1
|
Yan C, Sun Z, Liu Y, Wang X, Zhang Y, Xia S, Zhao J. Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe 2O 4-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135668. [PMID: 39197284 DOI: 10.1016/j.jhazmat.2024.135668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
In this study, MgFe2O4-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment.
Collapse
Affiliation(s)
- Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenhua Sun
- Laboratory of Solid Waste Environmental Risk Control, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yiyang Liu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yanan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Sun B, Bai Z, Li R, Song M, Zhang J, Wang J, Zhuang X. Efficient elimination of antibiotic resistome in livestock manure by semi-permeable membrane covered hyperthermophilic composting. BIORESOURCE TECHNOLOGY 2024; 407:131134. [PMID: 39038713 DOI: 10.1016/j.biortech.2024.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Livestock manure is a hotspot for antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and an important contributor to antibiotic resistance in non-clinical settings. This study investigated the effectiveness and potential mechanisms of a novel composting technology, semi-permeable membrane covered hyperthermophilic composting (smHTC), in removal of ARGs and MGEs in chicken manure. Results showed that smHTC was more efficient in removal of ARGs and MGEs (92% and 93%) compared to conventional thermophilic composting (cTC) (76% and 92%). The efficient removal in smHTC is attributed to direct or indirect negative effects caused by the high temperature, including reducing the involvement of bio-available heavy metals (HMs) in co-selection processes of antibiotic resistance, decreasing the bacterial abundance and diversity, suppressing the horizontal gene transfer and killing potential ARGs hosts. Overall, smHTC can efficiently remove the resistome in livestock manure, reducing the risk to crops and humans from ARGs residues in compost products.
Collapse
Affiliation(s)
- Bo Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Innovation Institute, Xiongan New Area, Hebei 071000, China.
| | - Rui Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manjiao Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 102699, China.
| |
Collapse
|
3
|
Wang H, Wang X, Zhang L, Zhang X, Cao Y, Xiao R, Bai Z, Ma L. Meta-analysis addressing the potential of antibiotic resistance gene elimination through aerobic composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:197-206. [PMID: 38670003 DOI: 10.1016/j.wasman.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The significant increase in antibiotic resistance genes (ARGs) in organic solid wastes (OSWs) has emerged as a major threat to the food chain. Aerobic composting is a widely used technology for OSW management, with the potential to influence the fate of AGRs. However, the variability of the ARG elimination effects reported in different studies has highlighted the uncertainty regarding the effects of composting on ARGs. To identify the potential of composting in reducing ARG and the factors (e.g., composting technologies and physiochemical properties) influence ARG changes, a meta-analysis was conducted with a database including 4,232 observations. The abundances of ARGs and mobile genetic elements (MGEs) can be substantially reduced by 74.3% and 78.8%, respectively, via aerobic composting. During composting, the ARG levels in chicken and swine manure tended to be reduced more significantly (81.7% and 78.0%) compared to those in cattle manure (52.3%) and sewage sludge (32.6%). The reduction rate of sulfonamide resistant genes was only 35.3%, which was much lower than those of other types. MGEs and composting duration (CD) were identified as the most important factors driving ARG changes during composting. These findings provide a comprehensive insight into the effects of composting on ARG reduction, which may help prevent the transmission in food systems.
Collapse
Affiliation(s)
- Hongge Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xinyuan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China.
| |
Collapse
|
4
|
Ghandehari Yazdi F, Mokhtari M, Nabi Meibodi M, Sefidkar R, Hatami B, Molavi F, Ghafourzadeh M, Golshiri A, Ebrahimi AA. Bioconversion of cow manure through vermicomposting: effects of tylosin concentration on the weight of worms and manure quality. Sci Rep 2024; 14:12575. [PMID: 38822086 PMCID: PMC11143363 DOI: 10.1038/s41598-024-62839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
This study investigated batch-fed vermicomposting of cow manure, with a specific focus on assessing the effects of tylosin on the weight of earthworms and the overall quality of the resulting manure. Five reactors, including three concentrations of tylosin (50, 100, and 150 mg/kg) and two control reactors, were employed. Residual tylosin concentrations were measured using high-performance liquid chromatography (HPLC). Quality parameters such as pH, temperature, volatile solids (VS), organic carbon content (OCC), electrical conductivity (EC), ash content, C/N ratio, total Kjeldahl nitrogen (TKN), and microbial content were evaluated. The toxicity and maturity of vermicompost were assessed by determining the germination index (GI). The study also monitored variations in the earthworm's weight. The results demonstrated a decreasing trend in VS, OCC, C/N, and fecal coliforms, along with increased pH, EC, ash content, and TKN during the vermicomposting process. Furthermore, investigations revealed significant reductions in the reactors with tylosin concentrations of 50, 100, and 150 mg/kg, resulting in the removal of 98%, 90.48%, and 89.38% of the initial tylosin, respectively. This result confirms the faster removal of tylosin in reactors with lower concentrations. Degradation of tylosin also conforms to first-order kinetics. The findings showed a significant influence of tylosin on the weight of Eisenia fetida earthworms and the lowest antibiotic concentration led to the highest weight gain. Finally, the high percentage of germination index (90-100%) showed that the quality and maturity of vermicompost is by national and international standards.
Collapse
Affiliation(s)
- Farnaz Ghandehari Yazdi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Nabi Meibodi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reyhane Sefidkar
- Center for Healthcare Data Modeling, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behnam Hatami
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fereshteh Molavi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahin Ghafourzadeh
- Department of Medical Parasitology & Mycology, Paramedical School, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Golshiri
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Li L, Liu X, Li J, Chen Z, Song T, Jin S, Zhu C, Luo L, Geng B, Zhu J. Mitigating Tetracycline antibiotic contamination in chicken manure using ex situ fermentation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120614. [PMID: 38513588 DOI: 10.1016/j.jenvman.2024.120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Excessive use of tetracycline antibiotics in poultry farming results in significant concentrations of these drugs and tetracycline resistance genes (TRGs) in chicken manure, impacting both environmental and human health. Our research represents the first investigation into the removal dynamics of chlortetracycline (CTC) and TRGs in different layers of an ex situ fermentation system (EFS) for chicken waste treatment. By pinpointing and analyzing dominant TRGs-harboring bacteria and their interactions with environmental variables, we've closed an existing knowledge gap. Findings revealed that CTC's degradation half-lives spanned 3.3-5.8 days across different EFS layers, and TRG removal efficiency ranged between 86.82% and 99.52%. Network analysis highlighted Proteobacteria and Actinobacteria's essential roles in TRGs elimination, whereas Chloroflexi broadened the potential TRG hosts in the lower layer. Physical and chemical conditions within the EFS influenced microbial community diversity, subsequently impacting TRGs and integrons. Importantly, our study reports that the middle EFS layer exhibited superior performance in eliminating CTC and key TRGs (tetW, tetG, and tetX) as well as intI2. Our work transcends immediate health and environmental remediation by offering insights that encourage sustainable agriculture practices.
