1
|
Kumar A, Ahamad A, Prasad B, Bux F, Kumari S. Discerning the role of a site cation in ACoO 3 perovskites for boosting Co 3+/Co 2+ redox cycle for pollutant degradation: DFT calculation, mechanism and toxicity evolution. ENVIRONMENTAL RESEARCH 2024; 259:119533. [PMID: 38960354 DOI: 10.1016/j.envres.2024.119533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The degradation of persistent and refractory pollutants, particularly plastic and resins manufacturing wastewater, poses a significant challenge due to their high toxicity and high concentrations. This study developed a novel hybrid ACoO3 (A = La, Ce, Sr)/PMS perovskite system for the treatment of multicomponent (MCs; ACN, ACM and ACY) from synthetic resin manufacturing wastewater. Synthesized perovskites were characterized by various techniques i.e., BET, XRD, FESEM with EDAX, FTIR, TEM, XPS, EIS, and Tafel analysis. Perovskite LaCoO3 exhibited the highest degradation of MCs i.e., ACN (98.7%), ACM (86.3%), and ACY (56.4%), with consumption of PMS (95.2%) under the optimal operating conditions (LaCoO3 dose 0.8 g/L, PMS dose 2 g/L, pH 7.2 and reaction temperature 55 °C). The quantitative contribution (%) of reactive oxygen species (ROS) reveals that SO4•- are the dominating radical species, which contribute to ACN (58.3% for SO4•- radicals) and ACM degradation (46.4% for SO4•- radicals). The tafel plots and EIS spectra demonstrated that perovskites LaCoO3 have better charge transfer rates and more reactive sites that are favorable for PMS activation. Further, four major degradation pathways were proposed based on Fukui index calculations, as well as GC-MS characterization of intermediate byproducts. Based on a stability and reusability study, it was concluded that LaCoO3 perovskites are highly stable, and minimal cobalt leaching occurs (0.96 mg/L) after four cycles. The eco-toxicity assessment performed using QSAR model indicated that the byproducts of the LaCoO3/PMS system are non-toxic nature to common organism (i.e., fish, daphnids and green algae). In addition, the cost of the hybrid LaCoO3/PMS system in a single cycle was estimated to be $34.79 per cubic meter of resin wastewater.
Collapse
Affiliation(s)
- Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4001, South Africa; Chemical Engineering Department, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India.
| | - Abdul Ahamad
- Chemical Engineering Department, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India.
| | - Basheshwer Prasad
- Chemical Engineering Department, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India.
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4001, South Africa.
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4001, South Africa.
| |
Collapse
|
2
|
Tokay Yılmaz FG, Tekin G, Ersöz G, Atalay S. Reclamation of real textile wastewater by sequential advanced oxidation and adsorption processes using corn-cob based materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122196. [PMID: 37495039 DOI: 10.1016/j.envpol.2023.122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Wastewater management has become crucial for sustaining biological life in the near future. One of the key aspects is integration of treatment processes aiming reuse of treated water for many purposes instead of water discharge. This study focused on combining two different methods, photo-Fenton-like oxidation, and adsorption, for treatment of real textile wastewater to improve water quality to be reused for irrigation. The real textile wastewater was collected from a local plant and subjected to photo-Fenton-like oxidation and adsorption as hybrid process. The operational parameters were optimized for each step by assessing the water quality according to the domestic regulations for irrigation water. The photo-Fenton-like oxidation itself was not successful to achieve the targeted water quality for reuse whereas adsorption as an additional step made the treated water reusable in terms of organic content. But the treated water still contained a certain amount of salinity due to extreme salt usage in textile processing. It was concluded that the treated water at the end of hybrid process could be used for salinity resistant plants such as sugar beet, barley, and cotton which demonstrates a promising contribution to the circular economy for biomass.
Collapse
Affiliation(s)
- Fehmiye Gül Tokay Yılmaz
- Ege University, Graduate School of Natural and Applied Sciences, 35100 Bornova, İzmir, Turkey; Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey
| | - Gulen Tekin
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey.
| | - Gülin Ersöz
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey
| | - Süheyda Atalay
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100 Bornova, İzmir, Turkey
| |
Collapse
|
3
|
Saviano L, Brouziotis AA, Suarez EGP, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Spica VR, Lofrano G, Libralato G. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023; 28:6185. [PMID: 37687014 PMCID: PMC10488708 DOI: 10.3390/molecules28176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.
Collapse
Affiliation(s)
- Lorenzo Saviano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- CeSMA Advanced Metrological and Technological Service Center, University of Naples Federico II, 80126 Naples, Italy
| | - Donatella Del Bianco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Maurizio Carotenuto
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| |
Collapse
|
4
|
Meng X, Li Y, Liu Y, Zhou R, Fu Y, Chen J. Degradation of organic pollutants through activating bisulfite with lanthanum ferrite-loaded biomass carbon. RSC Adv 2023; 13:24819-24829. [PMID: 37608974 PMCID: PMC10440633 DOI: 10.1039/d3ra04271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
The removal of methylene blue (MB) in water is a challenging task due to its toxicity, carcinogenicity and resistance to biodegradation. Accordingly, a novel composite catalyst (BC@LF) was prepared by loading lanthanum ferrite (LaFeO3) on biomass carbon (BC) to activate bisulfite (BS) for methylene MB removal in this study. Characterization via scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated that LaFeO3 was successfully loaded on BC. X-ray photoelectron spectroscopy (XPS) analysis suggested that [triple bond, length as m-dash]Fe(iii) was the main active site for BS activation. It was found that 99.4% MB was removed within 60 min in BC@LF/BS system. Sulfate radical (SO4˙-) and hydroxyl radicals (HO˙) were proved to be responsible for MB removal in the BC@LF/BS system and SO5˙- might also be involved in MB removal. The degradation efficiency of MB in the BC@LF/BS system decreased with increasing pH, while the adsorption efficiency of BC@LF for MB improved with increasing pH. Additionally, BC@LF exhibited good reusability for BS activation in successive uses. The BC@LF/BS system exhibited favorable removal effect for various organic compounds, indicating that it has good applicability in the treatment of organic wastewater.
Collapse
Affiliation(s)
- Xiangyu Meng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Yao Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Runyu Zhou
- Zhejiang Development & Planning Institute Hangzhou 310012 China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Junmin Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| |
Collapse
|
5
|
Hou L, Wang Y, Zhou F, Liu S, Fu L, Wang L, Zhang C, Xue W. A Visible-Light-Enhanced Heterogeneous Photo Degradation of Tetracycline by a Nano-LaFeO 3 Catalyst with the Assistance of Persulfate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1388. [PMID: 37110973 PMCID: PMC10143534 DOI: 10.3390/nano13081388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Perovskites with nano-flexible texture structures and excellent catalytic properties have attracted considerable attention for persulfate activation in addressing the organic pollutants in water. In this study, highly crystalline nano-sized LaFeO3 was synthesized by a non-aqueous benzyl alcohol (BA) route. Under optimal conditions, an 83.9% tetracycline (TC) degradation and 54.3% mineralization were achieved at 120 min by using a coupled persulfate/photocatalytic process. Especially compared to LaFeO3-CA (synthesized by a citric acid complexation route), the pseudo-first-order reaction rate constant increased by 1.8 times. We attribute this good degradation performance to the highly specific surface area and small crystallite size of the obtained materials. In this study, we also investigated the effects of some key reaction parameters. Then, the catalyst stability and toxicity tests were also discussed. The surface sulfate radicals were identified as the major reactive species during the oxidation process. This study provided a new insight into nano-constructing a novel perovskite catalyst for the removal of tetracycline in water.
