1
|
Abdelhadi AA, Elarabi NI, Ibrahim SM, Abdel-Maksoud MA, Abdelhaleem HAR, Almutairi S, Malik A, Kiani BH, Henawy AR, Halema AA. Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Funct Integr Genomics 2024; 24:174. [PMID: 39320439 DOI: 10.1007/s10142-024-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na2HAsO4·7H2O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level.
Collapse
Affiliation(s)
- Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Saifeldeen M Ibrahim
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Bioinformatics Department, Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Saeedah Almutairi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Ahmed R Henawy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Asmaa A Halema
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Gao X, Su Q, Pan H, You Y, Ruan Z, Wu Y, Tang Z, Hu L. Arsenic-Induced Ferroptosis in Chicken Hepatocytes via the Mitochondrial ROS Pathway. Biol Trace Elem Res 2024; 202:4180-4190. [PMID: 38102534 DOI: 10.1007/s12011-023-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Arsenic has been shown to be highly toxic and can cause liver damage. Previous studies have shown that arsenic causes severe liver damage and induces accumulation of reactive oxygen species (ROS). This study aimed to investigate the effects of ferroptosis on the liver in arsenic trioxide (ATO) and to explore the underlying mechanisms. We confirmed the hepatotoxic effects of arsenic by in vivo and in vitro experiments. After 28 days of administration of arsenic trioxide (4-mg/kg, 8-mg/kg) by gavage, chickens exhibited body weight loss and liver damage in a dose-dependent manner. In addition, in vivo and in vitro western blot and real-time fluorescence quantitative PCR analyses simultaneously indicated that ferroptosis might be the main pathway of arsenic-induced liver injury. Finally, Mito-TEMPO effectively eliminated the ROS accumulation in mitochondria, significantly attenuating the process of cellular ferroptosis. In summary, the hepatotoxic effects of arsenic are related to ferroptosis, and the hepatic ferroptosis process of arsenic is regulated by mitochondrial ROS (MtROS). Our study reveals new mechanisms of arsenic toxicity to the liver, which may deepen our understanding of arsenic toxicology.
Collapse
Affiliation(s)
- Xinglin Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City, 264005, Shandong Province, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou, 510520, Guangdong Province, People's Republic of China
| | - Yuhan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Ran Q, Song D, Wang Q, Wang D, Chen X, Zhang A, Ma L. Resveratrol Alleviates Arsenic Exposure-Induced Liver Fibrosis in Rats by Inhibiting Hepatocyte Senescence. Biol Trace Elem Res 2024:10.1007/s12011-024-04255-9. [PMID: 38831176 DOI: 10.1007/s12011-024-04255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Arsenic is an environmental pollutant that has garnered considerable attention from the World Health Organization. Liver fibrosis is an advanced pathological stage of liver injury that can be caused by chronic arsenic exposure and has the potential to be reversed to prevent cirrhosis and hepatic malignancies. However, effective treatment options are currently limited. Given the profibrogenic effect of hepatocyte senescence, we established a rat model of sub-chronic sodium arsenite exposure and investigated the ability of resveratrol (RSV), a potential anti-senescence agent, to ameliorate arsenic-induced liver fibrosis and elucidate the underlying mechanism from the perspective of hepatocyte senescence. The results demonstrated that RSV was capable of mitigating fibrosis phenotypes in rat livers, including the activation of hepatic stellate cell (HSC), the generation of extracellular matrix, and the deposition of collagen fibers in the liver vascular zone, which are all induced by arsenic exposure. Furthermore, as an activator of the longevity factor SIRT1, RSV antagonized the arsenic-induced inhibition of SIRT1 expression, thereby restoring the suppression of the senescence protein p16 by SIRT1. This prevented arsenic-induced hepatocyte senescence, manifesting as a decrease in telomere shortening and a reduction in the release of senescence-associated secretory phenotype (SASP)-related proteins. In conclusion, this study demonstrated that RSV counteracts arsenic-induced hepatocyte senescence and the release of SASP-related proteins by restoring the inhibitory effect of SIRT1 on p16, thereby suppressing the activation of fibrotic phenotypes and mitigating liver fibrosis. These findings provide new insights for understanding the mechanism of arsenic-induced liver fibrosis, and more importantly, they reveal novel potential interventional approaches.
Collapse
Affiliation(s)
- Qiming Ran
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Dingyi Song
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Collaborative Innovation Center for Prevention, Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
5
|
Shishov A, Timofeeva I, Gerasimov A, Israelyan D, Bulatov A. A hydrophobic deep eutectic solvent-based microextraction for the determination of ultra-trace arsenic in foods by an electrothermal atomization atomic absorption spectrometry. Talanta 2024; 266:125078. [PMID: 37659232 DOI: 10.1016/j.talanta.2023.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023]
Abstract
A hydrophobic deep eutectic solvent-based liquid-phase microextraction approach for the determination of ultra-trace arsenic (total) in foods by an electrothermal atomization atomic absorption spectrometry was developed. Various deep eutectic solvents based on tetraoctylammonium bromide and fatty acids (heptanoic, octanoic, nonanoic, decanoic acids) were studied as extraction solvents for preconcentration of arsenic (V) from mineralizates obtained after a microwave digestion of food samples. Phenomenon of ion-pairs formation between dihydroarsenate and precursor of deep eutectic solvent (tetraoctylammonium) and mass-transfer of the ion-pairs into deep eutectic solvent phase was presented for the first time. The proposed approach allowed to preconcentrate analyte into the deep eutectic solvent phase without the use of additional organic solvents (emulsifier agents or dispersive solvent), chelating and reducing agents. It was found, that the deep eutectic solvent based on tetraoctylammonium bromide and heptanoic acid provided more effective preconcentration of analyte from mineralizates (95% extraction recovery, 57-fold enrichment factor). The obtained limit of detection, calculated as a triple signal-to-noise ratio, was 10 ng L-1. The microextraction procedure was applied for the determination of trace arsenic in rice and wheat grains samples.
Collapse
Affiliation(s)
- Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Irina Timofeeva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Artur Gerasimov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - David Israelyan
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Ye WY, Lu HP, Li JD, Chen G, He RQ, Wu HY, Zhou XG, Rong MH, Yang LH, He WY, Pang QY, Pan SL, Pang YY, Dang YW. Clinical Implication of E2F Transcription Factor 1 in Hepatocellular Carcinoma Tissues. Cancer Biother Radiopharm 2023; 38:684-707. [PMID: 34619053 DOI: 10.1089/cbr.2020.4342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: To date, the clinical management of advanced hepatocellular carcinoma (HCC) patients remains challenging and the mechanisms of E2F transcription factor 1 (E2F1) underlying HCC are obscure. Materials and Methods: Our study integrated datasets mined from several public databases to comprehensively understand the deregulated expression status of E2F1. Tissue microarrays and immunohistochemistry staining was used to validate E2F1 expression level. The prognostic value of E2F1 was assessed. In-depth subgroup analyses were implemented to compare the differentially expressed levels of E2F1 in HCC patients with various tumor stages. Functional enrichments were used to address the predominant targets of E2F1 and shedding light on their potential roles in HCC. Results: We confirmed the elevated expression of E2F1 in HCC. Subgroup analyses indicated that elevated E2F1 level was independent of various stages in HCC. E2F1 possessed moderate discriminatory capability in differentiating HCC patients from non-HCC controls. Elevated E2F1 correlated with Asian race, tumor classification, neoplasm histologic grade, eastern cancer oncology group, and plasma AFP levels. Furthermore, high E2F1 correlated with poor survival condition and pooled HR signified E2F1 as a risk factor for HCC. Enrichment analysis of differentially expressed genes, coexpressed genes, and putative targets of E2F1 emphasized the importance of cell cycle pathway, where CCNE1 and CCNA2 served as hub genes. Conclusions: We confirmed the upregulation of E2F1 and explored the prognostic value of E2F1 in HCC patients. Two putative targeted genes (CCNE1 and CCNA2) of E2F1 were identified for their potential roles in regulating cell cycle and promote antiapoptotic activity in HCC patients.
Collapse
Affiliation(s)
- Wang-Yang Ye
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Di Li
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Li-Hua Yang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wei-Ying He
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiu-Yu Pang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Yu-Yan Pang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
7
|
Ge XY, Xie SH, Wang H, Ye X, Chen W, Zhou HN, Li X, Lin AH, Cao SM. Associations between serum trace elements and the risk of nasopharyngeal carcinoma: a multi-center case-control study in Guangdong Province, southern China. Front Nutr 2023; 10:1142861. [PMID: 37465140 PMCID: PMC10351973 DOI: 10.3389/fnut.2023.1142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 07/20/2023] Open
Abstract
Background Associations between trace elements and nasopharyngeal carcinoma (NPC) have been speculated but not thoroughly examined. Methods This study registered a total of 225 newly diagnosed patients with NPC and 225 healthy controls matched by sex and age from three municipal hospitals in Guangdong Province, southern China between 2011 and 2015. Information was collected by questionnaire on the demographic characteristics and other possibly confounding lifestyle factors. Eight trace elements and the level of Epstein-Barr virus (EBV) antibody were measured in casual (spot) serum specimens by inductively coupled plasma-mass spectrometry (ICP-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Restricted cubic splines and conditional logistic regression were applied to assess the relationship between trace elements and NPC risk through single-and multiple-elements models. Results Serum levels of chromium (Cr), cobalt (Co), nickel (Ni), arsenic (As), strontium (Sr) and molybdenum (Mo) were not associated with NPC risk. Manganese (Mn) and cadmium (Cd) were positively associated with NPC risk in both single-and multiple-element models, with ORs of the highest tertile compared with the reference categories 3.90 (95% CI, 1.27 to 7.34) for Mn and 2.30 (95% CI, 1.26 to 3.38) for Cd. Restricted cubic splines showed that there was a linear increasing trend between Mn and NPC risk, while for Cd there was a J-type correlation. Conclusion Serum levels of Cd and Mn was positively related with NPC risk. Prospective researches on the associations of the two trace elements with NPC ought to be taken into account within the future.