Collapse
Affiliation(s)
- Luyao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiabin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhuobo Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Tingting Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shan Jin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Liangguo Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
6
|
Bao H, Chen Z, Wen Q, Wu Y, Fu Q. Effects of oxytetracycline on variation in intracellular and extracellular antibiotic resistance genes during swine manure composting. BIORESOURCE TECHNOLOGY 2024; 393:130127. [PMID: 38036151 DOI: 10.1016/j.biortech.2023.130127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
This research aimed to investigate the alterations in extracellular (eARGs) and intracellular (iARGs) antibiotic resistance genes in response to oxytetracycline (OTC), and unravel the dissemination mechanism of ARGs during composting. The findings revealed both low (L-OTC) and high contents (H-OTC) of OTC significantly enhanced absolute abundance (AA) of iARGs (p < 0.05), compared to CK (no OTC). Composting proved to be a proficient strategy for removing eARGs, while AA of eARGs was significantly enhanced in H-OTC (p < 0.05). OTC resulted in an increase in AA of mobile genetic elements (MGEs), ATP levels, antioxidant and DNA repair enzymes in bacteria in compost product. Structural equation model further demonstrated that OTC promoted bacterial DNA repair and antioxidant enzyme activities, altered bacterial community and enhanced MGEs abundance, thereby facilitating iARGs dissemination. This study highlights OTC can increase eARGs and iARGs abundance, underscoring the need for appropriate countermeasures to mitigate potential hazards.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
7
|
Wu D, Dai S, Feng H, Karunaratne SHPP, Yang M, Zhang Y. Persistence and potential risks of tetracyclines and their transformation products in two typical different animal manure composting treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122904. [PMID: 37951528 DOI: 10.1016/j.envpol.2023.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Abundant residues of tetracyclines in animal manures and manure-derived organic fertilizers can pose a substantial risk to environments. However, our knowledge on the residual levels and potential risk of tetracyclines and their transformation products (TPs) in manure and manure-derived organic fertilizers produced by different composting treatments is still limited. Herein, the occurrence and distribution of four veterinary tetracyclines (tetracycline, oxytetracycline, chlortetracycline, and doxycycline) and ten of their TPs were investigated in paired samples of fresh manure and manure-derived organic fertilizers. Tetracyclines and TPs were frequently detected in manure and manure-derived organic fertilizer samples in ranging from 130 to 118,137 μg·kg-1 and 54.6 to 104,891 μg·kg-1, respectively. Notably, the TPs concentrations of tetracycline and chlortetracycline were comparable to those of the parent compounds, with 4-epimers being always dominant and retained antibacterial potency. Based on paired-sampling strategy, the removal efficiency of tetracyclines and TPs in thermophilic composting was higher than that in manure storage. Toxicological data in the soil environment and the data derived from equilibrium partitioning method, indicated that tetracyclines and some TPs like 4-epitetracycline, 4-epichlortetracycline and isochlortetracycline could pose median to high ecological risk to terrestrial organisms. Total concentrations of TPs in manure-derived organic fertilizers were significantly correlated with the absolute abundance of tet(X) family genes, which provide evidence to evaluate the effects of TPs on the levels of antibiotic resistance in the environment. Among them, the 4-epitetracycline could pose ecological risk and retain antibacterial potency. Our findings emphasize the importance of monitoring and controlling the prevalence of tetracyclines and their TPs in livestock-related environments.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haodi Feng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Tang L, Pan Z, Li X, Li J, Meng J. Antibiotics resistance removal from piggery wastewater by an integrated anaerobic-aerobic biofilm reactor: Efficiency and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167031. [PMID: 37714352 DOI: 10.1016/j.scitotenv.2023.167031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance residual in piggery wastewater poses serious threat to environment and human health. Biological treatment process is commonly installed to remove nutrient from piggery wastewater and also effective in removing antibiotics to varying degrees. But the specific pathways and mechanisms involved in the removal of antibiotic resistance are not yet well-understood. An integrated anaerobic-aerobic biofilm reactor (IAOBR) has been demonstrated efficient in removing conventional nutrients. It is here shown that the IAOBR effectively removed 79.0% of Sulfonamides, 55.7% of Tetracyclines and 53.6% of Quinones. Antibiotic resistance bacteria (ARB) were simultaneously inactivated by ~0.5 logs. Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were decreased by 0.51 logs and 0.42 logs, respectively. The antibiotics were mainly removed through aerobic compartments of the IAOBR. The mass loss of antibiotics in the reactor was achieved by biodegradation and adsorption, accounting for 52.1% and 47.9%, respectively. An obvious accumulation of ARGs was observed in the activated sludge. The potential host of ARGs was analyzed via microbial community and network. Partial least squares-structural equation model and correlation analysis revealed that the enrichment of ARGs was positively affected by MGEs, followed by bacterial community and ARBs, but the effect of antibiotics on ARGs was negative. Outcomes of this study provide valuable insights into the mechanisms of antibiotic resistance removal in biological treatment processes.
Collapse
Affiliation(s)
- Lianggang Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Pan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Męcik M, Buta-Hubeny M, Paukszto Ł, Maździarz M, Wolak I, Harnisz M, Korzeniewska E. Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119303. [PMID: 37832303 DOI: 10.1016/j.jenvman.2023.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
10
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
12
|
Somogyi Z, Mag P, Simon R, Kerek Á, Makrai L, Biksi I, Jerzsele Á. Susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis Isolated from Pigs in Hungary between 2018 and 2021. Antibiotics (Basel) 2023; 12:1298. [PMID: 37627719 PMCID: PMC10451952 DOI: 10.3390/antibiotics12081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) has been a major animal health, welfare, and economic problem in Hungary; therefore, great emphasis should be put on both the prevention and control of this complex disease. As antibacterial agents are effective tools for control, antibiotic susceptibility testing is indispensable for the proper implementation of antibacterial therapy and to prevent the spread of resistance. The best method for this is to determine the minimum inhibitory concentration (MIC) by the broth microdilution method. In our study, we measured the MIC values of 164 Actinobacillus pleuropneumoniae, 65 Pasteurella multocida, and 118 Streptococcus suis isolates isolated from clinical cases against the following antibacterial agents: amoxicillin, ceftiofur, cefquinome, oxytetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, tulathromycin, lincomycin, tiamulin, florfenicol, colistin, enrofloxacin, and sulfamethoxazole-trimethoprim. Outstanding efficacy against A. pleuropneumoniae isolates was observed with ceftiofur (100%) and tulathromycin (100%), while high levels of resistance were observed against cefquinome (92.7%) and sulfamethoxazole-trimethoprim (90.8%). Ceftiofur (98.4%), enrofloxacin (100%), florfenicol (100%), and tulathromycin (100%) were found to be highly effective against P. multocida isolates, while 100% resistance was detected against the sulfamethoxazole-trimethoprim combination. For the S. suis isolates, only ceftiofur (100%) was not found to be resistant, while the highest rate of resistance was observed against the sulfamethoxazole-trimethoprim combination (94.3%). An increasing number of studies report multi-resistant strains of all three pathogens, making their monitoring a high priority for animal and public health.
Collapse
Affiliation(s)
- Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Réka Simon
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - László Makrai
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary;
- SCG Diagnostics Ltd., HU-2437 Délegyháza, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
13
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
14
|
Li H, Tan L, Zhang C, Wei X, Wang Q, Li Q, Zheng X, Xu Y. Spatial distribution of bacterial resistance towards antibiotics of rural sanitation system in China and its potential link with diseases incidence. J Environ Sci (China) 2023; 127:361-374. [PMID: 36522068 DOI: 10.1016/j.jes.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
Chinese government is vigorously promoting toilet renovation in rural areas to reduce the risk of human feces exposure, which would cause infectious diseases, especially antibiotic resistance genes (ARGs) and pathogens. However, the distribution of ARGs in human feces from different regions of China remained ill-defined. It is not yet known how the survival of ARGs after toilet treatment is associated with the regional infection rates. Here, we investigated the prevalence of ARGs in human feces in rural areas of China and their potential relationship with infectious diseases for the first large-scale. The results showed that there were still high ARGs residues in human feces after rural toilet treatment, especially tetM-01 and ermB with average relative abundance as high as 1.21 × 10-1 (Eastern) and 1.56 × 10-1 (Northern), respectively. At a large regional scale, the significant differences in human feces resistomes were mainly shaped by the toilet types, TN, NH3-N, and the bacterial community. A critical finding was that toilets still cannot effectively decrease the pathogenicity risk in human feces. The significant positive relationship (P<0.05) between infectious diseases and ARGs can infer that ARGs in human feces exposure might be a critical path for enhancing the incidence of diseases, as these ARGs hinder the effectiveness of antibiotics.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
15
|
Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes during Thermophilic Composting of Human Excreta. Microorganisms 2023; 11:microorganisms11020308. [PMID: 36838273 PMCID: PMC9958827 DOI: 10.3390/microorganisms11020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.
