1
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Li R, Zhang R, Li Y, Liu C, Wang P, Sun H, Wang L. Foliar Uptake and Distribution of Metallic Oxide Nanoparticles in Maize ( Zea mays L.) Leaf. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39258394 DOI: 10.1021/acs.est.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The foliar uptake of Fe3O4, Cr2O3, CuO, and ZnO nanoparticles (NPs) by maize (Zea mays L.) was studied in a lab-scale experiment. The significant increase of Fe concentrations in leaves exposed to Fe3O4 was observed in both stomatal closing and stomatal opening treatments, suggesting the presence of a nonstomatal uptake. In parallel treatments with equal doses of Fe3O4 (∼200 nm), Cr2O3 (∼300 nm), CuO (∼30 nm), and ZnO (∼40 nm) (20-200 μg), the retention percentage of Fe in the leaves (21.0-69.0%) was higher than that of Cr, Cu, and Zn (0.5-14.0%). The steric hindrance effect seems more important for NPs of >200 nm, while hydrophobic surface and negative charge promote the foliar uptake of NPs smaller than 200 nm. The accumulation of NPs in the cuticle was observed through dark-field hyperspectral microscopy. Cr2O3, Fe3O4, and CuO NPs were difficult to penetrate the cuticle. In comparison, ZnO further migrated and distributed within the extracellular space of epidermal and mesophyll cells of the exposed leaf, possibly due to its comparatively higher solubility and hydrophilicity. The findings highlight the potential of the nonstomatal uptake, which might be a critical route for metallic oxide NPs to enter the food chain.
Collapse
Affiliation(s)
- Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rui Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ye Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Bian Y, Jin Q, He J, Ngo T, Bae ON, Xing L, Pi J, Chung HY, Xu Y. Biomedical application of TiO 2NPs can cause arterial thrombotic risks through triggering procoagulant activity, activation and aggregation of platelets. Cell Biol Toxicol 2024; 40:67. [PMID: 39110362 PMCID: PMC11306309 DOI: 10.1007/s10565-024-09908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China.
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Qiushuo Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jinrui He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
- Faculty of Pharmacy, Thai Binh University of Medicine and Pharmacy, Thai Binh City, 410000, Vietnam
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido, 426-791, South Korea
| | - Liguo Xing
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd, Shenyang, 110021, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Han Young Chung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China.
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
6
|
Yang L, Chen H, Du P, Miao X, Huang S, Cheng D, Xu H, Zhang Z. Inhibition mechanism of Rhizoctonia solani by pectin-coated iron metal-organic framework nanoparticles and evidence of an induced defense response in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134807. [PMID: 38850939 DOI: 10.1016/j.jhazmat.2024.134807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Nanocrop protectants have attracted much attention as sustainable platforms for controlling pests and diseases and improving crop nutrition. Here, we reported the fungicidal activity and disease inhibition potential of pectin-coated metal-iron organic framework nanoparticles (Fe-MOF-PT NPs) against rice stripe blight (RSB). An in vitro bacterial inhibition assay showed that Fe-MOF-PT NPs (80 mg/L) significantly inhibited mycelial growth and nucleus formation. The Fe-MOF-PT NPs adsorbed to the surface of mycelia and induced toxicity by disrupting cell membranes, mitochondria, and DNA. The results of a nontargeted metabolomics analysis showed that the metabolites of amino acids and their metabolites, heterocyclic compounds, fatty acids, and nucleotides and their metabolites were significantly downregulated after treatment with 80 mg/L NPs. The difference in metabolite abundance between the CK and Fe-MOF-PT NPs (80 mg/L) treatment groups was mainly related to nucleotide metabolism, pyrimidine metabolism, purine metabolism, fatty acid metabolism, and amino acid metabolism. The results of the greenhouse experiment showed that Fe-MOF-PT NPs improved rice resistance to R. solani by inhibiting mycelial invasion, enhancing antioxidant enzyme activities, activating the jasmonic acid signaling pathway, and enhancing photosynthesis. These findings indicate the great potential of Fe-MOF-PT NPs as a new RSB disease management strategy and provide new insights into plant fungal disease management.