Collapse
Affiliation(s)
- Xin-Yu Ge
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Wang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang-Ning Zhou
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueqi Li
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Hua Lin
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
8
|
El Youssfi M, Sifou A, Ben Aakame R, Mahnine N, Arsalane S, Halim M, Laghzizil A, Zinedine A. Trace elements in Foodstuffs from the Mediterranean Basin-Occurrence, Risk Assessment, Regulations, and Prevention strategies: A review. Biol Trace Elem Res 2023; 201:2597-2626. [PMID: 35754061 DOI: 10.1007/s12011-022-03334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Trace elements (TEs) are chemical compounds that naturally occur in the earth's crust and in living organisms at low concentrations. Anthropogenic activities can significantly increase the level of TEs in the environment and finally enter the food chain. Toxic TEs like cadmium, lead, arsenic, and mercury have no positive role in a biological system and can cause harmful effects on human health. Ingestion of contaminated food is a typical route of TEs intake by humans. Recent data about the occurrence of TEs in food available in the Mediterranean countries are considered in this review. Analytical methods are also discussed. Furthermore, a discussion of existing international agency regulations will be given. The risk associated with the dietary intake of TEs was estimated by considering consumer exposure and threshold values such as Benchmark dose lower confidence limit and provisional tolerable weekly intake established by the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives, respectively. Finally, several remediation approaches to minimize TE contamination in foodstuffs were discussed including chemical, biological, biotechnological, and nanotechnological methods. The results of this study proved the occurrence of TEs contamination at high levels in vegetables and fish from some Mediterranean countries. Lead and cadmium are more abundant in foodstuffs than other toxic trace elements. Geographical variations in TE contamination of food crops clearly appear, with a greater risk in developing countries. There is still a need for the regular monitoring of these toxic element levels in food items to ensure consumer protection.
Collapse
Affiliation(s)
- Mourad El Youssfi
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Aicha Sifou
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Rachid Ben Aakame
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Naima Mahnine
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Said Arsalane
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Mohammed Halim
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Abdelaziz Laghzizil
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
| | - Abdellah Zinedine
- BIOMARE Laboratory, Chouaib Doukkali University, Faculty of Sciences, Route Ben Maachou, PO Box 20, 24000, El Jadida, Morocco.
| |
Collapse
|
9
|
Kasmi S, Moser L, Gonvers S, Dormond O, Demartines N, Labgaa I. Carcinogenic effect of arsenic in digestive cancers: a systematic review. Environ Health 2023; 22:36. [PMID: 37069631 PMCID: PMC10108502 DOI: 10.1186/s12940-023-00988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The carcinogenic effect of arsenic (As) has been documented in lung, bladder and skin cancers but remains unclear for digestive cancers, although metabolic pathways of As and recent data suggest that it may be an important determinant in these malignancies as well. OBJECTIVE This study aimed to systematically review the available literature investigating the potential association between As and digestive cancers. METHODS An extensive search was conducted in Medline Ovid SP, Cochrane, PubMed, Embase.com, Cochrane Library Wiley, Web of Science and Google Scholar. Studies providing original data in humans, with As measurement and analysis of association with digestive cancers including esogastric cancers (esophagus and stomach), hepato-pancreatico-biliary (HPB) cancers (including biliary tract, liver and pancreas) and colorectal cancers were eligible. RESULTS A total of 35 studies were identified, 17 ecological, 13 case-control and 5 cohort studies. Associations between As and digestive cancers were reported for both risks of incidence and cancer-related mortality. Overall, 43% (3/7) and 48% (10/21) studies highlighted an association between As and the incidence or the mortality of digestive cancers, respectively. CONCLUSIONS A substantial proportion of studies exploring the potential link between As and digestive cancers suggested an association, particularly in HPB malignancies. These findings emphasize the need to further investigate this topic with dedicated and high-quality studies, as it may have an important impact, including for prevention strategies.
Collapse
Affiliation(s)
- Sophie Kasmi
- Division of Internal Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Laureline Moser
- Division of Gynecology, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stéphanie Gonvers
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Dormond
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Nicolas Demartines
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Ismail Labgaa
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
10
|
Li W, Jiang X, Qian H, Li X, Su J, Zhang G, Li X. Associations of arsenic exposure with liver injury in US adults: NHANES 2003-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48260-48269. [PMID: 36754906 DOI: 10.1007/s11356-023-25540-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Arsenic is a natural element with complex toxicity. Long-term exposure to arsenic can cause a variety of health damage. In recent years, there are some studies on arsenic exposure and liver injury. But few of them tried to measure the quantitative relationship between arsenic exposure and indicators of liver injury in adult. Therefore, this study aimed to elucidate the relationship between them. This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) in 2003-2018. Arsenic exposure was assessed using total urinary arsenic and dimethylarsenate acid (DMA). We selected alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), total protein (TP), ALT/AST, total bilirubin (TBIL), and albumin (ALB) as markers of liver injury. Multiple linear regression was used to explore the relationship between urinary arsenic concentrations and these markers of liver function injury. In addition, six covariables (age, sex, smoker, alcohol user, BMI, diabetes) were further analyzed in subgroups. A total of 13,420 adults were included in the analysis. The multivariate linear regression analyses showed that urinary DMA was positively correlated with ALT (β 0.135, 95%CI 0.090, 0.180, p < 0.001), AST (β 0.053, 95%CI 0.014, 0.092, p < 0.01), ALT/AST (β 0.052, 95%CI 0.030, 0.074, p < 0.001), TBIL (β 0.061, 95%CI 0.034, 0.089, p < 0.001), and GGT (β 0.178, 95%CI 0.110, 0.246, p < 0.001). Similar results were observed for total urinary arsenic, suggesting a positive association with AST (β 0.048, 95%CI 0.016, 0.081, p < 0.01), ALT (β 0.090, 95%CI 0.049, 0.132, p < 0.001), and TBIL (β 0.062, 95%CI 0.037, 0.088, p < 0.001). In subgroup analysis, sex and smoker showed significant differences between subgroups. Our results demonstrate a positive association between urinary arsenic exposure and liver injury in adults. Sex and smokers may be related to arsenic pathogenicity.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xingzhou Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haisheng Qian
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinyan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Wu H, Wu R, Chen X, Geng H, Hu Y, Gao L, Fu J, Pi J, Xu Y. Developmental arsenic exposure induces dysbiosis of gut microbiota and disruption of plasma metabolites in mice. Toxicol Appl Pharmacol 2022; 450:116174. [PMID: 35878798 DOI: 10.1016/j.taap.2022.116174] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Arsenic is a notorious environmental pollutant. Of note, developmental arsenic exposure has been found to increase the risk of developing a variety of ailments later in life, but the underlying mechanism is not well understood. Many elements of host health have been connected to the gut microbiota. It is still unclear whether and how developmental arsenic exposure affects the gut microbiota. In the present study, we found that developmental arsenic exposure changed intestinal morphology and increased intestinal permeability and inflammation in mouse pups at weaning. These alterations were accompanied by a significant change in gut microbiota, as evidenced by considerably reduced gut microbial richness and diversity. In developmentally arsenic-exposed pups, the relative abundance of Muribaculaceae was significantly decreased, while the relative abundance of Akkermansia and Bacteroides was significantly enhanced at the genus level. Metabolome and pathway enrichment analyses indicated that amino acid and purine metabolism was promoted, while glycerophospholipid metabolism was inhibited. Interestingly, the relative abundance of Muribaculaceae and Akkermansia showed a strong correlation with most plasma metabolites significantly altered by developmental arsenic exposure. These data indicate that gut microbiota dysbiosis may be a critical link between developmental arsenic exposure and metabolic disorders and shed light on the mechanisms underlying increased susceptibility to diseases due to developmental arsenic exposure.
Collapse
Affiliation(s)
- Hengchao Wu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ruirui Wu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Xin Chen
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huamin Geng
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuxin Hu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Lanyue Gao
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jingqi Fu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Fang J, Zhang L, Rao S, Zhang M, Zhao K, Fu W. Spatial variation of heavy metals and their ecological risk and health risks to local residents in a typical e-waste dismantling area of southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:604. [PMID: 35867165 DOI: 10.1007/s10661-022-10296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing concern that soils in e-waste recycling regions are severely contaminated by unregulated e-waste dismantling activities. Hence, it is urgent to reveal the spatial variation of hazardous elements in arable lands close to e-waste stacking and dismantling areas and their potential risks to human beings. We collected 349 topsoil samples based on an intensive grid of 100 m × 100 m in southeastern China. The average concentrations of heavy metals were 1.25 (Cd), 35.44 (Ni), 77.68 (Cr), 77.38 (Pb), 122.14 (Cu), 203.39 (Zn), 0.21 (Hg), and 4.74 (As) mg kg-1, respectively. Compared to the risk screening values of hazardous elements in Chinese agricultural land, Cd and Cu were severely accumulated in the soils. The results of ecological risk analysis revealed that Cd posed the crucial risk among the studied elements. However, the levels of non-carcinogenic and carcinogenic risk were still within the acceptable quantity for adults. Spatial distribution by kriging interpolation displayed that the heavy metals were mainly distributed close to e-waste dismantling sites.
