1
|
Wu Y, Lin Y, Liu B, Ma J, Xiang Y, Wang Y, Meng S. Shexiang Tongxin dropping pill ameliorates microvascular obstruction via downregulating ALOX12 after myocardial ischemia-reperfusion. Int J Cardiol 2024; 416:132481. [PMID: 39179033 DOI: 10.1016/j.ijcard.2024.132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Microvascular dysfunction (MVD) is common in patients with myocardial infarction receiving reperfusion therapy and is associated with adverse cardiac prognosis. Accumulating evidence suggests a protective role of Shexiang Tongxin dropping pill (STDP) in MVD. However, the specific effects and the underlying mechanisms of STDP in the context of MVD after myocardial ischemia-reperfusion (IR) remains unclear. AIMS We aimed to elucidate the role of STDP in MVD induced by IR and the potential mechanisms involved. METHODS Mice were orally administered with STDP or normal saline for 5 days before receiving myocardial IR. Cardiac function and microvascular obstruction was measured. Proteomics and single-cell RNA sequencing was performed on mouse hearts. In vitro hyoxia/reoxygenation model was established on mouse cardiac microvascular endothelial cells (MCMECs). RESULTS STDP improved cardiac function and decreased microvascular obstruction (MVO) in mice after myocardial IR. Proteomics identified ALOX12 as an important target of STDP. Single-cell RNA sequencing further revealed that downregulation of ALOX12 by STDP mainly occurred in endothelial cells. The involvement of ALOX12 in the effect of STDP on MVO was validated by manipulating ALOX12 via endothelial-specific adeno-associated virus transfection in vivo and in vitro. In vivo, overexpression of ALOX12 increased whereas knockdown of ALOX12 decreased MVO and thrombus formation. STDP treatment alleviated the detrimental effects of overexpression of ALOX12. In vitro, overexpression of ALOX12 increased endothelial cell inflammation and platelet adhesion to endothelial cells, which was abolished by STDP treatment. CONCLUSION Our findings suggest that STDP alleviates MVO after IR, with ALOX12 playing a crucial role.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yanjun Lin
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China; Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Bo Liu
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jingqing Ma
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yin Xiang
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yuepeng Wang
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China.
| | - Shu Meng
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Garrido G, Garrido-Suárez BB, Martínez-Tapia N, Valdés-González M, Ortega-Mardones A. Antidiarrheal effect of Psidium guajava L. extract in acute diarrhea: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7731-7753. [PMID: 38578668 DOI: 10.1002/jsfa.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/21/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Acute diarrheal diseases are a leading cause of childhood mortality and morbidity worldwide. Psidium guajava has been globally used for its antidiarrheal potential. We conducted a systematic review of scientific articles published up to the year 2021, which included in vivo pre-clinical tests and clinical trials involving patients with acute infectious diarrhea to verify the antidiarrheal, antibacterial and antispasmodic effects of galenic preparations or phytopharmaceuticals from P. guajava. PRISMA and Rayyan were used as tools for the selection of studies collected in four databases (Pubmed, Scopus, Web of Science and Science Direct). The keywords used to carry out the search were: 'Psidium guajava', 'guava', 'antidiarrhe*' and 'diarrhe*', joined by Boolean operators 'OR' or 'AND'. The characteristics of studies in animal models of acute diarrhea induction, as well as in vivo and in vitro motility and microbiological tests linked with its main pathophysiological mechanisms, were collected. Twenty-three articles were included. Twenty (87%) of these reported heterogenic preclinical studies, predominating pharmacological studies of efficacy against conventional antidiarrheal agents, which utilized relevant outcomes and models of infectious diarrhea from the top pathogens in the clinic along with classical castor oil-induced diarrhea associated with motility tests. Only three articles (13%) corresponded to clinical trials investigating the efficacy, dose and safety of these preparations. Most studies reported positive results and significant mechanistic evidence from antibacterial, anti-motility, anti-secretory and protective/anti-inflammatory perspectives. However, further studies are needed to define the clinical significance and safety treatment with P. guajava extracts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | | | - Nicolás Martínez-Tapia
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Marisela Valdés-González
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Andrea Ortega-Mardones
- Departamento Procesos de Diagnóstico y Evaluación, Facultad Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
3
|
Andalan JR, Mondejar AJS, Sumaya NHN, Guihawan JQ, Madamba MRSB, Baltazar Tabelin C, Guilingen D, Paglinawan FC, Maulas KM, Arquisal I, Beltran AB, Orbecido AH, Promentilla MA, Alonzo D, Pisda PF, Ananayo A, Suelto M, Dalona IM, Resabal VJ, Armstrong R, Jungblut AD, Santos A, Brito-Parada P, Plancherel Y, Herrington R, Villacorte-Tabelin M. Ethnobotanical survey of medicinal and ritual plants utilized by the indigenous communities of Benguet province, Philippines. Trop Med Health 2024; 52:59. [PMID: 39256882 PMCID: PMC11385124 DOI: 10.1186/s41182-024-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The Sto. Niño site in Benguet province, Philippines was once a mining area that has now been transformed into an agricultural land. In this area, there has been significant integration of the three indigenous people (IPs) Ibaloi, Kankanaeys and Kalanguyas with the Ilocano community. These IPs safeguard biodiversity and traditional knowledge, including medicinal plant use. However, the documentation of these plant species and their medicinal applications has not been systematic, with the resultant loss of knowledge across generations. This study aims to document the medicinal and ritual plants used by the indigenous communities at the site, in order to preserve and disseminate traditional medicinal knowledge that would otherwise be lost. METHODS Ethnobotanical data were collected in Sto. Niño, Brgy. Ambassador, Municipality of Tublay, Benguet, Philippines, and collected through semi-structured interviews, together with focus group discussions (FGD). A total of 100 residents (39 male and 61 female) were interviewed. Among them, 12 were key interviewees, including community elders and farmers, while the rest were selected through the convenience and snowball technique. Demographic information collected from the interviewees included age, gender, and occupation. Ethnobotanical information collected focused on medicinal plants, including the specific parts of plants used, methods of preparation, modes of treatment, and the types of ailments treated. Ethnobotanical quantitative indices of the relative frequency of citations (RFC) and informant consensus factor (ICF) were calculated to evaluate the plant species that were utilized by the community. RESULTS A total of 28 medicinal plants from 20 different families and 6 ritual plants from 5 different families were documented. Asteraceae, Poaceae, and Lamiaceae (10.71%) family are the most mentioned medicinal plant species, followed by Myrtaceae and Euphorbiaceae (7.14%). The most widely used growth form were herbs (46.4%), while leaves (61.5%) were the most utilized plant part, and the preparation of a decoction (62.2%) was the most preferred method of processing and application. The medicinal plants were most commonly utilized for wound-healing, cough and colds, stomachache and kidney trouble, whereas ritual plants were largely used for healing, protection, and funeral ceremonies. CONCLUSION This study marks the first report on the medicinal and ritual plants used by a group of indigenous communities in Sto. Niño, Brgy. Ambassador, Tublay, Benguet Province. The data collected show that plant species belonging to the Asteraceae, Poaceae, and Lamiaceae family were the most mentioned and should be further evaluated by pharmacological analysis to assess their wider use for medicinal treatment.
Collapse
Affiliation(s)
- Janna R Andalan
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Alissa Jane S Mondejar
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Nanette Hope N Sumaya
- Center for Biodiversity Studies and Conservation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Jaime Q Guihawan
- Center for Biodiversity Studies and Conservation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Ma Reina Suzette B Madamba
- Center for Biodiversity Studies and Conservation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Resource Processing and Technology Center, REIT, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - David Guilingen
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Florifern C Paglinawan
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Kryzzyl M Maulas
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Isidro Arquisal
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Arnel B Beltran
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Aileen H Orbecido
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | | | - Dennis Alonzo
- School of Education, University of New South Wales, Sydney, Australia
| | - Pamela Flynn Pisda
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Alleah Ananayo
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Marlon Suelto
- University of the Philippines, Los Baños, Laguna, Philippines
| | - Irish Mae Dalona
- College of Arts and Social Sciences, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Vannie Joy Resabal
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | | | | | - Ana Santos
- Department of Science, Natural History Museum, London, UK
| | - Pablo Brito-Parada
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Yves Plancherel
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Mylah Villacorte-Tabelin
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
- Center for Microbial Genomics and Proteomics Innovation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
| |
Collapse
|
4
|
Corzo-Gómez JC, Espinosa-Juárez JV, Ovando-Zambrano JC, Briones-Aranda A, Cruz-Salomón A, Esquinca-Avilés HA. A Review of Botanical Extracts with Repellent and Insecticidal Activity and Their Suitability for Managing Mosquito-Borne Disease Risk in Mexico. Pathogens 2024; 13:737. [PMID: 39338928 PMCID: PMC11435231 DOI: 10.3390/pathogens13090737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Among the main arboviruses affecting public health in tropical regions are dengue, zika, and chikungunya, transmitted mainly by mosquitoes of the Aedes genus, especially Aedes aegypti. In recent years, outbreaks have posed major challenges to global health, highlighting the need for integrated and innovative strategies for their control and prevention. Prevention strategies include the elimination of vectors and avoiding mosquito bites; this can be achieved through the use of bioinsecticides and repellents based on plant phytochemicals, as they offer sustainable, ecological, and low-cost alternatives. Mexico has a variety of plants from which both extracts and essential oils have been obtained which have demonstrated significant efficacy in repelling and/or killing insect vectors. This review examines the current knowledge on plant species found in Mexico which are promising options concerning synthetic compounds in terms of their repellent and insecticidal properties against mosquitoes of the genus Aedes and that are friendly to the environment and health.
Collapse
Affiliation(s)
- Josselin Carolina Corzo-Gómez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Jose Carlos Ovando-Zambrano
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Chiapas, Mexico;
| | - Abumalé Cruz-Salomón
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Héctor Armando Esquinca-Avilés
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| |
Collapse
|
5
|
Liu C, Jullian V, Chassagne F. Ethnobotany, phytochemistry, and biological activities of Psidium guajava in the treatment of diarrhea: a review. Front Pharmacol 2024; 15:1459066. [PMID: 39246650 PMCID: PMC11377350 DOI: 10.3389/fphar.2024.1459066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Psidium guajava: is a tropical tree that is widely used in traditional medicine, especially for treating diarrhea. While P. guajava has been the subject of numerous reviews, none have specifically examined its ethnobotany, pharmacology, and phytochemistry in relation to its antidiarrheal activity. This review aims to summarize the evidence of effectiveness and safety of P. guajava in the treatment of diarrhea. Literature searches were conducted through Web of Science, PubMed, and ScienceDirect by using keywords "Psidium guajava" and "diarrhea" in October 2022. A total of 189 studies were included in this review. P. guajava is widely used in traditional medicine in 44 countries. Decoction and oral were the most represented method of preparation and administration, respectively, while leaves represented the most frequently cited part of the plant. Around 27 antidiarrheal or antibacterial compounds have been isolated and identified, including benzophenone glycosides, terpenes, polysaccharides, phenols, and flavonoids. This article presents ethnobotanical and pharmacological evidence for the efficacy of P. guajava leaves in the treatment of diarrhea and provides reference information for further investigation of this plant. However, despite the large number of publications on the topic, there are still some questions to answer: are quercetin and its glycosides the only ones to act as antidiarrheal agents? What is the mechanism of action of P. guajava antidiarrheal compounds? are the use of guava leaves safe in all types of populations including children, and at what dosage? To answer these questions, more complete phytochemical studies and systematic clinical trials are needed.