Collapse
Affiliation(s)
- Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huiya Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Pengrui Du
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Suqing Huang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
7
|
Shoshin DE, Sizova EA, Kamirova AM. Morphological changes and luminescence of Escherichia coli in contact with Mn 2O 3 and Co 3O 4 ultrafine particles as components of a mineral feed additive. Vet World 2024; 17:1880-1888. [PMID: 39328447 PMCID: PMC11422638 DOI: 10.14202/vetworld.2024.1880-1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim The spread of antibiotic resistance and mineral depletion in soils encourages an intensive search for highly effective and environmentally safe bactericidal agents and sources of macro- and micro-elements. The most profitable solution would combine both the described tasks. Ultrafine particles (UFPs) have this functionality. Thus, this study aimed to analyze the bioluminescence and external morphological changes of Escherichia coli cells after contact with M2O3 and Co3O4 UFPs at effective concentrations (ECs). Materials and Methods The antibiotic properties of the studied samples were determined on a multifunctional microplate analyzer TECAN Infinite F200 (Tecan Austria GmbH, Austria) by fixing the luminescence value of the bacterial strain E. coli K12 TG11 (Ecolum, NVO Immunotech Closed Joint Stock Company, Russia). Morphological changes in the cell structure were evaluated using a Certus Standard EG-5000 atomic force microscope equipped with NSPEC software (Nano Scan Technology LLC, Russia). Results The obtained results indicate high bactericidal properties of Co3O4 and Mn2O3 UFPs (EC50 at 3.1 × 10-5 and 1.9 × 10-3 mol/L, respectively) due to the degradation of the cell wall, pathological increase in size, disruption of septic processes, and loss of cytoplasmic contents. Conclusion The prospects for the environmentally safe use of ultrafine materials are outlined. The limits of the dosages of Co3O4 and Mn2O3 UFPs recommended for further study in vitro and in vivo in feeding farm animals are established (no more than 4.9 × 10-4 mol/L for Mn2O3 UFPs and 1.5 × 10-5 mol/L for Co3O4 UFPs). The limitation of the work is the lack of experiments to determine the mechanisms of the toxic effect of UFP on bacteria, protein structures, and DNA and oxidative stress, which is planned to be performed in the future together with in situ and in vivo studies on animals.
Collapse
Affiliation(s)
- Daniil Evgenievich Shoshin
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- Federal State Budgetary Educational Institution of Higher Education Orenburg State University, Orenburg, Russia
| | - Elena Anatolievna Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- Federal State Budgetary Educational Institution of Higher Education Orenburg State University, Orenburg, Russia
| | - Aina Maratovna Kamirova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
8
|
AlHarethi AA, Abdullah QY, AlJobory HJ, Anam AM, Arafa RA, Farroh KY. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. DISCOVER NANO 2024; 19:105. [PMID: 38907852 PMCID: PMC11193706 DOI: 10.1186/s11671-024-04040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.
Collapse
Affiliation(s)
- Amira A AlHarethi
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen.
| | - Qais Y Abdullah
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Hala J AlJobory
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - AbdulRahman M Anam
- Department of Pharmacology, Faculty of Medicine and Health Science, Sana'a University, Sana'a, Yemen
| | - Ramadan A Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
9
|
Gao J, Zhu Y, Zeng L, Liu X, Yang Y, Zhou Y. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121289. [PMID: 38820797 DOI: 10.1016/j.jenvman.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.