Collapse
Affiliation(s)
- Liwei Hou
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yanan Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fan Zhou
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shuangyue Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
6
|
Sharma S, Qadir I, Atri AK, Singh S, Manhas U, Singh D. Solvent-Free Combustion-Assisted Synthesis of LaFe 0.5Cr 0.5O 3 Nanostructures for Excellent Photocatalytic Performance toward Water Decontamination: The Effect of Fuel on Structural, Magnetic, and Photocatalytic Properties. ACS OMEGA 2023; 8:555-570. [PMID: 36643435 PMCID: PMC9835188 DOI: 10.1021/acsomega.2c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The present study reports the synthesis of nanocrystalline LaFe0.5Cr0.5O3 via a solvent-free combustion method using glycine, poly(vinyl alcohol), and urea as fuels, with superior photocatalytic activity. Rietveld refinement and powder X-ray diffraction data of nanomaterials demonstrate the existence of an orthorhombic phase that corresponds to the Pbnm space group. The crystallite size of nanoperovskite samples lies in the range of 20.9-36.4 nm. The Brunauer-Emmett-Teller (BET) surface area of the LaFe0.5Cr0.5O3 fabricated using urea is found to be higher than that of the samples prepared using other fuels. The magnetic measurements of all samples done using a SQUID magnetometer showed a dominant antiferromagnetic character along with some weak ferromagnetic interactions. The optical band gap of all nanosamples lies in the visible range (2-2.6 eV), making them suitable photocatalysts in visible light. Their use as a photocatalyst for the degradation of the rhodamine B dye (model pollutant) is studied, and it has been observed that the catalyst fabricated using urea shows excellent degradation efficiency for rhodamine B, i.e., 99% in 60 min, with high reusability up to five runs. Additionally, the degradation of other organic dyes such as methylene blue, methyl orange, and a mixture of these dyes (rhodamine B + methylene blue + methyl orange) is also investigated with the most active photocatalyst, i.e., LFCO-U, to check its versatility.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Chemistry, University of Jammu, Jammu180006, India
| | - Irfan Qadir
- Department of Chemistry, University of Jammu, Jammu180006, India
| | - Amit Kumar Atri
- Department of Chemistry, University of Jammu, Jammu180006, India
| | - Sumit Singh
- Department of Chemistry, University of Jammu, Jammu180006, India
| | - Ujwal Manhas
- Department of Chemistry, University of Jammu, Jammu180006, India
| | - Devinder Singh
- Department of Chemistry, University of Jammu, Jammu180006, India
| |
Collapse
|
7
|
LaRuO3 perovskites as effective and reusable heterogeneous catalysts to activate peroxymonosulfate for carbamazepine degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Li J, Zhong D, Chen Y, Li K, Ma W, Zhang S, Zhang J, Sun A, Xie H. Copper-based Ruddlesden-Popper perovskite oxides activated hydrogen peroxide for coal pyrolysis wastewater (CPW) degradation: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114591. [PMID: 36272586 DOI: 10.1016/j.envres.2022.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Coal pyrolysis wastewater (CPW) contained all kinds of toxic and harmful components, which would seriously threaten the natural environment and human health. However, the traditional advanced oxidation processes frequently failed to remove phenolic substances. An A2BO4-type perovskite (La2CuO4) was successfully synthesized through sol-gel process and first applied in the treatment of CPW. More than 90% of 3, 5-dimethylphenol (DMP) was removed within 200 min at neutral conditions. Moreover, La2CuO4 also displayed excellent catalytic activity and stability in the actual CPW treatment process. Results demonstrated that DMP was removed through the attack of ∙OH, ∙O2- and 1O2 in La2CuO4/H2O2 system. The La2CuO4 were more favorable for H2O2 activation and have a lower adsorption energy than LaFeO3. XPS of fresh and spent La2CuO4 illustrated that the decomposition of hydrogen peroxide (H2O2) was mainly due to the redox cycle between surface copper and oxygen species. Moreover, the possible degradation pathway of DMP was deduced by identifying degradation products and analyzing density functional theory (DFT) calculations. This research provided a novel strategy for the development of perovskite-based catalytic materials on the treatment of practical CPW.
Collapse
Affiliation(s)
- Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineer Research Center of Urban Water Resources, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiru Chen
- Quanzhoushi Water Co., Ltd, Quanzhou, 362000, China
| | - Kefei Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineer Research Center of Urban Water Resources, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aoshuang Sun
- Huahui Engineering Design Group Co., Ltd, Shaoxing, 312000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310003, China
| |
Collapse
|
9
|
Pan K, Hou H, Hu J, Yang J, Xiang J, Li C, Xu C, Chen S, Liang S, Yang J. Ca and Cu doped LaFeO 3 to promote coupling of photon carriers and redox cycling for facile photo-Fenton degradation of bisphenol A. CHEMOSPHERE 2022; 308:136325. [PMID: 36084826 DOI: 10.1016/j.chemosphere.2022.136325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Enhancements in the light response and hydrogen peroxide utilization are critical to the catalytic performance of heterogeneous Fenton-like perovskites. Here, in this research, oxygen vacancy-enriched La0.9Ca0.1Cu0.5Fe0.5O3-δ was prepared by a co-precipitation method with Cu substitution and Ca doping and demonstrated excellent performance for the degradation of bisphenol A. Both total organic carbon (TOC) removal and hydrogen peroxide utilization were close to 90% within 120 min at pH 3-7, where the TOC removal and hydrogen peroxide utilization were 2.5 times and 5.5 times of LaFeO3 in the absence of Ca and Cu doping. It demonstrated excellent stability to light irradiation and oxidation with respect to cycling and metal ion leaching. This revealed that oxygen vacancies were enriched in the catalyst with the substitution of Ca and Cu and contributed to the recombination of photogenerated electrons, thereby increasing the reduction efficiency of copper ions and accelerating the redox cycling of iron ions.
Collapse
Affiliation(s)
- Keliang Pan
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Resource and Ecological Environment Geology, Wuhan, Hubei, 430034, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Jun Yang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jianqiao Xiang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Chuncheng Li
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Chunyan Xu
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
10
|
Abstract
Nowadays, water pollution is one of the most dangerous environmental problems in the world. The presence of the so-called emerging pollutants in the different water bodies, impossible to eliminate through conventional biological and physical treatments used in wastewater treatment plants due to their persistent and recalcitrant nature, means that pollution continues growing throughout the world. The presence of these emerging pollutants involves serious risks to human and animal health for aquatic and terrestrial organisms. Therefore, in recent years, advanced oxidation processes (AOPs) have been postulated as a viable, innovative and efficient technology for the elimination of these types of compounds from water bodies. The oxidation/reduction reactions triggered in most of these processes require a suitable catalyst. The most recent research focuses on the use and development of different types of heterogeneous catalysts, which are capable of overcoming some of the operational limitations of homogeneous processes such as the generation of metallic sludge, difficult separation of treated water and narrow working pH. This review details the current advances in the field of heterogeneous AOPs, Fenton processes and photocatalysts for the removal of different types of emerging pollutants.
Collapse
|
11
|
Fu W, Yi J, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Wang G, Yang X. When bimetallic oxides and their complexes meet Fenton-like process. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127419. [PMID: 34673389 DOI: 10.1016/j.jhazmat.2021.127419] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The heterogeneous Fenton-like reaction is an advanced oxidation process, which is widely recognized for its efficient removal of recalcitrant organic contaminants. In recent years, the construction of efficient and reusable heterogeneous Fenton-like catalysts has been extensively investigated. Recently, the use of bimetallic oxides and their complexes as catalysts for Fenton-like reaction has attracted intense attention due to their high catalytic performance and excellent stability over a wide pH range. In this article, the fundamental mechanisms of Fenton-like reactions were briefly introduced. The important reports on bimetallic oxides and their complexes are classified in detail, which are mainly divided into Fe-based and Fe-free bimetallic catalysts. We then focused in depth on the performance of their respective applications in Fenton-like reactions. Special consideration has been given to the respective contributions and synergistic mechanisms of the two metals in catalysts. Overall, it is concluded that synergistic effect of the two metals in the bimetallic catalyst can boost the utilization of hydrogen peroxide, provide adequate accessible active sites, which are all beneficial to improve catalytic performance. Finally, the current challenges in this field were proposed. Our review is expected to provide help for the application of bimetallic oxides and their complexes.