Collapse
Affiliation(s)
- Jia Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Luyao Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Shengting Rao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Minghua Zhang
- Department of Land, Air, and Water Resources, University of California, Davis, CA, 95616, USA
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Weijun Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
13
|
Zhang X, Wang X, Cao X, Xiao G, Miao H. Heavy element contents of vegetables and health-risk assessment in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154552. [PMID: 35292325 DOI: 10.1016/j.scitotenv.2022.154552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study analyzed five heavy elements (HEs), including cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), and arsenic (As), in fresh vegetables (i.e., legume, rhizome and potato, gourd, bulb, solanaceous fruit, leafy, and brassica; total: 7214) collected from 31 provinces in China from 2016 to the first half of 2017. By analyzing the concentration level of the five HEs in seven regions (the Northeast, North China, East China, South China, Central China, the Northwest, and the Southwest), except for As, average HEs concentrations were higher in the Southwest than that in the other six regions. According to the maximum permissible limit (MPL), the highest rate of HEs concentration above the MPL was found in the Southwest (11.038%). Analysis of variance (ANOVA) showed varying degrees of variability between regions and categories. By using principal component analysis (PCA), it was found that two principal components account for 73.79% of the total variance in the data. Together with hierarchical cluster analysis (HCA), concluded that Tibet was significantly different from the other 30 provinces. By calculating estimated daily intake (EDI) and the target hazard quotient (THQ), the EDI of Cr in the Southwest was the highest, with results of 1.2119 μg/kg/day for children and 0.8073 μg/kg/day for adults. North China had the highest total target hazard quotient (TTHQ) for HEs in vegetables ingested by children, with a result of 0.933.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Xueli Wang
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China.
| | - Xianbing Cao
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Gexin Xiao
- National institute of Hospital Administration, Beijing 100044, China
| | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
14
|
Lou Q, Zhang M, Yang Y, Gao Y. Low-dose arsenic trioxide enhances membrane-GLUT1 expression and glucose uptake via AKT activation to support L-02 cell aberrant proliferation. Toxicology 2022; 475:153237. [PMID: 35714947 DOI: 10.1016/j.tox.2022.153237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Long term low dose exposure of arsenic has been reported to lead various cells proliferation and malignant transformation. GLUT1, as the key transporter of glucose, has been reported to have association with rapid proliferation of various cells or tumor cells. In our study, we found that low dose exposure to arsenic trioxide (0.1μmol/L As2O3) could induce an increase in glucose uptake and promote cell viability and DNA synthesis. And, 2-DG, a non-metabolized glucose analog, significantly decreased the glucose uptake and cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. However, 4 mmol/L 2-DG was co-utilized with equal dose glucose had no significant effect on the cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. Further studies showed that exposure to 0.1μmol/L As2O3 could promote the expression of GLUT1 on plasma membrane. Inhibition of GLUT1 expression by 5μmol/L BAY-876 significantly decreased the abilities of glucose uptake and cell proliferation in As2O3-treated L-02 cells. Moreover, 0.1μmol/L As2O3 induced the AKT activation indicated by increased the phospho-AKT (Ser473 and Thr308). Knockdown AKT by shRNA or inhibited AKT activation by LY294002 was followed by significantly decreased glucose uptake, GLUT1 plasma membrane expression and cell proliferation in As2O3-treated L-02 cells. All in all, these results demonstrated that arsenic trioxide-induced AKT activation contributed to the cells proliferation through upregulating expression of GLUT1 on plasma membrane that enhanced glucose uptake.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
15
|
Lin MH, Li CY, Cheng YY, Guo HR. Arsenic in Drinking Water and Incidences of Leukemia and Lymphoma: Implication for Its Dual Effects in Carcinogenicity. Front Public Health 2022; 10:863882. [PMID: 35570949 PMCID: PMC9099091 DOI: 10.3389/fpubh.2022.863882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Arsenic in drinking water has been recognized as carcinogenic to humans and can cause solid cancers of lung, urinary bladder, and skin. Positive associations have also been reported between arsenic ingestion and cancers of kidney, liver and prostate. Nevertheless, arsenic trioxide has been used successfully in the treatment of acute promyelocytic leukemia. Therefore, arsenic might play different roles in the carcinogenesis of solid cancers and hematologic malignancies. The relationship between arsenic in drinking water and the incidences of hematologic malignancies has not been fully investigated. We established a cohort of Taiwanese population and assorted 319 townships of Taiwan into two exposure categories using 0.05 mg/L as the cutoff. Then, we linked these data to the Taiwan Cancer Registry and computed standardized incidence ratios (SIRs) of lymphoma and leukemia by sex, exposure category and time period. The trend of changes in the SIRs over time was assessed, from 1981-1990 to 1991-2000 and then to 2001-2010. We found that in both lymphoma and leukemia, the higher exposure category was associated with lower SIRs in both men and women. In terms of time trends, the SIRs in both lymphoma and leukemia showed increasing trends in both sexes, while exposure to arsenic in drinking water decreased over time. The arsenic level in drinking water was negatively associated with the incidences of lymphoma and leukemia in both men and women. This study supports the dual effects of arsenic on carcinogenesis, with a potential protective effect against hematologic malignancies.
Collapse
Affiliation(s)
- Ming-Hsien Lin
- Division of Hematology and Oncology, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Yun Cheng
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,*Correspondence: How-Ran Guo
| |
Collapse
|
16
|
Santos JLA, Busato JG, Pittarello M, da Silva J, Horák-Terra I, Evaristo AB, Dobbss LB. Alkaline extract from vermicompost reduced the stress promoted by As on maize plants and increase their phytoextraction capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20864-20877. [PMID: 34741736 DOI: 10.1007/s11356-021-17255-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) represents an environmental risk and phytoremediation has been identified as a good technique to recover contaminated soils. Plants defense mechanisms needed to be enhanced against As stress-promoting action by biostimulants such as humic materials. This work sought to determine the effectiveness of an alkaline vermicompost extract (AEV) and in mitigating stresses promoted by As in maize plants, increasing their potential use for phytoextraction. The AEV were extracted from vermicompost and two preliminary assays in Leonard pots were carried out: the first one to define the best AEV concentration-response dose and the second to point out the toxic As concentration. The second step was to set up a 28-day long experiment with the following four treatments: control, AEV, As, As + AEV. AEV attenuated As-induced stress in maize plants. Maize dry biomass was reduced in the As treatment and rebalanced to values similar to the control in the As + HS treatment while the plants treated only with HS showed the highest biomass among the treatments. The concentrations of P, Fe, Cu, Mn and Ni, and catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) antioxidant activity increased in the As treatment and decreased in the As + AEV treatment. The rate of photosynthesis decreased, and the internal CO2 concentration increased with stress induced by As, where both effects were attenuated by AEV. Our results show the positive effect of the AEV in alleviating As abiotic stress on maize growth, offering new options of employment of humic substances in phytoremediation process.
Collapse
Affiliation(s)
- Jefferson Luiz Antunes Santos
- Institute of Agricultural Sciences (ICA), Federal University of the Jequitinhonha and Mucuri (UFVJM), Unaí, MG, 38610-000, Brazil.
| | - Jader Galba Busato
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Marco Pittarello
- Department of Agronomy, Animals and the Environment (DAFNAE), Natural Resources, University of Padova, 35020, FoodLegnaro, Italy
| | - Juscimar da Silva
- Brazilian Agricultural Research Corporation (Embrapa), Fazenda Tamanduá, Embrapa HortaliçasParque Estação Biológica, Brasília, DF, 70770-901, Brazil
| | - Ingrid Horák-Terra
- Institute of Agricultural Sciences (ICA), Federal University of the Jequitinhonha and Mucuri (UFVJM), Unaí, MG, 38610-000, Brazil
| | - Anderson Barbosa Evaristo
- Institute of Agricultural Sciences (ICA), Federal University of the Jequitinhonha and Mucuri (UFVJM), Unaí, MG, 38610-000, Brazil
| | - Leonardo Barros Dobbss
- Institute of Agricultural Sciences (ICA), Federal University of the Jequitinhonha and Mucuri (UFVJM), Unaí, MG, 38610-000, Brazil
| |
Collapse
|
17
|
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117940. [PMID: 34426183 DOI: 10.1016/j.envpol.2021.117940] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca2+) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
18
|
Dong L, Liu Y, Wang D, Zhu K, Zou Z, Zhang A. Imbalanced inflammatory response in subchronic arsenic-induced liver injury and the protective effects of Ginkgo biloba extract in rats: Potential role of cytokines mediated cell-cell interactions. ENVIRONMENTAL TOXICOLOGY 2021; 36:2073-2092. [PMID: 34251737 DOI: 10.1002/tox.23324] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a well-known environmental toxicant and carcinogen, which has been epidemiologically proved related to the increased hepatic disorders. Researches have shown that aseptic inflammation and abnormal immune response are associated with arsenic-induced liver injury. However, the immunotoxic effects of liver have not been extensively characterized. Ginkgo biloba extract (GBE), a natural products of G. biloba leaves with proven anti-inflammatory and potential immunoregulatory activities, was used as intervention agent to explore its protective effects on arsenic-induced hepatotoxicity. Thus, the underlying mechanism of the immunotoxic effects on arsenic-induced liver injury were investigated in 2.5, 5.0, and 10.0 mg/kg NaAsO2 of Wistar rats for 16 weeks. Subsequently, GBE was used as intervention agent in 50 mg/kg for 6 weeks after cessation of arsenic exposure. The ratio of Th17 to Treg cells in peripheral blood as well as the secretion of inflammatory cytokines IL-17A, IL-6, TGF-β1, and IL-10 in serum and liver were detected. Meanwhile, the notable activation of aseptic inflammation-related molecule TLR4 and its downstream targets MyD88 and NF-κB in the liver were observed. In this work, we confirmed that subchronic exposed to arsenic triggered the infiltration of inflammatory cells in rat liver, coupled with obvious histopathological changes and aberrant hepatic serum biochemical parameters. Meanwhile, imbalanced immune response was verified by the notable abnormal ratio of Th17 to Treg cells in peripheral blood as well as the secretion of inflammatory cytokines IL-17A, IL-6, TGF-β1, and IL-10 in serum and liver of arsenic exposed rats. Further, the level of TLR4, MyD88, and NF-κB in liver both transcription and translation activity were raised. Subsequently, GBE markedly mitigated arsenic-induced liver injury, most impressively, post treatment with GBE prominently suppressed the overactivated inflammatory-related TLR4-MyD88-NF-κB pathway and evidently decreased the secretion of inflammation cytokines. Meanwhile, the disturbance of pro- and anti-inflammatory response was reversed. We concluded that the disruption of pro- and anti-inflammatory T-cells balance caused by cytokines mediated cell-cell interactions may be one of the mechanisms underlying arsenic-induced liver injury and that GBE intervention exerts an evidence protective effects, which might be closely associated with the suppression of inflammatory-related TLR4 pathway.