Collapse
Affiliation(s)
- Jieyu Gao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
10
|
Balraadjsing S, J G M Peijnenburg W, Vijver MG. Building species trait-specific nano-QSARs: Model stacking, navigating model uncertainties and limitations, and the effect of dataset size. ENVIRONMENT INTERNATIONAL 2024; 188:108764. [PMID: 38788418 DOI: 10.1016/j.envint.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
A strong need exists for broadly applicable nano-QSARs, capable of predicting toxicological outcomes towards untested species and nanomaterials, under different environmental conditions. Existing nano-QSARs are generally limited to only a few species but the inclusion of species characteristics into models can aid in making them applicable to multiple species, even when toxicity data is not available for biological species. Species traits were used to create classification- and regression machine learning models to predict acute toxicity towards aquatic species for metallic nanomaterials. Afterwards, the individual classification- and regression models were stacked into a meta-model to improve performance. Additionally, the uncertainty and limitations of the models were assessed in detail (beyond the OECD principles) and it was investigated whether models would benefit from the addition of more data. Results showed a significant improvement in model performance following model stacking. Investigation of model uncertainties and limitations highlighted the discrepancy between the applicability domain and accuracy of predictions. Data points outside of the assessed chemical space did not have higher likelihoods of generating inadequate predictions or vice versa. It is therefore concluded that the applicability domain does not give complete insight into the uncertainty of predictions and instead the generation of prediction intervals can help in this regard. Furthermore, results indicated that an increase of the dataset size did not improve model performance. This implies that larger dataset sizes may not necessarily improve model performance while in turn also meaning that large datasets are not necessarily required for prediction of acute toxicity with nano-QSARs.
Collapse
Affiliation(s)
- Surendra Balraadjsing
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands
| |
Collapse
|
11
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Pulido-Reyes G, Moreno-Martín G, Gómez-Gómez B, Navas JM, Madrid Y, Fernández-Cruz ML. Fish acute toxicity of nine nanomaterials: Need of pre-tests to ensure comparability and reuse of data. ENVIRONMENTAL RESEARCH 2024; 245:118072. [PMID: 38157971 DOI: 10.1016/j.envres.2023.118072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Fish acute toxicity tests are commonly used in aquatic environmental risk assessments, being required in different international substances regulations. A general trend in the toxicity testing of nanomaterials (NMs) has been to use standardized aquatic toxicity tests. However, as these tests were primarily developed for soluble chemical, issues regarding particle dissolution, agglomeration or sedimentation during the time of exposure are not considered when reporting the toxicity of NMs. The aim of this study was to characterize the NM behaviour throughout the fish acute test and to provide criteria to assay the toxicity of nine NMs based on TiO2, ZnO, SiO2, BaSO4, bentonite, and carbon nanotubes, on rainbow trout following OECD Test Guideline (TG) nº203. Our results showed the importance of conducting a preliminary test (without fish) when working with NMs. They provide valuable information on, sample monitoring, agglomeration, sedimentation, dissolution, actual concentrations of NMs, needed to design the test. Among the NMs tested, only bentonite nanoparticles were stable during the 96-h pre-test and test in aquarium water. In contrast, the remaining NMs exhibited considerable loss and sedimentation within the first 24 h. The high sedimentation observed for almost all NMs highlights the need of consistently measuring the concentrations throughout the entire duration of the fish acute toxicity test to make reliable concentration-response relationships. Notable differences emerged in LC50 values when using actual concentrations as nominal concentrations overestimated concentrations by up to 85.6%. Among all NMs tested, only ZnO NMs were toxic to rainbow trout. A flow chart was specifically developed for OECD TG 203, aiding users in making informed decisions regarding the selection of test systems and necessary modifications to ensure accurate, reliable, and reusable toxicity data. Our findings might contribute to the harmonization of TG 203 improving result reproducibility and interpretability and supporting the development of read-across and QSAR models.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain.
| | - Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Beatriz Gómez-Gómez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José María Navas
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Luisa Fernández-Cruz
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain.