Collapse
|
16
|
Silva V, Araújo S, Monteiro A, Eira J, Pereira JE, Maltez L, Igrejas G, Lemsaddek TS, Poeta P. Staphylococcus aureus and MRSA in Livestock: Antimicrobial Resistance and Genetic Lineages. Microorganisms 2023; 11:microorganisms11010124. [PMID: 36677414 PMCID: PMC9865216 DOI: 10.3390/microorganisms11010124] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Animal production is associated with the frequent use of antimicrobial agents for growth promotion and for the prevention, treatment, and control of animal diseases, thus maintaining animal health and productivity. Staphylococcus aureus, in particular methicillin-resistant S. aureus (MRSA), can cause a variety of infections from superficial skin and soft tissue infections to life-threatening septicaemia. S. aureus represents a serious public health problem in hospital and community settings, as well as an economic and animal welfare problem. Livestock-associated MRSA (LA-MRSA) was first described associated with the sequence (ST) 398 that was grouped within the clonal complex (CC) 398. Initially, LA-MRSA strains were restricted to CC398, but over the years it has become clear that its diversity is much greater and that it is constantly changing, a trend increasingly associated with multidrug resistance. Therefore, in this review, we aimed to describe the main clonal lineages associated with different production animals, such as swine, cattle, rabbits, and poultry, as well as verify the multidrug resistance associated with each animal species and clonal lineage. Overall, S. aureus ST398 still remains the most common clone among livestock and was reported in rabbits, goats, cattle, pigs, and birds, often together with spa-type t011. Nevertheless, a wide diversity of clonal lineages was reported worldwide in livestock.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Teresa Semedo Lemsaddek
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence: (T.S.L.); (P.P.)
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (T.S.L.); (P.P.)
| |
Collapse
|
17
|
Cui H, Wang L, Zhang J. Synergistic influence on microbial communities ascribed to copper and tetracycline during aerobic composting: Insights into bacterial and fungal structures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1019494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are a considerable number of discussions aimed at analyzing microbial communities and their functions during the composting process. However, microbial succession under copper (Cu) and tetracycline (TCH)-stressed conditions has received less attention. Thus, this work analyzed the bacterial and fungal structures with high-throughput sequencing in Cu/TCH-amended composting (Cu: 0, 100, and 500 mg/kg; TCH: 0, 50, and 300 mg/kg), and the dominating controls on microbial diversity were identified using redundancy analysis (RDA) and structural equation models (SEMs). Low-concentration Cu increased the peak temperature (57°C) at the thermophilic phase. Composting phase-derived changes in bacterial and fungal communities were significant, while Cu and TCH showed a remarkable influence on fungi but not on bacteria. Cu and TCH inhibited Firmicutes' activity while promoting Actinobacteriota growth. Low-concentration Cu and TCH had a negative effect on Basidiomycota in the thermophilic phase and a positive influence on Chytridiomycota in the mature phase. TOC and TN were primary controls on the changes in microbial communities. NH4+-N and NO3--N were more beneficial to fungi with a contribution proportion of 42.13 and 16.85%, respectively. These findings could provide theoretical guidance for the directional research on microbial inoculants.
Collapse
|
18
|
Han B, Ma L, Yu Q, Yang J, Su W, Hilal MG, Li X, Zhang S, Li H. The source, fate and prospect of antibiotic resistance genes in soil: A review. Front Microbiol 2022; 13:976657. [PMID: 36212863 PMCID: PMC9539525 DOI: 10.3389/fmicb.2022.976657] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance genes (ARGs), environmental pollutants of emerging concern, have posed a potential threat to the public health. Soil is one of the huge reservoirs and propagation hotspot of ARGs. To alleviate the potential risk of ARGs, it is necessary to figure out the source and fate of ARGs in the soil. This paper mainly reviewed recent studies on the association of ARGs with the microbiome and the transmission mechanism of ARGs in soil. The compositions and abundance of ARGs can be changed by modulating microbiome, soil physicochemical properties, such as pH and moisture. The relationships of ARGs with antibiotics, heavy metals, polycyclic aromatic hydrocarbons and pesticides were discussed in this review. Among the various factors mentioned above, microbial community structure, mobile genetic elements, pH and heavy metals have a relatively more important impact on ARGs profiles. Moreover, human health could be impacted by soil ARGs through plants and animals. Understanding the dynamic changes of ARGs with influencing factors promotes us to develop strategies for mitigating the occurrence and dissemination of ARGs to reduce health risks.
Collapse
Affiliation(s)
- Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
| | - Jiawei Yang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, China
- *Correspondence: Shiheng Zhang, ; Huan Li,
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- *Correspondence: Shiheng Zhang, ; Huan Li,
| |
Collapse
|
19
|
Marutescu LG, Jaga M, Postolache C, Barbuceanu F, Milita NM, Romascu LM, Schmitt H, de Roda Husman AM, Sefeedpari P, Glaeser S, Kämpfer P, Boerlin P, Topp E, Gradisteanu Pircalabioru G, Chifiriuc MC, Popa M. Insights into the impact of manure on the environmental antibiotic residues and resistance pool. Front Microbiol 2022; 13:965132. [PMID: 36187968 PMCID: PMC9522911 DOI: 10.3389/fmicb.2022.965132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent – cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Mihaela Jaga
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Florica Barbuceanu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Nicoleta Manuela Milita
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Luminita Maria Romascu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Heike Schmitt
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Stefanie Glaeser
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Peter Kämpfer
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Department of Biology, Agriculture and Agri-Food Canada, University of Western Ontario, London, ON, Canada
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Mariana Carmen Chifiriuc,
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| |
Collapse
|
20
|
Ma W, Wang L, Xu X, Huo M, Zhou K, Mi K, Tian X, Cheng G, Huang L. Fate and exposure risk of florfenicol, thiamphenicol and antibiotic resistance genes during composting of swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156243. [PMID: 35643147 DOI: 10.1016/j.scitotenv.2022.156243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Livestock manure is an important source of antibiotic resistance genes (ARGs) spreading to the environment, posing a potential threat to human health. Here, we investigated the dissipation of florfenicol (FF) and thiamphenicol (TAP), and their effects on the bacterial community, mobile genetic elements (MGEs), and ARGs during composting. The results indicated that FF and TAP dissipated rapidly in compost, with half-life values of 5.1 and 1.6 d, respectively. However, FF could not be completely removed during composting. The FF and TAP residues in manure could reduce the elimination of ARGs and MGEs during composting, and had a negative effect on the physicochemical factors of the compost. Significant correlations were found between floR and intI1, indicating that floR in manure may more easily diffuse to the soil environment. Meanwhile, the presence of FF in manure could increase the abundance of floR. Network analysis showed that Proteobacteria and Firmicutes were the dominant bacterial communities and important potential pathogen hosts carrying ARGs. The predicted environmental concentration of FF in the soil was over 100 μg kg-1, which indicates that FF poses a potential risk to the natural environment, and we verified this result through field experiments. The results showed that FF dissipated in the soil after it migrated from manure to soil. In contrast, TAP in manure posed lower environmental risk. This study highlights that changed in composting conditions may control the rate of removal of ARGs. Further studies are needed to investigate the best environmental conditions to achieve a faster degradation of FF and a more comprehensive elimination of ARGs during composting.
Collapse
Affiliation(s)
- Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lei Wang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
21
|
Song L, Jiang G, Wang C, Ma J, Chen H. Effects of antibiotics consumption on the behavior of airborne antibiotic resistance genes in chicken farms. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129288. [PMID: 35728321 DOI: 10.1016/j.jhazmat.2022.129288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The antibiotics and antibiotic resistance genes (ARGs) have caused pollution of livestock farm environments. There are limited investigations about airborne ARGs and what role the antibiotics play remains largely unclear. The dynamics of various antibiotics were compared between feces samples from chicken fed a diet with and without antibiotics. In contrast to the farm with no antibiotics drugs, the hazard quotients (HQs) of OTC (24.8-205.4) and CTC (18.0-317.0) are particularly high in the farm with in-feed antibiotics drugs. The high ecological risks of antibiotics in chicken feces with in-feed antibiotic drugs were 100 % as determined. We quantified mobile genetic elements (MGEs) and ARGs and investigated bacterial communities in feces and air samples. The concentration of airborne ARG/MGE subtypes with in-feed antibiotic drugs is about two orders of magnitude higher than those without drugs. This study reveals that the indoor air of chicken farms is a reservoir of ARGs in the environment. Continuous feeding of antibiotics can change the intestinal microbial community structure of the chicken. The possibility of horizontal gene transfer of ARGs in air and feces samples might be increased by in-feed antibiotic drugs. The enrichment of ARGs in the chicken farm can be reduced by minimizing antibiotic use.