Collapse
Affiliation(s)
- Ling Dong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Navarro-Espinoza S, Angulo-Molina A, Meza-Figueroa D, López-Cervantes G, Meza-Montenegro M, Armienta A, Soto-Puebla D, Silva-Campa E, Burgara-Estrella A, Álvarez-Bajo O, Pedroza-Montero M. Effects of Untreated Drinking Water at Three Indigenous Yaqui Towns in Mexico: Insights from a Murine Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020805. [PMID: 33477870 PMCID: PMC7832869 DOI: 10.3390/ijerph18020805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Background: Reports in a northwestern Mexico state linked arsenic (As) in drinking water to DNA damage in people from indigenous communities. However, this correlation remains under discussion due to unknown variables related to nutrition, customs, and the potential presence of other metal(oid)s. Methods: To determine this association, we sampled water from three Yaqui towns (Cócorit, Vícam, and Pótam), and analyzed the metals by ICP-OES. We exposed four separate groups, with five male CD-1 mice each, to provide further insight into the potential effects of untreated drinking water. Results: The maximum concentrations of each metal(oid) in µg·L−1 were Sr(819) > Zn(135) > As(75) > Ba(57) > Mo(56) > Cu(17) > Al(14) > Mn(12) > Se(19). Histological studies revealed brain cells with angulation, satellitosis, and reactive gliosis with significant statistical correlation with Mn and As. Furthermore, the liver cells presented hepatocellular degeneration. Despite the early response, there is no occurrence of both statistical and significative changes in hematological parameters. Conclusions: The obtained results provide experimental insights to understand the potential effects of untreated water with low As and Mn contents in murine models. This fact is noteworthy because of the development of histological changes on both the brain and liver at subchronic exposure.
Collapse
Affiliation(s)
- Sofia Navarro-Espinoza
- Department of Geology, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
| | - Aracely Angulo-Molina
- Department of Biological Chemical Sciences, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
- Correspondence: (D.M.-F.); (M.P.-M.)
| | - Guillermo López-Cervantes
- Department of Medicine, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
| | - Mercedes Meza-Montenegro
- Department of Natural Resources, Sonora Technological Institute, 5 de Febrero 818 Sur, Obregon City 85000, Sonora, Mexico;
| | - Aurora Armienta
- Institute of Geophysics, National Autonomous University of Mexico-UNAM, Coyoacán 04510, Ciudad de Mexico, Mexico;
| | - Diego Soto-Puebla
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Erika Silva-Campa
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Alexel Burgara-Estrella
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Osiris Álvarez-Bajo
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
- Consejo Nacional de Ciencia y Tecnología CONACyT, Insurgentes 1582, Benito Juárez 03940, Ciudad de Mexico, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
- Correspondence: (D.M.-F.); (M.P.-M.)
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Rapid economic growth and its huge population are putting tremendous pressure on water sustainability in China. Ensuring clean drinking water is a great challenge for public health due to water shortage and pollution. This article reviews current scientific findings on health-related issues on drinking water and discusses the challenges for safe and healthy drinking water in China. RECENT FINDINGS From literature published since 2010, a variety of emerging contaminants were detected in drinking water, including disinfection byproducts (DBPs), pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), antibiotic resistance genes, and pathogens. Arsenic and fluoride are still the two major contaminants in groundwater. Microcystins, toxins produced by cyanobacteria, were also frequently detected in surface water for drinking. Health effects of exposure to arsenic, fluoride, nitrates, DBPs, and noroviruses in drinking water have been reported in several epidemiological studies. According to literature, water scarcity is still a severe ongoing issue, and regional disparity affects the access to safe and healthy drinking water. In addition, urbanization and climate change have strong influences on drinking water quality and water quantity. Multiple classes of contaminants of emerging concern have been detected in drinking water, while epidemiological studies on their health effects are still inadequate. Water scarcity, regional disparity, urbanization, and climate change are the major challenges for safe and healthy drinking water in China.
Collapse
Affiliation(s)
- Jianyong Wu
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
21
|
Wang Z, Gu X, Ouyang W, Lin C, Zhu J, Xu L, Liu X, He M, Wang B. Trophodynamics of arsenic for different species in coastal regions of the Northwest Pacific Ocean: In situ evidence and a meta-analysis. WATER RESEARCH 2020; 184:116186. [PMID: 32711223 DOI: 10.1016/j.watres.2020.116186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
China has been the major fishery producer in the Northwest Pacific Ocean for decades and the seafood safety deserves continuous concern. In this study, 188 organism and 27 sediment samples were collected from the Jiaozhou Bay, a typical semi-enclosed bay adjacent to the Northwest Pacific Ocean, to study the arsenic (As) pollution level and trophodynamics in the coastal regions of China combined with a meta-analysis. Results showed that arsenic was the most abundant in crustaceans with the average of 28.84 ± 4.95 mg/kg in dry weight, in comparison with molluscs (18.68 ± 2.51 mg/kg) and fish (9.31 ± 1.45 mg/kg). Additionally, based on a meta-analysis, arsenic in coastal organisms generally decreased from north to south in China. With increasing values of δ15N, arsenic was significantly biomagnified in the molluscs but bio-diluted in the groups of crustaceans and fish. When all the species were taken into consideration, overall bio-dilution of As was observed through the simplified food chain in the Jiaozhou Bay. Based on the target hazard quotient (THQ), the health risk of consuming seafood from the Jiaozhou Bay was not significant except for several kinds of crustaceans. The smaller THQs indicated lower health risk of eating molluscs and fish than crustaceans. Besides, urban households tended to undertake much higher risk than rural households. Based on our results, it is recommended for urban citizens to reduce the frequency of consuming crustaceans and give preference to fish when choosing seafood.
Collapse
Affiliation(s)
- Zongxing Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| | - Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jing Zhu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| |
Collapse
|
22
|
Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X, Tao Y, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2020; 188:109824. [PMID: 32593899 DOI: 10.1016/j.envres.2020.109824] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 05/16/2023]
Abstract
Exposure to arsenic is a risk factor for nonalcoholic steatohepatitis (NASH). Ferroptosis is a form of regulated cell death defined by the accumulation of lipid peroxidation. In the current study, we observed the occurrence of ferroptosis in arsenic-induced NASH by assessing ferroptosis related hallmarks. In vitro, we found that ferrostatin-1 effectively attenuated the executing of ferroptosis and NASH. Simultaneously, the expression of ACSL4 (acyl-CoA synthetase long-chain family member 4) was upregulated in rat's liver and L-02 cells exposed to arsenic. While, suppression of ACSL4 with rosiglitazone or ACSL4 siRNA remarkably alleviated arsenic-induced NASH and ferroptosis through diminishing 5-hydroxyeicosatetraenoic acid (5-HETE) content. Additionally, Mitofusin 2 (Mfn2), a physical tether between endoplasmic reticulum and mitochondria, has rarely been explored in the ferroptosis. Using Mfn2 siRNA or inositol-requiring enzyme 1 alpha (IRE1α) inhibitor, we found NASH and ferroptosis were obviously mitigated through reducing 5-HETE content. Importantly, Co-IP assay indicated that Mfn2 could interact with IRE1α and promoted the production of 5-HETE, ultimately led to ferroptosis and NASH. Collectively, our data showed that ferroptosis is involved in arsenic-induced NASH. These data provide insightful viewpoints into the mechanism of arsenic-induced NASH.
Collapse
Affiliation(s)
- Sen Wei
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xue Jia
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
23
|
Nguyen TP, Ruppert H, Pasold T, Sauer B. Paddy soil geochemistry, uptake of trace elements by rice grains (Oryza sativa) and resulting health risks in the Mekong River Delta, Vietnam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2377-2397. [PMID: 31686290 DOI: 10.1007/s10653-019-00456-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Soil geochemistry and phytoavailable trace elements were investigated in 80 paddy soil samples and corresponding rice grains from the Mekong River Delta in Vietnam. Soil parameters like Fe-, Al-, and Mn-phases, organic matter, and pH-value determine element concentrations in soil and affect their transfer into rice grains. Arsenic exceeded the allowed limit for Vietnamese agricultural soils in 11% of the samples, presumably caused by natural processes. Lead surpassed the limit in one soil sample. Other toxic elements were close to their natural concentrations and far below allowable limits for agricultural soil. There was no clear correlation of trace element concentrations in soils with those in corresponding grains, even if the different soil parameters and the large pH-range between 3.7 and 6.8 were considered. To assess health risks of critical elements in rice, the thresholds of tolerable upper intake level for total food and drinking water (UL) and of permissible maximum concentration (MC) for rice grains were evaluated. Surprisingly, rice grains grown on non- or low-polluted soils can surpass the upper limits. According to the UL concept, 12% of the grains exceeded the UL of As, 29% that of Cd, and 27% that of Pb for each gender. According to the MC concept, 5% of the rice grains exceeded the MC of inorganic As for adults and 38% that for young children. 24% of the grains surpassed the MC of Pb, while Cd in all grains was below the MC. The differing results of the UL and MC approaches show an urgent need for revision and harmonization concerning As, Cd, and Pb limits, especially regarding countries with high rice consumption.
Collapse
Affiliation(s)
- Thuy Phuong Nguyen
- Department of Sedimentology/Environmental Geology, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany.
- Department of Resource and Environment Management, Faculty of Land Resources and Agricultural Environment, Hue University of Agriculture and Forestry, 102 Phung Hung Street, Hue City, Vietnam.
| | - Hans Ruppert
- Department of Sedimentology/Environmental Geology, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
| | - Tino Pasold
- Department of Sedimentology/Environmental Geology, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
| | - Benedikt Sauer
- Department of Sedimentology/Environmental Geology, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
| |
Collapse
|
24
|
Chi H, Hou Y, Li G, Zhang Y, Coulon F, Cai C. In vitro model insights into the role of human gut microbiota on arsenic bioaccessibility and its speciation in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114580. [PMID: 33618458 DOI: 10.1016/j.envpol.2020.114580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
The bioaccessibility of arsenic and its speciation are two important factors in assessing human health risks exposure to contaminated soils. However, the effects of human gut microbiota on arsenic bioaccessibility and its speciation are not well characterized. In this study, an improved in vitro model was utilized to investigate the bioaccessibility of arsenic in the digestive tract and the role of human gut microbiota in the regulation of arsenic speciation. For all soils, arsenic bioaccessibility from the combined in vitro model showed that it was <40% in the gastric, small intestinal and colon phases. This finding demonstrated that the common bioaccessibility approach assuming 100% bioaccessibility would overestimate the human health risks posed by contaminated soils. Further to this, the study showed that arsenic bioaccessibility was 22% higher in the active colon phase than that in the sterile colon phase indicating that human colon microorganisms could induce arsenic release from the solid phase. Only inorganic arsenic was detected in the gastric and small intestinal phases, with arsenate [As(V)] being the dominant arsenic species (74%-87% of total arsenic). Arsenic speciation was significantly altered by the active colon microbiota, which resulted in the formation of methylated arsenic species, including monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] with low toxicity, and a highly toxic arsenic species monomethylarsonous acid [MMA(III)]. Additionally, a high level of monomethylmonothioarsonic acid [MMMTA(V)] (up to 17% of total arsenic in the extraction solution) with unknown toxicological properties was also detected in the active colon phase. The formation of various organic arsenic species demonstrated that human colon microorganisms could actively metabolize inorganic arsenic into methylated arsenicals and methylated thioarsenicals. Such transformation should be considered when assessing the human health risks associated with oral exposure to soil.