Collapse
Affiliation(s)
- Wenhong Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jing Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bo Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaofeng Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
Ji R, Chen J, Liu T, Zhou X, Zhang Y. Critical review of perovskites-based advanced oxidation processes for wastewater treatment: Operational parameters, reaction mechanisms, and prospects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Hu ZT, Jin ZY, Gong SY, Wei X, Zhao J, Hu M, Zhao J, Chen Z, Pan Z, Li X. Supermagnetic Mn-substituted ZnFe 2O 4 with AB-site hybridization for the ultra-effective catalytic degradation of azoxystrobin. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00142j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic Zn0.25Mn0.75Fe2O4 was applied to the degradation of azoxystrobin in a Fenton-like system, and the performance was enhanced via crystal structure control.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| | - Zi-Yan Jin
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Si-Yan Gong
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Jia Zhao
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR
| | - Zhong Chen
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Xiaonian Li
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| |
Collapse
|
14
|
Biton Seror S, Shamir D, Albo Y, Kornweitz H, Burg A. Elucidation of a mechanism for the heterogeneous electro-fenton process and its application in the green treatment of azo dyes. CHEMOSPHERE 2022; 286:131832. [PMID: 34399265 DOI: 10.1016/j.chemosphere.2021.131832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Vast efforts are directed today toward the development of efficient, green methods for the degradation of toxic compounds, especially those that are water-soluble. Though Fenton reactions are commonly used in wastewater treatment, their mechanisms and the active species involved remain obscure due to their mechanistic complexity. In this work, the mechanism of an electro-Fenton reaction, in which a FeLaO3 catalyst was entrapped in a sol-gel matrix, was studied in the presence of azo dyes as the model for toxic compounds. Increased knowledge about this important mechanism will confer greater control over related processes and enable a more efficient and green degradation method. DFT calculations showed that in the presence of Fe(IV), OH are formed under acidic conditions and that both the iron and hydroxyl species function as oxidation reagents in the degradation process. The structure of the formed Fe(IV) embedded in the solid matrix was not the typical tetravalent structure. Entrapment in the sol-gel matrix stabilized the catalyst, enhanced its efficiency and enabled it to be recycled. Sol-gel matrices constitute a simple method for the degradation of stable and toxic compounds under extreme pH conditions. The findings of this study are highly significant for the treatment of typically acidic wastewaters.
Collapse
Affiliation(s)
- Shira Biton Seror
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410802, Israel
| | - Dror Shamir
- Analytical Chemistry Department, NRCN, Beer-Sheva, 84190, Israel
| | - Yael Albo
- Chemical Engineering Department, Ariel University, Ariel, 40700, Israel
| | - Haya Kornweitz
- Chemical Sciences Department, Ariel University, Ariel, 40700, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410802, Israel.
| |
Collapse
|
15
|
In-Situ H 2O 2 Cleaning for Fouling Control of Manganese-Doped Ceramic Membrane through Confined Catalytic Oxidation Inside Membrane. MEMBRANES 2021; 12:membranes12010021. [PMID: 35054547 PMCID: PMC8777854 DOI: 10.3390/membranes12010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
This work presents an effective approach for manganese-doped Al2O3 ceramic membrane (Mn-doped membrane) fouling control by in-situ confined H2O2 cleaning in wastewater treatment. An Mn-doped membrane with 0.7 atomic percent Mn doping in the membrane layer was used in a membrane bioreactor with the aim to improve the catalytic activity toward oxidation of foulants by H2O2. Backwashing with 1 mM H2O2 solution at a flux of 120 L/m2/h (LMH) for 1 min was determined to be the optimal mode for in-situ H2O2 cleaning, with confined H2O2 decomposition inside the membrane. The Mn-doped membrane with in-situ H2O2 cleaning demonstrated much better fouling mitigation efficiency than a pristine Al2O3 ceramic membrane (pristine membrane). With in-situ H2O2 cleaning, the transmembrane pressure increase (ΔTMP) of the Mn-doped membrane was 22.2 kPa after 24-h filtration, which was 40.5% lower than that of the pristine membrane (37.3 kPa). The enhanced fouling mitigation was attributed to Mn doping, in the Mn-doped membrane layer, that improved the membrane surface properties and confined the catalytic oxidation of foulants by H2O2 inside the membrane. Mn3+/Mn4+ redox couples in the Mn-doped membrane catalyzed H2O2 decomposition continuously to generate reactive oxygen species (ROS) (i.e., HO• and O21), which were likely to be confined in membrane pores and efficiently degraded organic foulants.
Collapse
|
16
|
Wang Z, Liu T, Duan H, Song Y, Lu X, Hu S, Yuan Z, Batstone D, Zheng M. Post-treatment options for anaerobically digested sludge: Current status and future prospect. WATER RESEARCH 2021; 205:117665. [PMID: 34547700 DOI: 10.1016/j.watres.2021.117665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion is the most commonly used sludge treatment technology in large-scale wastewater treatment plants (WWTPs), generating two main products, i.e., biogas and anaerobically digested (AD) sludge. Biogas can be used as a source of renewable energy, and AD sludge is often transported for agricultural land application. Land application of AD sludge is confronted with ever-increasing economic and regulatory pressures due to its high water content, high organic content and related odour and pathogen content (if poorly stabilized), as well as potential toxic metal and organic contaminants. To address these challenges, a number of technologies have been developed for the further treatment of AD sludge before final disposal. This review aims to critically evaluate these state-of-the-art technologies. These technologies were categorized based on their primary aims: 1) dewaterability enhancement; 2) solids reduction and stabilization; 3) toxic metals removal. At present, the goal of post-treatment mainly focuses on dewaterability enhancement, to reduce transport costs. In future, we propose that the post-treatment of AD sludge should orient towards multiple aims, i.e., an integrated approach enabling sludge volume reduction, stabilization (including pathogen removal), and metal solubilization simultaneously. Two promising technical routes are suggested as examples, i.e. physio-chemical iron-based advanced oxidation and biological acidic aerobic digestion, while more approaches need to be developed in future studies. We concluded that post-treatment of AD sludge will promote the AD sludge management towards a more economically favourable, socially acceptable, and environmentally sustainable way; however, further development and rigorous evaluation are required for a wider adoption.
Collapse
Affiliation(s)
- Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xi Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Damien Batstone
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
17
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
18
|
Degradation of organics using LaFeO3 as a persulfate activator under low-intensity ultra-violet-light irradiation: Catalytic performance and mechanism. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Girón-Navarro R, Linares-Hernández I, Teutli-Sequeira EA, Martínez-Miranda V, Santoyo-Tepole F. Evaluation and comparison of advanced oxidation processes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26325-26358. [PMID: 33825107 DOI: 10.1007/s11356-021-13730-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides have generated public concern worldwide because of their toxicity to human health and the environment, even at low concentrations, and their persistence, being mostly nonbiodegradable. The use of 2,4-dichlorophenoxyacetic acid (2,4-D) has increased in recent decades, causing severe water contamination. Several treatments have been developed to degrade 2,4-D. This manuscript presents an overview of the physicochemical characteristics, uses, regulations, environmental and human health impacts of 2,4-D, and different advanced oxidation processes (AOPs) to degrade this organic compound, evaluating and comparing operation conditions, efficiencies, and intermediaries. Based on this review, 2,4-D degradation is highly efficient in ozonation (system O3/plasma, 99.8% in 30 min). Photocatalytic, photo-Fenton, and electrochemical processes have the optimal efficiencies of degradation and mineralization: 97%/79.67% (blue TiO2 nanotube arrays//UV), 100%/98% (Fe2+/H2O2/UV), and 100%/84.3% (MI-meso SnO2), respectively. The ozonation and electrochemical processes show high degradation efficiencies, but energy costs are also high, and photocatalysis is more expensive with a separation treatment used to recover the catalyst in the solution. The Fenton process is a viable economic-environmental option, but degradation efficiencies are often low (50-70%); however, they are increased when solar UV radiation is used (90-100%). AOPs are promising technologies for the degradation of organic pollutants in real wastewater, so evaluating their strengths and weaknesses is expected to help select viable operational conditions and obtain optimal efficiencies.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México.