Collapse
Affiliation(s)
- Lu Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Guanyu Jiang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Can Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China.
| | - Jinbiao Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Hong Chen
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| |
Collapse
|
22
|
Qiu T, Huo L, Guo Y, Gao M, Wang G, Hu D, Li C, Wang Z, Liu G, Wang X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. ENVIRONMENTAL MICROBIOME 2022; 17:42. [PMID: 35953830 PMCID: PMC9367140 DOI: 10.1186/s40793-022-00437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Antibiotics and antibiotic resistance genes (ARGs) used in intensive animal farming threaten human health worldwide; however, the common resistome, ARG mobility, and ARG host composition in different animal manures and mixed manure composts remain unclear. In the present study, metagenomic assembly and cross-sample mapping were used to comprehensively decipher the common resistome and its potential mobility and hosts in animal manure and composts. RESULTS In total, 201 ARGs were shared among different animal (layer, broiler, swine, beef cow, and dairy cow) manures and accounted for 86-99% of total relative abundance of ARGs. Except for multidrug, sulfonamide, and trimethoprim resistance genes, the relative abundance of most ARGs in composts was significantly lower than that in animal manure. Procrustes analysis indicated that antibiotic residues positively correlated with ARG composition in manure but not in composts. More than 75% ARG subtypes were shared between plasmids and chromosomes in our samples. Transposases could play a pivotal role in mediating the transfer of ARGs between different phyla in animal manure and composting. Cross-sample mapping to contigs carrying ARGs showed that the hosts of common resistome in manure had preference on animal species, and the dominant genus of ARG host shifted from Enterococcus in manure to Pseudomonas in composts. The broad host range and linking with diverse mobile genetic elements (MGEs) were two key factors for ARGs, such as sul1 and aadA, which could survive during composting. The multidrug resistance genes represented the dominant ARGs in pathogenic antibiotic-resistant bacteria in manure but could be effectively controlled by composting. CONCLUSIONS Our experiments revealed the common resistome in animal manure, classified and relative quantified the ARG hosts, and assessed the mobility of ARGs. Composting can mitigate ARGs in animal manure by altering the bacterial hosts; however, persistent ARGs can escape from the removal because of diverse host range and MGEs. Our findings provide an overall background for source tracking, risk assessment, and control of livestock ARGs.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Linhe Huo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Dong Hu
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Cheng Li
- Institute of Quality Standard and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
23
|
Tong Z, Liu F, Tian Y, Zhang J, Liu H, Duan J, Bi W, Qin J, Xu S. Effect of biochar on antibiotics and antibiotic resistance genes variations during co-composting of pig manure and corn straw. Front Bioeng Biotechnol 2022; 10:960476. [PMID: 35979171 PMCID: PMC9377313 DOI: 10.3389/fbioe.2022.960476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Pig manure is a reservoir of antibiotics and antibiotic resistance genes (ARGs). The effect of biochar on the variations in physicochemical properties, bacterial communities, antibiotics, ARGs, and mobile genetic elements (MGEs) of compost product during co-composting of pig manure and corn straw have been investigated in this study. Compared with the control treatment (CK), biochar addition accelerated the increase in pile temperature and prolonged the high temperature period (>55°C) for 2 days. Under biochar influence, organic matter degradation, NH4+-N conversion and NO3−-N production was accelerated, and dissolved total organic carbon (DOC) and dissolved total nitrogen (DTN) utilization by microorganisms were enhanced. Biochar addition altered the microbial community and promoted the vital activity of Actinobacteria in the later composting stage. The antibiotics removal efficiency (except danofloxacin and enrofloxacin) was accelerated in the early composting stage (1–14 days) by biochar addition, the pile temperature had a positive effect on antibiotics removal, and the total antibiotics removal efficiency in CK and CK+Biochar treatments was 69.58% and 78.67% at the end of the composting process, respectively. The absolute abundance of most of the ARGs in the CK+Biochar treatment was lower than that in the CK treatment during composting, and the ARGs removal mainly occurred in the early (1–14 days) and later (28–50 days) stages. Biochar addition reduced the absolute abundance of MGEs (intI1, intI2) in the compost product, and most of the ARGs had a significant positive correlation with MGEs. Network analysis and redundancy analysis showed that ARGs and MGEs occurred in various host bacteria (Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Halanaerobiaeota), and that DTN and NH4+-N are the main factors regulating the changes in bacterial communities, antibiotics, ARGs, and MGEs during composting. Moreover, MGEs contributed the most to the variation in ARGs. In summary, biochar addition during composting accelerated antibiotics removal and inhibited accumulation and transmission of ARGs. The results of this study could provide theoretical and technical support for biochar application for antibiotics and ARGs removal during livestock and poultry manure composting.
Collapse
Affiliation(s)
- Zhenye Tong
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Fenwu Liu,
| | - Yu Tian
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Jingzhi Zhang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Hui Liu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Jiaze Duan
- Nongshengyuan Family Farm, Jinzhong, China
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Junmei Qin
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
24
|
Werner KA, Schneider D, Poehlein A, Diederich N, Feyen L, Axtmann K, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Front Microbiol 2022; 13:826071. [PMID: 35432262 PMCID: PMC9009411 DOI: 10.3389/fmicb.2022.826071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLSB group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.
Collapse
Affiliation(s)
- Katharina A. Werner
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Nina Diederich
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lara Feyen
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Katharina Axtmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—Umweltforschungszentrum Leipzig (UFZ), Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
- *Correspondence: Elisabeth Grohmann,
| |
Collapse
|
25
|
Flores-Orozco D, Levin D, Kumar A, Sparling R, Cicek N. A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152711. [PMID: 34974005 DOI: 10.1016/j.scitotenv.2021.152711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) has shown the potential to reduce the numbers and types of antibiotic-resistance genes (ARG) present in animal manures. However, the variability of the results has limited the ability to draw solid conclusions. To address this issue, we performed a series of meta-analyses to evaluate how AD of pig, cattle, and dairy manures affects ARG levels and how different parameters, such as temperature, pH, digestion times, and the addition of other substances (e.g., solids, antibiotics) influence ARG changes. Twenty studies with enough details on changes in ARG levels during the AD process were identified and used for the meta-analyses. The results suggested that AD could significantly reduce ARG levels regardless of the conditions of the process. Also, thermophilic AD was more effective than mesophilic AD at reducing ARGs, although this difference was only significant for pig manures. The results also suggested that long digestion times (>50 days) yielded better ARG reduction rates, and that the addition of solids from an external source (co-digestion) negatively affected the efficiency of ARG reduction. In general, the results suggested that ARG changes during AD could be linked to the abundance and activity of hydrolytic communities.
Collapse
Affiliation(s)
- Daniel Flores-Orozco
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada.
| | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| |
Collapse
|
26
|
Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure. ENERGIES 2022. [DOI: 10.3390/en15051920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conversion of cattle manure into biogas in anaerobic digestion (AD) processes has been gaining attention in recent years. However, antibiotic consumption continues to increase worldwide, which is why antimicrobial concentrations can be expected to rise in cattle manure and in digestate. This study examined the long-term synergistic effects of antimicrobials on the anaerobic digestion of cattle manure. The prevalence of antibiotic resistance genes (ARGs) and changes in microbial biodiversity under exposure to the tested drugs was investigated using a metagenomic approach. Methane production was analyzed in lab-scale anaerobic bioreactors. Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant bacteria in the samples. The domain Archaea was represented mainly by methanogenic genera Methanothrix and Methanosarcina and the order Methanomassiliicoccales. Exposure to antibiotics inhibited the growth and development of methanogenic microorganisms in the substrate. Antibiotics also influenced the abundance and prevalence of ARGs in samples. Seventeen types of ARGs were identified and classified. Genes encoding resistance to tetracyclines, macrolide–lincosamide–streptogramin antibiotics, and aminoglycosides, as well as multi-drug resistance genes, were most abundant. Antibiotics affected homoacetogenic bacteria and methanogens, and decreased the production of CH4. However, the antibiotic-induced decrease in CH4 production was minimized in the presence of highly drug-resistant microorganisms in AD bioreactors.