Collapse
Affiliation(s)
- Chengmei Liu
- UMR 152 PharmaDev, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Toulouse, France
| | - Valérie Jullian
- UMR 152 PharmaDev, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Toulouse, France
| | - François Chassagne
- UMR 152 PharmaDev, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
6
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Arévalo-Marín E, Casas A, Alvarado-Sizzo H, Ruiz-Sanchez E, Castellanos-Morales G, Jardón-Barbolla L, Fermin G, Padilla-Ramírez JS, Clement CR. Genetic analyses and dispersal patterns unveil the Amazonian origin of guava domestication. Sci Rep 2024; 14:15755. [PMID: 38977809 PMCID: PMC11231237 DOI: 10.1038/s41598-024-66495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Guava (Psidium guajava L.) is a semi-domesticated fruit tree of moderate importance in the Neotropics, utilized for millennia due to its nutritional and medicinal benefits, but its origin of domestication remains unknown. In this study, we examine genetic diversity and population structure in 215 plants from 11 countries in Mesoamerica, the Andes, and Amazonia using 25 nuclear microsatellite loci to propose an origin of domestication. Genetic analyses reveal one gene pool in Mesoamerica (Mexico) and four in South America (Brazilian Amazonia, Peruvian Amazonia and Andes, and Colombia), indicating greater differentiation among localities, possibly due to isolation between guava populations, particularly in the Amazonian and Andean regions. Moreover, Mesoamerican populations show high genetic diversity, with moderate genetic structure due to gene flow from northern South American populations. Dispersal scenarios suggest that Brazilian Amazonia is the probable origin of guava domestication, spreading from there to the Peruvian Andes, northern South America, Central America, and Mexico. These findings present the first evidence of guava domestication in the Americas, contributing to a deeper understanding of its evolutionary history.
Collapse
Affiliation(s)
- Edna Arévalo-Marín
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad-IIES, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico.
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Coyoacán, CDMX, Mexico.
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad-IIES, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico.
| | - Hernán Alvarado-Sizzo
- Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, CDMX, Mexico
| | - Eduardo Ruiz-Sanchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa (ECOSUR-Villahermosa), Villahermosa, Tabasco, Mexico
| | - Lev Jardón-Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, Mexico
| | - Gustavo Fermin
- Instituto Jardín Botánico de Mérida, Facultad de Ciencias, Universidad de Los Andes, Mérida, Mérida, Venezuela
| | - José S Padilla-Ramírez
- Campo Experimental Pabellón, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Aguascalientes, Mexico
| | - Charles R Clement
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.
| |
Collapse
|
8
|
Vora M, Selvi SGA, Gunasekaran S, Jayaseelan VP. Computational Evaluation on the Interactions of an Opaque-Phase ABC Transporter Associated with Fluconazole Resistance in Candida albicans, by the Psidium guajava Bio-Active Compounds. J Pharmacopuncture 2024; 27:91-100. [PMID: 38948309 PMCID: PMC11194528 DOI: 10.3831/kpi.2024.27.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 03/18/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Candida albicans is an opportunistic pathogen that occurs as harmless commensals in the intestine, urogenital tract, and skin. It has been influenced by a variety of host conditions and has now evolved as a resistant strain. The aim of this study was thus detect the fluconazole resistant C. albicans from the root caries specimens and to computationally evaluate the interactions of an opaque-phase ABC transporter protein with the Psidium guajava bio-active compounds. Methods 20 carious scrapings were collected from patients with root caries and processed for the isolation of C. albicans and was screened for fluconazole resistance. Genomic DNA was extracted and molecular characterization of Cdrp1 and Cdrp2 was done by PCR amplification. P. guajava methanolic extract was checked for the antifungal efficacy against the resistant strain of C. albicans. Further in-silico docking involves retrieval of ABC transporter protein and ligand optimization, molinspiration assessment on drug likeness, docking simulations and visualizations. Results 65% of the samples showed the presence of C.albicans and 2 strains were fluconazole resistant. Crude methanolic extract of P. guajava was found to be promising against the fluconazole resistant strains of C. albicans. In-silico docking analysis showed that Myricetin was a promising candidate with a high docking score and other drug ligand interaction scores. Conclusion The current study emphasizes that bioactive compounds from Psidium guajava to be a promising candidate for treating candidiasis in fluconazole resistant strains of C. albicans However, further in-vivo studies have to be implemented for the experimental validation of the same in improving the oral health and hygiene.
Collapse
Affiliation(s)
- Mithil Vora
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, P.H.Road, Chennai, Tamil Nadu, India
| | - Smiline Girija Aseervatham Selvi
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, P.H.Road, Chennai, Tamil Nadu, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwarakadoss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu, India
| | - Vijayashree Priyadharsini Jayaseelan
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, P.H.Road, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
10
|
Zheng M, Chen S, Liu Y, He Y. α-Glucosidase inhibitory activities of constituents from Psidium guajava leaves. Nat Prod Res 2024; 38:2040-2043. [PMID: 37506309 DOI: 10.1080/14786419.2023.2238113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Psidium guajava is a plant of the Myrtaceae with various pharmacological activity. In this study, the water extract and the isolated compounds from guava leaves were evaluated for in vitro α-glucosidase inhibition using spectrophotometric method. Ellagic acid, quercetin, quercetin-3-O-glucuronide, avicularin, isoquercitrin, and quercetin-3-galactoside showed α-glucosidase inhibitory activity, and their IC50 value were 25.0, 41.0, 53.5, 46.9, 60.0 and 72.1 μg/mL, respectively compared with the positive control acarbose (IC50 49.2 μg/mL). This study could provide a theoretical basis for the application of Psidium guajava in the treatment of hyperglycemia.
Collapse
Affiliation(s)
- Muxin Zheng
- Guangdong Pharmaceutical University, Zhongshan, China
| | - Shenghao Chen
- Guangdong Pharmaceutical University, Zhongshan, China
| | - Yi Liu
- Guangdong Pharmaceutical University, Zhongshan, China
| | - Yang He
- Guangdong Pharmaceutical University, Zhongshan, China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, China
- Macau University of Science and Technology, Macau, China
| |
Collapse
|
11
|
Correa KL, de Carvalho-Guimarães FB, Mourão ES, Oliveira Santos HC, da Costa Sanches SC, Lamarão MLN, Pereira RR, Barbosa WLR, Ribeiro-Costa RM, Converti A, Silva-Júnior JOC. Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry. Foods 2024; 13:1565. [PMID: 38790865 PMCID: PMC11121345 DOI: 10.3390/foods13101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the oils of açaí, passion fruit, pequi, and guava were submitted to physicochemical analysis to investigate their potential application in the food industry. Gas chromatography associated with mass spectroscopy showed that oleic and linoleic acids are mainly responsible for the nutritional quality of açaí, passion fruit, pequi, and guava oils, which exhibited 46.71%, 38.11%, 43.78%, and 35.69% of the former fatty acid, and 18.93%, 47.64%, 20.90%, and 44.72% of the latter, respectively. The atherogenicity index of the oils varied from 0.11 to 0.65, while the thrombogenicity index was 0.93 for açaí, 0.35 for guava, and 0.3 for passion fruit oils, but 1.39 for pequi oil, suggesting that the use of the first three oils may lead to a low incidence of coronary heart disease. Thermogravimetry showed that all tested oils were thermally stable above 180 °C; therefore, they can be considered resistant to cooking and frying temperatures. In general, the results of this study highlight possible applications of these oils in the food industry, either in natura or in typical food production processes.
Collapse
Affiliation(s)
- Kamila Leal Correa
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| | - Fernanda Brito de Carvalho-Guimarães
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| | - Erika Silva Mourão
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| | - Hellen Caroline Oliveira Santos
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Suellen Christtine da Costa Sanches
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Maria Louze Nobre Lamarão
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Rayanne Rocha Pereira
- Laboratory of Pharmacognosy, Institute of Public Health—(ISCO), Federal University of Western Pará (UFOPA), Santarém 68040255, PA, Brazil;
| | - Wagner Luiz Ramos Barbosa
- Laboratory of Chromatography and Mass Spectrometry, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil;
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145 Genoa, Italy;
| | - José Otávio Carréra Silva-Júnior
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| |
Collapse
|
12
|
Demaman Arend G, Verruck S, Zanchett Schneider NF, Oliveira Simões CM, Tres MV, Prudêncio ES, Cunha Petrus JC, Rezzadori K. Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? MEMBRANES 2024; 14:113. [PMID: 38786947 PMCID: PMC11123244 DOI: 10.3390/membranes14050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The influence of storage stability and simulated gastrointestinal behavior of different extracts of guava leaves extracts (NC: not concentrated, and C10 and C20: concentrated by nanofiltration) was evaluated based on their total phenolic compound (TPC) contents and antioxidant activity as well as on their cytotoxic effects on A549 and Vero cells. The results showed that C10 and C20 presented high stability for 125 days probably due to their high TPC contents and antioxidant activity. The simulated gastrointestinal behavior modified their TPC contents; however, after all digestion steps, the TPC values were higher than 70%, which means that they were still available to exert their bioactivities. Additionally, the cytotoxic effects of these extracts were evaluated before and after the simulated gastrointestinal behavior or under different storage conditions. C10 presented the best selectivity indices (SI) values (IC50 Vero cells/IC50 A549 cells) at both conditions suggesting that it can be considered a potential extract to be developed as a functional food due to its resistance to the gastrointestinal digestion and storage conditions tested.
Collapse
Affiliation(s)
- Giordana Demaman Arend
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - Naira Fernanda Zanchett Schneider
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering—LAPE, Federal University of Santa Maria, Cachoeira do Sul 96503-205, RS, Brazil
| | - Elane Schwinden Prudêncio
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - José Carlos Cunha Petrus
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Katia Rezzadori
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| |
Collapse
|
13
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Relevant Developments in the Use of Three-Component Reactions for the Total Synthesis of Natural Products. The last 15 Years. ChemistryOpen 2024; 13:e202300306. [PMID: 38647363 PMCID: PMC11095226 DOI: 10.1002/open.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Multicomponent reactions (MCRs) offer a highly useful and valuable strategy that can fulfill an important role in synthesizing complex polysubstituted compounds, by simplifying otherwise long sequences and increasing their efficiency. The total synthesis of selected natural products employing three-component reactions as their common strategic MCR approach, is reviewed on a case-by-case basis with selected targets conquered during the last 15 years. The revision includes detailed descriptions of the selected successful sequences; relevant information on the isolation, and bioactivity of the different natural targets is also briefly provided.
