1
|
Erst AS, Petrova NV, Chernonosov AA, Kaidash OA, Sheikin VV, Leonova TV, Shaldaeva TM, Gusar AS, Koval VV, Udut EV, Xiang K, Ling YY, Wang W, Kostikova VA. Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential. Int J Mol Sci 2025; 26:4768. [PMID: 40429914 PMCID: PMC12111913 DOI: 10.3390/ijms26104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
For the first time, hydroethanolic extracts from Actaea cimicifuga and Actaea erythrocarpa were analyzed using LC-HRMS, HPLC, and spectrometry in this study. Extracts from the above-ground parts of Actaea species exhibited higher concentrations of saponins (up to 248 mg/g of DE), coumarins (up to 162 mg/g of DE), flavonols (up to 32 mg/g of DE), and catechins (up to 11 mg/g of DE) compared to extracts from the underground parts. The concentrations of phenolic acids (up to 112 mg/g of DE) and tannins (up to 202 mg/g of DE) in the underground parts were comparable to or even higher than those in the above-ground parts of the two analyzed species. The concentration of the main metabolites detected was higher in the extract of A. erythrocarpa than that of A. cimicifuga. The metabolite profile of the extracts from both species showed 66 compounds, including chromones, coumarins, phenolic and nitrogenous compounds, fatty acids, and triterpenes. The HPLC analysis of the four extracts revealed that the concentration of caffeic acid (0.74 mg/g of the dry extract [DE]) was the highest in the extract from the underground part of A. erythrocarpa, whereas the extract from the above-ground part of this species showed the highest levels of ferulic (1.16 mg/g of DE) and isoferulic acids (1.49 mg/g of DE) and of hyperoside (13.05 mg/g of DE). The study of biological activity showed that A. erythrocarpa is most promising for further research, with the highest antioxidant activity found in the underground parts of this species (IC50 = 79.7 μg/mL) compared to the above-ground parts (IC50 = 85.8 μg/mL). In addition, the extract from the above-ground part of A. erythrocarpa was found to exhibit the greatest cytotoxic activity among the studied specimens against 3T3-L1, HepG2, and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Andrey S. Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (T.M.S.); (A.S.G.); (V.A.K.)
| | - Natalia V. Petrova
- Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
| | - Olga A. Kaidash
- Central Research Laboratory, Siberian State Medical University, Tomsk 634050, Russia; (O.A.K.); (V.V.S.); (E.V.U.)
| | - Vladimir V. Sheikin
- Central Research Laboratory, Siberian State Medical University, Tomsk 634050, Russia; (O.A.K.); (V.V.S.); (E.V.U.)
| | - Tatiana V. Leonova
- Institute of Natural Sciences, Department of Biology, N.F. Katanov Khakass State University, Abakan 655517, Russia;
| | - Tatiana M. Shaldaeva
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (T.M.S.); (A.S.G.); (V.A.K.)
| | - Anastasiia S. Gusar
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (T.M.S.); (A.S.G.); (V.A.K.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
| | - Elena V. Udut
- Central Research Laboratory, Siberian State Medical University, Tomsk 634050, Russia; (O.A.K.); (V.V.S.); (E.V.U.)
| | - Kunli Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (K.X.); (Y.-Y.L.); (W.W.)
| | - Yuan-Yuan Ling
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (K.X.); (Y.-Y.L.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (K.X.); (Y.-Y.L.); (W.W.)
| | - Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (T.M.S.); (A.S.G.); (V.A.K.)
| |
Collapse
|
2
|
Wu XY, Dong QW, Zhang YB, Li JX, Zhang MQ, Zhang DQ, Cui YL. Cimicifuga heracleifolia kom. Attenuates ulcerative colitis through the PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118892. [PMID: 39395768 DOI: 10.1016/j.jep.2024.118892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cimicifuga heracleifolia Kom. (C. heracleifolia) has demonstrated efficacy in treating gastrointestinal disorders, including splenasthenic diarrhea. Ulcerative colitis (UC), a chronic inflammatory bowel disease, shares similarities with splenasthenic diarrhea. However, the pharmacological effects of C. heracleifolia on UC and the underlying mechanisms remain unexplored. AIM OF THE STUDY The present study investigates the therapeutic potential and mechanisms of C. heracleifolia in UC. METHODS Initially, network pharmacology analysis, encompassing ingredient screening, target prediction, protein-protein interaction (PPI) network analysis, and enrichment analysis, was employed to predict the mechanisms of C. heracleifolia. The findings were further validated using transcriptomics and functional assays in a dextran sulfate sodium (DSS)-induced UC model. Additionally, bioactive compounds were identified through surface plasmon resonance (SPR) analysis, molecular docking, and cell-based assays. RESULTS A total of 52 ingredients of C. heracleifolia were screened, and 32 key targets were identified within a PPI network comprising 285 potential therapeutic targets. Enrichment analysis indicated that the anti-UC effects of C. heracleifolia are mediated through immune response modulation and the inhibition of inflammatory signaling pathways. In vivo experiments showed that C. heracleifolia mitigated histological damage in the colon, reduced the expression of phosphorylated Akt1, nuclear factor-kappa B (NF-κB) p65, and inhibitor of Kappa B kinase α/β (IKKα/β), suppressed the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and enhanced the expression of tight junction proteins. Moreover, cimigenoside, caffeic acid, and methyl caffeate were identified as the bioactive constituents responsible for the UC treatment effects of C. heracleifolia. CONCLUSIONS In summary, this study is the first to demonstrate that C. heracleifolia exerts therapeutic effects on UC by enhancing the intestinal mucosal barrier and inhibiting the phosphatidylinositol 3-kinase (PI3K)/AKT/NF-κB signaling pathway. These findings offer valuable insights into the clinical application of C. heracleifolia for UC management.
Collapse
Affiliation(s)
- Xue-Yi Wu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jia-Xin Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mei-Qing Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
3
|
Xu B, Huang JP, Peng G, Cao W, Liu Z, Chen Y, Yao J, Wang YJ, Li J, Zhang G, Chen S, Huang SX. Total biosynthesis of the medicinal triterpenoid saponin astragalosides. NATURE PLANTS 2024; 10:1826-1837. [PMID: 39433972 DOI: 10.1038/s41477-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Astragalus membranaceus has been used in traditional Chinese medicine for over 2,000 years. Its major active triterpenoid saponins, astragalosides, have attracted great attention due to their multiple health benefits and applications in medicine. Despite this, the biosynthetic machinery for astragalosides remains enigmatic. Here a chromosome-level genome assembly of A. membranaceus was generated. The identification of two tailoring enzymes required for astragaloside biosynthesis enabled the discovery of a triterpenoid biosynthetic gene cluster, leading to elucidation of the complete astragaloside biosynthetic pathway. This pathway is characterized by a sequence of selective hydroxylation, epoxidation and glycosylation reactions, which are mediated by three cytochrome P450s, one 2-oxoglutarate-dependent dioxygenase and two glycosyltransferases. Reconstitution of this biosynthetic machinery in Nicotiana benthamiana allowed for heterologous production of astragaloside IV. These findings build a solid foundation for addressing the sourcing issues associated with astragalosides and broaden our understanding of the diversity of terpene biosynthetic gene clusters.
Collapse
Affiliation(s)
- Bingyan Xu
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Ping Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guoqing Peng
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenying Cao
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Westlake University, Hangzhou, China
| | - Zhong Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yin Chen
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yong-Jiang Wang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Li
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shilin Chen
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Xiong Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Mao Z, Lv C, Qin R, Yu Y, Wang X, Lu J, Zhao Y. Antidepressant-like effects of Cimicifuga dahurica (Turcz.) Maxim. via modulation of monoamine regulatory pathways. Physiol Behav 2024; 284:114616. [PMID: 38914214 DOI: 10.1016/j.physbeh.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Sheng-ma is recorded in the Compendium of Materia Medica and mainly originates from the rhizomes of Cimicifuga dahurica (Turcz.) Maxim. (CD), Cimicifuga heracleifolia Kom. and Cimicifuga foetida L. The alcoholic extract of Cimicifuga foetida L. (Brand name: Ximingting®) has been approved for the treatment of perimenopausal symptoms accompanying hot flash, depression and anxiety in China. However, there's no further study about the antidepressant-like effects of C. dahurica (CD). The aim of this study is to investigate the antidepressant-like effect of CD extracted by 75% ethanol and its possible mechanisms.The neuro-protective effects of CD on injured PC12 cells induced by corticosterone was measured firstly. Then, forced swim test (FST), tail suspension test (TST), reserpine-induced hypothermia, 5-hydroxytryptophan (5-HTP) induced head twitch response in mice and chronic unpredictable mild stress (CUMS) on sucrose preference tests were executed. Moreover, the potential mechanisms were explored by measuring levels of monoamine neurotransmitter in mice frontal cortex and hippocampus, testing monoamine oxidase enzyme A (MAO-A) activities in the brains of CUMS-exposed mice. Results showed that CD (60, 120 mg/kg) can significantly decreased the immobility period in FST and TST in mice without affecting locomotor activity. CD (30 mg/kg, 60 mg/kg, 120 mg/kg) could significantly counteracted reserpine-induced hypothermia and increased the number of head-twitches in 5-HTP induced head twitch response. It was also found that the monoamine neurotransmitter levels in the hippocampus and frontal cortex were significantly increased in 60 mg/kg and 120 mg/kg CD treated mice. In addition, CD (60 and 120 mg/kg) significantly inhibited MAO-A after 6-week CUMS exposure. CD can effectively produce an antidepressant-like effect, which involved with modulation of monoamine regulatory pathways.
Collapse
Affiliation(s)
- Zhixuan Mao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China
| | - Rulan Qin
- College of Pharmacy and Food Sciences, Tonghua Normal University, Yucai Road 950, Tonghua 134002, Jilin, China
| | - Yang Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics support force No. 967 Hospital, Dalian 116021, China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China
| | - Yudan Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China
| |
Collapse
|
5
|
Yu T, Chen JM, Liu W, Zhao JQ, Li P, Liu FJ, Jiang Y, Li HJ. In-depth characterization of cycloartane triterpenoids and discovery of species-specific markers from three Cimicifuga species guided by a strategy that integrates in-source fragment elimination, diagnostic ion recognition, and feature-based molecular networking. J Chromatogr A 2024; 1728:465015. [PMID: 38821032 DOI: 10.1016/j.chroma.2024.465015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Characterization studies of the plant metabolome are crucial for revealing plant physiology, developing functional foods, and controlling quality. Mass spectrometry-based metabolite profiling allows unprecedented qualitative coverage of complex biological extract composition. However, the electrospray ionization used in metabolite profiling generates multiple artifactual signals for a single analyte, which makes it challenging to filter out redundant signals and organize the signals corresponding to abundant constituents. This study proposed a strategy integrating in-source fragments elimination, diagnostic ions recognition, and feature-based molecular networking (ISFE-DIR-FBMN) to simultaneously characterize cycloartane triterpenoids (CTs) from three medicinal Cimicifuga species. The results showed that 63.1 % of the measured ions were redundant. A total of 184 CTs were annotated, with 27.1 % being reported for the first time. It presents a promising approach to assess the composition of natural extracts, thus facilitating new ingredient registrations or natural-extracts-based drug discovery campaigns. Besides, chemometrics analysis of the three Cimicifuga species identified 32 species-specific markers, highlighting significant differences among them. The valuable information can enhance the sustainable utilization and further development of Cimicifuga resources. The codes involved in ISFE-DIR-FBMN are freely available on GitHub (https://github.com/LHJ-Group/ISFE-DIR-FBMN.git).
