition, poor resistance to disturbance, and a significant increase in the relative abundance of Gemmatimonadetes were found. Furthermore, the reclamation zone had the highest soil nutrient content, the most complex network structure, and the most key and indicator species; however, the ecological network was less stable and readily disturbed.
Collapse
|