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México
- Cátedras del Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor. Alcaldía Benito Juárez, C.P 03940, Ciudad de México, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México.
| | - Fortunata Santoyo-Tepole
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Ciudad de México, México
| |
Collapse
|
20
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Tian X, Wang X, Nie Y, Yang C, Dionysiou DD. Hydroxyl Radical-Involving p-Nitrophenol Oxidation during Its Reduction by Nanoscale Sulfidated Zerovalent Iron under Anaerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2403-2410. [PMID: 33543936 DOI: 10.1021/acs.est.0c07475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfidated zerovalent iron (S-ZVI) has been extensively used for reducing pollutants. In this study, the oxidation process in the reductive removal of p-nitrophenol (PNP) by S-ZVI was confirmed under anaerobic conditions. We revealed that a PNP oxidation process involving •OH resulted from the H2O2 activation by surface-bound Fe(II) in S-ZVI, in which H2O2 was generated via a surface-mediated reaction between water and FeS2. Only the PNP reduction process occurred for ZVI. Herein, efficient PNP degradation by S-ZVI resulted from two functions: reduction into p-aminophenol due to enhanced electron transfer and PNP oxidation into p-benzoquinone by •OH radicals from the interaction of surface-bound Fe(II) and in situ generated H2O2, the contributions of the oxidation and reduction processes to PNP degradation over S-ZVI were 10 and 90%, respectively. Sulfur in S-ZVI suppressed the pH increase in the reaction media and produced more surface-bound Fe(II) than ZVI for •OH generation via the heterogeneous Fenton reaction process. Since different degradation pathways could lead to different effects on the water environment, such as toxicity, our findings suggest that the oxidizing process induced by S-ZVI during groundwater decontamination should be considered.
Collapse
Affiliation(s)
- Xike Tian
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiang Wang
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yulun Nie
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chao Yang
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| |
Collapse
|
22
|
Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: A review of recent advances. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124082. [PMID: 33069994 PMCID: PMC7530584 DOI: 10.1016/j.jhazmat.2020.124082] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 05/17/2023]
Abstract
Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.
Collapse
Affiliation(s)
- Nishanth Thomas
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland.
| |
Collapse
|
23
|
Kumar A, Prasad B, Garg KK. Catalytic peroxidation of acrylic acid from aqueous solution incorporated with highly active La 0.5Sr 0.5BO 3 (B=Cu, Fe and Ni) perovskite-like catalysts. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:897-913. [PMID: 33312611 PMCID: PMC7721942 DOI: 10.1007/s40201-020-00514-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/07/2020] [Indexed: 06/12/2023]
Abstract
In the current study, catalytic behaviour of La0.5Sr0.5BO3 (B=Cu, Fe and Ni) perovskite-like catalysts synthesized by sol-gel method were examined in catalytic peroxidation of acrylic acid as a model organic compound and further characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The effect of various parameters such as catalyst dose, H2O2/acrylic acid molar ratio, temperature, pH and initial acrylic acid concentration on acrylic acid and COD removal was studied. The maximum acrylic acid and COD removal of 86.79% and 71.57% were observed at optimum operating conditions (e.g., La0.5Sr0.5CuO3 catalyst dose = 600 mg/L, stoichiometric molar ratio of H2O2/acrylic acid = 1.5, pH = 3, temperature 65 °C and reaction time = 3 h). The ROS scavenging studies were performed to identify in-situ generated reactive oxidant species, e.g., hydroxyl radicals (•OH), superoxide radicals (O2 •־) and singlet oxygen (1O2) and treated with their respective quencher during catalytic peroxidation of acrylic acid. Acrylic acid removal kinetics was performed by first order and Langmuir-Hinshelwood kinetic models. The plausible degradation mechanism was proposed based on intermediates identified by GC-MS analysis during catalytic peroxidation of acrylic acid.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Basheswar Prasad
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Krishan Kishor Garg
- Ministry of Environmental, Forest & Climate Change, Government of India, Northern Regional office, 160030, Chandigarh, India
| |
Collapse
|
24
|
Hu ZT, Liu JW, Zhao J, Ding Y, Jin Z, Chen J, Dai Q, Pan B, Chen Z, Chen J. Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways. J Colloid Interface Sci 2020; 577:54-65. [DOI: 10.1016/j.jcis.2020.05.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
25
|
Tian Y, He X, Zhou H, Tian X, Nie Y, Zhou Z, Yang C, Li Y. Efficient fenton-like degradation of ofloxacin over bimetallic Fe-Cu@Sepiolite composite. CHEMOSPHERE 2020; 257:127209. [PMID: 32502736 DOI: 10.1016/j.chemosphere.2020.127209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/25/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
An effective method for increasing the utilization efficiency of active components in heterogeneous Fenton-like catalysts was provided. 1.5 at.% Fe-Cu bimetal on 1D sepiolite (Sep) (D-FeCu@Sep) with high dispersion and reduced chemical valence was prepared via complexation-carbonization process of glutathione. 93% of ofloxacin (OFX, a typical antibiotic of emerging concern) was degraded over D-FeCu@Sep without any extra energy input at the optimum conditions (100 mL 10 mg/L OFX, pH 5.0, 3.0 g/L catalyst and 0.03 M H2O2), which was enhanced by 2.3, 3.0 and 1.7 times compared with aggregated Fe-Cu on Sep (A-FeCu@Sep), monometallic Fe on Sep (D-Fe@Sep) and Fe-Cu on blocky Celite (D-FeCu@Celite), respectively. Moreover, it exhibited an excellent performance at a wide working pH range from acidic to neutral conditions (pH 3.2-7.2) with a satisfied stability. Based on the characterizations of X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H2-TPR) and electrochemical impedance spectroscopy (EIS), the proposed complexation-carbonization process of glutathione played an important role in the good Fenton performance of D-FeCu@Sep. The complexation of Fe and Cu ion by glutathione favors the high dispersion of Fe-Cu active component, afterward the reduced chemical valence results from carbonization process of glutathione. Moreover, the 1D nanofibrous structure of D-FeCu@Sep could greatly increase the surface electron transfer efficiency compared with D-FeCu@Celite. This study provides a method alternative to the heterogeneous Fenton chemistry by increasing the utilization efficiency of active components.