Collapse
Affiliation(s)
- Haifeng Chi
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwei Hou
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guofeng Li
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youchi Zhang
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Frédéric Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Chao Cai
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
25
|
Zhang AL, Tang SF, Yang Y, Li CZ, Ding XJ, Zhao H, Wang JH, Yang GH, Li J. Histone demethylase JHDM2A regulates H3K9 dimethylation in response to arsenic-induced DNA damage and repair in normal human liver cells. J Appl Toxicol 2020; 40:1661-1672. [PMID: 32608101 DOI: 10.1002/jat.4026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Long-term arsenic exposure is a worldwide public health problem that causes serious harm to human health. The liver is the main target organ of arsenic toxicity; arsenic induces disruption of the DNA damage repair pathway, but its mechanisms remain unclear. In recent years, studies have found that epigenetic mechanisms play an important role in arsenic-induced lesions. In this study, we conducted experiments in vitro using normal human liver cells (L-02) to explore the mechanism by which the histone demethylase JHDM2A regulates H3K9 dimethylation (me2) in response to arsenic-induced DNA damage. Our results indicated that arsenic exposure upregulated the expression of JHDM2A, downregulated global H3K9me2 modification levels, increased the H3K9me2 levels at the promoters of base excision repair (BER) genes (N-methylpurine-DNA glycosylase [MPG], XRCC1 and poly(ADP-ribose)polymerase 1) and inhibited their expression levels, causing DNA damage in cells. In addition, we studied the effects of overexpression and inhibition of JHDM2A and found that JHDM2A can participate in the molecular mechanism of arsenic-induced DNA damage via the BER pathway, which may not be involved in the BER process because H3K9me2 levels at the promoter region of the BER genes were unchanged following JHDM2A interference. These results suggest a potential mechanism by which JHDM2A can regulate the MPG and XRCC1 genes in the process of responding to DNA damage induced by arsenic exposure and can participate in the process of DNA damage repair, which provides a scientific basis for understanding the epigenetic mechanisms and treatments for endemic arsenic poisoning.
Collapse
Affiliation(s)
- An-Liu Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shun-Fang Tang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yue Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chang-Zhe Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xue-Jiao Ding
- First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Hua Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun-Hua Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Guang-Hong Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
26
|
Muhammad N, Nafees M, Khan MH, Ge L, Lisak G. Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113887. [PMID: 31982801 DOI: 10.1016/j.envpol.2019.113887] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
In the present study, biochars (BCs) derived from naturally grown green waste (Cynodon dactylon L.) were investigated regarding their impacts on bioaccumulation of potentially toxic elements (PTEs), agronomic properties and human health risks of wheat crop cultivated on long-term industrially contaminated soil. Typically, three types of BCs were pyrolyzed at different highest temperature of treatment (HTT), i.e. 400 °C, 600 °C and 800 °C, in a horizontal reactor and applied to the contaminated soil with 2% and 5% (w/w) ratio. The characterization results of the BCs showed that significant positive changes in fundamental characteristics such as porosity, surface area, cation exchange capacity, dissolved organic carbon, phosphorus and potassium have occurred with increased HTT. The analytical results of wheat crop indicated that the BCs applications significantly (p ≤ 0.05) reduced concentration of PTEs in roots (48-95%), shoots (38-91%), leaves (30-91%) and grains (38-93%) of wheat plants. After the BCs application, the agronomic properties were enhanced up to 6-18%, 18-38%, 17-46%, 13-45%, 15-42%, 22-55% and 34-57% for germination rate, shoot length, shoot biomass, spike length, spike biomass, grain biomass and root biomass respectively. The human health risks of PTEs were significantly (p ≤ 0.05) decreased (31-93%) from toxicity level to safe level (except for Mn and Cu), after the BCs application. Based on the current study, the BCs (especially 800BC5) were recommended for reducing bioaccumulation of PTEs in different parts of the wheat plant, increasing growth and yield of wheat crop and decreasing human health risks via consumption of wheat grains.
Collapse
Affiliation(s)
- Nisar Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Haya Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
27
|
Hawrami KAM, Crout NMJ, Shaw G, Bailey EH. Assessment of potentially toxic elements in vegetables cultivated in urban and peri-urban sites in the Kurdistan region of Iraq and implications for human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1359-1385. [PMID: 31587159 DOI: 10.1007/s10653-019-00426-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Vegetable fields in and around urban areas in the Kurdistan region of Iraq may have higher than background concentrations of potentially toxic elements (PTEs) from contamination sources including municipal waste disposal and wastewater used for irrigation. The purpose of this study was to assess PTE concentrations in soils and the edible parts of field-grown vegetables to quantify potential health risks to the local population. In this survey, 174 soils and 26 different vegetable and fruit types were sampled from 15 areas around Sulaymaniyah and Halabja cities. Sampling was undertaken from fields in urban, peri-urban and rural locations including sites close to areas of waste disposal. The soils are calcareous (pH 7.67-8.21) and classified as silty loam, sandy or silty clay with organic matter content between 6.62 and 11.4%. Concentrations of PTEs were typically higher in waste disposal areas compared with urban, peri-urban and rural areas. Pollution load indices suggested that agricultural soils near waste disposal sites were contaminated with some trace elements. Potentially toxic element concentrations in vegetables were highly variable. Higher total concentrations of PTEs were measured in vegetables from the waste areas with decreasing concentrations in urban, peri-urban and rural areas. Risks to human health were assessed using hazard quotients (HQ). Vegetable consumption poses no risk for adults, whereas children might be exposed to Ni, As and Cd. Although HQs suggest elevated risk for children from consumption of some vegetables, these risks are likely to be lower when realistic dietary consumption levels are considered.
Collapse
Affiliation(s)
- Karzan A M Hawrami
- School of Biosciences, University of Nottingham, Sutton Bonington Campus Loughborough, Leicestershire, LE12 5RD, UK
- Sulaymaniyah Polytechnic University, Technical Institute of Halabja, Zamaqi, Halabja, Iraq
| | - Neil M J Crout
- School of Biosciences, University of Nottingham, Sutton Bonington Campus Loughborough, Leicestershire, LE12 5RD, UK
| | - George Shaw
- School of Biosciences, University of Nottingham, Sutton Bonington Campus Loughborough, Leicestershire, LE12 5RD, UK
| | - Elizabeth H Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
28
|
Laniyan TA, Adewumi AJ. Potential ecological and health risks of toxic metals associated with artisanal mining contamination in Ijero, southwest Nigeria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:858-877. [PMID: 32338130 DOI: 10.1080/10934529.2020.1751504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
This investigation was done to decide the concentrations, sources and potential risks of metals in media around Ijero area. A total of 80 samples including topsoils, sediments, tailings and whole plants were gathered from this territory while control samples were taken from zone with less human exercises. Samples were pounded, sieved and chemically analyzed utilizing Agilent High Plasma Liquid Chromatography Inductively Coupled Plasma-Mass Spectrometer. Results demonstrated that the mean concentrations of lead (Pb) and zinc (Zn) in soils are 30.61 and 123.71 µg/g individually. In tailings the mean distribution of Pb and Zn are 33.16 and 22.44 µg/g each. Toxic units in all media were less than 4, indicating low effect on the ecosystem. Bivariate correlation, hierarchical cluster and principal component analyses revealed that metals in media from this area originated from mining and mineral processing activities, mixed and geogenic sources. Study revealed that metals in the media pose high degree of contamination and moderate to high ecological hazard. Also, there is high cancer-causing hazard index (HI) (10-6-10-4) and non-cancer-causing (HI > 1) dangers which is more articulated in kids than the grown-ups. It is important to introduce measures that will decrease the negative impacts associated with mining in the area.
Collapse
Affiliation(s)
- Temitope Ayodeji Laniyan
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
29
|
Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072204. [PMID: 32218329 PMCID: PMC7178168 DOI: 10.3390/ijerph17072204] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/29/2022]
Abstract
The problem of environmental pollution is a global concern as it affects the entire ecosystem. There is a cyclic revolution of pollutants from industrial waste or anthropogenic sources into the environment, farmlands, plants, livestock and subsequently humans through the food chain. Most of the toxic metal cases in Africa and other developing nations are a result of industrialization coupled with poor effluent disposal and management. Due to widespread mining activities in South Africa, pollution is a common site with devastating consequences on the health of animals and humans likewise. In recent years, talks on toxic metal pollution had taken center stage in most scientific symposiums as a serious health concern. Very high levels of toxic metals have been reported in most parts of South African soils, plants, animals and water bodies due to pollution. Toxic metals such as Zinc (Zn), Lead (Pb), Aluminium (Al), Cadmium (Cd), Nickel (Ni), Iron (Fe), Manganese (Mn) and Arsenic (As) are major mining effluents from tailings which contaminate both the surface and underground water, soil and food, thus affecting biological function, endocrine systems and growth. Environmental toxicity in livestock is traceable to pesticides, agrochemicals and toxic metals. In this review, concerted efforts were made to condense the information contained in literature regarding toxic metal pollution and its implications in soil, water, plants, animals, marine life and human health.