| |
Collapse
|
13
|
Zhang M, Wang W, Zhang D, Zhang Y, Yang Z, Li Y, Fang F, Xue Y, Zhang Y. Copper oxide nanoparticles impairs oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress. Food Chem Toxicol 2024; 185:114441. [PMID: 38218586 DOI: 10.1016/j.fct.2024.114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Copper oxides nanoparticles (CuO NPs) are widely used for a variety of industrial and life science applications. In addition to cause neurotoxicity, hepatotoxicity, immunotoxicity, CuO NPs have also been reported to adversely affect the reproductive system in animals; However, little is known about the effects and potential mechanism of CuO NPs exposure on oocyte quality, especially oocyte maturation. In the present study, we reported that CuO NPs exposure impairs the oocyte maturation by disrupting meiotic spindle assembly and chromosome alignment, as well as kinetochore-microtubule attachment. In addition, CuO NPs exposure also affects the acetylation level of α-tubulin in mice oocyte, which hence impairs microtubule dynamics and organization. Besides, CuO NPs exposure would result in the mis-localization of Juno and Ovastacin, which might be one of the critical factors leading to the failure of oocyte maturation. Finally, CuO NPs exposure impairs the mitochondrial distribution and induced high levels of ROS, which led to the accumulation of DNA damage and occurrence of apoptosis. In summary, our results indicated that CuO NPs exposure had potential toxic effects on female fertility and led to the poor oocyte quality in female mice.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou, 234000, China
| | - Yiwen Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| |
Collapse
|
14
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
16
|
Jayanetti M, Thambiliyagodage C, Liyanaarachchi H, Ekanayake G, Mendis A, Usgodaarachchi L. In vitro influence of PEG functionalized ZnO-CuO nanocomposites on bacterial growth. Sci Rep 2024; 14:1293. [PMID: 38221550 PMCID: PMC10788344 DOI: 10.1038/s41598-024-52014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024] Open
Abstract
Polyethyleneglycol-coated biocompatible CuO-ZnO nanocomposites were fabricated hydrothermally varying Zn:Cu ratios as 1:1, 2:1, and 1:2, and their antibacterial activity was determined through the well diffusion method against the Gram-negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the Gram-positive Staphylococcus aureus. The minimum inhibitory concentration and the minimum bactericidal concentration values of the synthesized samples were determined. Subsequently, the time synergy kill assay was performed to elucidate the nature of the overall inhibitory effect against the aforementioned bacterial species. The mean zone of inhibition values for all four samples are presented. The inhibitory effect increased with increasing concentration of the nanocomposite (20, 40 and 60 mg/ml) on all the bacterial species except for S. aureus. According to the MBC/MIC ratio, ZnO was found to be bacteriostatic for E. coli and P. aeruginosa, and bactericidal for S. aureus and K. pneumoniae. Zn:Cu 2:1 was bactericidal on all bacterial species. A bacteriostatic effect was observed on E. coli and P. aeruginosa in the presence of Zn:Cu 1:1 whereas, it showed a bactericidal effect on S. aureus and K. pneumoniae. Zn:Cu 1:2 exhibited a bacteriostatic effect on E. coli while a bactericidal effect was observed for E. coli, P. aeruginosa, and K. pneumoniae. The metal oxide nanocomposites were found to be more sensitive towards the Gram-positive strain than the Gram-negative strains. Further, all the nanocomposites possess anti-oxidant activity as shown by the DPPH assay.
Collapse
Affiliation(s)
- Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka.
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Leshan Usgodaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| |
Collapse
|
17
|
Rana S, Kumar A. Ecotoxicity of a mixture of nanoparticles on algal species Scendesmus obliquus in OECD growth media, wastewater, and pond water. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1257-1271. [PMID: 38062282 DOI: 10.1007/s10646-023-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The possible impact of ZnO and CuO nanoparticles (NPs) (individually and in binary mixture) was investigated using the freshwater microalgae, Scenedesmus obliquus. The present study shows the effect of nanoparticles on algae in OECD growth media, wastewater, and pond water during a 96-h toxicity test. At 0.1 mg/L concentration of the mixture of NPs, the reduction in the chlorophyll a content was 13.61 ± 1.34% (OECD media), 28.83 ± 1.85% (wastewater), and 31.81 ± 2.23% (pond water). Values of reduction in biomass were observed to be 42.13 ± 1.38, 39.96 ± 1.03, and 33.10 ± 1.29% for OECD media, wastewater, and pond water, respectively. The highest increase in lipid values was observed in the case of pond water (6.3 ± 1.31%). A significant increase in the value of EPS-generated protein was observed in the wastewater sample. EPS-generated carbohydrate values were increased in OECD media but decreased in the wastewater matrix. The transmission electron microscope images showed structural damage to algae cells due to the exposure to a mixture of nanoparticles at higher concentrations. Fourier transform infrared analysis showed an addition of bonds and differences in the peak and its intensity during exposure to high concentrations of NPs. Overall, this study gives fundamental insights into the interaction and toxicity of a mixture of NPs to algal species in different water matrices.