Collapse
Affiliation(s)
- Enrique L. Larghi
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| | - Andrea B. J. Bracca
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| | - Sebastian O. Simonetti
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| |
Collapse
|
14
|
Mahavy CE, Razanatseheno AJ, Mol A, Ngezahayo J, Duez P, El Jaziri M, Baucher M, Rasamiravaka T. Edible Medicinal Guava Fruit ( Psidium guajava L.) Are a Source of Anti-Biofilm Compounds against Pseudomonas aeruginosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1122. [PMID: 38674531 PMCID: PMC11054768 DOI: 10.3390/plants13081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Psidium guajava is one of the most common edible medicinal plants frequently used in Malagasy traditional medicine to treat gastrointestinal infections. In order to evaluate their probable antibacterial activities, three organic extracts (successive extractions by hexane, dichloromethane, and ethanol) of ripe guava fruits were assessed for their bactericidal and anti-virulence properties against P. aeruginosa PAO1. Although these three extracts have shown no direct antibacterial activity (MIC of 1000 µg/mL) and, at the non-bactericidal concentration of 100 µg/mL, no impact on the production of major P. aeruginosa PAO1 virulence factors (pyocyanin and rhamnolipids), the hexane and dichloromethane extracts showed significant anti-biofilm properties and the dichloromethane extract disrupted the P. aeruginosa PAO1 swarming motility. Bioguided fractionation of the dichloromethane extract led to the isolation and identification of lycopene and β-sitosterol-β-D-glucoside as major anti-biofilm compounds. Interestingly, both compounds disrupt P. aeruginosa PAO1 biofilm formation and maintenance with IC50 of 1383 µM and 131 µM, respectively. More interestingly, both compounds displayed a synergistic effect with tobramycin with a two-fold increase in its effectiveness in killing biofilm-encapsulated P. aeruginosa PAO1. The present study validates the traditional uses of this edible medicinal plant, indicating the therapeutic effectiveness of guava fruits plausibly through the presence of these tri- and tetraterpenoids, which deserve to be tested against pathogens generally implicated in diarrhea.
Collapse
Affiliation(s)
- Christian Emmanuel Mahavy
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906, Antananarivo 101, Madagascar
| | | | - Adeline Mol
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Jeremie Ngezahayo
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université du Burundi, Bujumbura BP 2700, Burundi
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, B-7000 Mons, Belgium
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Tsiry Rasamiravaka
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906, Antananarivo 101, Madagascar
| |
Collapse
|
15
|
Srivastava S, Mishra D, Bisht R, Savita K, Singh K, Rani P, Chanda D, Dev K. Psiguanol, a novel α-pyrone derivative from Psidium guajava leaves and vasorelaxant activity in rat aorta cells through intracellular cGMP-dependent opening of calcium-activated potassium channels. Nat Prod Res 2024:1-14. [PMID: 38198584 DOI: 10.1080/14786419.2023.2294477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The phytochemical investigation of Psidium guajava leaves led to the isolation of total nineteen compounds which belongs to meroterpenoids, flavonoid, phenolics, and triterpenoids. The compounds were isolated using extensive chromatography techniques and identified as psiguanol (4), as new compound along with guajadial (1), psidial A (2), β-caryophyllene (3), quercetin (5), avicularin (6), guaijaverin (7), hyperin (8), rutin (9), ursolic acid (10), corosolic acid (11), asiatic acid (12), β-sitosterol (13), β-sitosterol-D-glucoside (14), ellagic acid (15), 3,3',4'-trimethylellagic acid 4-O-glucoside (16), protocatechuic acid (17), gallic acid (18), and tricosanoic acid (19) as known molecules. The compound 16 was isolated for the first time from this plant. The isolated compounds were evaluated for vasorelaxation activity in rat aorta cells and it was observed that compound 4 exhibited the most potent vasorelaxation response in the ex-vivo model in isolated rat aorta cells. Mechanistically, the vasorelaxation activity of 4 was mediated through cGMP-dependent BKCa channel opening.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Phytochemistry Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Divya Mishra
- Bioprospection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rohit Bisht
- Phytochemistry Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Kumari Savita
- Bioprospection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Kishan Singh
- Phytochemistry Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Poonam Rani
- Bioprospection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Debabrata Chanda
- Bioprospection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Kapil Dev
- Phytochemistry Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
16
|
Plaatjie MTA, Onyiche TE, Ramatla T, Bezuidenhout JJ, Legoabe L, Nyembe NI, Thekisoe O. A scoping review on efficacy and safety of medicinal plants used for the treatment of diarrhea in sub-Saharan Africa. Trop Med Health 2024; 52:6. [PMID: 38173018 PMCID: PMC10763068 DOI: 10.1186/s41182-023-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In sub-Saharan Africa (SSA), significant morbidity and mortality have been linked to diarrhea, which is frequently caused by microorganisms. A rise in antimicrobial-resistant pathogens has reignited the search for alternative therapies. This scoping review aims to map the literature on medicinal plants in relation to their anti-diarrheal potential from SSA. METHODS Studies published from 1990 until April 2022 on medicinal plants used for the treatment of diarrhea from each country in SSA were searched on Scopus, Web of Science, Science Direct and PubMed. The selection of articles was based on the availability of data on the in vitro and/or in vivo, ethnobotanical, and cross-sectional studies on the efficacy of medicinal plants against diarrhea. A total of 67 articles (ethnobotanical (n = 40); in vitro (n = 11), in vivo (n = 7), cross-sectional (n = 3), in vitro and in vivo (n = 2) and ethnobotanical and in vitro (n = 2), were considered for the descriptive analysis, which addressed study characteristics, herbal intervention information, phytochemistry, outcome measures, and toxicity findings. RESULTS A total of 587 different plant species (from 123 families) used for diarrhea treatment were identified. Most studies were conducted on plants from the Fabaceae family. The plants with the strongest antimicrobial activity were Indigofera daleoides and Punica granatum. Chromatographic methods were used to isolate six pure compounds from ethyl acetate extract of Hydnora johannis, and spectroscopic methods were used to determine their structures. The majority of anti-diarrheal plants were from South Africa (23.9%), Ethiopia (16.4%), and Uganda (9%). This study highlights the value of traditional remedies in treating common human diseases such as diarrhea in SSA. CONCLUSION Baseline knowledge gaps were identified in various parts of SSA. It is therefore recommended that future ethnobotanical studies document the knowledge held by other countries in SSA that have so far received less attention. Additionally, we recommend that future studies conduct phytochemical investigations, particularly on the widely used medicinal plants for the treatment of diarrheal illnesses, which can serve as a foundation for future research into the development of contemporary drugs.
Collapse
Affiliation(s)
- Moitshepi T A Plaatjie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - ThankGod E Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, Maiduguri, 600230, Nigeria
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
- Gastrointestinal Research Unit, Department of Surgery, School of Clinical Medicine, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Johannes J Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lesetja Legoabe
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, 2520, South Africa
| | - Nthatisi I Nyembe
- Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
17
|
Amaral VA, de Souza JF, Alves TFR, de Oliveira Junior JM, Severino P, Aranha N, Souto EB, Chaud MV. Psidium guajava L. phenolic compound-reinforced lamellar scaffold for tracheal tissue engineering. Drug Deliv Transl Res 2024; 14:62-79. [PMID: 37566362 PMCID: PMC10746760 DOI: 10.1007/s13346-023-01381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/12/2023]
Abstract
The aim of this work was to develop a dense lamellar scaffold, as a biomimetic material with potential applications in the regeneration of tracheal tissue after surgical tumor resection. The scaffolds were produced by plastic compression technique, exploiting the use of total phenolic compounds (TPC) from Psidium guajava Linn as a potential cross-linking agent in a polymeric mixture based on collagen (COL), silk fibroin (SF), and polyethylene glycol 400 (PEG 400). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) confirmed the chemical interactions between the polymers and the cross-linking of TPC between COL and SF. Morphological analyses showed scaffolds with porosity, interconnectivity, and a porous surface structure with a gyroid-like geometry. The analysis of the anisotropic degree resulted in anisotropic structures (0.1% TFC and 0.3% TFC) and an isotropic structure (0.5% TFC). In the mechanical properties, it was evidenced greater resistance for the 0.3% TFC formulation. The addition of TPC percentages did not result in a significant difference (p > 0.05) in swelling capacity and disintegration rate. The results confirmed that TPC were able to modulate the morphological, morphometric, and mechanical properties of scaffolds. Thus, this study describes a potential new material to improve the regeneration of major tracheal structures after surgical tumor removal.
Collapse
Affiliation(s)
- Venâncio A Amaral
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Juliana Ferreira de Souza
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - José M de Oliveira Junior
- Laboratory of Applied Nuclear Physics, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Patrícia Severino
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, Aracaju, Sergipe, 300, Brazil
| | - Norberto Aranha
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
- College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, 18023-000, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira, 4050-313, Porto, Portugal.
- MEDTECH, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil.
- College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, UNISO, Raposo Tavares, Sorocaba, 18023-000, Brazil.
| |
Collapse
|
18
|
Chechani B, Roat P, Hada S, Yadav DK, Kumari N. Psidium guajava: An Insight into Ethnomedicinal Uses, Phytochemistry, and Pharmacology. Comb Chem High Throughput Screen 2024; 27:2-39. [PMID: 37170987 DOI: 10.2174/1386207326666230426093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Psidium guajava (guava) is widely distributed in tropical and subtropical regions and adapted to various environmental conditions. Guava is an important economic fruit widely used as food and folk medicine. It contains flavonoids, alkaloids, tannins, triterpenoids, reducing sugars, essential oils, carotenoids, polyphenols, etc. The presence of triterpenoid acids such as guavacoumaric, ursolic, jacoumaric, guajavanoic, guavenoic, and Asiatic acids helps to develop novel drugs against various diseases. It is used traditionally for medicinal purposes, mainly for antioxidant, antimicrobial, antispasmodic, antidiabetic, anticancer, antiallergy, anti-inflammatory, and hepato-protective properties. OBJECTIVE The systematic literature study aims to summarize its botanical description, phytochemicals, pharmacological activities, and clinical trials. This review focuses on the plant's chemical composition and scientific approaches to human welfare. METHODS A systematic literature search was done on Psidium guajava through previous literature and online databases such as Google Scholar, Pubmed, Science Direct, etc., to explain its ethnomedicinal uses, phytochemistry, and pharmacological applications. RESULTS Previous literature studies of Psidium guajava suggest it can serve as antioxidant, antimicrobial, antispasmodic, antidiabetic, anticancer, anti-allergy, anti-inflammatory, and hepatoprotective effects. Successful clinical trials performed on the plant extracts against infantile rotaviral enteritis and infectious gastroenteritis showed future directions to work with the plant for clinical applications. CONCLUSION In this review, an attempt is made to show all literature studied, especially in phytochemistry, pharmacology, clinical trials and uses as traditional folk medicine around the world. The leaves have been used by folklore over the years to treat various ailments such as skin ulcers, diarrhoea, vaginal irritation, cough, conjunctivitis, etc. Further studies are required to explore more therapeutic remedies and to develop new medicines for future perspectives.