Collapse
Affiliation(s)
- Yayang Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiaoyu He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, PR China
| | - Hui Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhaoxin Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
26
|
Paracetamol Degradation by Catalyst Enhanced Non-Thermal Plasma Process for a Drastic Increase in the Mineralization Rate. Catalysts 2020. [DOI: 10.3390/catal10090959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In order to remediate the very poor mineralization of paracetamol in water, even when well degraded by using a Non-Thermal Plasma (NTP) process at a very low dissipated power, a plasma-catalyst coupling process was tested and investigated. A homemade glass fiber supported Fe3+ catalyst was immersed in the liquid to be treated in a Dielectric Barrier Discharge plasma reactor. The plasma-catalysis process, at the same low dissipated power, achieved a mineralization rate of 54% with a full conversion rate of paracetamol at 25 mg L−1 in initial concentration after 60 min treatment, thanks to Fenton-like effects. The synergetic effects of the plasma-catalysis coupling process also improved the Energy Yield by a factor of two. The catalyst before and after use for treatment was characterized by Brunauer-Emmett-Teller and Thermogravimetric analysis. High-Performance Liquid Chromatography was used to measure the concentration of treated solution and to investigate the intermediates. Two of them, namely 1,4-hydroquinone and 1,4-benzoquinone, were formally identified. Some intermediates are presented in this paper as a function of treatment time and their UV absorbance spectra. NTP processes with and without catalyst coupling were compared in terms of acidity, conductivity, and nitrate concentrations in the treated solution.
Collapse
|
27
|
Abstract
The adsorption of O2 on Pt(111) was studied with Density Functional Theory calculations. Various adsorbed states of O2 were evaluated on clean and OH/H2O-covered Pt(111) surfaces at the solid/gas and solid/liquid interfaces. The results reveal that the adsorption of O2 on OH/H2O-covered Pt(111) surface starts with the physical adsorption of O2. Two other adsorption states are reachable from the physisorbed state, the end-on, and bridging chemisorbed O2. Analysis of the energetics of these adsorption states shows that O2 physically adsorbed at the OH/H2O-covered Pt( 111) surface is a high energy state that requires activation to transition to the end-on chemisorbed O2 state. On the other hand, the end-on chemisorbed state can transition to the bridging chemisorbed state with only a small activation energy when a nearby Pt adsorption site is available. Frequency analysis of the physisorbed, end-on, and bridging adsorption states shows that adsorbed O2 stretching frequencies are close to 1400, 1300, and 900 cm-1, respectively.
Collapse
|
28
|
Feng Q, Zhou J, Luo W, Ding L, Cai W. Photo-Fenton removal of tetracycline hydrochloride using LaFeO 3 as a persulfate activator under visible light. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110661. [PMID: 32335418 DOI: 10.1016/j.ecoenv.2020.110661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In this work, LaFeO3 nanoparticles were fabricated by a facile sol-gel method and applied to degrade tetracycline hydrochloride (TC-HCl) through heterogeneous activation of persulfate under visible-light illumination. The structure, compositions, photocatalytic properties, and morphological features of the as-obtained sample were investigated by XRD, XPS, DRS, and FESEM techniques. Optimizations of dosage of LaFeO3 (0-0.4 g/L), dosage of PS (0-4 g/L), concentration of TC-HCl (10 ppm-80 ppm), and pH of initial solution (2.09-9.59) were conducted. Radical trapping experiments indicated that SO4- was the dominant radical for TC-HCl removal while OH was also involved. In addition, LaFeO3 was proved with excellent stability and reusability in degrading TC-HCl molecules in the Vis/LaFeO3/PS system. The findings of this work revealed the potential application of the Vis/LaFeO3/PS system toward degrading organic pollutants in wastewater.
Collapse
Affiliation(s)
- Qinqin Feng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wenjia Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Lidan Ding
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
29
|
Tian Y, He X, Chen W, Tian X, Nie Y, Han B, Lin HM, Yang C, Wang Y. Significant enhancement of photo-Fenton degradation of ofloxacin over Fe-Dis@Sep due to highly dispersed FeC 6 with electron deficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138144. [PMID: 32224407 DOI: 10.1016/j.scitotenv.2020.138144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
An efficient strategy for enhancing iron efficiency in heterogeneous Fenton reaction via the pyrolysis of ferrocene chemically modified sepiolite (Sep) was proposed in this study. Highly dispersed FeC6 on sepiolite (Fe-Dis@Sep) was synthesized as an efficient photo-Fenton catalyst for the visible light degradation of ofloxacin (OFX). It exhibits an excellent Fenton activity and stability towards OFX degradation. The pseudo-first order reaction rate constant of Fe-Dis@Sep was 5.1-fold higher than that of the supported catalyst with aggregated iron oxides prepared by traditional impregnation method (Fe-Agg@Sep). Based on TEM images and density functional theory (DFT) calculation, the enhanced Fenton activity of Fe-Dis@Sep was attributed to the unique incorporation of FeC6 on Sep via Si-O-C-Fe bond which not only favor the high dispersion of FeC6 with an electron deficiency but also promote Fe(III) to Fe(II) cycle via the formation of surface Fe-H2O2 complex. OH and O2- were identified as active species for OFX degradation in Fe-Dis@Sep-H2O2-Vis system. 98.7% of F and 97.0% of N in OFX was converted into F- and NO3- with a TOC removal efficiency of 89.35%. The possible degradation pathway of OFX was also proposed according to HPLC-MS results. Finally, the Fenton reaction mechanism over Fe-Dis@Sep was discussed.
Collapse
Affiliation(s)
- Yayang Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xiaoyu He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, PR China
| | - Wei Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Hong-Ming Lin
- Department Materials Engineering, Tatung University, 104 Taipei, PR China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
30
|
Meng W, Wang Y, Zhang Y, Liu C, Wang Z, Song Z, Xu B, Qi F, Ikhlaq A. Degradation Rhodamine B dye wastewater by sulfate radical-based visible light-fenton mediated by LaFeO3: Reaction mechanism and empirical modeling. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Zhang D, Chen M, Zou H, Zhang Y, Hu J, Wang H, Zi B, Zhang J, Zhu Z, Duan L, Liu Q. Microwave-assisted synthesis of porous and hollow α-Fe 2O 3/LaFeO 3 nanostructures for acetone gas sensing as well as photocatalytic degradation of methylene blue. NANOTECHNOLOGY 2020; 31:215601. [PMID: 32032011 DOI: 10.1088/1361-6528/ab73b5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To address the urgent issues of hazardous gas detection and the prevention of environmental pollution, various functional materials for gas sensing and catalytic reduction have been studied. Specifically, the p-type perovskite LaFeO3 has been studied widely because of its promising physicochemical properties. However, there remains several problems to develop a controllable synthesis of LaFeO3-based p-n heterojunctions. In this work, α-Fe2O3 was further compounded with LaFeO3 to form a porous and hollow α-Fe2O3/LaFeO3 heterojunction to improve its gas-sensing performance and photocatalytic efficiency via a microwave-assisted hydrothermal method. While evaluated as sensors of acetone gas, the optimized sample exhibits excellent performance, including a high response (48.3), excellent selectivity, good reversibility, fast response, and recovery ability. Furthermore, it is an efficient catalyst for the degradation of methylene blue. This can be attributed to the enhancement effect of its larger specific surface area, fast diffusion, enhanced surface activities, and p-n heterojunction. Additionally, this work provides a rapid and rational synthesis strategy to produce metal oxides with both enhanced gas-sensing performance and improved photocatalytic properties.
Collapse
Affiliation(s)
- Dongming Zhang
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/nano Materials & Technology, Yunnan University, Kunming 650091, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pan K, Yang C, Hu J, Yang W, Liu B, Yang J, Liang S, Xiao K, Hou H. Oxygen vacancy mediated surface charge redistribution of Cu-substituted LaFeO 3 for degradation of bisphenol A by efficient decomposition of H 2O 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122072. [PMID: 31978817 DOI: 10.1016/j.jhazmat.2020.122072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 05/29/2023]
Abstract
The novel catalyst LaCu0.5Fe0.5O3-δ with oxygen vacancies (OVs) was prepared and demonstrated excellent stability and activity for the degradation of bisphenol A. The removal rate of 92.1 % and H2O2 utilization efficiency of 70.4 % were obtained due to the efficient hydroxyl radical generation mediated by OVs. The density functional theory calculation showed that the substitution of Cu and formation of OVs significantly increases the charge density near the active sites. Bader charge analysis revealed that the charge offset accelerated the reduction of Fe. The elevation of electron transfer efficiency also promotes the valence transition of copper and iron atoms. The reversible electronic transition between Fe2+ ⇆ Fe3+, Cu+ ⇆ Cu2+ and Cu2+ ⇆ Fe2+ involved in this reaction were considered to be enhanced and the homolytic bond clearage of H2O2 was simultaneously promoted, facilitated by the electron-rich region combined with OVs on the surface of LaCu0.5Fe0.5O3-δ.