Collapse
Affiliation(s)
- Uchenna Okereafor
- Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
- Correspondence: ; Tel.: +27-7475-16904
| | - Mamookho Makhatha
- Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
| | - Nkemdinma Uche-Okereafor
- Department of Biotechnology & Food Technology, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa; (N.U.-O.); (T.S.)
| | - Tendani Sebola
- Department of Biotechnology & Food Technology, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa; (N.U.-O.); (T.S.)
| | - Vuyo Mavumengwana
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
30
|
Abd-Elghany SM, Mohammed MA, Abdelkhalek A, Saad FSS, Sallam KI. Health Risk Assessment of Exposure to Heavy Metals from Sheep Meat and Offal in Kuwait. J Food Prot 2020; 83:503-510. [PMID: 32068856 DOI: 10.4315/0362-028x.jfp-19-265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/26/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT A total of 600 sheep samples (200 each of muscle, liver, and kidney) collected from 200 sheep carcasses slaughtered at abattoirs in Kuwait were analyzed by atomic absorption spectrophotometry for concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), and chromium (Cr). These metals were detected in all (100%) examined samples; higher concentrations occurred in kidney followed by liver and muscle. The mean (±standard error of the mean) values of the metals detected in sheep muscle, liver, and kidney samples were 0.320 ± 0.061, 0.488 ± 0.042, and 0.791 ± 0.152 μg/g, respectively for Hg; 349 ± 0.074, 0.504 ± 0.049, and 0.642 ± 0.113 μg/g, respectively, for As; 0.482 ± 0.098, 0.567 ± 0.042, and 0.706 ± 0.098 μg/g, respectively, for Pb; 0.301 ± 0.344, 0.433 ± 0.032, and 0.586 ± 0.064 μg/g, respectively, for Cd; and 0.362 ± 0.064, 0.585 ± 0.044, and 0.738 ± 0.111 μg/g, respectively, for Cr. The concentrations of all heavy metals except Cr exceeded the maximum permissible limits set by various international food agencies. The estimated daily intake of each metal was lower than its provisional tolerable daily intake. The target hazard quotient and hazard index values for Hg were >1.0 in all examined sheep samples, suggesting significant health risks to the public from the consumption of sheep meat and offal marketed in Kuwait. HIGHLIGHTS
Collapse
Affiliation(s)
- Samir Mohammed Abd-Elghany
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.,(ORCID: https://orcid.org/0000-0003-1812-6851 [S.M.A.E.]); and
| | - Mahmoud Ahmed Mohammed
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel Abdelkhalek
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Faisal Saad Saud Saad
- Veterinary Quarantine Department, Public Authority of Agriculture Affairs & Fish Resources, Kuwait City, Kuwait
| | - Khalid Ibrahim Sallam
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
31
|
Gu X, Ouyang W, Xu L, Tysklind M, Lin C, He M, Wang B, Xin M. Occurrence, migration, and allocation of arsenic in multiple media of a typical semi-enclosed bay. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121313. [PMID: 31590083 DOI: 10.1016/j.jhazmat.2019.121313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Under the gradients of salinity and redox, the transportation and distribution of dissolved, particulate, and sedimentary arsenic present differences from estuary to bay. Samples of water, suspended particulate sediment (SPS), and sediment from the Jiaozhou Bay were analyzed. The concentrations of arsenic decreased significantly from the estuaries toward the bay. The sedimentary arsenic mostly existed as hydrous oxide-bound and residual fractions and tended to be attached to smaller particles. Sedimentary particles were more capable of absorbing arsenic than SPS and the capacity increased from the estuaries toward the bay. The spatial distribution of arsenic was impacted by the residual currents, resulting in higher contents of dissolved arsenic in the eastern coastal zone and higher concentrations of sedimentary arsenic in the inner bay. In water, total phosphorus (TP), dissolved organic carbon (DOC), and alkalinity had significant positive correlations with the dissolved arsenic. In sediments, Fe oxides and sediment organic matter (SOM) would promote adsorption of arsenic. The significant correlation between non-residual fractions and enrichment factors of arsenic indicated that the sedimentary arsenic was more likely to originate from anthropogenic sources, mainly impacted by riverine transport from the eastern urban regions and agricultural production in the western farmland.
Collapse
Affiliation(s)
- Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Ling Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mats Tysklind
- Environmental Chemistry, Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Baodong Wang
- The First Institute of Oceanography, State Oceanic Administration, 6 Xianxialing Road, Qingdao, 266061, China
| | - Ming Xin
- The First Institute of Oceanography, State Oceanic Administration, 6 Xianxialing Road, Qingdao, 266061, China
| |
Collapse
|
32
|
Ji P, Li Z, Dong J, Yi H. SO 2 derivatives and As co-exposure promote liver cancer metastasis through integrin αvβ3 activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:572-578. [PMID: 31252212 DOI: 10.1016/j.ecoenv.2019.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) and sulfur dioxide (SO2) are two environmental pollutants that have been shown to promote the development of human cancer. In recent years, due to increased pollution, humans are often exposed to SO2, in addition to As. Despite the development and implementation of standards for environment and air quality, cases of disease caused by As or SO2 continue to rise alarmingly. It is currently unknown whether simultaneous exposure to As and SO2 results in increased cancer promoting activity. In this study, concentrations of As and SO2 below the limits established by the world health organization (WHO) in force environmental standards (concentrations of As should be lower than 1×10-2 mg/L and SO2 should be lower than 50 μg/m3), were employed to investigate possible, long-term, synergistic effects of As and SO2, by using cell-based assays. We found that co-exposure to these pollutants significantly promotes HepG2 cancer cell migration, while As or SO2 alone have no remarkable effects. Integrins αvβ3 play a key role in this process, as cilengitide, an integrin αvβ3 inhibitor, substantially prevented As and SO2-induced cell migration. MMPs, IL-8, and TGF-β were also involved in the induced cell migration. In summary, combined exposure to As and SO2 promotes integrin-dependent cell migration and may be of relevance for the activation of mechanisms underlying liver cancer progression.
Collapse
Affiliation(s)
- Pengyu Ji
- School of Life Science, Shanxi University, Taiyuan, China; College of Environmental and Resource, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jintang Dong
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
33
|
Zeng Q, Zou Z, Wang Q, Sun B, Liu Y, Liang B, Liu Q, Zhang A. Association and risk of five miRNAs with arsenic-induced multiorgan damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:1-9. [PMID: 31085440 DOI: 10.1016/j.scitotenv.2019.05.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Chronic exposure to arsenic remains a major environmental public health concern worldwide, affecting hundreds of millions of people. Arsenic-induced multiorgan damage and miRNA expression changes after arsenic exposure have been determined, but their associations and risks have not been fully examined. In this study, we measured the expression levels of five miRNAs in plasma from control and arsenic poisoned populations, and we analyzed the relationship between miRNAs and multiorgan damage. The results clearly show that the upregulation of miR-155 expression can increase the risk of arsenic induced skin damage (OR = 10.55; 95% CI: 6.02, 18.47); further, there is a link between the expression of miR-21 (OR = 11.84; 95% CI: 5.34, 26.28) and miR-145 (OR = 2.39; 95% CI: 1.61, 3.55) and liver damage, and miR-191 and kidney damage (OR = 3.65; 95% CI: 1.49, 8.93). In addition, we analyzed the diagnostic value of miRNAs associated with specific organ damage in arsenic-induced multiorgan damage. It was found that the miR-155 has a certain diagnostic value in arsenic-induced skin damage (AUC = 0.83), miR-21 and miR-145 have diagnostic value for liver damage (AUC = 0.80, 0.81) and miR-191 has diagnostic value for kidney damage (AUC = 0.83). This study provides the first comprehensive assessment of the association and risk of five miRNAs with arsenic-induced multiorgan damage. The study can provide a scientific basis for further understanding the causes of arsenic-induced multiorgan damage, identification of possible biological markers, and improvement of targeted prevention and control strategies.
Collapse
Affiliation(s)
- Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
34
|
Ji PY, Li ZY, Wang H, Dong JT, Li XJ, Yi HL. Arsenic and sulfur dioxide co-exposure induce renal injury via activation of the NF-κB and caspase signaling pathway. CHEMOSPHERE 2019; 224:280-288. [PMID: 30825854 DOI: 10.1016/j.chemosphere.2019.02.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/02/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Although emerging evidence suggests positive association of arsenic (As) or sulfur dioxide (SO2) exposure with human diseases, reports concerning the effects of co-exposure of As and SO2 are lacking. Moreover, there is insufficient information in the literature about As and SO2 co-exposure to renal injury. In this study, we focus on the environmental problems of excessive As and SO2 that co-exist in many coal consumption areas. We used both C57BL/6 mice and 293T cells to detect toxicities of As and SO2 exposure alone or in combination. Our results showed that co-exposure significantly increased the hazard compared with exposure to As or SO2 alone. Mouse kidney tissue slices showed that co-exposure caused more severe diffuse sclerosing glomerulonephritis than As and SO2 exposure alone. Meanwhile experiments showed that apoptosis was aggravated by co-exposure of As and SO2 in 293T cells. Because As and SO2 cause cell toxicity through increasing oxidative stress, next we detected ROS and other oxidative stress parameters, and the results showed oxidative stress was increased by co-exposure compared with the other three groups. The expression levels of downstream genes in the NF-κB and caspase pathways were higher in the co-exposure group than in the groups of As or SO2 exposure alone in mice and 293T cells. Based on the above results, co-exposure could induce higher toxicity in vitro and in vivo compared with single exposure to As or SO2, indicating that people living in places that contaminated by As and SO2 may have higher chance to get renal injury.
Collapse
Affiliation(s)
- Peng-Yu Ji
- School of Life Science, Shanxi University, Taiyuan, China; College of Environmental and Resource, Shanxi University, Taiyuan, China
| | - Zhuo-Yu Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Hong Wang
- School of Life Science, Shanxi University, Taiyuan, China; Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Jin-Tang Dong
- School of Life Science, Shanxi University, Taiyuan, China; Emory University Winship Cancer Insititute, Atlanta, GA, USA
| | - Xiu-Juan Li
- School of Life Science, Shanxi University, Taiyuan, China; College of Environmental and Resource, Shanxi University, Taiyuan, China
| | - Hui-Lan Yi
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
35
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 708] [Impact Index Per Article: 141.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
36
|
Thompson LA, Darwish WS. Environmental Chemical Contaminants in Food: Review of a Global Problem. J Toxicol 2019; 2019:2345283. [PMID: 30693025 PMCID: PMC6332928 DOI: 10.1155/2019/2345283] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023] Open
Abstract
Contamination by chemicals from the environment is a major global food safety issue, posing a serious threat to human health. These chemicals belong to many groups, including metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), perfluorinated compounds (PFCs), pharmaceutical and personal care products (PPCPs), radioactive elements, electronic waste, plastics, and nanoparticles. Some of these occur naturally in the environment, whilst others are produced from anthropogenic sources. They may contaminate our food-crops, livestock, and seafood-and drinking water and exert adverse effects on our health. It is important to perform assessments of the associated potential risks. Monitoring contamination levels, enactment of control measures including remediation, and consideration of sociopolitical implications are vital to provide safer food globally.