Collapse
Affiliation(s)
- Bhawna Chechani
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur-313001, India
| | - Priyanka Roat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur-313001, India
| | - Sonal Hada
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur-313001, India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur-313001, India
| | - Neetu Kumari
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur-313001, India
| |
Collapse
|
19
|
Tzatzani TT, Michail I, Boutsika A, Sarrou E, Ganopoulos I. Micropropagation of guava ( Psidium guajava) seedlings, a plant with interest in cool subtropics, using an innovative BB culture medium. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2159524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Thiresia-Teresa Tzatzani
- Laboratory of Subtropical Plants and Tissue Culture, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, Crete, Chania, Greece
| | - Ioanna Michail
- Laboratory of Subtropical Plants and Tissue Culture, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, Crete, Chania, Greece
| | - Anastasia Boutsika
- Department of Medicinal and Aromatic Plants, Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization – DIMITRA Thermi, Thessaloniki, Greece
| | - Eirini Sarrou
- Department of Medicinal and Aromatic Plants, Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization – DIMITRA Thermi, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Department of Medicinal and Aromatic Plants, Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization – DIMITRA Thermi – Thessalonikis, Thessaloniki, Greece
| |
Collapse
|
20
|
Pham DT, Nguyen DXT, Lieu R, Huynh QC, Nguyen NY, Quyen TTB, Tran VD. Silk nanoparticles for the protection and delivery of guava leaf ( Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb. Drug Deliv 2023; 30:2168793. [PMID: 36694964 PMCID: PMC9879179 DOI: 10.1080/10717544.2023.2168793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Guava (Psidium guajava L.) is a well-known plant containing high levels of natural antioxidants, the phenolic compounds, which have been employed in numerous cosmetic products. However, these molecules are unstable to oxidants, light, temperature, pH, water, and enzymatic activities. Therefore, to enhance their stability and preserve their antioxidant activity, this study investigated the silk fibroin nanoparticles (SFNs) ability to encapsulate, deliver, and heat-protect the phenolic compounds of the guava leaves ethanolic extract. Firstly, the guava ethanolic extract was produced by maceration, which possessed a total phenolic content of 312.6 mg GAE/g DPW and a high antioxidant activity (IC50 = 5.397 ± 0.618 µg/mL). Then, the extract loaded SFNs were manufactured by desolvation method, and the particles demonstrated appropriate sizes of 200-700 nm with narrow size distribution, spherical shape, silk-II crystalline structure, high drug entrapment efficiency of > 70% (dependent on the fibroin content), and a two-phase sustained drug release for at least 210 min. Using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the antioxidant activity of the guava extract was well-preserved in the extract loaded SFNs. Finally, after being treated with high temperature of 70 °C for 24 h, the guava extract almost loses all of its antioxidant property (5 times decrement), whereas the extract loaded SFNs could retain the extract activity. Conclusively, the SFNs proved much potential to deliver and heat-protect the guava extract phenolic compounds, and preserve their antioxidant activity. Confirmed by this case, SFNs could be further explored in protecting other natural compounds from environmental factors.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam,CONTACT Duy Toan Pham Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho900000, Vietnam
| | - Doan Xuan Tien Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ruby Lieu
- Faculty of Commerce, Van Lang University, Ho Chi Minh City, Vietnam
| | - Quoc Cuong Huynh
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ngoc Yen Nguyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Tran Thi Bich Quyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| |
Collapse
|
21
|
Hidayat MA, Rohmah A, Ningsih IY, Kuswandi B. Development of the paper-based colorimetric sensor for simple and fast determination of quercetin in guava leaf extract. ANAL SCI 2023; 39:1703-1710. [PMID: 37286858 DOI: 10.1007/s44211-023-00380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
This present study aimed to develop a paper-based colorimetric sensor in the form of paper-microzone plates (PµZP), for simple and fast quercetin determination in guava leaf extract samples. Here, N-bromosuccinimide (NBS) solution was immobilized on the microzone as a sensing probe, where quercetin solution can be dropped on it to form red-purplish color adducts which can be seen by the naked eye or captured using a flatbed scanner. The color intensity of the microzone can be quantified against a blank solution and used as analytical data in scanometric assay. The sensor showed a response time of 8 min, a linear interval of 1-10 mM with a detection limit at 1.274 mM toward quercetin, and exhibited good reproducibility (RSD < 1%) and accuracy (98-99% recovery). The quercetin level of guava leaf extract determined by the PµZP-scanometric method was found comparable with that of the TLC-densitometric method, suggesting its use as an alternative method for quercetin analysis in the guava leaf extract.
Collapse
Affiliation(s)
| | - Alfiatur Rohmah
- Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember, Indonesia
| | - Indah Yulia Ningsih
- Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember, Indonesia
| | - Bambang Kuswandi
- Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember, Indonesia
| |
Collapse
|
22
|
Duan S, Zhang X, Li X, Chi Z, Xie Z. Total Synthesis of Guajavadimer A via Lewis Acid-Catalyzed Cascade Double Hetero-Diels-Alder Reactions. Org Lett 2023; 25:6987-6992. [PMID: 37725076 DOI: 10.1021/acs.orglett.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The first total synthesis of guajavadimer A, a dimeric caryophyllene-derived meroterpenoid featuring an unprecedented 4-9-6-6-6-9-4-fused ring system, is reported. Key to the approach is the construction of the pyrano[4,3,2-de]chromene core via a cascade of double hetero-Diels-Alder reactions. Practically, a 4-substituted-2,6-dihydroxybenzaldehyde dimethyl acetal serves as an effective surrogate for ortho-quinone methide, which is generated from the corresponding aldehyde and trimethyl orthoformate, with β-caryophyllene undergoing cycloaddition to generate pyrano[4,3,2-de]chromene derivatives with excellent regioselectivity and stereoselectivity in one pot under mild conditions.
Collapse
Affiliation(s)
- Shengfu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangxin Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhiyong Chi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
23
|
Rahman MH, Asrafuzzaman M, Tusher MMH, Mosihuzzaman M, Khan MSH, Shoeb M, Rokeya B. Elucidation of anti-hyperglycemic activity of Psidium guajava L. leaves extract on streptozotocin induced neonatal diabetic Long-Evans rats. J Ayurveda Integr Med 2023; 14:100776. [PMID: 37722234 PMCID: PMC10511481 DOI: 10.1016/j.jaim.2023.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Psidium guajava L (Guava) belongs to the Myrtaceae family and has been claimed to possess several pharmacological properties including antidiabetic. OBJECTIVE This study was designed to evaluate the anti-hyperglycemic activity of P guajava L leaves aqueous extract on neonatal streptozotocin-induced type 2 diabetic model rats. METHODS Streptozotocin was induced (90 mg/kg) intraperitoneally to 48 h old Long Evans rat pups. After three months, 18 male type-2 diabetic model rats were confirmed by OGTT (FG > 7 mmol/L). Therefore, experimental rats were divided into three groups 2) Diabetic water control (10 ml/kg), 3) Gliclazide treated (20 mg/kg), and 4) Extract treated group (1.25g/kg)] Six normal female rats comprised group 1 [Non-diabetic water control (10 ml/kg)]. All rats were treated orally with their respective treatment for 28 consecutive days. Blood samples were collected on 0 days (by tail cut method) and the end day (by cardiac puncture) of the experiment. The anti-hyperglycemic activity was evaluated by measuring fasting glucose, serum insulin, lipid profile, hepatic glycogen content, and intestinal glucose absorption by standard methods. RESULTS The serum glucose level of extract treated group was decreased by 16% as well as significantly (p<0.05) increased the serum insulin level (M±SD, 0 day vs 28thday; 0.319 ± 0.110 vs 0.600 ± 0.348, μg/L). Moreover, the extract-treated group also significantly (p<0.05) enhanced liver glycogen content and inhibited glucose absorption from the upper intestine. Besides, a significant (p < 0.05) reduction of LDL-cholesterol level was found in the extract-treated group (M±SD, 55 ± 33 vs 14 ± 9, mg/dl) compared with baseline values where other groups did not show any statistically remarkable changes. CONCLUSION Current study concludes that P guajava leaves aqueous extract enhances insulin secretion from pancreatic beta-cells and promotes glycogen synthesis in the liver. The extract also inhibits glucose absorption from the upper intestine and improves dyslipidemia to some extent. Therefore, possesses the potential for drug development against T2DM.
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Asian Network of Research on Antidiabetic Plants, Bangladesh University of Health Sciences (BUHS), Dhaka, 1216, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Asrafuzzaman
- Asian Network of Research on Antidiabetic Plants, Bangladesh University of Health Sciences (BUHS), Dhaka, 1216, Bangladesh; Department of Pharmacology, Bangladesh University of Heath Sciences (BUHS), Dhaka, 1216, Bangladesh
| | - Md Mahedi Hassan Tusher
- Asian Network of Research on Antidiabetic Plants, Bangladesh University of Health Sciences (BUHS), Dhaka, 1216, Bangladesh; Department of Pharmacology, Bangladesh University of Heath Sciences (BUHS), Dhaka, 1216, Bangladesh
| | - M Mosihuzzaman
- Asian Network of Research on Antidiabetic Plants, Bangladesh University of Health Sciences (BUHS), Dhaka, 1216, Bangladesh
| | - Md Shahinul Haque Khan
- Asian Network of Research on Antidiabetic Plants, Bangladesh University of Health Sciences (BUHS), Dhaka, 1216, Bangladesh; Department of Chemistry, Bangladesh University of Health Science (BUHS), Dhaka, 1216, Bangladesh
| | - Mohammad Shoeb
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Begum Rokeya
- Asian Network of Research on Antidiabetic Plants, Bangladesh University of Health Sciences (BUHS), Dhaka, 1216, Bangladesh; Department of Pharmacology, Bangladesh University of Heath Sciences (BUHS), Dhaka, 1216, Bangladesh.