Collapse
Affiliation(s)
- Keliang Pan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Changzhu Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Wenlong Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
33
|
Guo H, Zhou X, Zhang Y, Yao Q, Qian Y, Chu H, Chen J. Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: Performance, mechanism and toxicity. J Environ Sci (China) 2020; 91:10-21. [PMID: 32172958 DOI: 10.1016/j.jes.2020.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The widely used carbamazepine (CBZ) is one of the most persistent pharmaceuticals and suffers insufficient removal efficiency by conventional wastewater treatment. A synthesized Co-based perovskite (LaCoO3) was used to activate peroxymonosulfate (PMS) in order to degrade CBZ. Results showed that LaCoO3 exhibited an excellent performance in PMS activation and CBZ degradation at neutral pH, with low cobalt leaching. The results of FT-IR and XPS verified the high structurally and chemically stability of LaCoO3 in PMS activation. Electron spin resonance (ESR) analysis suggested the generation of radical species, such as sulfate radicals (SO4-) and hydroxyl radicals (OH). Radical quenching experiments further revealed the responsibility of SO4- as the dominant oxidant for CBZ oxidation. Ten products were detected via the oxidation of CBZ, with the olefinic double bond attacked by SO4- as the initial step. Hydroxylation, hydrolysis, cyclization and dehydration were involved along the transformation of CBZ. The toxicity of CBZ solution was significantly reduced after treating by PMS/LaCoO3.
Collapse
Affiliation(s)
- Huichao Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiufang Yao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
34
|
Li X, Xiao B, Wu M, Wang L, Chen R, Wei Y, Liu H. In-situ generation of multi-homogeneous/heterogeneous Fe-based Fenton catalysts toward rapid degradation of organic pollutants at near neutral pH. CHEMOSPHERE 2020; 245:125663. [PMID: 31877454 DOI: 10.1016/j.chemosphere.2019.125663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, an in-situ generated multi-homogeneous/heterogeneous Fe-based catalytic system was developed, which exhibited a high efficiency for the production of •OH and rapid degradation of various organic pollutants in a near neutral pH range (5-8). The mechanism for the rapid decomposition of H2O2 and the generation of •OH were investigated in detail. The results indicated that, besides the introduced Fe2+, the in-situ generated various iron species including Fe(OH)+, Fe(OH)2, Fe3+, ferrihydrite (Fh), γ-FeOOH and α-FeOOH as well as FeII/Fh, FeII/γ-FeOOH and FeII/α-FeOOH could simultaneously act as homogeneous and heterogeneous Fenton reaction catalysts. The dropwise addition manner of Fe2+ greatly improved the catalytic efficiency of Fe2+ ions in near neutral pH environment, while the in-situ generated nanosized Fh, γ-FeOOH and α-FeOOH could supply numerous active catalytic sites. After degradation, the ferrous ions could be transformed to various crystalline iron oxides by the catalytic phase transformation. This study presents a method towards the rational design of novel Fenton catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Xuqing Li
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Xiao
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Wu
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lin Wang
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Rufen Chen
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yu Wei
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Liu
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
35
|
Kong Y, Zhuang Y, Shi B. Tetracycline removal by double-metal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121060. [PMID: 31585409 DOI: 10.1016/j.jhazmat.2019.121060] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Polymer hydrogel usually has limited catalytic activity and stability in Fenton catalysis. Here, we presented for the first time the preparation of a novel double-metal-crosslinked alginate hydrogel using graphene oxide to facilitate the Fe(II)/Fe(III) redox cycles. Five multivalent metal cations were used as crosslinkers to prepare different alginate-GO-M (Fe(III), Fe(II), La(III), Ce(III), and Co(II)), and the effects of assisted metal cations (La(III), Ce(III), and Co(II)) on different Fe(II) bimetallic alginate-GO-Fe-M(AG-Fe-M) complexes were investigated. Double-metal-crosslinked alginate-GO hydrogels can degrade tetracycline much faster during the initial 10 min than single-metal-crosslinked hydrogels. In addition, the release of iron from AG-Fe-Ce (10.59 ppm) was less than that from AG-Fe-Co (21.57 ppm) and AG-Fe-La (25.6 ppm) during the Fenton reaction. More importantly, the AG-Fe-Ce did not release TOC and maintained most of the catalytic activity after four reuse cycles, confirmed its excellent stability. For the treatment of raw water containing a high proportion of proteinaceous matter and tetracycline, the AG-Fe-Ce significantly reduced the molecular weight of the dissolved organic matter. We deduced that the humic acid and protein show good complexation ability to tetracycline, thereby reduced its bioavailability. This study provides new insights into the synthesis of polymer catalysts for water treatment.
Collapse
Affiliation(s)
- Yan Kong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuan Zhuang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Wu S, Lin Y, Yang C, Du C, Teng Q, Ma Y, Zhang D, Nie L, Zhong Y. Enhanced activation of peroxymonosulfte by LaFeO 3 perovskite supported on Al 2O 3 for degradation of organic pollutants. CHEMOSPHERE 2019; 237:124478. [PMID: 31394447 DOI: 10.1016/j.chemosphere.2019.124478] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/06/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of various supports on activation of peroxymonosulfate and consequent degradation of Acid Orange 7 (AO7) in aqueous solutions was examined at the presence of LaFeO3 perovskite as catalyst. Results showed that the AO7 degradation efficiency by LaFeO3 supported on different supports was in an order of LaFeO3/Al2O3 (86.2%) > LaFeO3 (70.8%) > LaFeO3/CeO2 (59.0%) > LaFeO3/SiO2 (52.3%) > LaFeO3/TiO2 (32.2%). Moreover, the pseudo first-order rate constant for AO7 degradation by LaFeO3/Al2O3 was 3.2 times than that by LaFeO3. The enhancement was attributed to its large surface area, abundant chemisorbed surface-active oxygen, redox property and faster electron transfer. AO7 degradation and the leaching of iron ions decreased with the increase of pH. Data of electron spin resonance spectroscopy and quenching experiments revealed that sulfate and hydroxyl radicals were generated on LaFeO3/Al2O3 surface, while sulfate radicals were identified to be the main reactive species responsible for AO7 degradation. Mechanisms for peroxymonosulfate activation were consequently proposed. Furthermore, LaFeO3/Al2O3 catalyst exhibited a superior stability after five cycles. This work provides a new approach for design of iron-based perovskite catalysts with high and stable catalytic activity for removal of organic pollutants from aqueous solutions.
Collapse
Affiliation(s)
- Shaohua Wu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yan Lin
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Cheng Du
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Qing Teng
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Yin Ma
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Dongmei Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Lijun Nie
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Yuanyuan Zhong
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| |
Collapse
|
37
|
Qin M, Lu B, Feng S, Zhen Z, Chen R, Liu H. Role of exposed facets and surface OH groups in the Fenton-like reactivity of lepidocrocite catalyst. CHEMOSPHERE 2019; 230:286-293. [PMID: 31108439 DOI: 10.1016/j.chemosphere.2019.05.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 05/24/2023]
Abstract
Heterogeneous Fe-based Fenton-like reaction is an efficient technology in wastewater treatment. However, few studies reveal the effects of exposed facets and surface OH groups of iron oxides on its reactivity. In this study, two lepidocrocite samples with lath- and rod-like morphologies were synthesized and applied to the adsorption and degradation of Orange G (OG). The OG molecule could be adsorbed vertically on the lath-like sample by the interaction with the μ-OH groups of the (010) facet. The molecule could also be adsorbed laterally on the rod-like sample by the interactions with the μ-OH and μ3-OH groups of the (010) and (001) facets. When the data were normalized to the unit surface area, the adsorption capacity of OG, the production efficiency of OH, the degradation rate in dark, and the total degradation rates under visible light irradiation in the lath-like system were 9.625-, 3.34-, 2.75-, and 1.98-fold higher than those in the rod-like system, respectively.