Collapse
|
27
|
Liu Y, Cheng D, Xue J, Feng Y, Wakelin SA, Weaver L, Shehata E, Li Z. Fate of bacterial community, antibiotic resistance genes and gentamicin residues in soil after three-year amendment using gentamicin fermentation waste. CHEMOSPHERE 2022; 291:132734. [PMID: 34743798 DOI: 10.1016/j.chemosphere.2021.132734] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Over a three-year field trial, the impacts of composted and raw gentamicin fermentation waste (GFW) application to land on residual soil gentamicin levels, physicochemical properties, bacterial community composition, and antibiotic resistance genes (ARGs) were assessed. In the saline-alkali soil tested, GFW application decreased electrical conductivity (EC) and pH. Importantly, there was no measurable long-term accumulation of gentamicin as a result of GFW addition. Changes in the abundance of Bacillus was primarily associated with degradation of gentamicin in soil, whereas wider (i.e. more general) shifts in bacterial communities over the treatments was linked to alteration of soil physicochemical properties, particularly pH, total nitrogen, dissolved organic carbon, EC, NO3--N and NH4+-N. Compared with other treatments, soils receiving composted GFW harbored more types of ARGs and significantly higher (P < 0.05) abundances of mobile genes elements (MGEs) (especially IncQ and Int1) and aminoglycoside ARGs (especially aminoglycoside phosphotransferases genes, APH). Finally, the abundances of ARGs in soils receiving raw and composted GFW were 59.60% and 50.26% higher than that in soils only receiving chemical fertilizer, respectively. Specifically, the abundances of APH, especially strB, were significantly higher than other kinds of ARGs (P < 0.05). The results of linear regression and partial least squares path model showed that MGEs, including plasmids, integrons, and transposons, along with soil properties (EC and NH4+-N) were the main factors associated with change in ARGs. Furthermore, different MGEs were involved in different transfer mechanisms of specific ARGs. Our findings demonstrated the potential risks of using raw and composted GFW as fertilizer, and suggest potential solutions to this problem.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Scion, Private Bag, 29237, Christchurch, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | | | - Louise Weaver
- Institute of Environmental Science and Research Ltd, Christchurch, 8041, New Zealand
| | - Ebrahim Shehata
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Institute of Animal science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
28
|
Wang S, Li J, Wang C, Ma J, Li Z, Zheng Z, Zhang J. Reaction of the anammox granules to various antibiotics and operating the anammox coupled denitrifying reactor for oxytetracycline wastetwater treatment. BIORESOURCE TECHNOLOGY 2022; 348:126756. [PMID: 35077812 DOI: 10.1016/j.biortech.2022.126756] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic ammonium oxidation (anammox) basedtechnology has been considered as an economic and efficient way to remove nitrogen. However, the anammox bacteria could be strongly inhibited by antibiotics. In present research, inhibiting properties of oxytetracycline, penicillin and polymyxin sulfate upon the anammox activity were investigated through batch experiment. The results implied that anammox activity was significantly inhibited by oxytetracycline and polymyxin sulfate. The non-competitive inhibiting model showed that the inhibiting constants (Ki) of oxytetracycline and polymyxin sulfate were 188.5 and 17.7 mg/L, respectively. Meanwhile, the anammox process was not suppressed while the concentration of penicillin reached 3000 mg/L. In long-run experiment, the influent oxytetracycline concentration of the anammox coupled denitrifying reactor was operated at 20 mg/L. It was observed that the anammox performance completely deteriorated, while the NO2--N removing efficiency reached 15.8%. The obtained findings could provide important instruction for the treatment of antibiotic contaminated wastewater.
Collapse
Affiliation(s)
- Shuailing Wang
- National Engineering Laboratory for Wastewater Treatment Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Wastewater Treatment Technology, Beijing University of Technology, Beijing 100124, China
| | - ChangWen Wang
- School of Urban and Architectural Engineering, Zaozhuang University, Zaozhuang, Shandong 277100, China
| | - Jing Ma
- Beijing Municipal Engineering Professional Design Institute Co., Ltd., Beijing 100037, China
| | - Zhe Li
- National Engineering Laboratory for Wastewater Treatment Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhaoming Zheng
- National Engineering Laboratory for Wastewater Treatment Technology, Beijing University of Technology, Beijing 100124, China.
| | - Jing Zhang
- National Engineering Laboratory for Wastewater Treatment Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
29
|
Werner KA, Poehlein A, Schneider D, El-Said K, Wöhrmann M, Linkert I, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Thermophilic Composting of Human Feces: Development of Bacterial Community Composition and Antimicrobial Resistance Gene Pool. Front Microbiol 2022; 13:824834. [PMID: 35250940 PMCID: PMC8895236 DOI: 10.3389/fmicb.2022.824834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
In times of climate change, practicing sustainable, climate-resilient, and productive agriculture is of primordial importance. Compost from different resources, now treated as wastes, could be one form of sustainable fertilizer creating a resilience of agriculture to the adverse effects of climate change. However, the safety of the produced compost regarding human pathogens, pharmaceuticals, and related resistance genes must be considered. We have assessed the effect of thermophilic composting of dry toilet contents, green cuttings, and straw, with and without biochar, on fecal indicators, the bacterial community, and antibiotic resistance genes (ARGs). Mature compost samples were analyzed regarding fecal indicator organisms, revealing low levels of Escherichia coli that are in line with German regulations for fertilizers. However, one finding of Salmonella spp. exceeded the threshold value. Cultivation of bacteria from the mature compost resulted in 200 isolates with 36.5% of biosafety level 2 (BSL-2) species. The majority is known as opportunistic pathogens that likewise occur in different environments. A quarter of the isolated BSL-2 strains exhibited multiresistance to different classes of antibiotics. Molecular analysis of total DNA before and after composting revealed changes in bacterial community composition and ARGs. 16S rRNA gene amplicon sequencing showed a decline of the two most abundant phyla Proteobacteria (start: 36-48%, end: 27-30%) and Firmicutes (start: 13-33%, end: 12-16%), whereas the abundance of Chloroflexi, Gemmatimonadetes, and Planctomycetes rose. Groups containing many human pathogens decreased during composting, like Pseudomonadales, Bacilli with Bacillus spp., or Staphylococcaceae and Enterococcaceae. Gene-specific PCR showed a decline in the number of detectable ARGs from 15 before to 8 after composting. The results reveal the importance of sufficiently high temperatures lasting for a sufficiently long period during the thermophilic phase of composting for reducing Salmonella to levels matching the criteria for fertilizers. However, most severe human pathogens that were targeted by isolation conditions were not detected. Cultivation-independent analyses also indicated a decline in bacterial orders comprising many pathogenic bacteria, as well as a decrease in ARGs. In summary, thermophilic composting could be a promising approach for producing hygienically safe organic fertilizer from ecological sanitation.
Collapse
Affiliation(s)
- Katharina A. Werner
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Khaliel El-Said
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Michael Wöhrmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Isabel Linkert
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| |
Collapse
|
30
|
Zhao C, Xin L, Xu X, Qin Y, Wu W. Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127526. [PMID: 34736188 DOI: 10.1016/j.jhazmat.2021.127526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Kitchen waste might be a potential source of antibiotics and antibiotic resistance genes. Composting is recognized as an effective way for kitchen waste disposal. However, the effects of different kitchen waste composting types on the removal of antibiotics and antibiotic resistance genes haven't been systematically studied. In this study, the dynamics of antibiotics and antibiotic resistance genes from kitchen waste of four composting processes were compared. Results showed that although kitchen waste was composted, it remained an underestimated source of antibiotics (25.9-207.3 μg/kg dry weight) and antibiotic resistance genes (1012-1017 copies/kg dry weight). Dynamic composting processes (i.e., dynamic pile composting and mechanical composting) decreased the antibiotic removal efficiency and increased the abundance of some antibiotic resistance genes (5.35-8534.7% enrichment). Partial least-squares path model analysis showed that mobile genetic elements played a dominant role in driving antibiotic resistance genes dynamics. Furthermore, redundancy analysis revealed that temperature, pH, and water content considerably affected the removal of antibiotics and mobile genetic elements. This study provides further insights into exploring the effective strategies in minimizing the risk of antibiotic resistance from kitchen waste via composting process.