| |
Collapse
|
24
|
Liu H, Wei S, Shi L, Tan H. Preparation, structural characterization, and bioactivities of polysaccharides from Psidium guajava: A review. Food Chem 2023; 411:135423. [PMID: 36652884 DOI: 10.1016/j.foodchem.2023.135423] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Psidium guajava L. is one of the most pivotal members belong to the Myrtaceae family, and it is an important tropical fruit with highly nutritional, healthy, and pharmacological values prevailing in worldwide for decades. The polysaccharides of P. guajava (PGPs) are served as one of the most active constituents, which possess a variety of biofunctionalities including anti-inflammatory, antidiarrheic, antihypertension, and antidiabetic properties. Hence, a systematic review aimed to comprehensively summarize the recent research advances of PGPs is necessary for facilitating their better understanding. The present review discussed current research progress on the PGPs, including extraction and purification methods, structural features, biological activities, and potential pharmacological mechanism. In addition, this review may also provide some valuable insights for further development and potential value in affording functionally useful agents in food industry or therapeutically effective medicine in the fields of P. guajava polysaccharides.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Shi
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
25
|
Nhu TQ, Bui Thi Bich H, Do Thi Thanh H, Scippo ML, Nguyen Thanh P, Quetin-Leclercq J, Kestemont P. Psidium guajava L.- dichloromethane and ethyl acetate fractions ameliorate striped catfish (Pangasianodon hypophthalmus) status via immune response, inflammatory, and apoptosis pathways. FISH & SHELLFISH IMMUNOLOGY 2023:108851. [PMID: 37245678 DOI: 10.1016/j.fsi.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Psidium guajava L. is known to possess immune-modulatory properties in humans and other mammals. Although the positive effects of P. guajava-based diets on the immunological status have been shown for some fish species, the underlying molecular mechanisms of its protective effects remain to be investigated. The aims of this study were to evaluate the immune-modulatory effects of two guava fractions from dichloromethane (CC) and ethyl acetate (EA) on striped catfish with in vitro and in vivo experiments. Striped catfish head kidney leukocytes were stimulated with 40, 20, 10 and 0 μg/ml of each extract fraction, and the immune parameters (ROS, NOS, and lysozyme) were examined at 6 and 24h post stimulation. A final concentration of each fraction at 40, 10 and 0 μg/fish was then intraperitoneally injected into the fish. After 6, 24, and 72h of administration, immune parameters as well as the expression of some cytokines related to innate and adaptive immune responses, inflammation, and apoptosis were measured in the head kidney. Results indicated that the humoral (lysozyme) and cellular (ROS and NOS) immune endpoints were regulated differently by CC and EA fractions depending on dose and time in both, in vitro and in vivo experiments. With regards to the in vivo experiment, the CC fraction of the guava extract could significantly enhance the TLRs-MyD88-NF-κB signaling pathway by upregulating its cytokine genes (tlr1, tlr4, myd88, and traf6), following the upregulation of inflammatory (nfκb, tnf, il1β, and il6) and apoptosis (tp53 and casp8) genes 6 h after injection. Moreover, fish treated with both CC and EA fractions significantly enhanced cytokine gene expression including lys and inos at the later time points - 24h or 72h. Our observations suggest that P. guajava fractions modulate the immune, inflammatory, and apoptotic pathways.
Collapse
Affiliation(s)
- Truong Quynh Nhu
- College of Agriculture, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Hang Bui Thi Bich
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Huong Do Thi Thanh
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Marie-Louise Scippo
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, bât. B43bis, 10 Avenue de Cureghem, Sart-Tilman, Liège, Belgium.
| | - Phuong Nguyen Thanh
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Joëlle Quetin-Leclercq
- Louvain Drug research Institute (LDRI) Pharmacognosy Research group, Université catholique de Louvain, B-1200, Brussels, Belgium.
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.
| |
Collapse
|
26
|
Accipe L, Abadie A, Neviere R, Bercion S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants (Basel) 2023; 12:antiox12051079. [PMID: 37237945 DOI: 10.3390/antiox12051079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic wound healing is a global medical challenge. Several studies showed that delayed healing in diabetic patients is multifactorial. Nevertheless, there is evidence that excessive production of ROS and impaired ROS detoxification in diabetes are the main cause of chronic wounds. Indeed, increased ROS promotes the expression and activity of metalloproteinase, resulting in a high proteolytic state in the wound with significant destruction of the extracellular matrix, which leads to a stop in the repair process. In addition, ROS accumulation increases NLRP3 inflammasome activation and macrophage hyperpolarization in the M1 pro-inflammatory phenotype. Oxidative stress increases the activation of NETosis. This leads to an elevated pro-inflammatory state in the wound and prevents the resolution of inflammation, an essential step for wound healing. The use of medicinal plants and natural compounds can improve diabetic wound healing by directly targeting oxidative stress and the transcription factor Nrf2 involved in the antioxidant response or the mechanisms impacted by the elevation of ROS such as NLRP3 inflammasome, the polarization of macrophages, and expression or activation of metalloproteinases. This study of the diabetic pro-healing activity of nine plants found in the Caribbean highlights, more particularly, the role of five polyphenolic compounds. At the end of this review, research perspectives are presented.
Collapse
Affiliation(s)
- Laura Accipe
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Alisson Abadie
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Remi Neviere
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
- CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Sylvie Bercion
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| |
Collapse
|
27
|
Díaz-de-Cerio E, Girón F, Pérez-Garrido A, Pereira ASP, Gabaldón-Hernández JA, Verardo V, Segura Carretero A, Pérez-Sánchez H. Fishing the Targets of Bioactive Compounds from Psidium guajava L. Leaves in the Context of Diabetes. Int J Mol Sci 2023; 24:ijms24065761. [PMID: 36982836 PMCID: PMC10057723 DOI: 10.3390/ijms24065761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Psidium guajava L. (guava) leaves have demonstrated their in vitro and in vivo effect against diabetes mellitus (DM). However, there is a lack of literature concerning the effect of the individual phenolic compounds present in the leaves in DM disease. The aim of the present work was to identify the individual compounds in Spanish guava leaves and their potential contribution to the observed anti-diabetic effect. Seventy-three phenolic compounds were identified from an 80% ethanol extract of guava leaves by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. The potential anti-diabetic activity of each compound was evaluated with the DIA-DB web server that uses a docking and molecular shape similarity approach. The DIA-DB web server revealed that aldose reductase was the target protein with heterogeneous affinity for compounds naringenin, avicularin, guaijaverin, quercetin, ellagic acid, morin, catechin and guavinoside C. Naringenin exhibited the highest number of interactions with target proteins dipeptidyl peptidase-4, hydroxysteroid 11-beta dehydrogenase 1, aldose reductase and peroxisome proliferator-activated receptor. Compounds catechin, quercetin and naringenin displayed similarities with the known antidiabetic drug tolrestat. In conclusion, the computational workflow showed that guava leaves contain several compounds acting in the DM mechanism by interacting with specific DM protein targets.
Collapse
Affiliation(s)
- Elixabet Díaz-de-Cerio
- Department of Nutrition and Food Science, University of Granada, Campus of Melilla, 52005 Melilla, Spain
| | - Francisco Girón
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia UCAM, Campus de los Jerónimos, 30107 Guadalupe, Spain
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Andreia S P Pereira
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0083, South Africa
| | | | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento Sn., 18100 Armilla, Spain
| | - Antonio Segura Carretero
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
| |
Collapse
|
28
|
Lu B, Fang Z, Tsang PE, Wu J. Effect and mechanism of norfloxacin removal by guava leaf extract in the ZVI/H 2O 2 system. CHEMOSPHERE 2023; 316:137801. [PMID: 36634715 DOI: 10.1016/j.chemosphere.2023.137801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
To overcome the bottlenecks of the conventional zero-valent iron Fenton-like (ZVI/H2O2) process, such as low reagent utilization, low applicable pH, and iron sludge contamination, guava leaf extract (GLE) was used as a green promoter to enhance ZVI/H2O2 process in this study. Compared with the ZVI/H2O2 system, the removal rate and kobs of norfloxacin by the ZVI/H2O2/GLE system were increased by 33.76% and 2.19 times, respectively. The experimental investigation of the mechanism showed that the attack of reactive oxygen species was the main pathway for the removal of pollutants, and three types of reactive oxygen species (1O2, O2-,·OH) generations in the ZVI/H2O2/GLE system were effectively promoted by the introduction of GLE. The reactivity improvement was mainly due to the decrease of pH. At the same time, the chelation of iron ions by GLE promoted the Fe(III)/Fe(II) cycle on the catalyst surface was also a minor mechanism to improve the reactivity. This study provides a crucial reference for the practical application of guava leaf to promote the ZVI/H2O2 process in environmental pollution control.
Collapse
Affiliation(s)
- Baizhou Lu
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd., Qingyuan, 511500, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, 00852, Hong Kong, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
29
|
Hall AM, Baskiyar S, Heck KL, Hayden MD, Ren C, Nguyen C, Seals CD, Monu E, Calderón AI. Investigation of the chemical composition of antibacterial Psidium guajava extract and partitions against foodborne pathogens. Food Chem 2023; 403:134400. [DOI: 10.1016/j.foodchem.2022.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
|
30
|
Qassadi FI, Zhu Z, Monaghan TM. Plant-Derived Products with Therapeutic Potential against Gastrointestinal Bacteria. Pathogens 2023; 12:pathogens12020333. [PMID: 36839605 PMCID: PMC9967904 DOI: 10.3390/pathogens12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The rising burden of antimicrobial resistance and increasing infectious disease outbreaks, including the recent COVID-19 pandemic, has led to a growing demand for the development of natural products as a valuable source of leading medicinal compounds. There is a wide variety of active constituents found in plants, making them an excellent source of antimicrobial agents with therapeutic potential as alternatives or potentiators of antibiotics. The structural diversity of phytochemicals enables them to act through a variety of mechanisms, targeting multiple biochemical pathways, in contrast to traditional antimicrobials. Moreover, the bioactivity of the herbal extracts can be explained by various metabolites working in synergism, where hundreds to thousands of metabolites make up the extract. Although a vast amount of literature is available regarding the use of these herbal extracts against bacterial and viral infections, critical assessments of their quality are lacking. This review aims to explore the efficacy and antimicrobial effects of herbal extracts against clinically relevant gastrointestinal infections including pathogenic Escherichia coli, toxigenic Clostridioides difficile, Campylobacter and Salmonella species. The review will discuss research gaps and propose future approaches to the translational development of plant-derived products for drug discovery purposes for the treatment and prevention of gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Fatimah I. Qassadi
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
31
|
Jayasekara KG, Soysa P, Suresh TS, Goonasekara CL, Gunasekera KM. In Vitro Dengue Virus Inhibition by Aqueous Extracts of Aegle marmelos, Munronia pinnata and Psidium guajava. Altern Lab Anim 2023; 51:136-143. [PMID: 36793154 DOI: 10.1177/02611929231158243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Dengue is an arboviral (insect-transmitted) infection of global concern. Currently, there are still no specific dengue antiviral agents to treat the disease. Plant extracts have been used in traditional medicine for treating various viral infections - thus, in the present study, aqueous extracts of dried flowers of Aegle marmelos (AM), whole plant of Munronia pinnata (MP) and leaves of Psidium guajava (PG) were investigated for their potential capacity to inhibit dengue virus infection of Vero cells. The maximum non-toxic dose (MNTD) and the 50% cytotoxic concentration (CC50) were determined by using the MTT assay. A plaque reduction antiviral assay was carried out with dengue virus types 1 (DV1), 2 (DV2), 3 (DV3) and 4 (DV4), in order to calculate the half-maximum inhibitory concentration (IC50). AM extract inhibited all four virus serotypes tested; MP extract inhibited DV1, DV2 and DV4, but not DV3; PG extract inhibited DV1, DV2 and DV4, but not DV3. Thus, the results suggest that AM is a promising candidate for the pan-serotype inhibition of dengue viral activity.