Collapse
Affiliation(s)
- Samridhi Rana
- Graduate Student, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
18
|
Das S, Giri S, Jose SA, Pulimi M, Anand S, Chandrasekaran N, Rai PK, Mukherjee A. Comparative toxicity assessment of individual, binary and ternary mixtures of SiO 2, Fe 3O 4, and ZnO nanoparticles in freshwater microalgae, Scenedesmus obliquus: Exploring the role of dissolved ions. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109718. [PMID: 37591457 DOI: 10.1016/j.cbpc.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO2 + Fe3O4, Fe3O4 + ZnO, and ZnO + SiO2) and ternary (SiO2 + Fe3O4 + ZnO) combinations. The effects of metal ions from ZnO and Fe3O4 were investigated as well. The results observed from the study, showed that a significant amount of toxicity was contributed by the dissolved ions in the mixtures of the nanoparticles. Decreases in the cell viability, ROS generation, lipid peroxidation, antioxidant enzyme activity, and photosynthetic efficiency were analyzed. Among all the individual particles, ZnO NPs showed the maximum effects and increased the toxicities of the binary mixtures. The binary and ternary mixtures of the NPs clearly showed increased toxic effects in comparison with the individual entities. However, the ternary combination had lesser toxic effects than the binary combination of Fe3O4 + ZnO. The decline in cell viability and photosynthetic efficiency were strongly correlated with various oxidative stress biomarkers emphasizing the crucial role of reactive oxygen species in inducing the toxic effects. The findings from this study highlight the importance of evaluating the combinatorial effects of various metal oxide NPs as part of a comprehensive ecotoxicity assessment in freshwater microalgae.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shinta Ann Jose
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Balasubramanian S, Rangasamy S, Vivekanandam R, Perumal E. Acute exposure to tenorite nanoparticles induces phenotypic and behavior alterations in zebrafish larvae. CHEMOSPHERE 2023; 339:139681. [PMID: 37524270 DOI: 10.1016/j.chemosphere.2023.139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Tenorite or copper oxide nanoparticles (CuO NPs) are extensively used in biomedical fields due to their unique physicochemical properties. Increased usage of these NPs leads to release in the environment, affecting varied ecosystems and the biota within them, including humans. The effect of these NPs can be evaluated with zebrafish, an excellent complementary model for nanotoxicity studies. Previous reports focusing on CuO NPs-induced teratogenicity in zebrafish development have not elucidated the phenotypical changes in detail. In most of the studies, embryos at 3 hpf with a protective chorion layer were exposed to CuO NPs, and their effect on the overall developmental process is studied. Hence, in this study, we focused on the effect of acute exposure to CuO NPs (96-120 hpf) and its impact on zebrafish larvae. Larvae were exposed to commercially available CuO NPs (<50 nm) at various concentrations to obtain the LC50 value (52.556 ppm). Based on the LC50, three groups (10, 20, and 40 ppm) were taken for further analysis. Upon treatment, bradycardia, and impaired swim bladder (reduced/absence of inflation) were found in the treated groups along with alterations in the erythrocyte levels. Also, the angles and distance between the cartilages varied in the treated larvae affecting their craniofacial structures. There was a significant behavior change, as evidenced by the reduced touch escape response and locomotion (speed, distance, time mobile, time frozen, and absolute turn angle). Further, the acetylcholinesterase activity was reduced. Overall, our results suggest that acute exposure to CuO NPs elicits morphological defects in zebrafish larvae.