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng-Jie Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Xie SN, Chu QM, Wei HL, Zhang Y, Yang J, Tian XC, Xiao SQ, Tang ZH, Li DW, Liu Y. Study on the photosynthetic growth characters in Cimicifuga dahurica (Turcz.) Maxim under different supplemental light environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108783. [PMID: 38824694 DOI: 10.1016/j.plaphy.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Cimicifuga dahurica (C. dahurica) is an important medicinal plant in the northern region of China. The best supplemental light environment helps plant growth, development, and metabolism. In this study, we used two-year-old seedlings as experimental materials. The white light as the control (CK). The different ratios of red (R) and blue (B) combined light were supplemented (T1, 2R: 1B, 255.37 μmol m-2·s-1; T2, 3R: 1B, 279.69 μmol m-2·s-1; T3, 7R: 1B, 211.16 μmol m-2·s-1). The growth characteristics, photosynthetic pigment content, photosynthesis and chlorophyll fluorescence parameters, and primary metabolite content were studied in seedlings. The results showed that: 1) The fresh weight from shoot, root, and total fresh weight were significantly (P < 0.05) increased under T2 and T3 treatment. 2) The contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chl) were significantly (P < 0.05) increased under T2 treatment, and carotenoid (car) content was reduced. 3) The photochemical quenching (qP), the actual photosynthetic efficiency of PSII (Y(II)), and the photosynthetic electron transfer rate (ETR) from leaves were significantly (P < 0.05) increased under T1 treatment. The Net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were significantly (P < 0.05) increased under T2 and T3 treatments. 4) A total of 52 primary metabolites were detected in C. dahurica leaves. Compared with CK, 14, 15, and 18 differential metabolites were screened under T1, T2, and T3 treatments. In addition, D-xylose, D-glucose, glycerol, glycolic acid, and succinic acid were significantly (P < 0.05) accumulated under the T2 treatment, which could regulate the TCA cycle metabolism pathway. The correlation analysis suggested that plant growth was promoted by regulating the change of D-mannose content in galactinol metabolism and amino sugar and nucleotide sugar metabolism. In summary, the growth of C. dahurica was improved under T2 treatment.
Collapse
Affiliation(s)
- Sheng-Nan Xie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Qi-Ming Chu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Hong-Ling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Ying Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Jing Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Xu-Chen Tian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Si-Qiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China
| | - De-Wen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| |
Collapse
|
7
|
Zhang Q, Wei W, Jin X, Lu J, Chen S, Ogaji OD, Wang S, Du K, Chang Y, Li J. Traditional uses, phytochemistry, pharmacology, quality control and clinical studies of Cimicifugae Rhizoma: a comprehensive review. Chin Med 2024; 19:66. [PMID: 38715120 PMCID: PMC11075223 DOI: 10.1186/s13020-024-00937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Cimicifugae Rhizoma, generally known as "Sheng Ma" in China, has great medicinal and dietary values. Cimicifugae Rhizoma is the dried rhizome of Cimicifuga foetida L., Cimicifuga dahurica (Turcz.) Maxim. and Cimicifuga heracleifolia Kom., which has been used to treat wind-heat headache, tooth pain, aphtha, sore throat, prolapse of anus and uterine prolapse in traditional Chinese medicine. This review systematically presents the traditional uses, phytochemistry, pharmacology, clinical studies, quality control and toxicity of Cimicifugae Rhizoma in order to propose scientific evidence for its rational utilization and product development. Herein, 348 compounds isolated or identified from the herb are summarized in this review, mainly including triterpenoid saponins, phenylpropanoids, chromones, alkaloids, terpenoids and flavonoids. The crude extracts and its constituents had various pharmacological properties such as anti-inflammatory, antitumor, antiviral, antioxidant, neuroprotective, anti-osteoporosis and relieving menopausal symptoms. The recent research progress of Cimicifugae Rhizoma in ethnopharmacology, phytochemistry and pharmacological effects demonstrates the effectiveness of its utilization and supplies valuable guidance for further research. This review will provide a basis for the future development and utilization of Cimicifugae Rhizoma.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Jahn A, Petersen M. Hydroxy(phenyl)pyruvic acid reductase in Actaea racemosa L.: a putative enzyme in cimicifugic and fukinolic acid biosynthesis. PLANTA 2024; 259:102. [PMID: 38549005 PMCID: PMC10978636 DOI: 10.1007/s00425-024-04382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
MAIN CONCLUSION Hydroxy(phenyl)pyruvic acid reductase from Actaea racemosa catalyzes dual reactions in reducing 4-hydroxyphenylpyruvic acid as well as β-hydroxypyruvic acid. It thus qualifies to be part of fukinolic and cimicifugic acid biosynthesis and also photorespiration. The accumulation of fukinolic acid and cimicifugic acids is mainly restricted to Actaea racemosa (Ranunculaceae) and other species of the genus Actaea/Cimicifuga. Cimicifugic and fukinolic acids are composed of a hydroxycinnamic acid part esterified with a benzyltartaric acid moiety. The biosynthesis of the latter is unclear. We isolated cDNA encoding a hydroxy(phenyl)pyruvic acid reductase (GenBank OR393286) from suspension-cultured material of A. racemosa (ArH(P)PR) and expressed it in E. coli for protein production. The heterologously synthesized enzyme had a mass of 36.51 kDa and catalyzed the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid or β-hydroxypyruvic acid to glyceric acid, respectively. The optimal temperature was at 38 °C and the pH optimum at pH 7.5. NADPH is the preferred cosubstrate (Km 23 ± 4 µM). Several substrates are accepted by ArH(P)PR with β-hydroxypyruvic acid (Km 0.26 ± 0.12 mM) followed by 4-hydroxyphenylpyruvic acid (Km 1.13 ± 0.12 mM) as the best ones. Thus, ArH(P)PR has properties of β-hydroxypyruvic acid reductase (involved in photorespiration) as well as hydroxyphenylpyruvic acid reductase (possibly involved in benzyltartaric acid formation).
Collapse
Affiliation(s)
- Anne Jahn
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
9
|
Kostikova VA, Petrova NV, Chernonosov AA, Koval VV, Kovaleva ER, Wang W, Erst AS. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae). Int J Mol Sci 2024; 25:989. [PMID: 38256067 PMCID: PMC10816090 DOI: 10.3390/ijms25020989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Anemonopsis Siebold et Zucc. is an unstudied single-species genus belonging to the tribe Cimicifugeae (Ranunculaceae). The only species of this genus-Anemonopsis macrophylla Siebold and Zucc.-is endemic to Japan. There are no data on its chemical composition. This work is the first to determine (with liquid chromatography-high-resolution mass spectrometry, LC-HRMS) the chemical composition of methanol extracts of leaves and flowers of A. macrophylla. More than 100 compounds were identified. In this plant, the classes of substances are coumarins (13 compounds), furocoumarins (3), furochromones (2), phenolic acids (21), flavonoids (27), and fatty acids and their derivatives (15 compounds). Isoferulic acid (detected in extracts from this plant) brings this species closer to plants of the genus Cimicifuga, one of the few genera containing this acid and ferulic acid at the same time. Isoferulic acid is regarded as a reference component of a quality indicator of Cimicifuga raw materials. The determined profiles of substances are identical between the leaf and flower methanol extracts. Differences in levels of some identified substances were revealed between the leaf and flower extracts of A. macrophylla; these differences may have a substantial impact on the manifestation of the biological and pharmacological effects of the extracts in question.
Collapse
Affiliation(s)
- Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| | - Natalia V. Petrova
- Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeniia R. Kovaleva
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrey S. Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| |
Collapse
|
10
|
Fatima S, Verma M, Ansari IA. Phytochemistry and ethnopharmacological studies of genus Cimicifuga: A systematic and comprehensive review. Fitoterapia 2024; 172:105767. [PMID: 38052334 DOI: 10.1016/j.fitote.2023.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
ETHNOPHARMACOLOGICAL USES Black cohosh, also known as Cimicifuga sp., is one of the most widely used ethnomedicine for the treatment of major health issues in women. Some reports show that Cimicifuga sp. exhibit anti-cancer, anti-viral, anti-microbial, anti-pyretic, and anti-inflammatory properties. PURPOSE OF THIS REVIEW The objective of this comprehensive review is to furnish current and exhaustive knowledge pertaining to the pharmacological, phytochemical, and therapeutic properties of Cimicifuga sp. MATERIALS AND METHODS In this review, all the available information was collected on Cimicifugasp. via computerized search using Google Scholar, PubMed, Research Gate, Sci-Hub, supplementary resources (books, government reports, and Ph.D. theses). RESULT The phytochemical investigation on Cimicifuga sp. has shown phytoconstituents such as triterpenoid glycosides, phenylpropanoid, flavonoids, saponin, lignan, nitrogenous compounds, alkaloids, 4α-Methyl steroids and some other component like monoterpene lactones cimicifugolides A-C etc. Cimicifuga conveys a wide scope of research on in-vitro and in-vivo pharmacological potential, like anti-cancer, anti-microbial, anti-viral, anti-inflammatory, estrogenic, anti-oxidant, anti-neoplastic, anti-depressant, anti-Alzheimer, and anti-climacteric properties. CONCLUSION This article discusses the medicinal and traditional histories of various Cimicifuga species. Because quality control and safety assessments of Cimicifuga species are currently lacking, only a limited portion of the plant may be used as medication. The majority of current research focuses on triterpene glycosides. Although there are a variety of additional molecules that may have novel biological functions, systematic investigations of these compounds are lacking. The Cimicifuga plant has to go through a lot of studies before it can be completely used in clinics as a viable medicinal contender.