Collapse
Affiliation(s)
- Kalani Gayathri Jayasekara
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Preethi Soysa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, 63735University of Colombo, Colombo, Sri Lanka
| | - Thusharie Sugandhika Suresh
- Department of Biochemistry, Faculty of Medical Sciences, 92953University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Charitha Lakshini Goonasekara
- Department of Pre-Clinical Sciences, Faculty of Medicine, 472733General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Kamani Mangalika Gunasekera
- Department of Microbiology, Faculty of Medical Sciences, 92953University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
32
|
Lok B, Babu D, Tabana Y, Dahham SS, Adam MAA, Barakat K, Sandai D. The Anticancer Potential of Psidium guajava (Guava) Extracts. Life (Basel) 2023; 13:life13020346. [PMID: 36836712 PMCID: PMC9963020 DOI: 10.3390/life13020346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
The fruits, leaves, and bark of the guava (Psidium guajava) tree have traditionally been used to treat a myriad of ailments, especially in the tropical and subtropical regions. The various parts of the plant have been shown to exhibit medicinal properties, such as antimicrobial, antioxidant, anti-inflammatory, and antidiabetic activities. Recent studies have shown that the bioactive phytochemicals of several parts of the P. guajava plant exhibit anticancer activity. This review aims to present a concise summary of the in vitro and in vivo studies investigating the anticancer activity of the plant against various human cancer cell lines and animal models, including the identified phytochemicals that contributes to their activity via the different mechanisms. In vitro growth and cell viability studies, such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the sulforhodamine B (SRB) assay, and the trypan blue exclusion test, were conducted using P. guajava extracts and their biomolecules to assess their effects on human cancer cell lines. Numerous studies have showcased that the P. guajava plant and its bioactive molecules, especially those extracted from its leaves, selectively suppress the growth of human cancer cells without cytotoxicity against the normal cells. This review presents the potential of the extracts of P. guajava and the bioactive molecules derived from it, to be utilized as a feasible alternative or adjuvant treatment for human cancers. The availability of the plant also contributes towards its viability as a cancer treatment in developing countries.
Collapse
Affiliation(s)
- Bronwyn Lok
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Saad Sabbar Dahham
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq PC 329, Oman
| | | | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Doblin Sandai
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
- Correspondence: ; Tel.: +60-4-5622386
| |
Collapse
|
33
|
Gutierrez-Montiel D, Guerrero-Barrera AL, Chávez-Vela NA, Avelar-Gonzalez FJ, Ornelas-García IG. Psidium guajava L .: From byproduct and use in traditional Mexican medicine to antimicrobial agent. Front Nutr 2023; 10:1108306. [PMID: 36761221 PMCID: PMC9902774 DOI: 10.3389/fnut.2023.1108306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Mexico is one of the largest guava producers in the world, so it has access to a huge amount of waste and byproducts obtained after the industrial processing of the fruit. This review discusses the potential recovery of this residue for its application as an antimicrobial agent, considering the phytochemical composition, the bioactivity reported in-vivo and in-vitro, and the toxicology of the plant. Nowadays there is a growing demand for more natural and safer products, so the use of guava extracts is an interesting initiative, especially due to its availability in the country, its wide variety of traditional uses, and its phytochemical profile. This review highlights the importance and potential antimicrobial use of this plant in today's world.
Collapse
Affiliation(s)
- Daniela Gutierrez-Montiel
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico,*Correspondence: Alma L. Guerrero-Barrera ✉
| | - Norma A. Chávez-Vela
- Laboratorio de Biotecnología, Departamento Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar-Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Ingrid G. Ornelas-García
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
34
|
Kwofie SK, Annan DG, Adinortey CA, Boison D, Kwarko GB, Abban RA, Adinortey MB. Identification of novel potential inhibitors of varicella-zoster virus thymidine kinase from ethnopharmacologic relevant plants through an in-silico approach. J Biomol Struct Dyn 2022; 40:12932-12947. [PMID: 34533095 DOI: 10.1080/07391102.2021.1977700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although Varicella or chickenpox infection which is caused by the varicella-zoster virus (VZV) has significantly been managed through vaccination, it remains an infection that poses threats to the nearest future due to therapeutic drawbacks. The focus of this research was geared towards in silico screening for the identification of novel compounds in plants of ethnopharmacological relevance in the treatment of chicken pox in West Africa. The work evaluated 65 compounds reported to be present in Achillea millefolium, Psidium guajava and Vitex doniana sweet to identify potential inhibitors of thymidine kinase, the primary drug target of varicella zoster virus. Out of the 65 compounds docked, 42 of these compounds were observed to possess binding energies lower than -7.0 kcal/mol, however only 20 were observed to form hydrogen bond interactions with the protein. These interactions were elucidated using LigPlot+ and MM-PBSA analysis with residue Ala134 predicted as critical for binding. Pharmacological profiling predicted three potential lead compounds comprising myricetin, apigenin- 4' -glucoside and Abyssinone V to possess good pharmacodynamics properties and negligibly toxic. The molecules were predicted as antivirals including anti-herpes and involved in mechanisms comprising inhibition of polymerase, ATPase and membrane integrity, which were corroborated previously in other viruses. These drug-like compounds are plausible biotherapeutic moieties for further biochemical and cell-based assaying to discover their potential for use against chickenpox. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Dorothy Gyamfua Annan
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Cynthia Ayefoumi Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gabriel Brako Kwarko
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Rachel Araba Abban
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Buenor Adinortey
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
35
|
Ruksiriwanich W, Khantham C, Muangsanguan A, Phimolsiripol Y, Barba FJ, Sringarm K, Rachtanapun P, Jantanasakulwong K, Jantrawut P, Chittasupho C, Chutoprapat R, Boonpisuttinant K, Sommano SR. Guava ( Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243514. [PMID: 36559626 PMCID: PMC9784754 DOI: 10.3390/plants11243514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/12/2023]
Abstract
Leaves of guava (Psidium guajava L.) have been used in Thai folk medicine without any supporting evidence as a traditional herbal remedy for hair loss. Androgenetic alopecia (AGA) is chronic hair loss caused by effects of androgens in those with a genetic predisposition, resulting in hair follicle miniaturization. Our objectives were to provide the mechanistic assessment of guava leaf extract on gene expressions related to the androgen pathway in well-known in vitro models, hair follicle dermal papilla cells (HFDPC), and human prostate cancer cells (DU-145), and to determine its bioactive constituents and antioxidant activities. LC-MS analysis demonstrated that the main components of the ethanolic extract of guava leaves are phenolic substances, specifically catechin, gallic acid, and quercetin, which contribute to its scavenging and metal chelating abilities. The guava leaf extract substantially downregulated SRD5A1, SRD5A2, and SRD5A3 genes in the DU-145 model, suggesting that the extract could minimize hair loss by inhibiting the synthesis of a potent androgen (dihydrotestosterone). SRD5A suppression by gallic acid and quercetin was verified. Our study reveals new perspectives on guava leaf extract's anti-androgen properties. This extract could be developed as alternative products or therapeutic adjuvants for the treatment of AGA and other androgen-related disorders.
Collapse
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani 12130, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
36
|
Ma YL, Wu ZM, Liu X, Lan JE, Zai WJ, Jin X, Xie H, Mu Q, Liu HR. Antidiarrheal activity of the extracts of Valeriana jatamansi Jones on castor oil-induced diarrhea mouse by regulating multiple signal pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115560. [PMID: 35863616 DOI: 10.1016/j.jep.2022.115560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Valeriana jatamansi Jones, a traditional medicine, is used for various medicinal purposes worldwide. This species is popular for its gastro-protective properties and has been verified to exert antidiarrheal effects. Qiuxieling mixture, an oral liquid preparation used to treat diarrhea in children in clinical practice, was extracted from V. jatamansi Jones. AIM OF THE STUDY Although Qiuxieling mixture has a good preventive effect on diarrhea children, the disgusting smell makes it intolerable. Therefore, we extracted odorless products from V. jatamansi Jones and Qiuxieling mixture. The present study is aimed to investigate the protective effects of two ethanolic extracts of V. jatamansi Jones and Qiuxieling mixture against castor oil-induced diarrhea and their possible mechanisms in mice. MATERIALS AND METHODS The two extracts of V. jatamansi Jones and Qiuxieling mixture were detected by HPLC. A castor oil-induced diarrheal model was used to evaluate the antidiarrheal effects. The expression of Occludin in the small intestine was measured by IHC. Western blotting and immunofluorescence were used to detect the expression of proteins related to the oxidative stress and GSDMD-mediated pyroptosis signaling pathways. ELISA was used to detect the expression of IL-6 and IL-1β in the small intestine of mice with diarrhea. RESULTS The two extracts of V. jatamansi Jones and Qiuxieling mixture dose-dependently reduced the diarrhea index and the diarrhea rate, delayed the onset of diarrhea, and decreased the weight of the intestinal content. Meanwhile, they reversed the decreased expression of Occludin and restored the activity of Na+-K+-ATPase in the intestines of diarrheal mice. In addition, they reversed the depletion of GSH, attenuated the activation of the ERK/JNK pathway, promoted the Nrf2/SOD1 signaling pathways, and decreased the release of ROS in the intestines of diarrheal mice. Moreover, they suppressed GSDMD-mediated pyroptosis by downregulating the NLRP3/caspase-1/GSDMD signaling pathway. CONCLUSIONS The two extracts of V. jatamansi Jones and Qiuxieling mixture exerted protective effects on castor oil-induced diarrhea in mice through a variety of mechanisms, including antioxidant stress, restoration of tight junctions between intestinal mucosal cells and regulation of the GSDMD-mediated pyroptosis pathway.
Collapse
Affiliation(s)
- Yu-Lei Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Zi-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiang-Er Lan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Wen-Jing Zai
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xin Jin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hui Xie
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Qing Mu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Hong-Rui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
37
|
Fernandes Santos CA, Rodrigues da Costa S, Silva Boiteux L, Grattapaglia D, Silva-Junior OB. Genetic associations with resistance to Meloidogyne enterolobii in guava (Psidium sp.) using cross-genera SNPs and comparative genomics to Eucalyptus highlight evolutionary conservation across the Myrtaceae. PLoS One 2022; 17:e0273959. [PMID: 36322533 PMCID: PMC9629644 DOI: 10.1371/journal.pone.0273959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Tropical fruit tree species constitute a yet untapped supply of outstanding diversity of taste and nutritional value, barely developed from the genetics standpoint, with scarce or no genomic resources to tackle the challenges arising in modern breeding practice. We generated a de novo genome assembly of the Psidium guajava, the super fruit “apple of the tropics”, and successfully transferred 14,268 SNP probesets from Eucalyptus to Psidium at the nucleotide level, to detect genomic loci linked to resistance to the root knot nematode (RKN) Meloidogyne enterolobii derived from the wild relative P. guineense. Significantly associated loci with resistance across alternative analytical frameworks, were detected at two SNPs on chromosome 3 in a pseudo-assembly of Psidium guajava genome built using a syntenic path approach with the Eucalyptus grandis genome to determine the order and orientation of the contigs. The P. guineense-derived resistance response to RKN and disease onset is conceivably triggered by mineral nutrients and phytohormone homeostasis or signaling with the involvement of the miRNA pathway. Hotspots of mapped resistance quantitative trait loci and functional annotation in the same genomic region of Eucalyptus provide further indirect support to our results, highlighting the evolutionary conservation of genomes across genera of Myrtaceae in the adaptation to pathogens. Marker assisted introgression of the resistance loci mapped should accelerate the development of improved guava cultivars and hybrid rootstocks.