Collapse
Affiliation(s)
- Mei Qin
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bin Lu
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuo Feng
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhen Zhen
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Rufen Chen
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Liu
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
38
|
Peng J, Zhang Y, Zhang C, Miao D, Li J, Liu H, Wang L, Gao S. Removal of triclosan in a Fenton-like system mediated by graphene oxide: Reaction kinetics and ecotoxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:726-733. [PMID: 31003100 DOI: 10.1016/j.scitotenv.2019.03.354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
As a typical nanomaterial, graphene oxide (GO) can be easily dispersed in water and may affect the aqueous environment. In this paper, the degradation of triclosan (TCS) in a Fenton-like system Fe3+/H2O2 in GO aqueous solution was investigated. Interestingly, it was observed that GO at low concentration (2.0 mg/L) could exhibit significant catalytic effect on TCS removal. Meanwhile, results of XPS, Raman and TEM spectroscopy suggested the structure and chemical composition of GO did not exhibit significant change after the oxidation process within 30 min. As per the radical quenching experiments and ESR tests, hydroxyl radical (·OH) was mainly responsible for the decomposition of TCS. Further mechanism study indicated that the reaction activation energy (Ea) could be lowered and the production of ·OH be promoted in the presence of GO, respectively. A total of nine intermediates of TCS degradation were detected by TOF-LC-MS after SPE procedure. Finally, ecotoxicity assessment revealed that degradation of TCS by Fe3+/H2O2 system in GO aqueous solution could yield by-products of smaller toxicity compared with parent compounds.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Yaozong Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Chaonan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Dong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
39
|
Yang B, Feng Y, Yu Y, He S, Liu H, Xue L, Yang L. Lanthanum ferrite nanoparticles modification onto biochar: derivation from four different methods and high performance for phosphate adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22010-22020. [PMID: 31144178 DOI: 10.1007/s11356-019-04553-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
To effectively remove phosphate pollution and convectively reuse phosphate resource, straw biochar was firstly functionalized with lanthanum ferrite (LaFeO3) via four different methods, including one-step co-precipitation (S-C), two-step co-precipitation (B-C), one-step impregnation (S-E), and two-step impregnation (B-E). LaFeO3/biochar was characterized systematically by a series of characterization methods. The influence of preparation methods, operation conditions on adsorption process, and the regenerability were studied. The products prepared by four methods displayed different physical morphology and chemical analysis proved chemical composition were similar. LaFeO3/biochar exhibited high adsorption capacity, the pseudo-second-order and Sips models were fitted for the adsorption equilibrium. The LaFeO3/biochar exhibited outstanding phosphate adsorption performance with pH values ranging from 2.3 to 10.6; La ions release was similarly negligible, when pH value was higher than 5.27. The adsorption mechanism was studied and inferred that La species is the key to adsorption ability. The results obtained provide better understanding of the adsorption phenomena and indicate the available preparation technologies and potential usefulness of LaFeO3/biochar for removing phosphate pollution. Graphical abstract "."
Collapse
Affiliation(s)
- Bei Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yingliang Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Shiyin He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Hao Liu
- State Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, People's Republic of China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
Yan J, Chen Y, Gao W, Chen Y, Qian L, Han L, Chen M. Catalysis of hydrogen peroxide with Cu layered double hydrotalcite for the degradation of ethylbenzene. CHEMOSPHERE 2019; 225:157-165. [PMID: 30875498 DOI: 10.1016/j.chemosphere.2019.02.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
A high catalytic system using Cu layered double hydrotalcite (Cu(II)-Mg(II)-Fe(III)LDHs) and hydrogen peroxide (H2O2) was developed for the degradation of ethylbenzene. It was identified that the degradation efficiency of ethylbenzene (0.08 mmol L-1) and TOC removal were 96.1% and 39.7% respectively in the presence of 0.1 g L-1 Cu(II)-Mg(II)-Fe(III)LDHs with (Cu2+ + Mg2+)/Fe3+ molar ratio of 5.0 and 0.16 mmol L-1 H2O2 in 6.0 h. Based on ESR and XPS data, hydroxyl radicals (•OH) were the predominant free radical specials generated from the catalytic decomposition of H2O2 for the degradation of ethylbenzene. The redox of Cu(II)/Cu(III) on the layered Cu(II)-Mg(II)-Fe(III)LDHs surface active sites accounted for the formation of •OH radicals and the cycle of Cu(II) in the Cu(II)-Mg(II)-Fe(III)LDHs/H2O2 system were proposed.
Collapse
Affiliation(s)
- Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yudong Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing, 210042, China
| | - Weiguo Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
41
|
Abstract
Advanced oxidation processes (AOPs), based on the formation of highly reactive radicals are able to degrade many organic contaminants present in effluent water. In the heterogeneous AOPS the presence of a solid which acts as catalyst in combination with other systems (O3, H2O2, light) is required. Among the different materials that can catalyse these processes, perovskites are found to be very promising, because they are highly stable and exhibit a high mobility of network oxygen with the possibility of forming vacancies and to stabilize unusual oxidation states of metals. In this review, we show the fundaments of different kinds of AOPs and the application of perovskite type oxides in them, classified attending to the oxidant used, ozone, H2O2 or peroxymonosulfate, alone or in combination with other systems. The photocatalytic oxidation, consisting in the activation of the perovskite by irradiation with ultraviolet or visible light is also revised.
Collapse
|
42
|
Hu E, He Z, Nan X, Yuan Z, Li X. Removal of phenanthrene and pyrene from contaminated sandy soil using hydrogen peroxide oxidation catalyzed by basic oxygen furnace slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9281-9292. [PMID: 30721429 DOI: 10.1007/s11356-019-04308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Soil contamination with polycyclic aromatic hydrocarbons (PAHs) is a serious problem in Northeast China, especially in the steel industrial area. The objective of this study was to evaluate the feasibility of using basic oxygen furnace (BOF) slag to activate the Fenton-like remediation of PAH-contaminated soil to achieve the objectives of "waste control by waste" and "resource recycling" in Chinese steel industry. The effects of BOF slag dosages, H2O2 concentrations, and exothermicity-driven evaporation were evaluated with respect to the removal efficiencies of phenanthrene (Phe) and pyrene (Pyr). Results indicated that PAH oxidation was proportional to the BOF slag dosages and was increased exponentially with H2O2 concentrations. Evaporation due to increasing temperature caused by exothermic reaction played an important role in total soil PAH losses. The sequential Fenton-like oxidation with a 3-times application of 15% H2O2 and the same BOF slag repeatedly used were able to remove 65.87% of Phe and 58.33% of Pyr, respectively. Soluble iron oxides containing in BOF slag were reduced, while amorphous iron oxide concentration remained stable during the repeated Fenton-like process. Column study mimics real field applications showing high removal efficiencies of Phe (36.05-83.20%) and Pyr (21.79-68.06%) in 30-cm depth of soil profile. The tests on soluble heavy metal concentrations after the reactions with high slag dosage or high H2O2 concentration confirmed that BOF slag would not cause heavy metal contamination. Consequently, BOF slag may provide an efficient way for enhancing the Fenton-like based remediation of heavily PAH-polluted soil with little risk on collateral heavy metal contamination. However, an external gas collection and purification equipment would be essential to eliminate the evaporated PAHs.