Collapse
Affiliation(s)
- Changxun Zhao
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Liqing Xin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Xingkun Xu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China.
| |
Collapse
|
31
|
Dalahmeh SS, Thorsén G, Jönsson H. Open-air storage with and without composting as post-treatment methods to degrade pharmaceutical residues in anaerobically digested and dewatered sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151271. [PMID: 34740644 DOI: 10.1016/j.scitotenv.2021.151271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Over a period of 12 months, the fate of three hormones, 12 antibiotics and 30 pharmaceutically active substances (PhACs) was investigated during open-air storage without and with composting of anaerobically digested and dewatered sewage sludge. The effect of oxidation conditions during storage on degradation of hormones and PhACs in the sludge biomass was also examined. Under summer and winter conditions in Uppsala County, Sweden, two field-scale sludge windrows were constructed: open-air storage of sewage sludge windrow without composting (NO-COM)) and open-air storage windrow with composting (COM). NO-COM achieved effective removal of ∑Hormones (85%) and ∑Antibiotics (95%), but lower removal of ∑PhACs (34%), during the study year. The top layers of the sludge pile had significantly lower concentrations of ∑PhACs (3100-5100 ng/g ash) than deeper layers (8000-11,000 ng/g ash). After one year of composting, the degradation in the COM windrow resulted in concentrations of ∑Hormones (<LOD), ∑Antibiotics (<LOD), while the ∑PhCAs was 5% (730 ng/g ash) of initial (13,000 ng/g ash). The half-life of substances during composting in COM was within 7-100 days for all substances except ibuprofen (156 days). The first-order degradation constant (K) was the lowest for ibuprofen (0.0045 day-1) and the highest for oxazepam (0.0805 day-1). In conclusion, composting of sludge was effective in degrading the target hormones, antibiotics, and PhACs.
Collapse
Affiliation(s)
- Sahar S Dalahmeh
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE 752 36 Uppsala, Sweden.
| | | | - Håkan Jönsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Sweden
| |
Collapse
|
32
|
Cui H, Ou Y, Wang L, Yan B, Bao M. Tetracycline hydrochloride-stressed succession in microbial communities during aerobic composting: Insights into bacterial and fungal structures. CHEMOSPHERE 2022; 289:133159. [PMID: 34871611 DOI: 10.1016/j.chemosphere.2021.133159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Available information that whether antibiotics affect the succession in microbial communities during aerobic composting remains limited. Thus, this work investigated the dynamic changes in bacterial and fungal structures during aerobic composting amended with tetracycline hydrochloride (TCH: 0, 50, 150 and 300 mg kg-1). Composting phases significantly affected bacterial and fungal communities, but only fungi strongly responded to antibiotics, while bacteria did not. Firmicutes, Proteobacteria, Bacteroidota and Actinobacteriota were primary bacterial phylum. Neocallimastigomycota was dominant fungal phylum at temperature-heating phase, then Basidiomycota and Ascomycota became main fungal phylum at thermophilic and temperature-colling phases. Low TCH concentration promoted Chytridiomycota growth, while high TCH concentration inhibited mostly fungal activity in TCH-amended composting. Nitrogen species were critical factors controlling the succession in bacterial and fungal communities during composting process. These results cast a new light on understanding about microbial function during aerobic composting.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lixia Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Meiwen Bao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Zhang CY, Li X, Zhao XY, Yang JJ, Li SK, Dang QL, Tan XK. Recognize and assessment of key host humic-reducing microorganisms of antibiotic resistance genes in different biowastes composts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150736. [PMID: 34600985 DOI: 10.1016/j.scitotenv.2021.150736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Humic-reducing microorganisms (HRMs) can utilize humic substance as terminal electron mediator promoting the bioremediation of contaminate, which is ubiquitous in composts. However, the impacts of HRMs on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in composts and different HRMs community composition following the types of biowastes effected the spread of ARGs have not been investigated. Herein, the dynamics and mobility of ARGs and HRMs during protein-, lignocellulose- and lignin-rich composting were investigated. Result show that ARGs change significantly at the thermophilic phase, and the relative abundance of most ARGs increase during composting. Seven groups of HRMs communities are classified as primary host HRMs of ARGs, and most host HRMs groups from protein-rich composts. Conclusively, regulating methods for inhibiting ARGs spread for different composts are proposed. HRMs show a higher ARGs dissemination capacity in protein-rich composts than lignocellulose- and lignin-rich composts, but the spread of ARGs can be inhibited by regulate physicochemical parameters in protein-rich composts. In contrary, most HRMs have inhibitory effects on ARGs spread in lignocellulose- and lignin-rich composts, and those HRMs can be used as a new agent that inhibits the spread of ARGs. Our results can help in understanding the potential risk spread of ARGs by inoculating functional bacteria derived from different biowastes composts for environmental remediation, given their expected importance to developing a classification-oriented approach for composting different biowastes.
Collapse
Affiliation(s)
- Chuan-Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin-Yu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jin-Jin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shao-Kang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiu-Ling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Kai Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
34
|
Wu Y, Wen Q, Chen Z, Fu Q, Bao H. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150086. [PMID: 34537705 DOI: 10.1016/j.scitotenv.2021.150086] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.
Collapse
Affiliation(s)
- Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
35
|
Ma Q, Li Y, Xue J, Cheng D, Li Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022; 27:472. [PMID: 35056787 PMCID: PMC8777752 DOI: 10.3390/molecules27020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.
Collapse
Affiliation(s)
- Qianqian Ma
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Xue
- SCION, Private Bag 29237, Christchurch 8440, New Zealand;
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
36
|
Yue Z, Zhang J, Zhou Z, Ding C, Zhang T, Wan L, Wang X. Antibiotic degradation dominates the removal of antibiotic resistance genes during composting. BIORESOURCE TECHNOLOGY 2022; 344:126229. [PMID: 34737135 DOI: 10.1016/j.biortech.2021.126229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
To identify the key hosts involved in horizontal gene transfer (HGT) and vertical gene transfer (VGT) of antibiotic resistance genes (ARGs) and to determine the extent to and ways in which environmental properties contribute to ARG removal, the changes in ARG profile and key hosts during biogas residue and pig manure composting were investigated using metagenomic sequencing coupled with network analysis. Composting significantly reduced the abundances of ARGs other than bacA. Seventy and 41 hosts from Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes were associated with HGT and VGT, respectively. The key environmental properties were determined using structural equation modelling. Antibiotics directly affected HGT and determined ARG removal. Temperature indirectly affected HGT, mainly by influencing the degradation of antibiotics. BacA was associated only with hosts involved in VGT, which may lead to its low removal rate. These findings specify the priority and pathway of antibiotics and temperature affecting ARG profile.
Collapse
Affiliation(s)
- Zhengfu Yue
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wan
- Jiangxi Zhenghe Ecological Agriculture Company Limited, Xinyu 338008, PR China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangxi Zhenghe Ecological Agriculture Company Limited, Xinyu 338008, PR China.
| |
Collapse
|
37
|
Zhao X, Wang Z, Xu T, Feng Z, Liu J, Luo L, He Y, Xiao Y, Peng H, Zhang Y, Deng O, Zhou W. The fate of antibiotic resistance genes and their influential factors during excess sludge composting in a full-scale plant. BIORESOURCE TECHNOLOGY 2021; 342:126049. [PMID: 34592456 DOI: 10.1016/j.biortech.2021.126049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The alteration of antibiotic resistance genes (ARGs) during sludge composting has been less studied in a full-scale plant, causing the miss of practical implications for understanding/managing ARGs. Therefore, this study tracked the changes of ARGs and microbial communities in a full-scale plant engaged in excess sludge composting and then explored the key factors regulating ARGs through a series of analyses. After composting, the absolute and relative abundance of ARGs decreased by 91.90% and 66.57%, respectively. Additionally, pathway analysis showed that MGEs, composting physicochemical properties were the most vital factors directly influencing ARGs. Finally, network analysis indicated that Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the main hosts of ARGs. Based on these findings, it can be known that full-scale composting could reduce ARGs risk to an extent.