Collapse
Affiliation(s)
| | - Soniane Rodrigues da Costa
- Graduate program in Genetic Resources, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Dario Grattapaglia
- Embrapa Genetic Resources and Biotechnology (CENARGEN), Brasília, Distrito Federal, Brazil
- * E-mail:
| | | |
Collapse
|
38
|
Bilal RM, Hassan FU, Rafeeq M, Farag MR, Abd El-Hack ME, Madkour M, Alagawany M. Use of Cinnamon and its Derivatives in Poultry Nutrition. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:52-65. [DOI: 10.2174/9789815049015122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The recent trend toward banning the use of antibiotics in poultry feed as a
growth promoter directs the scientific community to look for natural alternatives with
potential growth-promoting and immunomodulating properties. Phytogenic feed
additives have attracted significant attention as alternatives to antibiotics to improve
growth performance and enhance immune responses. They have anti-inflammatory,
antioxidant, antiviral, and antifungal properties, depending on their chemical structure
and composition. Scientists are using these non-conventional ingredients as feed
additives in the form of oil or powder. Essential oils (EO) are volatile liquids produced
from aromatic plants. Their application has gained momentum in controlling
cholesterol as free radical scavengers, anti-microbials, antifungals, and stimulants of
digestive enzymes. EO's possible antimicrobial features against harmful pathogens are
primarily associated with the high content of volatile components in oils. The current
chapter highlights the beneficial impact of cinnamon oil as a feed additive on poultry
growth performance, meat quality, carcass traits, and its hypo-cholesterolaemic impact,
antioxidant act, microbiological aspects, and immunomodulatory effects.
Collapse
Affiliation(s)
- Rana M. Bilal
- The Islamia University of Bahawalpur,Bahawalpur,Pakistan
| | | | | | - Mayada R. Farag
- Zagazig University,Forensic Medicine and Toxicology Department,Zagazig,Egypt
| | | | | | | |
Collapse
|
39
|
Mbara KC, Rambharose S, Baijnath H, Nlooto M, Owira PMO. Antidiabetic effects of Psidium x durbanensis Baijnath & Ramcharun ined. (Myrtaceae) leaf extract on streptozotocin-induced diabetes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115542. [PMID: 35842177 DOI: 10.1016/j.jep.2022.115542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psidium guajava L. leaves are used to treat diabetes in South African folkloric medicine and in other parts of the world. Psidium x durbanensis Baijnath & Ramcharun ined. (PD) is a natural sterile hybrid and congener of Psidium guajava that is expected to share the medicinal properties of the genus Psidium and is widely distributed in South Africa. AIM OF THE STUDY This study investigates the antioxidant, antidiabetic effects, and mechanisms of action of hydro-methanolic leaf extracts of PD on streptozotocin-induced diabetes in rats. MATERIAL AND METHODS Phytochemical constituents of hydro-methanolic extract of PD were analyzed by gas chromatography-mass spectrometry (GC-MS). Male Wistar rats 250-300 g body weight (BW) were rendered diabetic after a single intraperitoneal injection with streptozotocin, 45 mg/kg BW. The diabetic rats were treated with hydro-methanolic (20:80 v/v) leaf extracts of PD (400 mg/kg/BW) or subcutaneous injections of regular insulin (2.0U/kg/BW, bid) for 56 days. The body weights of the animals were recorded daily. Fasting blood glucose, glucose tolerance tests, and insulin resistance index were measured. The effects of the extracts on total superoxide dismutase, catalase, and reduced glutathione activities, histopathology, and gene expression of insulin receptor substrate 1 and glucose transporter 4 were determined in the liver, pancreas, and gastrocnemius muscles of the rats. RESULTS In the acute toxicity studies, there were no signs of toxicity observed for PD up to 2000 mg/kg BW doses. Diabetic animals showed significant weight loss, elevated and reduced fasting blood glucose and insulin, respectively, impaired glucose tolerance and diminished antioxidant enzymes' activities compared to controls. Treatment with PD hydro-methanolic leaf extracts improved body weight, glucose tolerance, insulin resistance, and antioxidant enzymes but not plasma insulin in diabetic animals compared to controls, respectively. GC-MS analysis identified organic acids, alcohols, vitamins, terpenoids, and esters in the extracts. Treatment with PD improved glucose uptake by stimulating mRNA expression of GLUT 4 in gastrocnemius muscles of diabetic animals compared to the untreated control and also restored histological aberrations in the pancreas and liver of diabetic rats compared with the untreated control rats. CONCLUSION Collectively, the present study suggests that treatment with PD leaf extracts significantly ameliorated diabetes symptoms and oxidative stress in rats, and these effects may be linked to the bioactive phytoconstituents present in the plant. This study further suggests that PD improves insulin resistance by increasing glucose uptake in gastrocnemius muscles in an insulin-independent manner.
Collapse
Affiliation(s)
- Kingsley C Mbara
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Sanjeev Rambharose
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Himansu Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, KwaZulu-Natal, South Africa
| | - Manimbulu Nlooto
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa; Department of Pharmaceutical Science, Healthcare Sciences, University of Limpopo, South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
40
|
Tousif MI, Nazir M, Saleem M, Tauseef S, Shafiq N, Hassan L, Hussian H, Montesano D, Naviglio D, Zengin G, Ahmad I. Psidium guajava L. An Incalculable but Underexplored Food Crop: Its Phytochemistry, Ethnopharmacology, and Industrial Applications. Molecules 2022; 27:molecules27207016. [PMID: 36296606 PMCID: PMC9611817 DOI: 10.3390/molecules27207016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Psidium guajava L. (guava) is a small tree known for its fruit flavor that is cultivated almost around the globe in tropical areas. Its fruit is amazingly rich in antioxidants, vitamin C, potassium, and dietary fiber. In different parts of the world, this plant holds a special place with respect to fruit and nutritional items. Pharmacological research has shown that this plant has more potential than just a fruit source; it also has beneficial effects against a variety of chronic diseases due to its rich nutritional and phytochemical profile. The primary goal of this document is to provide an updated overview of Psidium guajava L. and its bioactive secondary metabolites, as well as their availability for further study, with a focus on the health benefits and potential industrial applications. There have been several studies conducted on Psidium guajava L. in relation to its use in the pharmaceutical industry. However, its clinical efficacy and applications are still debatable. Therefore, in this review a detailed study with respect to phytochemistry of the plant through modern instruments such as GC and LC-MS has been discussed. The biological activities of secondary metabolites isolated from this plant have been extensively discussed. In order to perform long-term clinical trials to learn more about their effectiveness as drugs and applications for various health benefits, a structure activity relationship has been established. Based on the literature, it is concluded that this plant has a wide variety of biopharmaceutical applications. As a whole, this article calls for long-term clinical trials to obtain a greater understanding of how it can be used to treat different diseases.
Collapse
Affiliation(s)
- Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54000, Pakistan
| | - Mamona Nazir
- Department of Chemistry, Govt. Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Division of Organic Chemistry, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saba Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Laiba Hassan
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hidayat Hussian
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany or
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (D.M.); (D.N.)
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy
- Correspondence: (D.M.); (D.N.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Ishtiaq Ahmad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philipa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
41
|
Samidurai S, Khambhaty Y, Alagamuthu TS. Bio-preservation of raw hides/skins: A review on greener substitute to conventional salt curing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64513-64535. [PMID: 35867302 DOI: 10.1007/s11356-022-22027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Raw hides/skins are considered to be the prime component for leather industry, which once flayed from animals, plummets to microbial attack. Their preservation combats putrefaction wherein curing using sodium chloride (NaCl) is by and large the most widely accepted method. However, there are few stumble blocks in using NaCl in terms of pollution load generated such as high total dissolved solids (TDS), total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD) and chlorides (Cl-). Additionally, this effluent when discharged affects the quality of the water, soil and plants causing huge ecological damage. To evade these problems, researches are being carried out to explore alternative preservation techniques which are either salt free or with reduced amount of salt. Different methods were proposed time and again which remained unfeasible due to associated drawbacks like high cost, health hazards and environmental concerns. Therefore, finding cheaper, eco-friendly and sustainable method for preservation has become the need of the hour for this industry. This review meticulously summarizes the changing trends in preservation techniques for past few decades with special emphasis on bio-based preservation. The diversity of the natural preservatives explored for the said purpose has been systematically reviewed. The enormous environmental benefits that can be obtained by adopting bio-based preservation and future avenues of research have been discussed.
Collapse
Affiliation(s)
- Sugapriya Samidurai
- Leather Process Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Yasmin Khambhaty
- Microbiology Department, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India.
| | - Tamil Selvi Alagamuthu
- Unit for Science Dissemination, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| |
Collapse
|
42
|
Gentilin-Avanci C, Pinha GD, Ratz Scoarize MM, Petsch DK, Benedito E. Warming water and leaf litter quality but not plant origin drive decomposition and fungal diversity in an experiment. Fungal Biol 2022; 126:631-639. [DOI: 10.1016/j.funbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
|
43
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
44
|
Phang YL, Liu S, Zheng C, Xu H. Recent advances in the synthesis of natural products containing the phloroglucinol motif. Nat Prod Rep 2022; 39:1766-1802. [PMID: 35762867 DOI: 10.1039/d1np00077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: June 2009 to 2021Natural products containing a phloroglucinol motif include simple and oligomeric phloroglucinols, polycyclic polyprenylated acylphloroglucinols, phloroglucinol-terpenes, xanthones, flavonoids, and coumarins. These compounds represent a major class of secondary metabolites which exhibit a wide range of biological activities such as antimicrobial, anti-inflammatory, antioxidant and hypoglycaemic properties. A number of these compounds have been authorized for therapeutic use or are currently being studied in clinical trials. Their structural diversity and utility in both traditional and conventional medicine have made them popular synthetic targets over the years. In this review, we compile and summarise the recent synthetic approaches to the natural products bearing a phloroglucinol motif. Focus has been given on ingenious strategies to functionalize the phloroglucinol moiety at multiple positions. The isolation and bioactivities of the compounds are also provided.