Collapse
Affiliation(s)
- Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Zan He
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangli Nan
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Zaijian Yuan
- Guangdong Key Laboratory of Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, No. 72 Wenhua Rd., Shenhe Dist, Shenyang, 110016, China.
| |
Collapse
|
43
|
Chen Z, Fan T, Zhang Q, He J, Fan H, Sun Y, Yi X, Li J. Interface engineering: Surface hydrophilic regulation of LaFeO3 towards enhanced visible light photocatalytic hydrogen evolution. J Colloid Interface Sci 2019; 536:105-111. [DOI: 10.1016/j.jcis.2018.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
|
44
|
Shi X, Cui C, Zhang L, Zhang J, Liu G. FeOCl/Ln (Ln = La or Y): efficient photo-Fenton catalysts for ibuprofen degradation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03746b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doping of rare earth elements (La and Y) in FeOCl boosted the Fenton catalytic activity under sunlight.
Collapse
Affiliation(s)
- Xiaohua Shi
- Department of Bioengineering
- Shandong Polytechnic
- Jinan
- P. R. China
| | - Chao Cui
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273100
- P. R. China
| | - Lei Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273100
- P. R. China
| | - Jian Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273100
- P. R. China
| | - Guodong Liu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273100
- P. R. China
| |
Collapse
|
45
|
Xue Y, Xin H, Xie W, Wu P, Li X. Pt nanoparticles supported on YCoxFe1−xO3 perovskite oxides: highly efficient catalysts for liquid-phase hydrogenation of cinnamaldehyde. Chem Commun (Camb) 2019; 55:3363-3366. [DOI: 10.1039/c9cc00318e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt/YCo0.3Fe0.7O3 catalyst furnished ca. 95% selectivity to cinnamyl alcohol at nearly full conversion for the selective hydrogenation of cinnamaldehyde.
Collapse
Affiliation(s)
- Yujie Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Huiyue Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Wenhui Xie
- School of Physics and Materials
- East China Normal University
- Shanghai 200062
- China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Xiaohong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
46
|
Jin Q, Chen Q, Shen J, Guo F, Chen Z, Tian J. Development of Fe(II) system based on N, N'-dipicolinamide for the oxidative removal of 4-chlorophenol. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:206-214. [PMID: 29753189 DOI: 10.1016/j.jhazmat.2018.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
A novel catalyst system was investigated based on Fe-N, N'-dipicolinamide complex for the degradation of 4-chlorophenol (4-CP) by using hydrogen peroxide as an oxidant under mild alkaline conditions. This complex was stabilized by a ligand that assembles pyridyl and amide groups with a suitable linker. The optimization of the synthesized catalysts was evaluated in terms of the removal efficiency of 4-CP, by using Fe(II) and N, N'-1,2-phenyl-enedipyridine-2-carboxamide with a molar ratio of 1:1. The effects of reaction parameters on the oxidation of 4-CP were investigated by applying the selected catalyst with 4-CP removal rate of 99%. The results indicated that the pH and catalyst concentration could significantly affect the degradation rate of 4-CP. The mineralization level of 4-CP during the reaction was also examined, and almost 62.5% of 4-CP was absolutely mineralized into carbon dioxide and water. The preliminary analysis on the degradation mechanism indicate that the main active species are not hydroxyl radicals, and another kind of active species, called iron-oxo species, were proposed. This study explores a resultful linker between pyridyl and amide and presents a new method to expand the application of pH range of Fenton-like system.
Collapse
Affiliation(s)
- Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qian Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
47
|
Dai C, Tian X, Nie Y, Lin HM, Yang C, Han B, Wang Y. Surface Facet of CuFeO 2 Nanocatalyst: A Key Parameter for H 2O 2 Activation in Fenton-Like Reaction and Organic Pollutant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6518-6525. [PMID: 29727187 DOI: 10.1021/acs.est.8b01448] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of efficient heterogeneous Fenton catalysts is mainly by "trial-and-error" concept and the factor determining H2O2 activation remains elusive. In this work, we demonstrate that suitable facet exposure to elongate O-O bond in H2O2 is the key parameter determining the Fenton catalyst's activity. CuFeO2 nanocubes and nanoplates with different surface facets of {110} and {012} are used to compare the effect of exposed facets on Fenton activity. The results indicate that ofloxacin (OFX) degradation rate by CuFeO2 {012} is four times faster than that of CuFeO2 {110} (0.0408 vs 0.0101 min-1). In CuFeO2 {012}-H2O2 system, OFX is completely removed at a pH range 3.2-10.1. The experimental results and theoretical simulations show that •OH is preferentially formed from the reduction of absorbed H2O2 by electron from CuFeO2 {012} due to suitable elongation of O-O (1.472 Å) bond length in H2O2. By contrast, the O-O bond length is elongated from 1.468 to 3.290 Å by CuFeO2 {110} facet, H2O2 tends to be dissociated into -OH group and passivates {110} facet. Besides, the new formed ≡Fe2+* on CuFeO2 {012} facet can accelerate the redox cycle of Cu and Fe species, leading to excellent long-term stability of CuFeO2 nanoplates.
Collapse
Affiliation(s)
- Chu Dai
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Xike Tian
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Yulun Nie
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Hong-Ming Lin
- Department Materials Engineering , Tatung University , 104 Taipei , Taiwan
| | - Chao Yang
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Bo Han
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Yanxin Wang
- School of Environmental Studies , China University of Geosciences , Wuhan , 430074 , P. R. China
| |
Collapse
|
48
|
Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Phan TTN, Nikoloski AN, Bahri PA, Li D. Adsorption and photo-Fenton catalytic degradation of organic dyes over crystalline LaFeO3-doped porous silica. RSC Adv 2018; 8:36181-36190. [PMID: 35558479 PMCID: PMC9088607 DOI: 10.1039/c8ra07073c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/16/2018] [Indexed: 01/20/2023] Open
Abstract
LaFeO3 (LFO)-doped mesoporous silica (HPS) (HPS-xLFO with theoretical LFO/silica molar ratio x = 0.075, 0.15, 0.3) was successfully prepared via impregnation of metal ions into the porous silica HPS-0LFO support and subsequent calcination. The characterization studies suggest that increasing the doping of LFO, which exhibited a particle size of ∼10–15 nm, in the silica support led to a reduction in surface area and bandgap of the resulting catalyst. The use of HPS-0.15LFO yielded a superior removal rate (98.9%) of Rhodamine B (RhB), thanks to the effective dark adsorption and visible light-induced photo-Fenton degradation, both of which were greater than those of pure LFO crystals. This enhancement could be explained by the unique properties of the mesoporous silica support. In particular, the wide-opening mesopores created a large surface area to dope LFO as active sites and minimize diffusion of RhB into pores during the photo-Fenton reaction. The photo-Fenton catalytic degradation of RhB could reach 98.6% within 90 min exposure to visible light irradiation under optimized conditions: RhB concentration = 10 mg L−1, catalyst dosage = 1 g L−1, pH = 6 and H2O2 = 15 mM. Moreover, the recycle and reuse test proved the good stability and repetitive use of HPS-0.15LFO for high performance RhB removal. LFO-doped mesoporous silica yielded high removal rate of dye, due to the dark adsorption and visible light-induced photo-Fenton degradation.![]()
Collapse
Affiliation(s)
- Thi To Nga Phan
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Aleksandar N. Nikoloski
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Parisa Arabzadeh Bahri
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Dan Li
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| |
Collapse
|
50
|
Gao C, Chen S, Quan X, Yu H, Zhang Y. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J Catal 2017. [DOI: 10.1016/j.jcat.2017.09.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|