Collapse
Affiliation(s)
- Shireen Fatima
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Mahima Verma
- Department of Biosciences, Integral University, Lucknow 226026, India
| | | |
Collapse
|
11
|
Płoska A, Wozniak M, Hedhli J, Konopka CJ, Skondras A, Matatov S, Stawarz A, Schuh S, Czerwinski A, Dobrucki LW, Kalinowski L, Dobrucki IT. In Vitro and In Vivo Imaging-Based Evaluation of Doxorubicin Anticancer Treatment in Combination with the Herbal Medicine Black Cohosh. Int J Mol Sci 2023; 24:17506. [PMID: 38139334 PMCID: PMC10743623 DOI: 10.3390/ijms242417506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
As a substitution for hormone replacement therapy, many breast cancer patients use black cohosh (BC) extracts in combination with doxorubicin (DOX)-based chemotherapy. In this study, we evaluated the viability and survival of BC- and DOX-treated MCF-7 cells. A preclinical model of MCF-7 xenografts was used to determine the influence of BC and DOX administration on tumor growth and metabolism. The number of apoptotic cells after incubation with both DOX and BC was significantly increased (~100%) compared to the control. Treatment with DOX altered the potential of MCF-7 cells to form colonies; however, coincubation with BC did not affect this process. In vivo, PET-CT imaging showed that combined treatment of DOX and BC induced a significant reduction in both metabolic activity (29%) and angiogenesis (32%). Both DOX and BC treatments inhibited tumor growth by 20% and 12%, respectively, and combined by 57%, vs. control. We successfully demonstrated that BC increases cytotoxic effects of DOX, resulting in a significant reduction in tumor size. Further studies regarding drug transport and tumor growth biomarkers are necessary to establish the underlying mechanism and potential clinical use of BC in breast cancer patients.
Collapse
Affiliation(s)
- Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Marcin Wozniak
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Jamila Hedhli
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christian J. Konopka
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Antonios Skondras
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Sarah Matatov
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Andrew Stawarz
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarah Schuh
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Lawrence W. Dobrucki
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Academy of Medical and Social Applied Sciences, 82-300 Elblag, Poland
| |
Collapse
|
12
|
de Assis E, Azevedo V, de Lima M, Costa F, Paulino L, Barroso P, Matos M, do Monte A, Donato M, Peixoto C, Godinho A, Freire J, Souza A, Silva J, Silva A. Extract of Cimicifuga racemosa (L.) Nutt protects ovarian follicle reserve of mice against in vitro deleterious effects of dexamethasone. Braz J Med Biol Res 2023; 56:e12811. [PMID: 37792779 PMCID: PMC10515502 DOI: 10.1590/1414-431x2023e12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
The present study aims to investigate if Cimicifuga racemosa (L.) Nutt extract (CIMI) reduces deleterious effects of dexamethasone (DEXA) in ovaries cultured in vitro. Mouse ovaries were collected and cultured in DMEM+ only or supplemented with 5 ng/mL of CIMI, or 4 ng/mL DEXA, or both CIMI and DEXA. The ovaries were cultured at 37.5°C in 5% CO2 for 6 days. Ovarian morphology, follicular ultrastructure, and the levels of mRNA for Bax, Bcl-2, and Caspase-3 were evaluated. The results showed that DEXA reduced the percentage of morphologically normal follicles, while CIMI prevented the deleterious effects caused by DEXA. In addition, DEXA negatively affected the stromal cellular density, while CIMI prevented these adverse effects. Ovaries cultured with DEXA and CIMI showed similar levels of mRNA for Bax, Bcl-2, and Caspase-3 compared to those cultured in control medium, while ovaries cultured with DEXA had increased expression of the above genes. Additionally, the ultrastructure of the ovaries cultured with CIMI was well preserved. Thus, the extract of CIMI was able to prevent the deleterious effects caused by DEXA on cultured mouse ovaries.
Collapse
Affiliation(s)
- E.I.T. de Assis
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - V.A.N. Azevedo
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.F. de Lima
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - F.C. Costa
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - L.R.F.M. Paulino
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - P.A.A. Barroso
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.H.T. Matos
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - A.P.O. do Monte
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - M.A.M. Donato
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - C.A. Peixoto
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - A.N. Godinho
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.M.O. Freire
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.L.P. Souza
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.R.V. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.W.B. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| |
Collapse
|
13
|
Ma ZC, Liu MQ, Liu GQ, Zhou ZY, Ren XL, Sun L, Wang M. A Comprehensive Quality Evaluation of Cimicifugae Rhizoma Using UPLC-Q-Orbitrap-MS/MS Coupled with Multivariate Chemometric Methods. J AOAC Int 2023; 106:1313-1322. [PMID: 37252833 DOI: 10.1093/jaoacint/qsad064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cimicifugae Rhizoma, known in Chinese as Shengma, is a common medicinal material in traditional Chinese medicine (TCM), mainly used for treating wind-heat headaches, sore throat, uterine prolapse, and other diseases. OBJECTIVES An approach using a combination of ultra-performance liquid chromatography (UPLC), MS, and multivariate chemometric methods was designed to assess the quality of Cimicifugae Rhizoma. METHODS All materials were crushed into powder and the powdered sample was dissolved in 70% aqueous methanol for sonication. Chemometric methods, including hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least-squares discriminant analysis (OPLS-DA), were adopted to classify and perform a comprehensive visualization study of Cimicifugae Rhizoma. The unsupervised recognition models of HCA and PCA obtained a preliminary classification and provided a basis for classification. In addition, we constructed a supervised OPLS-DA model and established a prediction set to further validate the explanatory power of the model for the variables and unknown samples. RESULTS Exploratory research found that the samples were divided into two groups, and the differences were related to appearance traits. The correct classification of the prediction set also demonstrated a strong predictive ability of the models for new samples. Subsequently, six chemical makers were characterized by UPLC-Q-Orbitrap-MS/MS, and the content of four components was determined. The results of the content determination revealed the distribution of representative chemical markers caffeic acid, ferulic acid, isoferulic acid, and cimifugin in two classes of samples. CONCLUSIONS This strategy can provide a reference for assessing the quality of Cimicifugae Rhizoma, which is significant for the clinical practice and QC of Cimicifugae Rhizoma. HIGHLIGHTS The HCA, PCA and OPLS-DA models visually classify Cimicifugae Rhizoma by appearance traits and obtain the chemical markers that influence the classification. The training and prediction sets were built to demonstrate the accuracy of the classification. Advanced UPLC-Q-Orbitrap-MS/MS technology provides powerful elucidation of critical chemical markers.
Collapse
Affiliation(s)
- Zi Cheng Ma
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Mei Qi Liu
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Guo Qiang Liu
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Zhen Yu Zhou
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Xiao Liang Ren
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Lili Sun
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Meng Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
14
|
Kan LLY, Chan BCL, Leung PC, Wong CK. Natural-Product-Derived Adjunctive Treatments to Conventional Therapy and Their Immunoregulatory Activities in Triple-Negative Breast Cancer. Molecules 2023; 28:5804. [PMID: 37570775 PMCID: PMC10421415 DOI: 10.3390/molecules28155804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and complementary treatments have sparked interest in enhancing the efficacy of currently available treatments. Natural products, which are bioactive compounds derived from natural sources, have historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients have shown little to no response to immunotherapy, the potential of natural products as candidates for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there are challenges in determining the feasibility of using natural products to enhance the efficacy or counteract the toxicity of conventional treatments. In view of technological advances in molecular docking, pharmaceutical networking, and new drug delivery systems, natural products show promise as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action of selected natural-product-based bioactive compounds and analyze their roles and applications in combination treatments and immune regulation.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Sadahiro R, Matsuoka LN, Zeng BS, Chen KH, Zeng BY, Wang HY, Chu CS, Stubbs B, Su KP, Tu YK, Wu YC, Lin PY, Chen TY, Chen YW, Suen MW, Hopwood M, Yang WC, Sun CK, Cheng YS, Shiue YL, Hung CM, Matsuoka YJ, Tseng PT. Black cohosh extracts in women with menopausal symptoms: an updated pairwise meta-analysis. Menopause 2023; 30:766-773. [PMID: 37192826 DOI: 10.1097/gme.0000000000002196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVE Menopausal symptoms are common in midlife women and have broad impacts on their daily functioning and quality of life. Black cohosh extracts have been widely used to relieve menopausal symptoms. However, the comparative benefits of different combined black cohosh regimens remain inconclusive. The aim of the current updated meta-analysis is to address the comparative efficacies of different black cohosh regimens in improving menopausal symptoms. METHODS Random-effect model pairwise meta-analysis of randomized controlled trials was conducted to investigate the treatment effect on menopausal symptoms by the black cohosh extract both alone or combined with other related active ingredients. The outcomes studied were changes in menopausal symptoms after treatment with black cohosh extracts in menopausal women. RESULTS Twenty-two articles including information on 2,310 menopausal women were included in the analyses. Black cohosh extracts were associated with significant improvements in overall menopausal symptoms (Hedges' g = 0.575, 95% CI = 0.283 to 0.867, P < 0.001), as well as in hot flashes (Hedges' g = 0.315, 95% CIs = 0.107 to 0.524, P = 0.003), and somatic symptoms (Hedges' g = 0.418, 95% CI = 0.165 to 0.670, P = 0.001), compared with placebo. However, black cohosh did not significantly improve anxiety (Hedges' g = 0.194, 95% CI = -0.296 to 0.684, P = 0.438) or depressive symptoms (Hedges' g = 0.406, 95% CI = -0.121 to 0.932, P = 0.131). The dropout rate for black cohosh products was similar to that for placebo (odds ratio = 0.911, 95% CI = 0.660 to 1.256, P = 0.568). CONCLUSIONS This study provides updated evidence regarding the potentially beneficial effects of black cohosh extracts for relieving menopausal symptoms in menopausal women.
Collapse
Affiliation(s)
- Ryoichi Sadahiro
- From the Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center Japan, Tokyo, Japan
| | | | | | - Keng-Hsu Chen
- Department of Medical Education, E-Da Hospital, I-Shou University, E-Da Healthcare Group, Kaohsiung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Yu Wang
- Department of Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | | | | | | | | | - Yi-Cheng Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | | | | | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung City, Taiwan
| | | | | | | | | | | | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | - Yutaka J Matsuoka
- Center for Public Health Sciences, National Cancer Center Japan, Japan
| | | |
Collapse
|
16
|
Cui L, Wu J, Wang X, Yang X, Ye Z, Mayo KH, Sun L, Zhou Y. Purification and identification of oligosaccharides from Cimicifuga heracleifolia Kom. rhizomes. Food Chem X 2023; 18:100706. [PMID: 37215199 PMCID: PMC10196342 DOI: 10.1016/j.fochx.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Even though Cimicifuga sp. is widely used in functional foods around the world, the content and structure of its oligosaccharides remain unclear. Here, we isolated a mixture of oligosaccharides from Cimicifuga heracleifolia Kom. rhizomes with a yield of 9.5% w/w. Twenty-six oligosaccharide monomers from the mixture were purified using optimized SEC and HILIC techniques. The oligosaccharides were identified as belonging to two groups by using HPAEC-PAD, MALDI-TOF-MS, NMR and GC-MS methylation analyses. One group belongs to sucrose and inulin type fructo-oligosaccharides (FOS) {β-d-Fruf-(2 → 1)-[β-d-Fruf-(2 ↔ 1)]n=1-12-α-d-Glcp} with a 3-14 degree of polymerization (DP). Oligosaccharides in the other group belong to the inulo-n-ose type FOS {β-d-Fruf-(2 → 1)-[β-d-Fruf-(2 → 1)]m=0-12-β-d-Frup} with a DP of 2-14. This appears to be the first time that these oligosaccharides have been purified from Cimicifuga heracleifolia Kom., thus providing useful information concerning the utilization of Cimicifuga heracleifolia Kom. in functional foods.