Collapse
Affiliation(s)
- Yee Lin Phang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Song Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
45
|
Chassagne F, Butaud JF, Torrente F, Conte E, Ho R, Raharivelomanana P. Polynesian medicine used to treat diarrhea and ciguatera: An ethnobotanical survey in six islands from French Polynesia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115186. [PMID: 35292376 DOI: 10.1016/j.jep.2022.115186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In French Polynesia, many pathologies common or endemic to the territory cause diarrhea. This is the case for rotavirus gastroenteritis, salmonella food poisoning, ingestion of water contaminated by bacteria, and ciguatera. To treat these ailments, the population may employ traditional medicine for cultural reasons, geographical isolation, and poor health coverage. Polynesian remedies are often used without medical consultation and there is no data on their benefit-risk balance. A few ethnobotanical studies have been carried out in order to identify the traditional remedies used for various ailments, but few studies have focused on gastrointestinal pathologies. In this context, an ethnobotanical survey was carried out to identify treatments used for diarrhea and ciguatera, inventory the plants used, better understand the local representation of these remedies, and provide efficacy and safety data on these uses. MATERIALS AND METHODS From February to April 2021, a semi-structured survey was conducted on six islands in French Polynesia, including one island in the Windward Islands archipelago (Tahiti), three islands in the Marquesas archipelago (Hiva Oa, Nuku Hiva, Tahuata), and two islands in the Leeward Islands archipelago (Raiatea, Tahaa). A total of 133 people was interviewed including 34 specialists (of which 29 experts in herbalism). RESULTS These people mentioned the use of 27 plants for the treatment of diarrhea, and 24 for the treatment of ciguatera. Citrus aurantiifolia, Psidium guajava and Cordyline fruticosa were the three most cited plant species used for treating diarrhea, while Cocos nucifera, Punica granatum and Barringtonia asiatica were the most cited for ciguatera. A large majority of plants are widespread and introduced plants, which is congruent with the history of Polynesian people. While some plants are well known for similar uses (e.g. Psidium guajava for diarrhea, Heliotropium arboreum for ciguatera), others are less well known and may present toxicity risks (e.g. Barringtonia asiatica for ciguatera). CONCLUSION Traditional Polynesian medicine is an integral part of the local culture so important to be preserved and valued. However, more pharmacological and toxicological studies are still needed to determine the benefit-risk balance of some of these remedies and to allow their official integration into the Polynesian health system.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France; Maison des Sciences de l'Homme du Pacifique (USR 2003), Université de la Polynésie Française/Centre National de la Recherche Scientifique, Tahiti, French Polynesia.
| | | | - Frédéric Torrente
- Maison des Sciences de l'Homme du Pacifique (USR 2003), Université de la Polynésie Française/Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Eric Conte
- Maison des Sciences de l'Homme du Pacifique (USR 2003), Université de la Polynésie Française/Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Raimana Ho
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, BP 6570, F-98702, Faaa, Tahiti, French Polynesia
| | - Phila Raharivelomanana
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, BP 6570, F-98702, Faaa, Tahiti, French Polynesia
| |
Collapse
|
46
|
Antiulcer Potential of Psidium guajava Seed Extract Supported by Metabolic Profiling and Molecular Docking. Antioxidants (Basel) 2022; 11:antiox11071230. [PMID: 35883720 PMCID: PMC9311959 DOI: 10.3390/antiox11071230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most severe human health problems is gastric ulceration. The main aim of our study is to explore the gastroprotective effect of the Psidium guajava seeds extract (PGE). Metabolic profiling based on LC-HRMS for the extract led to the dereplication of 23 compounds (1–23). We carried out a gastric ulcer model induced by indomethacin in male albino rats in vivo and the extract of PGE was investigated at a dose of 300 mg/kg in comparison to cimetidine (100 mg/kg). Furthermore, the assessment of gastric mucosal lesions and histopathology investigation of gastric tissue was done. It has been proved that Psidium guajava seeds significantly decreased the ulcer index and protected the mucosa from lesions. The antiulcer effect of Psidium guajava seed extract, which has the power of reducing the ensuing inflammatory reactions, can counteract the inflammation induced by indomethacin by the downregulation of relative genes expression (IL-1β, IL-6, and TNF-α). Moreover, PGE significantly downregulated the increased COX-2, TGF-β, and IGF-1 relative genes expression, confirming its beneficial effect in ulcer healing. Moreover, the possible PGE antioxidant potential was determined by in vitro assays using hydrogen peroxide and superoxide radical scavenging and revealed high antioxidant potential. Additionally, on the putatively annotated metabolites, an in silico study was conducted, which emphasized the extract’s antiulcer properties might be attributed to several sterols such as stigmasterol and campesterol. The present study provided evidence of Psidium guajava seeds considered as a potential natural gastroprotective agent.
Collapse
|
47
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in sub-Saharan Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1387. [PMID: 35631812 PMCID: PMC9143319 DOI: 10.3390/plants11101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, including deaths arising from non-communicable diseases in sub-Saharan Africa (SSA). Consequently, this study aimed to provide details of medicinal plants (MPs) employed in SSA for the treatment of CVDs and their related risk factors to open new avenues for the discovery of novel drugs. The extensive ethnopharmacological literature survey of these MPs in 41 SSA countries was based on studies from 1982 to 2021. It revealed 1,085 MPs belonging to 218 botanical families, with Fabaceae (9.61%), Asteraceae (6.77%), Apocynaceae (3.93%), Lamiaceae (3.75%), and Rubiaceae (3.66%) being the most represented. Meanwhile, Allium sativum L., Persea americana Mill., Moringa oleifera Lam., Mangifera indica L., and Allium cepa L. are the five most utilised plant species. The preferred plant parts include the leaves (36%), roots (21%), barks (14%), fruits (7%), and seeds (5%), which are mostly prepared by decoction. Benin, Mauritius, Nigeria, South Africa, and Togo had the highest reported use while most of the investigations were on diabetes and hypertension. Despite the nutraceutical advantages of some of these MPs, their general toxicity potential calls for caution in their human long-term use. Overall, the study established the need for governments of SSA countries to validate the efficacy/safety of these MPs as well as provide affordable, accessible, and improved modern healthcare services.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpho Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
48
|
Amadike Ugbogu E, Emmanuel O, Ebubechi Uche M, Dike Dike E, Chukwuebuka Okoro B, Ibe C, Chibueze Ude V, Nwabu Ekweogu C, Chinyere Ugbogu O. The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Laldingliani TBC, Thangjam NM, Zomuanawma R, Bawitlung L, Pal A, Kumar A. Ethnomedicinal study of medicinal plants used by Mizo tribes in Champhai district of Mizoram, India. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:22. [PMID: 35331291 PMCID: PMC8944157 DOI: 10.1186/s13002-022-00520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicinal plants have been used countless times for curing diseases mainly in developing countries. They are easily available with little to no side effects when compared to modern medicine. This manuscript encompasses information on ethnomedicinal plants in Champhai district, located in the North East Region (NER) of India. The region lies within Indo-Burma biodiversity hotspot. This study will be the first quantitative report on the ethnomedicinal plants used by the local tribes of this region. Knowledge of medicinal plants is mostly acquired by word of mouth, and the knowledge is dying among the local youths with the prevalence of modern medicine. Hence, there is urgency in deciphering and recording such information. METHODS Information was gathered through interviews with 200 informants across 15 villages of the Champhai district. From the data obtained, we evaluate indices such as used report (UR), frequency of citation (FC), informant consensus factor (Fic), cultural values (CVs) and relative importance (RI) for all the plant species. Secondary data were obtained from scientific databases such as Pubmed, Sci Finder and Science Direct. The scientific name of the plants was matched and arranged in consultation with the working list of all plant species ( http://www.theplantlist.org ). RESULTS Totally, 93 plant species from 53 families and 85 genera were recorded. The most common families are Euphorbiaceae and Asteraceae with six and five species representatives, respectively. Leaves were the most frequently used part of a plant and were usually used in the form of decoction. Curcuma longa has the most cultural value (27.28 CVs) with the highest used report (136 FC), and the highest RI value was Phyllanthus emblica. The main illness categories as per Frequency of citation were muscle/bone problem (0.962 Fic), gastro-intestinal disease (0.956 Fic) and skin care (0.953 Fic). CONCLUSION The people of Mizoram living in the Champhai district have an immense knowledge of ethnomedicinal plants. There were no side effects recorded for consuming ethnomedicinal plants. We observed that there is a scope of scientific validation of 10 plant species for their pharmacological activity and 13 species for the phytochemical characterisation or isolation of the phytochemicals. This might pave the path for developing a scientifically validated botanical or lead to semisyntheic derivatives intended for modern medicine.
Collapse
Affiliation(s)
- T B C Laldingliani
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - Nurpen Meitei Thangjam
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - R Zomuanawma
- Department of Botany, School of Life Science, Mizoram University, Aizawl, 796004, India
| | - Laldingngheti Bawitlung
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - Anirban Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, CIMAP, Lucknow, 226015, India
| | - Awadhesh Kumar
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
50
|
Natural plant extracts mediated expression regulation of TGF-β receptors and SMAD genes in human cancer cell lines. Mol Biol Rep 2022; 49:4171-4178. [PMID: 35301659 DOI: 10.1007/s11033-022-07250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) superfamily has key role in cell proliferation which leads to tumor promoting activities at metastatic stage of cancer. Inhibition of transforming growth factor beta receptor (TGFβR) signaling pathway can provide better therapeutic strategy to control cancer. Natural products are best known for their safety, less toxic nature, antioxidant characteristics making them a promising candidate to inhibit TGFβR signaling pathway. METHODS AND RESULTS Crude methanolic extracts (CMEs) of 16 selected plants were prepared by using maceration method and subjected to phytochemical assays for identification of major phytometabolites particularly cancer chemopreventive antioxidant constituents. Total flavonoid content of all plants CME was > 0.6 mg/ml exhibiting the Cichorium intybus contains comparatively highest amount of total flavonoid content (0.53 mg/ml). Scanvenging activity of all plants was determined having IC50 ranges between 2 and 88 (µg/ml) while Moringa oleifera revealed the maximum scavenging activity (IC50 2.03 µg/ml). Comparative cytotoxicity of plant extracts was evaluated in HUH and MCF-7 cell lines using 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) colorimetric assay. The nine active plant extracts i.e. Fagonia cretica, Argemone Mexicana, Rubus fruticosus, M. oleifera, Punica granatum, Cichorium intybus, Xanthium strumarium, Carissa opaca, Cyperus rotundus were identified based on their high antiproliferative activity > 50% against cancer cell lines and subjected to relative expression studies. Modulation of TGFβ signaling molecules (i.e.TGFβR1, 2 & 3, SMAD3, SMAD5) and ubiquitous proteins i.e. SMURF1 and SMURF2 genetic expression by potent extracts was determined by RT-PCR using GAPDH (housekeeping gene) as gene of reference. CONCLUSIONS This present study revealed that CME of Fagonia cretica and Argemone mexicana significantly inhibit TGF beta mediated signaling cascade by downregulating the gene expression fold change > 1 of TGFβR 1, 2 & 3 and receptor associated complex protein SMAD3 as compared to control.
Collapse
|