Collapse
Affiliation(s)
- Lesa A. Thompson
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Wageh S. Darwish
- Laboratory of Advanced Lipid Analysis, Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
37
|
Hu Z, Li J, Wang H, Ye Z, Wang X, Li Y, Liu D, Song Z. Soil Contamination with Heavy Metals and Its Impact on Food Security in China. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/gep.2019.75015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Arriaza B, Amarasiriwardena D, Standen V, Yáñez J, Van Hoesen J, Figueroa L. Living in poisoning environments: Invisible risks and human adaptation. Evol Anthropol 2018; 27:188-196. [PMID: 30369007 DOI: 10.1002/evan.21720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
This article describes the hidden natural chemical contaminants present in a unique desert environment and their health consequences on ancient populations. Currently, millions of people are affected worldwide by toxic elements such as arsenic. Using data gathered from Atacama Desert mummies, we discuss long-term exposure and biocultural adaptation to toxic elements. The rivers that bring life to the Atacama Desert are paradoxically laden with arsenic and other minerals that are invisible and tasteless. High intake of these toxic elements results in severe health and behavioral problems, and even death. We demonstrate that Inca colonies, from Camarones 9 site, were significantly affected by chemical contaminants in their food and water. It appears however, some modern-day Andean populations resist the elevated levels of arsenic exposure as a result of positive selection mediated via the arsenic methyltransferase enzyme and display more tolerance to high chemical doses. This article further debate the effects of natural pollution and biocultural adaptation of past populations.
Collapse
Affiliation(s)
- Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | | | - Vivien Standen
- Departamento de Antropología, Universidad de Tarapacá, Arica, Chile
| | - Jorge Yáñez
- Departamento de Química Analítica e Inorgánica, Laboratorio de Trazas Elementales & Especiación (LABTRES), Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | | | | |
Collapse
|
39
|
Darwish WS, Atia AS, Khedr MHE, Eldin WFS. Metal contamination in quail meat: residues, sources, molecular biomarkers, and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20106-20115. [PMID: 29748799 DOI: 10.1007/s11356-018-2182-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Quail meat is an emerging source of high-quality animal protein. Quails are exposed to a wide range of xenobiotics such as heavy metals. In this study, residual concentrations of four toxic metals, of significant public health importance, including cadmium (Cd), lead (Pb), arsenic (As), and nickel (Ni), were determined in edible tissues of quails. In addition, metal loads were measured in water, feed, and litter samples collected from same quail farms as possible sources for quail exposure to heavy metals. The possible use of metallothionein (MT) and heat shock protein 70 (Hsp70) as molecular biomarkers of exposure to heavy metals was further investigated. Furthermore, the dietary intake and the potential risk assessment of the examined heavy metals among children and adults were calculated. The edible tissues of quails contained high concentrations of four heavy metals (contents (ppm/ww) ranging from 0.02 to 0.32 in Cd, 0.05 to 1.96 in Pb, 0.002 to 0.32 in As, and 1.17 to 3.94 in Ni), which corresponded to the high contents of these metals in the feeds, water, and litter. MT and Hsp70 mRNA expressions showed positive correlations with the concentrations of heavy metals in tissues indicating the possibility to use these proteins as biomarkers for quail's exposure to toxic metals. Dietary intake of quail meat and risk assessment revealed potential risks especially for children after prolonged exposure to the examined metals. Thus, legislations should be established and continuous screening of metal residues should be adopted in order to reduce the toxic metal concentrations in feeds and drinking water for quails. Reduction of exposure to heavy metals subsequently would lead to minimization of exposure of such toxicants through consumption of quail meat.
Collapse
Affiliation(s)
- Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira Samir Atia
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mariam H E Khedr
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Walaa Fathy Saad Eldin
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
40
|
Cheng YY, Chang YT, Cheng HL, Shen KH, Sung JM, Guo HR. Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: A nationwide population-based study in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:581-591. [PMID: 29353796 DOI: 10.1016/j.scitotenv.2018.01.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Arsenic may affect the function of proximal convoluted tubules and glomeruli, but epidemiological data on the association between arsenic ingestion and end-stage renal disease (ESRD) are limited. Therefore, we conducted a nationwide population-based study in Taiwan, where the incidence of ESRD is the highest in the world, to study the potential association. Using the National Health Insurance Database in Taiwan, we constructed a cohort of 362,505 members with age≥40years in 1998. We identified patients of ESRD newly diagnosed between January 1, 1998 and December 31, 2010 and performed Cox proportional hazard regressions to identify risk factors for ESRD and evaluate their effects. Arsenic levels in drinking water were assessed on the basis of a nationwide census survey conducted by the government, of which measurement reports were available for 311 townships. We identified 5442 new patient of ESRD during the study period and found that residents of areas with arsenic levels≥50μg/L in the drinking water had a hazard ratio (HR) of 1.14 (95% confidence interval [CI]: 1.08-1.21) for ESRD. After adjusting for sex, age, income, and comorbidities, we found an adjusted HR of 1.12 (95% CI: 1.06-1.19), which was still statistically significant. Furthermore, the effect was modified by comorbidities, with more prominent effects on patients with less than three comorbidities (adjusted HR=1.51; 95% CI: 1.22-1.86 for low comorbidity score). In conclusion, a high arsenic level in drinking water was a risk factor for ESRD, independent of other documented risk factors. Reducing high-risk comorbidities in patients with early-stage renal dysfunction is important for slowing the progression of the disease to ESRD, even in the endemic area of arsenic exposure.
Collapse
Affiliation(s)
- Ya-Yun Cheng
- Department of Environmental and Occupational Health, College of Medical, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Tzu Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hong-Lin Cheng
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kun-Hung Shen
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Optometry, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan; Department of Urology, Taipei Medical University, Taipei, Taiwan
| | - Junne-Ming Sung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medical, National Cheng Kung University, Tainan, Taiwan; Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Occupational Safety, Health, and Medicine Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
41
|
Sadeghi F, Nasseri S, Yunesian M, Nabizadeh R, Mosaferi M, Mesdaghinia A. Carcinogenic and non-carcinogenic risk assessments of arsenic contamination in drinking water of Ardabil city in the Northwest of Iran. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:421-429. [PMID: 29278989 DOI: 10.1080/10934529.2017.1410421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Based on the environmental health assessment framework of the United State Environmental Protection Agency, a quantitative health risk assessment of arsenic in contaminated drinking water in a city in the northwest of Iran has been carried out. In the exposure assessment step, arsenic concentrations in drinking water were determined during four seasons. In addition, the water ingestion rate for different age groups in this region was determined. The concentration of arsenic in 163 collected samples from different locations during four seasons ranged from 0 to 99 μg L-1. Furthermore, a high percentage of the samples manifested higher levels than the permissible limit of 10 μg L-1. The total daily water intake rates of four age groups 1 to <2 (group 1), 2 to <6 (group 2), 6 to <16 (group 3), and ≥16 years (group 4) were estimated as 0.86, 1.49, 2.00, and 2.33 L day-1, respectively. Calculating the lifetime average daily dose of arsenic indicated that adults (group 4) had the highest and children (group 1) had the lowest daily intake of arsenic in their entire life. The results of risk characteristic showed that the order of excess lifetime cancer risk via arsenic exposure in the four groups was 4 > 3 > 2 > 1. The estimated risks for all age groups were higher than the acceptable range (1E-6 to 1E-4). The hazard quotient values for all of the classified groups were lower than the recommended limit values (<1), but it cannot be concluded that potential non-carcinogenicity risks are non-existent since the possible exposure to arsenic via food and skin may also pose the risk.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- a Center for Water Quality Research (CWQR) , Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran , Iran
| | - Simin Nasseri
- a Center for Water Quality Research (CWQR) , Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran , Iran
- b Department of Environmental Health Engineering , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Masud Yunesian
- b Department of Environmental Health Engineering , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
- c Center for Air Pollution Research (CAPR) , Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran , Iran
| | - Ramin Nabizadeh
- b Department of Environmental Health Engineering , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
- c Center for Air Pollution Research (CAPR) , Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Mosaferi
- d Tabriz Health Services Management Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Alireza Mesdaghinia
- a Center for Water Quality Research (CWQR) , Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran , Iran
- b Department of Environmental Health Engineering , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
42
|
Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040683. [PMID: 29621150 PMCID: PMC5923725 DOI: 10.3390/ijerph15040683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men’s arsenic (As), cadmium (Cd) and lead (Pb) contents in hair samples and their associations with immunological indicators, including white blood cell (WBC), lymphocyte and monocyte counts, and the immunoglobulin (Ig) levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03) ug/g] was lower than means of As [0.86 (SD = 0.16) ug/g] and Pb [0.91 (SD = 0.22) ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman’s correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.
Collapse
|
43
|
Yousaf B, Liu G, Abbas Q, Ullah H, Wang R, Zia-Ur-Rehman M, Niu Z. Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. CHEMOSPHERE 2018; 192:161-170. [PMID: 29101855 DOI: 10.1016/j.chemosphere.2017.10.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. Efforts to investigate the transformation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-effects have focused extensively in previous studies. However, limited studies address biochar nanosheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via consumption of wheat. When BCNs amendment was compared with both conventional organic amendments (COAs) and control, it significantly (P ≤ 0.05) reduced bioavailability and uptake of PTEs by wheat plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1, however, BCNs addition significantly (P ≤ 0.05) reduced risk level, when compared to control. Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.
Collapse
Affiliation(s)
- Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China.