Collapse
Affiliation(s)
- Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaotong Yang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zixin Ye
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
17
|
Cao X, Wang Y, Chen Y, Zhao M, Liang L, Yang M, Li J, Peng M, Li W, Yue Y, Zhang H, Li C, Shu Z. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116229. [PMID: 36773789 DOI: 10.1016/j.jep.2023.116229] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and thus imposes heavy economic burden on patients, their families, and society. Furthermore, COPD seriously affects the quality of life of patients. The concept of "overall regulation" of traditional Chinese medicine (TCM) plays an important role in the prevention and treatment of COPD. AIM OF THE STUDY The objective of this review is to summarize the TCM theories, experimental methods, TCM extracts, active TCM ingredients, and TCM formulas for the treatment of COPD and reveal the effects and mechanisms of TCM treatments on COPD. MATERIALS AND METHODS This article reviewed literature on TCM-based treatments for COPD reported from 2016 to 2021. Relevant scientific studies were obtained from databases that included PubMed, China National Knowledge Infrastructure, Web of Science, Google Scholar, The Plant List, ScienceDirect, and SciFinder. RESULTS This review summarized TCM-based theory, experimental methods, active ingredients, and potential toxicities, the effects of TCM extracts and formulations, and their mechanisms for the treatment of COPD. Most investigators have used in vivo models of cigarette smoke combined with lipopolysaccharide induction in rats and in vitro models of cigarette smoke extract induction. The active ingredients of TCM used for the treatment of COPD in relevant studies were triterpenoids, flavonoids, phenolics, quinones, glycosides, and alkaloids. TCMs commonly used in the treatment of COPD include antipyretic drugs, tonic medicines, anticough medications, and asthma medications. TCM can treat COPD by suppressing inflammation, reducing oxidative stress, inhibiting apoptosis, and improving airway remodeling. CONCLUSIONS This review enriches the theory of COPD treatments based on TCM, established the clinical significance and development prospects of TCM-based COPD treatments, and provided the necessary theoretical support for the further development of TCM resources for the treatment of COPD.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Han Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Jiamusi University, Jiamusi, 154000, China
| | - Chuanqiu Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Rong HG, Zhang XW, Han M, Sun X, Wu XD, Lai XZ, Shen C, Yu WJ, Fang H, Fei YT, Liu JP. Evidence synthesis of Chinese medicine for monkeypox: Suggestions from other contagious pox-like viral diseases. Front Pharmacol 2023; 14:1121580. [PMID: 36992826 PMCID: PMC10040637 DOI: 10.3389/fphar.2023.1121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Monkeypox, a zoonotic disease caused by an Orthopoxvirus, presents an etiology similar to smallpox in humans. Currently, there are no licensed treatments for human monkeypox, so clear and urgent research on its prophylaxis and treatment is needed.Objective: The purpose of this study was to explore the evidence of Chinese medicine for contagious pox-like viral diseases and provide suggestions for the multi-country outbreak management of monkeypox.Methods: The review was registered on INPLASY (INPLASY202270013). Ancient classics in China and clinical trials involving randomized controlled trials , non-RCTs, and comparative observational studies of CM on the prevention and treatment of monkeypox, smallpox, measles, varicella, and rubella were retrieved from the Chinese Medical Code (fifth edition), Database of China Ancient Medicine, PubMed, the Cochrane Library, China National Knowledge Infrastructure, Chongqing VIP, Wanfang, Google Scholar, International Clinical Trial Registry Platform, and Chinese Clinical Trial Registry until 6 July 2022. Both quantitative and qualitative methods were applied to present the data collected.Results: The use of CM to control contagious pox-like viral diseases was traced back to ancient Chinese practice cited in Huangdi’s Internal Classic, where the pathogen was recorded nearly two thousand years back. There were 85 articles (36 RCTs, eight non-RCTs, one cohort study, and 40 case series) that met the inclusion criteria, of which 39 studies were for measles, 38 for varicella, and eight for rubella. Compared with Western medicine for contagious pox-like viral diseases, CM combined with Western medicine showed significant improvements in fever clearance time (mean difference, −1.42 days; 95% CI, −1.89 to −0.95; 10 RCTs), rash/pox extinction time (MD, −1.71 days; 95% CI, −2.65 to −0.76; six RCTs), and rash/pox scab time (MD, −1.57 days; 95% CI, −1.94 to −1.19; five RCTs). When compared with Western medicine, CM alone could reduce the time of rash/pox extinction and fever clearance. Chinese herbal formulas, including modified Yinqiao powder, modified Xijiao Dihaung decoction, modified Qingjie Toubiao decoction, and modified Shengma Gegen decoction, were frequently applied to treat pox-like viral diseases and also showed significant effects in shortening the time of fever clearance, rash/pox extinction, and rash/pox scabs. Compared with Western medicine (placental globulin) or no intervention, eight non-randomized trials and observational studies on the prevention of contagious pox-like viral diseases showed a significant preventive effect of Leiji powder among high-risk populations.Conclusion: Based on historical records and clinical studies of CM in managing contagious pox-like viral diseases, some botanical drugs could be an alternative approach for treating and preventing human monkeypox. Prospective, rigorous clinical trials are urgently needed to confirm the potential preventive and treatment effect of Chinese herbal formulas.Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY202270013].
Collapse
Affiliation(s)
- Hong-guo Rong
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-wen Zhang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mei Han
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-dan Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-zhen Lai
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Chen Shen
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jie Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Fang
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Yu-tong Fei
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-ping Liu
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- The National Research Center in Complementary and Alternative Medicine (NAFKAM), Department of Community Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Jian-ping Liu,
| |
Collapse
|
19
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Protective Effect of Cimicifuga racemosa (L.) Nutt Extract on Oocyte and Follicle Toxicity Induced by Doxorubicin during In Vitro Culture of Mice Ovaries. Animals (Basel) 2022; 13:ani13010018. [PMID: 36611626 PMCID: PMC9817952 DOI: 10.3390/ani13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the potential of Cimicifuga racemosa (L.) Nutt extract (CIMI) to reduce the deleterious effects of doxorubicin (DOXO) in oocytes, follicles and stromal cells in mice ovaries cultured in vitro. In experiment 1, mice ovaries were cultured in DMEM+ alone or supplemented with 5, 50 or 500 ng/mL CIMI, while in experiment 2, mice ovaries were cultured in DMEM+ alone or supplemented with 5 ng/mL CIMI (better concentration), 0.3 μg/mL DOXO or both. Thereafter, the ovaries were processed for histological (morphology, growth, activation, extracellular matrix configuration and stromal cell density), immunohistochemical (caspase-3) analyses. Follicle viability was evaluated by fluorescence microscopy (ethidium homodimer-1 and calcein) while real-time PCR was performed to analyses the levels of (mRNA for SOD, CAT and nuclear factor erythroid 2-related factor 2 (NRF2) analyses. The results showed that DOXO reduces the percentage of normal follicles and the density of stromal cells in cultured ovaries, but these harmful effects were blocked by CIMI. The DOXO reduced the percentage of primordial follicles, while the presence of CIMI alone did not influence percentage of primordial follicles. A higher staining for caspase-3 was seen in ovaries cultured in control medium alone or with DOXO when compared with those cultured with CIMI alone or both CIMI and DOXO. In addition, follicles from ovaries cultured with both CIMI and DOXO were stained by calcein, while those follicles cultured with only DOXO were stained with ethidium homodimer-1. Furthermore, ovaries cultured with CIMI or both CIMI and DOXO had higher levels of mRNA for SOD and CAT, respectively, than those cultured with only DOXO. In conclusion, the extract of CIMI protects the ovaries against deleterious effects of DOXO on follicular survival and ovarian stromal cells.
Collapse
|
21
|
Wang J, Li Y, Wang Y, Du F, Zhang Y, Yin M, Zhao X, Xu J, Yang Y, Wang W, Fu B. Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin. Antioxidants (Basel) 2022; 11:antiox11102045. [PMID: 36290768 PMCID: PMC9598814 DOI: 10.3390/antiox11102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Allantoin is crucial for plant growth and development as well as adaptations to abiotic stresses, but the underlying molecular mechanisms remain unclear. In this study, we comprehensively analyzed the physiological indices, transcriptomes, and metabolomes of rice seedlings following salt, allantoin, and salt + allantoin treatments. The results revealed that exogenous allantoin positively affects the salt tolerance by increasing the contents of endogenous allantoin with antioxidant activities, increasing the reactive oxygen species (ROS)–scavenging capacity, and maintaining sodium and potassium homeostasis. The transcriptome analysis detected the upregulated expression genes involved in ion transport and redox regulation as well as the downregulated expression of many salt-induced genes related to transcription and post-transcriptional regulation, carbohydrate metabolism, chromosome remodeling, and cell wall organization after the exogenous allantoin treatment of salt-stressed rice seedlings. Thus, allantoin may mitigate the adverse effects of salt stress on plant growth and development. Furthermore, a global metabolite analysis detected the accumulation of metabolites with antioxidant activities and intermediate products of the allantoin biosynthetic pathway in response to exogenous allantoin, implying allantoin enhances rice salt tolerance by inducing ROS scavenging cascades. These results have clarified the transcript-level and metabolic processes underlying the allantoin-mediated salt tolerance of rice.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life Sciences, China Agricultural University, Beijing 100193, China
| | - Yingbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinxiao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqing Yang
- College of Life Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Binying Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| |
Collapse
|
22
|
Di Giacomo S, Percaccio E, Gullì M, Romano A, Vitalone A, Mazzanti G, Gaetani S, Di Sotto A. Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer's Disease: A Narrative Review. Nutrients 2022; 14:3709. [PMID: 36145084 PMCID: PMC9503091 DOI: 10.3390/nu14183709] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder of the central nervous system, characterized by neuroinflammation, neurotransmitter deficits, and neurodegeneration, which finally leads to neuronal death. Emerging evidence highlighted that hyperglycemia and brain insulin resistance represent risk factors for AD development, thus suggesting the existence of an additional AD form, associated with glucose metabolism impairment, named type 3 diabetes. Owing to the limited pharmacological options, novel strategies, especially dietary approaches based on the consumption of polyphenols, have been addressed to prevent or, at least, slow down AD progression. Among polyphenols, ferulic acid is a hydroxycinnamic acid derivative, widely distributed in nature, especially in cereal bran and fruits, and known to be endowed with many bioactivities, especially antioxidant, anti-inflammatory and antidiabetic, thus suggesting it could be exploited as a possible novel neuroprotective strategy. Considering the importance of ferulic acid as a bioactive molecule and its widespread distribution in foods and medicinal plants, the aim of the present narrative review is to provide an overview on the existing preclinical and clinical evidence about the neuroprotective properties and mechanisms of action of ferulic acid, also focusing on its ability to modulate glucose homeostasis, in order to support a further therapeutic interest for AD and type 3 diabetes.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Q, Yang H, Yang W, Jiang T. Cimigenoside Affects Cell Viability, Apoptosis and Metastasis Of A549 Cells Via The NF-κB Pathway. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cimigenoside, one of the main elements isolated from the aboveground plants of the Cimicifuga genus, has anti-tumour effects. However, the question of whether Cimigenoside had effects on lung cancer remains elusive. This study was aimed at investigating the effects of Cimigenoside
on A549 lung cancer cells. The A549 cells were cultured in vitro, and an MTT assay was carried out to explore the cell proliferative abilities after a treatment with Cimigenoside. The wound healing assays and Transwell invasion assays were carried out to explore the effects of Cimigenoside
on cell migration and invasion in the A549 cells. A cell apoptosis assay using flow cytometry was used to evaluate the effects on cell apoptosis in the A549 cells. The related protein expression levels were measured using a Western blot assay. It was hypothesised that Cimigenoside could restrain
tumour cell proliferation, migration and invasion, while inducing cell apoptosis with apoptosis-related protein change levels in a time- and dose-dependent manner. The Western blot assay revealed that the Cimigenoside treated A549 cells had a reduced expression of p65, while having an increased
expression of IκBα at the protein level. Taken together, this study demonstrated that Cimigenoside has the potential to repress cell proliferation, migration and invasion, while inducing apoptosis in A549 lung cancer cells through the NF-κB pathway. These results reveal that
Cimigenoside may have a therapeutic potential for lung cancer treatment.