Collapse
Affiliation(s)
- Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Tao Xu
- Hangzhou Chunlai Technology Co., Ltd., Hangzhou 310052, PR China
| | - Zhihan Feng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Liu
- Chengdu Lvshan Biotechnology Co., Ltd., Chengdu 611139, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
38
|
Zhu T, Chen T, Cao Z, Zhong S, Wen X, Mi J, Ma B, Zou Y, Zhang N, Liao X, Wang Y, Wu Y. Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poult Sci 2021; 100:101485. [PMID: 34695626 PMCID: PMC8554274 DOI: 10.1016/j.psj.2021.101485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 10/28/2022] Open
Abstract
Livestock farms are generally considered to be the important source of antibiotic resistance genes (ARGs). It is important to explore the spread of ARGs to reduce their harm. This study analyzed 13 resistance genes belonging to 7 types in 68 samples of layer manure including different stages of layer breeding, layer manure fertilizer, and soil from 9 laying hen farms in Guangdong Province. The detection rate of antibiotic resistance genes was extremely high at the layer farm in manure (100%), layer manure fertilizer (100%), and soil (> 95%). The log counts of antibiotic resistance genes in layer manure (3.34-11.83 log copies/g) were significantly higher than those in layer manure fertilizer (3.45-9.80 log copies/g) and soil (0-7.69 log copies/g). In layer manure, ermB was the most abundant antibiotic resistance gene, with a concentration of 3.19 × 109- 6.82 × 1011 copies/g. The average abundances of 5 antibiotic resistance genes were above 1010 copies/g in the descending order ermB, sul2, tetA, sul1, and strB. The relative abundances of ARGs in layer manure samples from different breeding stages ranked as follows: brooding period (BP), late laying period (LL), growing period (GP), early laying period (EL), and peak laying period (PL). There was no significant correlation between the farm scale and the abundance of antibiotic resistance genes. Moreover, the farther away from the layer farm, the lower the abundance of antibiotic resistance genes in the soil. We also found that compost increases the correlation between antibiotic resistance genes, and the antibiotic resistance genes in soil may be directly derived from layer manure fertilizer instead of manure. Therefore, when applying layer manure fertilizer to cultivated land, the risk of antibiotic resistance genes pollution should be acknowledged, and in-depth research should be conducted on how to remove antibiotic resistance genes from layer manure fertilizer to control the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Ting Zhu
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Chen
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Shan Zhong
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China
| | - Yan Wang
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China
| | - Yinbao Wu
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China.
| |
Collapse
|
39
|
Liu H, Ye X, Chen S, Sun A, Duan X, Zhang Y, Zou H, Zhang Y. Chitosan as additive affects the bacterial community, accelerates the removals of antibiotics and related resistance genes during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148381. [PMID: 34146805 DOI: 10.1016/j.scitotenv.2021.148381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.
Collapse
Affiliation(s)
- Hongdou Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Xuhong Ye
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Songling Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Aobo Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Xinying Duan
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Yanqing Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China.
| | - Yulong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| |
Collapse
|
40
|
Liu B, Yu K, Ahmed I, Gin K, Xi B, Wei Z, He Y, Zhang B. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148372. [PMID: 34139488 DOI: 10.1016/j.scitotenv.2021.148372] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Occurrence of antibiotic resistance genes (ARGs) in animal manure impedes the reutilization of manure resources. Aerobic composting is potentially effective method for resource disposal of animal manure, but the fate of ARGs during composting is complicated due to the various material sources and different operating conditions. This review concentrates on the biotic and abiotic factors influencing the variation of ARGs in composting and their potential mechanisms. The dynamic variations of biotic factors, including bacterial community, mobile genetic elements (MGEs) and existence forms of ARGs, are the direct driving factors of the fate of ARGs during composting. However, most key abiotic indicators, including pH, moisture content, antibiotics and heavy metals, interfere with the richness of ARGs indirectly by influencing the succession of bacterial community and abundance of MGEs. The effect of temperature on ARGs depends on whether the ARGs are intracellular or extracellular, which should be paid more attention. The emergence of various controlling strategies renders the composting products safer. Four potential removal mechanisms of ARGs in different controlling strategies have been concluded, encompassing the attenuation of selective/co-selective pressure on ARGs, killing the potential host bacteria of ARGs, reshaping the structure of bacterial community and reducing the cell-to-cell contact of bacteria. With the effective control of ARGs, aerobic composting is suggested to be a sustainable and promising approach to treat animal manure.
Collapse
Affiliation(s)
- Botao Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Fu Y, Zhang A, Guo T, Zhu Y, Shao Y. Biochar and Hyperthermophiles as Additives Accelerate the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements during Composting. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5428. [PMID: 34576653 PMCID: PMC8465662 DOI: 10.3390/ma14185428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Sewage treatment plants are known as repositories of antibiotic resistance genes (ARGs). Adding biochar and inoculating with exogenous microbial agents are common ways to improve the quality of compost. However, little is known about the effects of these exogenous additives on the fate of ARGs during composting and the related mechanisms. In this study, municipal sludge was taken as the research object to study the ARG-removal effects of four composting methods: ordinary compost (CT), compost with hyperthermophiles (HT), compost with hyperthermophiles and 2.0% biochar (HT2C) and compost with hyperthermophiles and 5.0% biochar (HT5C). Real-time quantitative PCR (qPCR) and 16S rRNA high-throughput sequencing were conducted to analyze the ARGs, MGEs and bacterial community. After composting, the abundance of ARGs in CT was reduced by 72.7%, while HT, HT2C and HT5C were reduced by 80.7%, 84.3% and 84.8%, respectively. Treatments with different proportions of biochar added (HT2C, HT5C) had no significant effect on the abundance of ARGs. Network analysis showed that Firmicutes and Nitrospirae were positively associated with most ARGs and may be potential hosts for them. In addition, redundancy analysis further showed that the class 1 integrase gene (intI1), pH and organic carbon had a greater effect on ARGs. Our findings suggested that the combination of hyperthermophiles and biochar during the composting process was an effective way to control ARGs and mobile genetic elements (MGEs), thus inhibiting the spread and diffusion of ARGs in the environment and improving the efficiency of treating human and animal diseases.
Collapse
Affiliation(s)
| | | | | | - Ying Zhu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (Y.F.); (A.Z.); (T.G.)
| | - Yanqiu Shao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (Y.F.); (A.Z.); (T.G.)
| |
Collapse
|
42
|
Chen Z, Li Y, Ye C, He X, Zhang S. Fate of antibiotics and antibiotic resistance genes during aerobic co-composting of food waste with sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146950. [PMID: 34088024 DOI: 10.1016/j.scitotenv.2021.146950] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Aerobic composting is widely used on transforming organic solid waste into proliferating products. However, the removal of antibiotics and antibiotic resistance genes (ARGs) in the process of co-composting of food waste with sewage sludge has been rarely reported to date. Therefore, we investigated a laboratory-scale composting using food waste and sewage sludge as substrates to study changes in antibiotics and ARGs during composting. Varying dose of antibiotics were added to allow the evaluation of changes in antibiotics, the microbial community and ARGs. The results revealed that composting effectively removed fluoroquinolones and macrolides, while showed poor efficiency in removing sulfonamides. Results from the 16S rRNA sequencing revealed that Firmicutes dominated on D0, while Proteobacteria and Actinomycetes dominated on D28, and a high concentration of antibiotics affected the microbial succession. The quantitative PCR demonstrated that the abundance of sul3, sulA, qnrB, qnrS, and ermB was reduced after 28 days composting, while an increase in the abundance of sul1, sul2, qnrD, ermC, and ermF was induced by high concentrations of antibiotics. Redundancy analysis revealed that total organic matter was the most important factor for the variation in the ARGs abundance. Overall, our findings indicated that the aerobic co-composting of food waste with sewage sludge can effectively remove antibiotics and ARGs. Our study sheds a new idea light on the strategy for the removal of antibiotics and ARGs from organic solid waste.
Collapse
Affiliation(s)
- Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xin He
- Hefei Thomas School, Hefei 230000, People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
43
|
Gaballah MS, Guo J, Sun H, Aboagye D, Sobhi M, Muhmood A, Dong R. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. BIORESOURCE TECHNOLOGY 2021; 333:125069. [PMID: 33894445 DOI: 10.1016/j.biortech.2021.125069] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 05/11/2023]
Abstract
Veterinary antibiotics (VAs) contamination has been considered as a worldwide environmental and health concern in recent decades. This paper reviewed the variability of contents of VAs and their release from the animal breeding industry into the surrounding environment along with the performance of the manure treatment technologies. The data collected revealed that VAs were mostly excreted in animal feces and observed in manure, soil, water, and sediment. The findings illustrate the disparity of VAs in excretion rates, consumption, and their residues in the environment with relatively high distribution for tetracyclines, fluoroquinolones, and sulfonamides. Anaerobic digestion has a capacity to remove of 73% VAs while manure composting and constructed wetlands can remove 84.7%, and 90% VAs. Due to the profound effect of antibiotics on the environment, further research and intensive management strategies for livestock manure need to be designed to improve the removal efficiency and manure management technologies.