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ruwei Wang
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Zia-Ur-Rehman
- Soil, Water and Environmental Chemistry Laboratory, Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zhiyuan Niu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
44
|
Liao KW, Chang CH, Tsai MS, Chien LC, Chung MY, Mao IF, Tsai YA, Chen ML. Associations between urinary total arsenic levels, fetal development, and neonatal birth outcomes: A cohort study in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1373-1379. [PMID: 28898944 DOI: 10.1016/j.scitotenv.2017.08.312] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Arsenic exposure is a global health concern. Several studies have focused on chronic arsenic exposure in adults; however, limited data are available regarding the potential adverse effects of prenatal exposure on fetuses and neonates. OBJECTIVES To assess which time point maternal arsenic exposure may influence the fetus during pregnancy and birth outcomes. METHODS In this study, total arsenic concentrations were analyzed in urine samples collected from 130 women with singleton pregnancies (22-45years old) in Taiwan from March to December of 2010. All fetal biometric measurements in each trimester period and birth outcomes at delivery were obtained. We applied a generalized estimating equation model and multivariate regression models to evaluate the associations between maternal urinary total arsenic (UtAs) exposure during pregnancy, fetal biometric measurements, and neonatal birth outcomes. RESULTS We observed statistically significant correlations between maternal UtAs levels and the fetal biparietal diameter over all three trimesters (β=-1.046mm, p<0.05). Multiple regression analyses showed a negative association between maternal UtAs levels and chest circumference in the first trimester (β=-0.721cm, p<0.05), and second-trimester UtAs exposure was associated with decreases in birth weight (β=-173.26g, p<0.01), head circumference (β=-0.611cm, p<0.05), and chest circumference (β=-0.654cm, p<0.05). Dose-response relationships were also observed for maternal UtAs exposure and birth outcomes. CONCLUSIONS We identified a negative relationship between maternal UtAs levels during pregnancy, fetal development, and neonatal birth outcomes. These findings should be confirmed in future studies with large sample sizes.
Collapse
Affiliation(s)
- Kai-Wei Liao
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Ming-Song Tsai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, Taipei, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming University, Taipei, Taiwan
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
45
|
Wang N, Wang A, Kong L, He M. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:167-174. [PMID: 28803194 DOI: 10.1016/j.scitotenv.2017.07.268] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
The potential ecological risk index (RI) is a diagnostic tool for pollution control which integrate the concentration of heavy metals with ecological effect, environmental effect and toxicity. However, the lack of toxicity coefficients for specific heavy metals limits its widespread use. In this study, we calculated the toxicity coefficient (=7) for antimony (Sb) based on Hakanson's principles, thus broadening the range of potential applications of this risk assessment tool. Taking the case of Xikuangshan (XKS), the largest Sb mine in the world, we predicted the potential ecological risk factor (Eri) of Sb for sediment and soil. This was then compared with the enrichment factor (EF) and index of geoaccumulation (Igeo). Results showed that Sb shared the similar pollution categories regardless of Eri, EF or Igeo indexes was used indicating the appropriateness of the determined toxicity coefficient. Regression analysis results further demonstrated that Eri was in agreement with bioavailable concentrations (Diffusive Gradient in Thin Films and Community Bureau of Reference extraction concentrations), particularly in sediments. This means that Eri is a reliable and logical index for evaluating Sb pollution in sediments within aquatic environments and in soils within terrestrial environments.
Collapse
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Linghao Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
46
|
Aberrant β-catenin expression in urothelial carcinomas in blackfoot disease-endemic areas. Kaohsiung J Med Sci 2017; 33:11-16. [PMID: 28088268 DOI: 10.1016/j.kjms.2016.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Arsenic is a well-known toxic element and carcinogenic agent. The aim of this study was to investigate p63, E-cadherin, and β-catenin proteins in urothelial carcinoma (UC) in both arsenic contaminated areas [so-called blackfoot disease (BFD) area] and non-BFD areas. The expressions of p63, E-cadherin, and β-catenin proteins in 20 UC cases of blackfoot disease and 22 UC cases in non-BFD areas were detected using immunohistochemical methods. The results revealed a high p63 expression in 20 (47.6%) UC cases and high E-cadherin expression in six (14.3%) UC cases. Expressions of p63 and E-cadherin showed no significant correlations with clinicopathologic parameters. However, all 20 BFD cases and 12 of 22 (54.5%) non-BFD cases showed aberrant β-catenin expression. Ten out of 22 (45.5%) non-BFD cases also had normal membranous immunoreactivity. The β-catenin staining pattern significantly differed between cases in endemic and nonendemic areas of BFD (p=0.001). Tumor sites also significantly correlated with β-catenin expression (p=0.044). In addition, membranous localization of β-catenin was lower in UC from BFD-endemic areas compared with those from non-BFD endemic areas. In conclusion, it is suggested that relocalization of β-catenin from membrane to cytoplasm may be involved in the tumorigenesis of UC from BFD-endemic areas.
Collapse
|
47
|
Cheng YY, Huang NC, Chang YT, Sung JM, Shen KH, Tsai CC, Guo HR. Associations between arsenic in drinking water and the progression of chronic kidney disease: A nationwide study in Taiwan. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:432-439. [PMID: 27669384 DOI: 10.1016/j.jhazmat.2016.09.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
To evaluate the associations between exposure to arsenic in drinking water and the progression of chronic kidney disease (CKD), we conducted a study in Taiwan. We recruited 8854 participants from a nationwide health screening program from 2000 to 2009 who were at least 20 years old and had two checkups in a 24-month period with at least 12 months apart. We defined CKD as having an estimated glomerular filtration rate (eGFR)<90ml/min/1.73m2 or renal dysfunction demonstrated by proteinuria and a rapid progression of CKD as a decline in eGFR>5ml/min/1.73m2/year. Arsenic levels were assessed on the basis of a governmental nationwide survey. Of the 8854 participants, 1341 exhibited rapid progression. Participants who lived in areas with arsenic levels≥50μg/L had a higher risk of rapid progression, with an odds ratio of 1.22 (95% confidence interval: 1.05-1.42, p<0.01) after adjusting for hypertension, diabetes mellitus, proteinuria, and anemia. The results showed that a high arsenic level in drinking water was a risk factor for rapid progression of CKD, independent of most of the documented risk factors. Screening and intervention programs should be implemented in endemic areas of exposure to reduce the risk.
Collapse
Affiliation(s)
- Ya-Yun Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Taiwan
| | - Neng-Chyan Huang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaoshiung, Taiwan
| | - Yu-Tzu Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Junne-Ming Sung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kun-Hung Shen
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Optometry, College of Medicine and Life Science, Chung Hwa University of Medical Technology and Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Department of Urology, Taipei Medical University, Taipei, Taiwan
| | - Chang-Chih Tsai
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Taiwan; Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Occupational Safety, Health, and Medicine Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
48
|
Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol Immunol 2017; 81:118-126. [DOI: 10.1016/j.molimm.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 01/25/2023]
|
49
|
Yousaf B, Liu G, Wang R, Imtiaz M, Zia-Ur-Rehman M, Munir MAM, Niu Z. Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22443-22453. [PMID: 27549232 DOI: 10.1007/s11356-016-7449-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
A verity of human activities i.e. urbanization and industrialization have been resulted serious environmental contaminations by heavy metals in all over the world. The settlement of populations in urban and nearby industrial areas for economic development has significant share in their exposure to these metallic contaminants. Depending on the nature and type of the pollutants, targeted urban-industrial environments can have harmful and chronic health risk impacts on exposed local inhabitants and may require detoxification, healing and remedial therapy. Consequently, environmental monitoring as well as human health risk assessments of urban environments under industrial influence are key dominant features. We believe this work will provide new insights into the studies of metals exposure and associated health risks in emerging industrials cities of developing countries. Present study aimed to study the bioavailability of metals, quantify the changeability in soil and vegetable metal concentrations and estimation of human health risks via dietary exposure, focusing on urban-industrial environment. Soil and vegetable samples were collected in six random sites within the urban, periurban and industrial areas and analyzed for metal concentrations. In addition, risk assessment model proposed by US-EPA was employed to estimate the potential health risk of heavy metals via dietary intake. Results indicated that the heavy metal concentrations were noteworthy in periurban and urban-industrial areas. However, contamination levels varied with the type of vegetable, and the point source pollution such as traffic, urban wastes and industrial effluent. According to the estimated THQ and HI values for non-carcinogenic risk, little or no negative impact of heavy metals was observed on local inhabitants. However, the concentrations of Cr, Cd, Pb and Ni were nearly closed to the permissible limits described by US-EPA in urban-industrial areas. Conclusively, some efficient remedial strategies should be focus to overcome the increasing levels of Cr, Cd, Pb and Ni in this study area to protect the health of local inhabitants.
Collapse
Affiliation(s)
- Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Ruwei Wang
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Imtiaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Zia-Ur-Rehman
- Soil, Water and Environmental Chemistry Laboratory, Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiyuan Niu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
50
|
Sharma S, Kaur J, Nagpal AK, Kaur I. Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:506. [PMID: 27491949 DOI: 10.1007/s10661-016-5507-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/20/2016] [Indexed: 05/11/2023]
Abstract
Arsenic (As) is a carcinogenic metalloid that enters food chain through food and water and poses health risk to living beings. It is important to assess the As status in the environment and risks associated with it. Hence, a risk assessment study was conducted across Ropar wetland, Punjab, India and its environs in pre-monsoon season of 2013, to estimate the risk posed to adults and children via daily consumption of As contaminated groundwater and wheat grains. Arsenic concentrations determined in groundwater, soil and wheat grain samples using atomic absorption spectrometer ranged from 2.90 to 10.56 μg L(-1), 0.06 to 0.12 mg kg(-1) and 0.03 to 0.21 mg kg(-1), respectively. Arsenic in wheat grains showed significant negative correlation with phosphate content in soil indicating a competitive uptake of arsenate and phosphate ions by plants. Principal component analysis and cluster analysis suggested that both natural and anthropogenic factors contribute to variation in As content and other variables studied in soil and groundwater samples. Total cancer risk and hazard index were higher than the USEPA safety limits of 1.00 × 10(-6) and 1, respectively, for both adults and children indicating a high risk of cancer and other health disorders. Consumption of As contaminated wheat grains was found to pose higher risk of cancer and non-cancer health disorders as compared to intake of As contaminated groundwater by both adults and children. Moreover, children were found to be more prone to cancer and other heath disorders due to As exposure via wheat grains and groundwater as compared to adults.
Collapse
Affiliation(s)
- Sakshi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jagdeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Inderpreet Kaur
- Department of Chemistry, Centre of Advance Studies, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|