Collapse
Affiliation(s)
- Qinqin Wang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, P.R, China
| | - Hua Yang
- epartment of Pulmonary and Critical Care medicine, Yantai Hospital of traditional Chinese Medicine, Yantai, Shandong, P.R, China
| | - Wenjun Yang
- Department of Neurology, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, Yantai, Shandong, P.R, China
| | - Tingshu Jiang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, Yantai, Shandong, P.R, China
| |
Collapse
|
24
|
Wang D, Li Q, Pan CS, Yan L, Sun K, Wang XY, Anwaier G, Liao QZ, Xie TT, Fan JY, Huo XM, Wang Y, Han JY. Yu-Ping-Feng Formula Ameliorates Alveolar-Capillary Barrier Injury Induced by Exhausted-Exercise via Regulation of Cytoskeleton. Front Pharmacol 2022; 13:891802. [PMID: 35814249 PMCID: PMC9263595 DOI: 10.3389/fphar.2022.891802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Yu-ping-feng powder (YPF) is a compound traditional Chinese medicine extensively used in China for respiratory diseases. However, the role of YPF in alveolar-capillary barrier dysfunction remains unknown. This study aimed to explore the effect and potential mechanism of YPF on alveolar-capillary barrier injury induced by exhausted exercise. Methods: Male Sprague–Dawley rats were used to establish an exhausted-exercise model by using a motorized rodent treadmill. YPF at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Food intake-weight/body weight, blood gas analysis, lung water percent content, BALF protein concentration, morphological observation, quantitative proteomics, real-time PCR, and Western blot were performed. A rat pulmonary microvascular endothelial cell line (PMVEC) subjected to hypoxia was applied for assessing the related mechanism. Results: YPF attenuated the decrease of food intake weight/body weight, improved lung swelling and hemorrhage, alleviated the increase of lung water percent content and BALF protein concentration, and inhibited the impairment of lung morphology. In addition, YPF increased the expression of claudin 3, claudin 18, occludin, VE-cadherin, and β-catenin, attenuated the epithelial and endothelial hyperpermeability in vivo and/or in vitro, and the stress fiber formation in PMVECs after hypoxia. Quantitative proteomics discovered that the effect of YPF implicated the Siah2-ubiquitin-proteasomal pathway, Gng12-PAK1-MLCK, and RhoA/ROCK, which was further confirmed by Western blot. Data are available via ProteomeXchange with identifier PXD032737. Conclusion: YPF ameliorated alveolar-capillary barrier injury induced by exhausted exercise, which is accounted for at least partly by the regulation of cytoskeleton.
Collapse
Affiliation(s)
- Di Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Gulinigaer Anwaier
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Qian-Zan Liao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Ting-Ting Xie
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
- *Correspondence: Jing-Yan Han,
| |
Collapse
|
25
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
26
|
Li K, You F, Zhang Q, Yuan R, Yuan Q, Fu X, Ren Y, Wang Q, Li X, Zhang Z, Shichiri M, Yu Y. Chemical and Biological Evidence of the Efficacy of Shengxian Decoction for Treating Human Lung Adenocarcinoma. Front Oncol 2022; 12:849579. [PMID: 35372052 PMCID: PMC8975620 DOI: 10.3389/fonc.2022.849579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Shengxian Decoction (SXT) is a traditional Chinese medicine prescription comprising several anti-cancer medicinal herbs. However, the anti-cancer effect of SXT has rarely been reported. Herein, we explored the therapeutic potential of SXT for the treatment of lung adenocarcinoma (LUAD). High-performance liquid chromatography analysis of crude SXT extract revealed the abundance of mangiferin, an established anti-cancer compound. The serum pharmacological evaluation revealed that serum SXT suppressed A549 lung cancer cell proliferation in vitro. The tumor-inhibitory activity of SXT was confirmed in vivo via tumor formation assays in nude mice. We applied biochemical, histopathological and imaging approaches to investigate the cellular targets of SXT. The results indicated that the treatment with SXT induced tumor necrosis, and downregulated hypoxia-inducible factor 1 alpha in the serum. In vivo biosafety assessment of SXT revealed low levels of toxicity in mouse models. Our study provides the first scientific evidence that SXT effectively represses cancer cell growth and, thus, may serve as a safe anti-cancer agent for LUAD treatment.
Collapse
Affiliation(s)
- Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Zhang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Ruijiao Yuan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qianghua Yuan
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Fu
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Wang
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Li
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), AIST, Tsukuba, Japan
| | - Yue Yu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), AIST, Tsukuba, Japan
- *Correspondence: Yue Yu,
| |
Collapse
|
27
|
Global Perspective of Plant-Based Cosmetic Industry and Possible Contribution of Sri Lanka to the Development of Herbal Cosmetics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9940548. [PMID: 35280508 PMCID: PMC8916882 DOI: 10.1155/2022/9940548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/24/2021] [Accepted: 02/05/2022] [Indexed: 12/29/2022]
Abstract
The global consumption of plant-based cosmetics has shown spectacular growth in recent years because of rising consumer awareness regarding the long-term health benefits of natural ingredients. As the global demand for herbal cosmetics increases, there are ample opportunities for Sri Lanka as a tropical Asian country to expand its productions and global exports along with its unique biodiversity and inherited traditional knowledge. Therefore, the present review attempts to give an overview of the widely used medicinal plants in the global herbal cosmetic industry and strengths, challenges, and possible solutions for the development of the herbal cosmetic industry of Sri Lanka. Information was collected using electronic search (using Pub Med, Science Direct, Web of Science, Google Scholar, TEEAL, and Scopus) for articles published in peer-reviewed journals, industrial reports, market surveys, and library search for local books on ethnobotany. Important plant-derived ingredients used in the global herbal cosmetic industry are essential oils, colorants, oils, fats, and waxes. The traditional usage of 108 medicinal plant species (belonging to 58 families) in cosmetic treatments was identified from the local books of Sri Lanka. Of these, 49 plant species were reported as new ingredients for the herbal cosmetic industry. However, the lack of ethnobotanical and ethnopharmacological surveys to identify the cosmetic potential plants, insufficient or absence of continuous supply of raw materials for production in line with the existing demand, the lack of quality control of raw materials and finished cosmetic products, improper systematic cultivation systems for medicinal plants, poor postharvest practices, and the lack of innovations are major challenges encountered in Sri Lanka for the development of the herbal cosmetic industry. In conclusion, addressing these vital knowledge gaps is a timely requirement of the country for the sustainable development of the herbal cosmetic industry in Sri Lanka. Furthermore, assembling of the multidisciplinary cooperation of botanists, chemists, toxicologists, researchers, and biologists is crucial to analyze the interesting functional properties, efficacy, and effectiveness of documented medicinal plants with cosmetic potential.
Collapse
|
28
|
Michalkova R, Kello M, Kudlickova Z, Gazdova M, Mirossay L, Mojzisova G, Mojzis J. Programmed Cell Death Alterations Mediated by Synthetic Indole Chalcone Resulted in Cell Cycle Arrest, DNA Damage, Apoptosis and Signaling Pathway Modulations in Breast Cancer Model. Pharmaceutics 2022; 14:503. [PMID: 35335879 PMCID: PMC8953149 DOI: 10.3390/pharmaceutics14030503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Although new chemotherapy significantly increased the survival of breast cancer (BC) patients, the use of these drugs is often associated with serious toxicity. The discovery of novel anticancer agents for BC therapy is expected. This study was conducted to explore the antiproliferative effect of newly synthesized indole chalcone derivative ZK-CH-11d on human BC cell lines. MTT screening, flow cytometry, Western blot, and fluorescence microscopy were used to evaluate the mode of cell death. ZK-CH-11d significantly suppressed the proliferation of BC cells with minimal effect against non-cancer cells. This effect was associated with cell cycle arrest at the G2/M phase and apoptosis induction. Apoptosis was associated with cytochrome c release, increased activity of caspase 3 and caspase 7, PARP cleavage, reduced mitochondrial membrane potential, and activation of the DNA damage response system. Furthermore, our study demonstrated that ZK-CH-11d increased the AMPK phosphorylation with simultaneous inhibition of the PI3K/Akt/mTOR pathway indicating autophagy initiation. However, chloroquine, an autophagy inhibitor, significantly potentiated the cytotoxic effect of ZK-CH-11d in MDA-MB-231 cells indicating that autophagy is not principally involved in the antiproliferative effect of ZK-CH-11d. Taking together the results from our experiments, we assume that autophagy was activated as a defense mechanism in treated cells trying to escape from chalcone-induced harmful effects.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Gabriela Mojzisova
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| |
Collapse
|
29
|
Tsoumani M, Nikolaou PE, Argyropoulou A, Tseti I, Mitakou S, Andreadou I. Novel Evidence-Based Combination of Plant Extracts with Multitarget Mechanisms of Action for the Elimination of Hot Flashes during Menopause. Molecules 2022; 27:molecules27041221. [PMID: 35209016 PMCID: PMC8874944 DOI: 10.3390/molecules27041221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Hot flashes are considered the most bothersome complaint during menopause. Although hormone therapy is an effective option to relieve hot flashes, it has been associated with significant side effects. The aim of our study is to suggest a novel combination of different plant extracts with distinct mechanisms of action against hot flashes. We selected the rhizome of Glycyrrhiza glabra L. (Fabaceae), the rhizome of Actaea racemosa L. (Ranunculaceae), the aerial parts of Hypericum perforatum L. (Hypericaceae) to produce extracts rich in bioactive phytochemicals and the seed oil of Oenothera biennis L. (Onagraceae). We investigated their estrogenic and antioxidant potential and their inhibitory effect against prostaglandin D2 receptor 1 (DP1) as a novel mechanistic pathway for vasodilation in hot flashes, alone or in combination. The phytochemical footprint of the extracts was analyzed using HPLC-PDA and UPLC-HRMS. We observed that the tested extracts possess different mechanisms of action. A. racemosa exerts a beneficial activation of the estrogen receptor, H. perforatum possesses the highest antioxidant capacity and the seed oil of O. biennis inhibits the DP1 receptor. The triple combination in the optimal doses pertains to efficacy against all three mechanisms of action, serves as a multitarget plant-based therapy and could serve as a novel strategy for the alleviation of hot flashes in postmenopausal women.