Collapse
Affiliation(s)
- Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Dominic Aboagye
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Mostafa Sobhi
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Atif Muhmood
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
44
|
Pollution by Antibiotics and Antimicrobial Resistance in LiveStock and Poultry Manure in China, and Countermeasures. Antibiotics (Basel) 2021; 10:antibiotics10050539. [PMID: 34066587 PMCID: PMC8148549 DOI: 10.3390/antibiotics10050539] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023] Open
Abstract
The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.
Collapse
|
45
|
Lu H, Wang J, Huang L, Wang X, Zhou J, Wang J. Effect of immobilized anthraquinone-2-sulfonate on antibiotic resistance genes and microbial community in biofilms of anaerobic reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111967. [PMID: 33454531 DOI: 10.1016/j.jenvman.2021.111967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Quinone compounds could significantly accelerate anaerobic biotransformation of refractory pollutants. However, the effect of quinone compounds application on the propagation of antibiotic resistance genes (ARGs) in the bio-treatment of these pollutants-containing wastewater is not available. In this study, the catalytic performance of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF), changes of ARGs, mobile gene elements (MGEs) and microbial community structure attached on AQS-PUF and PUF in the up-flow anaerobic bioreactors were investigated. The results showed that AQS-PUF could significantly accelerate the decolorization of azo dye RR X-3B. Meanwhile, metagenomics analysis showed that the total absolute abundance of ARGs increased in the presence of the immobilized AQS. Among ARGs, the number of the efflux pump-encoding ARGs in the biofilm of AQS-PUF accounted for 35.7% of the total ARGs, which was slightly higher than that of PUF (32.1%) due to the presence of the immobilized AQS. The relative abundances of ARGs conferring resistance to MLS (macrolide, lincosamide and streptogramin), tetracycline and sulfonamide, which were deeply concerned, reduced 10%, 21.7% and 7.3% in the presence of the immobilized AQS, respectively. Moreover, the immobilized AQS resulted in the decreased relative abundance of plasmids, transposons and class I integrons. Among the detected 31 ARG subtypes located in MGEs, the relative abundances of only lnuF, msrE and mphD in the biofilm of AQS-PUF were over 2-fold higher compared with those in the biofilm of PUF. However, the three ARGs and their host Gammaproteobacteria was not dominant in microbial community. The relative abundances of more ARGs including MLS (lnuB and EreA), tetracycline (tetH) resistance genes located in MGEs decreased, which was attributed to the decreased relative abundance of their hosts. These studies showed that the addition of the immobilized AQS (around 0.25 mM) had a beneficial effect on reducing the spread of ARGs during dyeing wastewater bio-treatment.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiaojiao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
46
|
Congilosi JL, Aga DS. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123634. [PMID: 33153790 DOI: 10.1016/j.jhazmat.2020.123634] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
While manure has been used as nutrient-rich fertilizer for centuries, anaerobic digestion (AD) of manure has only been recognized recently as a promising renewable energy source for producing methane-rich biogas. Various forms of AD have been evaluated for the removal of manure contaminants, such as antimicrobials, antimicrobial resistance genes (ARGs), hormones, and pesticides that pose risks to human health and the environment. Increasing demand for cleaner energy prompts examination of the fate of manure contaminants in conventional and advanced AD techniques. This review reveals that removal of contaminants differs based on type (e.g. antimicrobials vs hormones) or class (e.g. tetracyclines vs sulfonamides) of chemicals being treated. Increasingly, pre-treatment techniques are incorporated into AD systems to enhance biogas production and degrade manure contaminants. For instance, activated carbon with microwave pretreatment removed 87-95% of ARGs. Advanced anaerobic digestion and solid-state anaerobic digestion reduced various ARGs associated with sulfonamides, macrolides, and tetracyclines. Further, total hormone reduction improved using high-temperature pretreatment prior to mesophilic AD. Finally, several studies revealed partial removal of antimicrobials and ARGs during managed composting. Although AD can independently decrease manure contaminants prior to use as fertilizer, augmenting AD with composting and other physical treatment processes can further enhance their removal.
Collapse
Affiliation(s)
- Jena L Congilosi
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
47
|
Effects of continuous sulfamonomethoxine shock on the power generation performance and microbial community structure of MFCs under seasonal temperature variation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Yu H, Ye X, Feng L, Yang J, Lan Z, Ren C, Zhu W, Yang G, Zhou J. Dynamics of denitrification performance and denitrifying community under high-dose acute oxytetracycline exposure and various biorecovery strategies in polycaprolactone-supported solid-phase denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111763. [PMID: 33310237 DOI: 10.1016/j.jenvman.2020.111763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/08/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Solid-phase denitrification (SPD) is a promising technology for nitrate-rich water purification. This study aimed to examine the variation in denitrification performance and denitrifying community under high-dose acute oxytetracycline (OTC) exposure and various biorecovery strategies. The denitrification performance was impaired significantly after one-day OTC shock at 50 mg L-1 in a continuous-flow SPD system supported by a polycaprolactone (PCL) carrier but could rapidly recover without the addition of OTC. When 50 mg L-1 OTC stress was applied for a longer time in the batch tests, a natural recovery period of more than 20 days was required to reach more than 95% nitrate reduction. Under the same conditions, the addition of both mature biofilm-attached PCL carrier and fresh biofilm-free PCL carrier significantly shortened the recovery time for efficient nitrate reduction, mainly due to the increase in organic availability from the PCL carriers. However, the composition of the microbial community notably changed due to the effects of OTC according to high-throughput sequencing and metagenomic analysis. Genes encoding NAR and NIR were much more sensitive than those encoding NOR and NOS to OTC shock. Tetracycline resistance gene (TRG) enrichment was 15.86% higher in the biofilm that experienced short-term OTC shock than in the control biofilm in the continuous-flow SPD system.
Collapse
Affiliation(s)
- Hui Yu
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Xin Ye
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Lijuan Feng
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| | - Jingyi Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Zeyu Lan
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Chengzhe Ren
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Wenzhuo Zhu
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
49
|
Cheng D, Liu Y, Shehata E, Feng Y, Lin H, Xue J, Li Z. In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123710. [PMID: 33254754 DOI: 10.1016/j.jhazmat.2020.123710] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 05/25/2023]
Abstract
The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (TD) and manure directly spiked with these drugs (TS). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the TD treatment was significantly higher than that of OTC (83.8 %, P < 0.01) and CIP (83.9 %, P < 0.05) in the TS treatment, while SM1 exhibited no significant difference (P > 0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both TD and TS types of manure, especially tetracycline resistance genes (TRGs). Compared with the TS treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the TD treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure.
Collapse
Affiliation(s)
- Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yuanwang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ebrahim Shehata
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Scion, Christchurch, PO Box 29237, New Zealand
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
50
|
The Impact of Antimicrobial Substances on the Methanogenic Community during Methane Fermentation of Sewage Sludge and Cattle Slurry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11010369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study showed the effect of amoxicillin (AMO), and oxytetracycline (OXY) at a concentration of 512 µg mL−1, and sulfamethoxazole (SMX), and metronidazole (MET) at a concentration of 1024 µg mL−1 on the efficiency of anaerobic digestion (AD) of sewage sludge (SS) and cattle slurry (CS). The production of biogas and methane (CH4) content, and the concentration of volatile fatty acids (VFAs) was analyzed in this study. Other determinations included the concentration of the mcrA gene, which catalyzes the methanogenesis, and analysis of MSC and MST gene concentration, characteristic of the families Methanosarcinaceae and Methanosaetaceae (Archaea). Both substrates differed in the composition of microbial communities, and in the sensitivity of these microorganisms to particular antimicrobial substances. Metronidazole inhibited SS fermentation to the greatest extent (sixfold decrease in biogas production and over 50% decrease in the content of CH4). The lowest concentrations of the mcrA gene (106 gD−1) were observed in CS and SS digestates with MET. A decline in the number of copies of the MSC and MST genes was noted in most of the digestate samples with antimicrobials supplementation. Due to selective pressure, antimicrobials led to a considerably lowered efficiency of the AD process and induced changes in the structure of methanogenic biodiversity.
Collapse
|