Collapse
Affiliation(s)
- Maria Tsoumani
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.T.); (P.E.N.)
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.T.); (P.E.N.)
| | - Aikaterini Argyropoulou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.A.); (S.M.)
| | | | - Sofia Mitakou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Ioanna Andreadou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.T.); (P.E.N.)
- Correspondence: ; Tel.: +30-210-727-4827
| |
Collapse
|
30
|
Qian S, Han X, Sha X, Tian F, Huang H, Jiang P, Huang G, Ma B, Zhang H, Zhu Y, Sun X. Aqueous Extract of Cimicifuga dahurica Reprogramming Macrophage Polarization by Activating TLR4-NF-κB Signaling Pathway. J Inflamm Res 2022; 15:1027-1046. [PMID: 35210810 PMCID: PMC8858003 DOI: 10.2147/jir.s345497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Cimicifuga dahurica (C. dahurica), which has been used in traditional oriental medicine for a long period, was reported to exert extensive antitumor activity, but the effect and molecular biological mechanism of C. dahurica on multiple myeloma (MM) has not been elaborated. Tumor-associated macrophages (TAMs) exhibit a sustained polarization between tumor killing M1 subtype and tumor supporting M2 subtype. And a lower ratio of M1/M2 is associated with tumor angiogenesis, proliferation and invasion. We explored the inhibitory effect of the aqueous extract of the root of C. dahurica (CRAE) on tumor growth by reprogramming macrophage polarization in the tumor microenvironment. Methods Mice bearing SP2/0 multiple myeloma were treated with CRAE. Western blotting (WB), immunohistochemistry (IHC) and immunofluorescence staining were utilized to assess tumor growth and TAM populations. Macrophages were depleted by injection of clodronate liposomes to determine and measure the role of CRAE as an anti-tumor agent by targeting macrophages. To simulate tumor microenvironment, MM cells H929 and TAMs were co-cultured using the transwell co-culture system. By using CRAE as an immunoregulator in M2-like macrophages, we analyzed CRAE-treated macrophage-associated surface markers and cytokines by flow cytometry and WB. Results The results indicated that CRAE treatment could reduce tumor burden of MM mice and a high degree of M1-like macrophages infiltration was detected in tumor tissues. In vitro co-culture system, CRAE significantly promoted the polarization of M2 to M1 phenotype, which led to the increase in apoptosis of myeloma cells. It was found that the M1 polarization induced by CRAE depended on the TLR4-MyD88-TAK1-NF-κB signal transduction. Conclusion This study elucidated the anticancer mechanism of the aqueous extract of C. dahurica (CRAE) through reprogramming macrophage polarization and highlighted that CRAE could act as a potential novel option for cancer immunotherapy.
Collapse
Affiliation(s)
- Shushu Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xuan Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaocao Sha
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Fang Tian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hong Huang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Pengjun Jiang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Guoshun Huang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Bangyun Ma
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hong Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yiye Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xuemei Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Xuemei Sun, Tel +86-25-86617141, Fax +86-25-86518690, Email
| |
Collapse
|
31
|
Fibrous Roots of Cimicifuga Are at Risk of Hepatotoxicity. Molecules 2022; 27:molecules27030938. [PMID: 35164202 PMCID: PMC8840794 DOI: 10.3390/molecules27030938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
The cause of liver damage by using black cohosh preparation has been concerned but remains unclear. After a preliminary investigation, the black cohosh medicinal materials sold in the market were adulterated with Asian cohosh (Cimicifuga) without removing the fibrous roots. The safety of Cimicifuga rhizome and fibrous roots is unknown and has not been reported. Therefore, in this paper, the rhizome and fibrous roots of Cimicifuga dahurica (Turcz.) Maxim (C. dahurica) were completely separated, extracted with 70% ethanol, and freeze-dried to obtain crude rhizome extract (RC) and fibrous roots extract (FRC). UHPLC-Q-TOF-MS was used to identify 39 compounds in the rhizome and fibrous roots of Cimicifuga, mainly saponins and phenolic acids. In the L-02 cytotoxicity experiment, the IC50 of fibrous roots (1.26 mg/mL) was slightly lower than that of rhizomes (1.417 mg/mL). In the 90-day sub-chronic toxicity study, the FRC group significantly increased the level of white blood cells, ALP, ALT, AST, BILI and CHOL (p < 0.05); large area of granular degeneration and balloon degeneration occurred in liver tissue; and the expression of p-NF-kB in the nucleus increased in a dose-dependent manner. Overall, Fibrous roots of Cimicifuga are at risk of hepatotoxicity and should be strictly controlled and removed during the processing.
Collapse
|
32
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
33
|
Lu NH, Li J, Yang YR, Liu HL, Du YR. New triterpenes from Cimicifuga yunnanensis down-regulating the mRNA expression of CD147, MMP-2, and MMP-9. RSC Adv 2021; 11:36978-36988. [PMID: 35494395 PMCID: PMC9043592 DOI: 10.1039/d1ra07828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Eleven new 9,19-cycloartane triterpenes (1–9, 11–12) and one undescribed lanostane-type aglycone (10) were identified from the aerial parts of Cimicifuga yunnanensis. The new structures were elucidated by analysis of spectroscopic data. Compounds 3–5, 7–9, and 11, without obvious cytotoxicity at 50 μM, were evaluated for inhibiting the mRNA expressions of atherosclerosis-related factors of CD147 (extracellular matrix metalloproteinase inducer, EMMPRIN), matrix metalloproteinase 2 (MMP-2) and MMP-9 in phorbol-12-myristate-13-acetate (PMA) induced Human monocytic THP-1 cells by using a quantitative real-time PCR method (q-PCR). Among them, aglycones 7 and 8 showed potent activities, whereas all tested glycosides were inactive. Compounds 7 and 8 suppressed the mRNA expression of CD147 in a dose-dependent manner, with an IC50 value of 3.38 ± 0.27 μM and 8.25 ± 0.33 μM, respectively. Besides, 7 dose-related down-regulated the mRNA expression of MMP-2, and MMP-9, having an IC50 value of 6.32 ± 0.31 μM and 11.57 ± 0.23 μM, respectively. Meanwhile, 8 at 10 μM reduced the mRNA expression of MMP-2 and MMP-9 by 35% and 25%, respectively. Significantly, the migration ability of the induced THP-1 cells was potently and dose-dependently inhibited by 7, with an IC50 value of 5.87 ± 0.27 μM. Eleven new 9,19-cycloartane triterpenes (CTs) (1–9, 11–12) and one undescribed lanostane-type aglycone (10) were identified from Cimicifuga yunnanensis. CTs aglycones 7 and 8 potently down-regulated the mRNA expression of CD147, MMP-2, and MMP-9.![]()
Collapse
Affiliation(s)
- Ni-Hong Lu
- Department of Respiratory Medicine, The Third People's Hospital of Kunming Yunnan 650041 People's Republic of China
| | - Jie Li
- Department of Respiratory Medicine, The Third People's Hospital of Kunming Yunnan 650041 People's Republic of China
| | - Yong-Rui Yang
- Department of Respiratory Medicine, The Third People's Hospital of Kunming Yunnan 650041 People's Republic of China
| | - Hong-Lu Liu
- Department of Respiratory Medicine, The Third People's Hospital of Kunming Yunnan 650041 People's Republic of China
| | - Ying-Rong Du
- Department of Respiratory Medicine, The Third People's Hospital of Kunming Yunnan 650041 People's Republic of China
| |
Collapse
|
34
|
Jia H, Wang X, Liu W, Qin X, Hu B, Ma Q, Lv C, Lu J. Cimicifuga dahurica extract inhibits the proliferation, migration and invasion of breast cancer cells MDA-MB-231 and MCF-7 in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114057. [PMID: 33771643 DOI: 10.1016/j.jep.2021.114057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cimicifuga dahurica (Turcz.) Maxim (C. dahurica) has a long history of treating breast cancer. From the Qing Dynasty to the Tang Dynasty and even earlier, C. dahurica has been documented in the treatment of breast carbuncle (Breast cancer is classified as breast carbuncle in Chinese medicine). In traditional prescriptions such as "Sheng Ge Decoction", "Sheng Ma Powder" and "Breast Carbuncle Pill", as the main medicine, C. dahurica plays an important role. At present, the systematic studies on the in vitro and in vivo effects of Cimicifuga against breast cancer are rare, especially the C. dahurica. AIM OF THE STUDY In this article, we evaluated the in vitro activity and in vivo effects of CREE (extract of the root of C. dahurica) against breast cancer, and discussed the possible mechanism of CREE in promoting breast cancer cell apoptosis. MATERIALS AND METHODS The main component in the CREE was analyzed by HPLC. The effects of CREE on the proliferation, migration and invasion of human breast cancer cells were evaluated through SRB, colony assay, LDH release, wound healing and transwell assay. The pro-apoptotic effect of CREE was investigated in Hochest33342 and Annexin V-FITC/PI assay. To verify the results of CREE in vivo effects, we applied nude mice subcutaneous xenograft experiments. The possible mechanism of CREE treating breast cancer was investigated through mitochondrial membrane potential and western blot experiments. RESULTS CREE contains cycloartane triterpene saponins. CREE can significantly inhibit the proliferation, migration and invasion of human breast cancer MCF-7 and MDA-MB-231 cells in vitro and it can effectively inhibit the growth of MDA-MB-231 cell subcutaneous tumors in vivo. Besides, we also found that CREE up-regulated the expression levels of Bax, caspase-9/3 and cytochrome C, and down-regulated the expression of Bcl-2. Therefore, regulation of the mitochondrial pathway may be one of the mechanisms by which CREE promotes breast cancer cell apoptosis. CONCLUSIONS CREE exhibits sufficient anti-breast cancer activity in vivo and in vitro, this study provides persuasive evidence for the further research and development of C. dahurica.
Collapse
Affiliation(s)
- Hui Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| | - Xinying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| | - Wenwu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bei Hu
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110840, Liaoning Province, China.
| | - Qun Ma
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110840, Liaoning Province, China.
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
35
|
Hu Z, Lin J, Chen J, Cai T, Xia L, Liu Y, Song X, He Z. Overview of Viral Pneumonia Associated With Influenza Virus, Respiratory Syncytial Virus, and Coronavirus, and Therapeutics Based on Natural Products of Medicinal Plants. Front Pharmacol 2021; 12:630834. [PMID: 34234668 PMCID: PMC8256264 DOI: 10.3389/fphar.2021.630834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
Viral pneumonia has been a serious threat to global health, especially now we have dramatic challenges such as the COVID-19 pandemic. Approximately six million cases of community-acquired pneumonia occur every year, and over 20% of which need hospital admission. Influenza virus, respiratory virus, and coronavirus are the noteworthy causative agents to be investigated based on recent clinical research. Currently, anaphylactic reaction and inflammation induced by antiviral immunity can be incriminated as causative factors for clinicopathological symptoms of viral pneumonia. In this article, we illustrate the structure and related infection mechanisms of these viruses and the current status of antiviral therapies. Owing to a set of antiviral regiments with unsatisfactory clinical effects resulting from side effects, genetic mutation, and growing incidence of resistance, much attention has been paid on medicinal plants as a natural source of antiviral agents. Previous research mainly referred to herbal medicines and plant extracts with curative effects on viral infection models of influenza virus, respiratory virus, and coronavirus. This review summarizes the results of antiviral activities of various medicinal plants and their isolated substances, exclusively focusing on natural products for the treatment of the three types of pathogens that elicit pneumonia. Furthermore, we have introduced several useful screening tools to develop antiviral lead compounds.
Collapse
Affiliation(s)
- Ziwei Hu
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jinhong Lin
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jintao Chen
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tengxi Cai
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ying Liu
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xun Song
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhendan He
- School of Basic Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
36
|
Pang QQ, Li T, Liu LX, Shi DF, Yao XS, Li HB, Yu Y. Systematically identifying the anti-inflammatory constituents of Cimicifuga dahurica by UPLC-Q/TOF-MS combined with network pharmacology analysis. Biomed Chromatogr 2021; 35:e5177. [PMID: 33998678 DOI: 10.1002/bmc.5177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Cimicifuga dahurica (Turcz.) Maxim, which is also regarded as the main origin of "Shengma" in the Chinese Pharmacopoeia, has been used as a cooling and detoxification agent for thousands of years. Our previous phytochemical investigations of C. dahurica extracts (CDEs) led to the isolation of a series of 9,19-cycloalkane triterpenoids and phenolic acids showing a potential anti-inflammatory activity. However, the chemical profiling of CDEs and the material basis of its anti-inflammatory effect in vivo has not been clarified. In the present study, the CDE chemical profile and prototype components in rat plasma were identified via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. As a result, a total of 106 components were identified or tentatively characterized in CDEs, including 54 triterpenoids, 35 phenolic acids, eight amides and nine other type constituents (39 compounds were confirmed with the reference standards). In addition, 20 prototype components (15 triterpenoids and five phenolic acids) were identified in rat plasma, which potentially related to the anti-inflammatory effects of CDEs. Moreover, the anti-inflammatory activities of the main prototype components were further evaluated by their inhibitory effects on the production of NO, as well as the expressions of iNOS and COX-2 in lipopolysaccharide-stimulated RAW264.7 cells, which indicated that 9,19-cycloalkane triterpenoids may play an anti-inflammatory role by down-regulating the expression of iNOS.
Collapse
Affiliation(s)
- Qian-Qian Pang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ling-Xian Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Hu L, Song X, Nagai T, Yamamoto M, Dai Y, He L, Kiyohara H, Yao X, Yao Z. Chemical profile of Cimicifuga heracleifolia Kom. And immunomodulatory effect of its representative bioavailable component, cimigenoside on Poly(I:C)-induced airway inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113615. [PMID: 33242624 DOI: 10.1016/j.jep.2020.113615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rhizome of Cimicifuga heracleifolia Kom. (C. heracleifolia) is a popular traditional Chinese medicine, which has been extensively used in Asian countries for its anti-inflammatory, antipyretic and analgesic activities. However, further utilization and application of C. heracleifolia have been hampered due to a lack of full understanding of its active ingredients. AIM OF STUDY The present study aims for clarification of the systematical chemical profile of C. heracleifolia and the immunomodulatory effect of its main bioavailable component. MATERIALS AND METHODS Comprehensive chemical profile of C. heracleifolia was systematically analyzed by ultra-performance liquid chromatography hyphenated with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). Xenobiotics after oral administration of C. heracleifolia extracts were investigated to hunt for bioavailable components. The immunomodulatory activity evaluation of cimigenoside was achieved on poly(I:C)-induced airway inflammation mouse and BEAS-2B cell models from aspects of neutrophil infiltration, lung inflammation by using microscope analysis, quantification of production and expression of inflammatory cytokine and chemokines by using ELISA and quantitative PCR. RESULTS By UPLC-Q-TOF/MS analysis, 110 compounds (including 81 triterpenoids, 21 cinnamic acid derivatives, and 8 other structure types) were identified or tentatively characterized in ethanolic extract of C. heracleifolia. Based on the data of chemical profile, xenobiotics of C. heracleifolia were subsequently analyzed, and triterpene glycosides were detected as the major bioavailable ingredients. Oral administration of cimigenoside, a representative triterpene glycoside, could prevent neutrophils infiltration in the lung due to suppression of the production of CXCL2 and CXCL10, and the expression of P-selectin, VCAM1 in poly(I:C)-induced airway inflammation model mice. Moreover, cimigenoside also inhibited the productions of inflammatory cytokines and chemokines from human airway epithelial cell line (BEAS-2B cells) induced by poly(I:C). CONCLUSION Triterpene glycosides were the main components of C. heracleifolia extract, and cimigenoside was considered as the effective component with immunomodulatory effect on the pulmonary immune system by oral administration.
Collapse
Affiliation(s)
- Liufang Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan
| | - Xiaojun Song
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Takayuki Nagai
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan; Oriental Medicine Research Center, Kitasato University, Tokyo, 1088642, Japan
| | - Marina Yamamoto
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Hiroaki Kiyohara
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan; Oriental Medicine Research Center, Kitasato University, Tokyo, 1088642, Japan.
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
38
|
Salari S, Amiri MS, Ramezani M, Moghadam AT, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry, Traditional and Modern Uses of Actaea racemosa L. (Black cohosh): A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:403-449. [PMID: 33861455 DOI: 10.1007/978-3-030-64872-5_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Actaea racemosa (AR) also known as Cimicifuga racemosa, is a perennial plant from Ranunculaceae family which was used as traditional remedies in treatment of various condition like rheumatoid muscular pain, headache, inflammation and dysmenorrhea. Actaea racemosa was basically native to Canada and the Eastern United State. This chapter proposed the ethnopharmacological uses of Actaea racemosa, and its phytochemical properties. Specifically, in this article we focused on use of Actaea racemose for menopausal and post-menopausal symptoms management. Electronic databases including PubMed and Scopus were searched for studies on Actaea racemose and its administration in management of menopausal symptoms. Chem Office software was also used in order to find chemical structures. The key words used as search terms were Cimicifuga racemose, Actaea racemose, Ranunculaceae, Black cohosh, Menopausal symptoms. We have included all relevant animal and human studies up to the date of publication. The analysis on Actaea racemose showed various indications for different plant's extracts. Approximately 131 chemical compounds have been isolated and identified from Actaea racemosa. According to recently studies, the most important chemicals known of the Actaea racemosa are phenolic compounds, chromones, triterpenoids, nitrogen-containing constituents. In addition, in vivo and in vitro studies reported wide range of pharmacological activities for Black cohosh like attenuating menopausal symptoms. Mechanism of action for some ethnomedicinal indications were made clear while some of its activities are not confirmed by pharmacological studies yet. Further investigations on its pharmacological properties are necessary to expand its clinical effective use. Also, additional large clinical trials are recommended for clarifying the effect of Black cohosh.
Collapse
Affiliation(s)
- Sofia Salari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Tafazoli Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Ma SJ, Li HB, Shao JR, Pang QQ, Li T, Yao XS, Yu Y. Two new chemical constituents from the rhizomes of Actaea dahurica. Nat Prod Res 2020; 36:1789-1796. [PMID: 32911990 DOI: 10.1080/14786419.2020.1817016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new phenylpropanoid allopyranoside (1) and a new indolinone alkaloid (2) were isolated from the rhizomes of Actaea dahurica (syn. Cimicifuga dahurica). The structures of those two compounds were deduced as cimicifugaside F (1) and 3E,11E-(3-methyl-2-butenylidene acid)-2-indolinone-1-O-β-d-glucopyranoside (2) by detailed analysis of their MS, 1D and 2D NMR data and comparison with literatures. Additionally, the isolates were evaluated for their inhibitory effects on the production of NO by LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Sen-Ju Ma
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang, China
| | - Jun-Ran Shao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Qian-Qian Pang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Shi Q, Lu S, Li D, Lu J, Zhou L, Qiu M. Cycloartane triterpene glycosides from rhizomes of Cimicifuga foetida L. with lipid-lowering activity on 3T3-L1 adipocytes. Fitoterapia 2020; 145:104635. [DOI: 10.1016/j.fitote.2020.104635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/26/2023]
|
41
|
Hao YM, Luo W, Jiang GZ, Lv CN, Lu JC. One new and seven known triterpene glycosides from the aerial parts of Cimicifuga dahurica. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:788-793. [PMID: 31357881 DOI: 10.1080/10286020.2019.1638370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
One new triterpene glycoside, asiaticoside I (1), along with seven known ones (2-8), were isolated from the aerial parts of Cimicifuga dahurica (Turcz.) Maxim. The structure of 1 was elucidated on the basis of extensive spectroscopic methods including 1D-NMR, 2D-NMR and MS data. The structures of known compounds were determined by comparison with the literature data. Compound 1 exhibited moderate cell growth inhibitory activities in vitro against HELF, non-small cell lung cancer A549, and pancreatic cancer PANC-1 cell lines, with IC50 values of 62.97, 43.19, and 60.40 μM, respectively.
Collapse
Affiliation(s)
- Yi-Meng Hao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Luo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guan-Ze Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chong-Ning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Cai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
42
|
Feltrin C, Farias IV, Sandjo LP, Reginatto FH, Simões CMO. Effects of Standardized Medicinal Plant Extracts on Drug Metabolism Mediated by CYP3A4 and CYP2D6 Enzymes. Chem Res Toxicol 2020; 33:2408-2419. [DOI: 10.1021/acs.chemrestox.0c00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid Vicente Farias
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Louis Pergaud Sandjo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| |
Collapse
|
43
|
Pkhaladze L, Davidova N, Khomasuridze A, Shengelia R, Panossian AG. Actaea racemosa L. Is More Effective in Combination with Rhodiola rosea L. for Relief of Menopausal Symptoms: A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals (Basel) 2020; 13:E102. [PMID: 32455817 PMCID: PMC7281162 DOI: 10.3390/ph13050102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022] Open
Abstract
Background: The aim of this study was to assess the efficacy and safety of a new herbal preparation (Menopause Relief EP®), the hybrid combination of Actaea racemosa L. (black cohosh, BC) and Rhodiola rosea L. (RR) root extracts, compared with the most effective dose of BC extract in women with menopausal complaints. Methods: A total of 220 women were randomly assigned to receive two capsules either BC (6.5 mg), BC500 (500 mg), Menopause Relief EP® (206,5), or placebo once per day for 12 weeks. The efficacy endpoints were relief of menopausal symptoms, measured using the Kupperman Menopausal Index (KMI), Menopause Relief Score (MRS), and menopause Utian Quality of Life (UQOL) index. Results: The menopause symptom relief effects of RR-BC were significantly superior in all tests to the effects of BC and placebo after their repeated administration for 6 and 12 weeks. There was no statistically significant difference between the effects of BC and BC500 over time. RR-BC significantly improved the QOL index in patients, compared to BC, BC500, and placebo, mainly due to the beneficial effects on the emotional and health domains. Conclusions: BC is more effective in combination with RR in relief of menopausal symptoms, particularly psychological symptoms.
Collapse
Affiliation(s)
- Lali Pkhaladze
- I.Zhordania Institute of Reproductology, 13, Tevdore Mghvdeli street, 0112 Tbilisi, Georgia; (N.D.); (A.K.)
| | - Nina Davidova
- I.Zhordania Institute of Reproductology, 13, Tevdore Mghvdeli street, 0112 Tbilisi, Georgia; (N.D.); (A.K.)
| | - Archil Khomasuridze
- I.Zhordania Institute of Reproductology, 13, Tevdore Mghvdeli street, 0112 Tbilisi, Georgia; (N.D.); (A.K.)
| | - Ramaz Shengelia
- Department for History of Medicine and Bioethics, Tbilisi State Medical University, Vazha-Pshavela avenue 33, 0162 Tbilisi, Georgia;
| | | |
Collapse
|
44
|
Wu Y, Xu Y, Yang A, Shen S, Mi D, Cao Y, Hua Z, Min L, Li W. Comparative in vivo pharmacokinetics study of affeic acid, isoferulic acid and ferulic acid in crude and three different prepared Cimicifuga foetida L. Biomed Chromatogr 2020; 34:e4868. [PMID: 32335934 DOI: 10.1002/bmc.4868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 11/12/2022]
Abstract
Our study investigated the differences in pharmacokinetics of three major components of crude Cimicifuga foetida L. and its fried product and honey- and liquor-prepared products. A rapid and sensitive ultra-high performance liquid chromatography with tandem mass spectrometry approach was established for determing caffeic acid, isoferulic acid and ferulic acid in rat plasma. The approach has good linearity, precision, accuracy, recovery and stability. Phenolic acid was rapidly absorbed. The times to peak concentration were shorter in the processed group than those for the crude product, with their values of <30 min. The peak concentration values of caffeic acid and isoferulic acid were higher in the crude group than in the processed groups (p < 0.05). Area under the curve values of the three phenolics in the crude group were significantly higher than those of the processed groups (p < 0.05).
Collapse
Affiliation(s)
- Yu Wu
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital to Nanjing, University of Chinese Medicine, China.,Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aihua Yang
- Department of Pharmacy, Nantong Maternity and Child Health Care Hospital, Nantong, China
| | - Shuijie Shen
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital to Nanjing, University of Chinese Medicine, China
| | - Daguo Mi
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital to Nanjing, University of Chinese Medicine, China
| | - Yongjun Cao
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital to Nanjing, University of Chinese Medicine, China
| | - Zhengying Hua
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingtian Min
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital to Nanjing, University of Chinese Medicine, China
| | - Weidong Li
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Jiao R, Xu F, Huang X, Li H, Liu W, Cao H, Zang L, Li Z, Hua H, Li D. Antiproliferative chromone derivatives induce K562 cell death through endogenous and exogenous pathways. J Enzyme Inhib Med Chem 2020; 35:759-772. [PMID: 32183548 PMCID: PMC7144234 DOI: 10.1080/14756366.2020.1740696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of furoxan derivatives of chromone were prepared. The antiproliferative activities were tested against five cancer cell lines HepG2, MCF-7, HCT-116, B16, and K562, and two normal human cell lines L-02 and PBMCs. Among them, compound 15a exhibited the most potent antiproliferative activity. It was also found 15a produced more than 8 µM of NO at the peak time of 45 min by Griess assay. Generally, antiproliferative activity is positively related to NO release to some extent. Further in-depth studies on apoptosis-related mechanisms showed that 15a caused S-phase cell cycle arrest in a concentration-dependent manner and induced apoptosis significantly through mitochondria-related pathways. Human apoptosis protein array assay also demonstrated 15a increased the expression levels of pro-apoptotic Bax, Bad, HtrA2 and Trail R2/DR5. The expression of catalase and cell cycle blocker claspin were similarly up-regulated. In balance, 15a induced K562 cells death through both endogenous and exogenous pathways.
Collapse
Affiliation(s)
- Runwei Jiao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaofang Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
46
|
Structure-Guided Identification of Black Cohosh ( Actaea racemosa) Triterpenoids with In Vitro Activity against Multiple Myeloma. Molecules 2020; 25:molecules25040766. [PMID: 32053921 PMCID: PMC7070908 DOI: 10.3390/molecules25040766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
Black cohosh is a well-established medicinal plant and preparations of its rootstock are used for the treatment of mild climacteric complaints. The compounds considered responsible for the therapeutic effect are triterpene glycosides, characterized by a cycloartane scaffold and a pentose moiety. Because some of these triterpenoids were found to exhibit relevant cytotoxic effects against human breast cancer cells, we decided to investigate their activity on multiple myeloma cell lines NCI-H929, OPM-2, and U266. In a systematic approach, we initially tested three known cytotoxic compounds of three different triterpenoid types, revealing the cimigenol-type triterpenoid as the most active constituent. In a second round, seven naturally occurring cimigenol derivatives were compared with respect to their sugar moiety and their substitution pattern at position C-25, leading to 25-O-methylcimigenol-3-O-α-L-arabinopyranoside as the most potent candidate. Interestingly, not only the methyl group at position C-25 increased the cytotoxic effect but also the arabinose moiety at position C-3 had an impact on the activity. The variety of cimigenol derivatives, moreover, allowed a detailed discussion of their structure–activity relationships, not only for their effect on multiple myeloma cells but also with regard to previous studies on the cytotoxicity of black cohosh triterpenoids.
Collapse
|
47
|
Pang QQ, Mei YD, Zhang YC, Liu LX, Shi DF, Pan DB, Yao XS, Li HB, Yu Y. Three new cycloart-7-ene triterpenoid glycosides from Cimicifuga dahurica and their anti-inflammatory effects. Nat Prod Res 2020; 35:3634-3643. [DOI: 10.1080/14786419.2020.1719487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qian-Qian Pang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| | - Yu-Dan Mei
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co. Ltd, Jiangsu, Lianyungang, People’s Republic of China
| | - Yuan-Chu Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| | - Ling-Xian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| | - Da-Bo Pan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| | - Hai-Bo Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co. Ltd, Jiangsu, Lianyungang, People’s Republic of China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
48
|
Lu J, Peng XR, Li DS, Shi QQ, Qiu MH. Cytotoxic Cycloartane Triterpenoid Saponins from the Rhizomes of Cimicifuga foetida. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:303-310. [PMID: 31214880 PMCID: PMC6646490 DOI: 10.1007/s13659-019-0214-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/05/2019] [Indexed: 05/16/2023]
Abstract
To enrich the bioactive cycloartane triterpenoid glycoside named actein and find out more cytotoxic cycloartane triterpenes, a phytochemical study of Cimicifuga foetida was conducted. 113 g (0.17%) actein was purified by recrystallization while eight cycloartane-type triterpenes (1-8) were isolated from the mother liquid. The chemical structures of new compounds (1-4) were elucidated by 1D and 2D NMR and HRESIMS spectroscopic analyses. Moreover, new compounds showed moderate and broad-spectrum cytotoxicity against 5 human cancer cell lines with IC50 values ranging from 4.02 to 15.80 μM.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
| | - Da-Shan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
| | - Qiang-Qiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 LanHei Road, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
49
|
Lu Q, Li HB, Pang QQ, Zhang WY, Su ZZ, Pan DB, Yao XS, Yu Y. New phenylpropanoid allopyranosides from the rhizomes of Cimicifuga dahurica. Bioorg Med Chem Lett 2019; 29:1774-1778. [DOI: 10.1016/j.bmcl.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
50
|
Niu X, Qin R, Zhao Y, Han L, Lu J, Lv C. Simultaneous determination of 19 constituents in Cimicifugae Rhizoma by HPLC-DAD and screening for antioxidants through DPPH free radical scavenging assay. Biomed Chromatogr 2019; 33:e4624. [PMID: 31215046 DOI: 10.1002/bmc.4624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
Cimicifugae Rhizoma (sheng ma) is a well-known traditional Chinese medicine, which has been demonstrated to possess anti-inflammatory, antipyretic and analgesic activities. In the present study, a simple and efficient HPLC-DAD (high-performance liquid chromatography coupled with diode array detection) method was developed and validated for simultaneous quantification of 19 chemical components (including 16 phenolic acids, one coumarin and two alkaloids) in Cimicifugae Rhizoma. The result indicated that this method could effectively evaluate the quality of Cimicifugae Rhizoma and provide a valuable reference for further study. Additionally, the antioxidant activity of Cimicifugae Rhizoma was evaluated by DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay. The results showed that the content of phenolic acids and antioxidant activity exhibited significant correlation coefficients.
Collapse
Affiliation(s)
- Xueni Niu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Rulan Qin
- College of Pharmacy and Food Sciences, Tonghua Normal University, Tonghua, China
| | - Yudan Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ling Han
- NERC for the Pharmaceutics of Traditional Chinese Medicines, Benxi, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|