Collapse
Affiliation(s)
| | - Sakthi Rangasamy
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Reethu Vivekanandam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
20
|
Gräf T, Koch V, Köser J, Fischer J, Tessarek C, Filser J. Biotic and Abiotic Interactions in Freshwater Mesocosms Determine Fate and Toxicity of CuO Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12376-12387. [PMID: 37561908 DOI: 10.1021/acs.est.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Transformation, dissolution, and sorption of copper oxide nanoparticles (CuO-NP) play an important role in freshwater ecosystems. We present the first mesocosm experiment on the fate of CuO-NP and the dynamics of the zooplankton community over a period of 12 months. Increasingly low (0.08-0.28 mg Cu L-1) and high (0.99-2.99 mg Cu L-1) concentrations of CuO-NP and CuSO4 (0.10-0.34 mg Cu L-1) were tested in a multiple dosing scenario. At the high applied concentration (CuO-NP_H) CuO-NP aggregated and sank onto the sediment layer, where we recovered 63% of Cu applied. For the low concentration (CuO-NP_L) only 41% of applied copper could be recovered in the sediment. In the water column, the percentage of initially applied Cu recovered was on average 3-fold higher for CuO-NP_L than for CuO-NP_H. Zooplankton abundance was substantially compromised in the treatments CuSO4 (p < 0.001) and CuO-NP_L (p < 0.001). Community analysis indicated that Cladocera were most affected (bk = -0.49), followed by Nematocera (bk = -0.32). The abundance of Cladocera over time and of Dixidae in summer was significantly reduced in the treatment CuO-NP_L (p < 0.001; p < 0.05) compared to the Control. Our results indicate a higher potential for negative impacts on the freshwater community when lower concentrations of CuO-NP (<0.1 mg Cu L-1) enter the ecosystem.
Collapse
Affiliation(s)
- Tonya Gräf
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Viviane Koch
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Jan Köser
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, Chemical Process Engineering, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Jonas Fischer
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Christian Tessarek
- Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 6, 28359 Bremen, Germany
| | - Juliane Filser
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
21
|
Wang J, Wang P, Shao Y, He D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023; 15:2151. [PMID: 37631365 PMCID: PMC10458134 DOI: 10.3390/pharmaceutics15082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and management. These diseases are characterized by persistent inflammation in the airways, leading to structural changes and compromised lung function. There are several treatments available for them, such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and precise drug delivery systems are crucial to the management of these diseases. This comprehensive review focuses on the role of drug delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized medicine. By examining the latest advancements and strategies in these areas, we aim to provide a thorough understanding of the current landscape and future prospects for improving treatment outcomes in these challenging conditions.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yiru Shao
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Daikun He
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Vaccari F, Zhang L, Giuberti G, Grasso A, Bandini F, García-Pérez P, Copat C, Lucini L, Dall'Asta M, Ferrante M, Puglisi E. The impact of metallic nanoparticles on gut fermentation processes: An integrated metabolomics and metagenomics approach following an in vitro digestion and fecal fermentation model. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131331. [PMID: 37060751 DOI: 10.1016/j.jhazmat.2023.131331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Metallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.
Collapse
Affiliation(s)
- Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Alfina Grasso
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy; Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Univesidade de Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Chiara Copat
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
23
|
Yan H, Liu X, Wang Z, Zhao P, Dang Y, Sun D. Enhancement of carbon sequestration via MIL-100(Fe)@PUS in bacterial-algal symbiosis treating municipal wastewater. BIORESOURCE TECHNOLOGY 2023; 380:129083. [PMID: 37100299 DOI: 10.1016/j.biortech.2023.129083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
Bacterial-algal symbiosis (BAS) is a promising carbon neutrality technology to treat municipal wastewater. However, there are still non-trivial CO2 emissions in BAS due to the slow diffusion and biosorption of CO2. Aiming to reduce CO2 emissions, the inoculation ratio of aerobic sludge to algae was further optimized at 4:1 on the base of favorable carbon conversion. MIL-100(Fe) served as CO2 adsorbents was immobilized on polyurethane sponge (PUS) to increase the interaction with microbes. When MIL-100(Fe)@PUS was added to BAS in the treatment of municipal wastewater, zero CO2 emission was achieved and the carbon sequestration efficiency was increased from 79.9% to 89.0%. Most genes related to metabolic function were derived from Proteobacteria and Chlorophyta. The mechanism of enhanced carbon sequestration in BAS could be attributed to both enrichment of algae (Chlorella and Micractinium) and increased abundance of functional genes related to PS I, PS II and Calvin cycle in photosynthesis.
Collapse
Affiliation(s)
- Hongkang Yan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Xinying Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Pengsha Zhao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Feng Y, Wu J, Lu H, Lao W, Zhan H, Lin L, Liu G, Deng Y. Cytotoxicity and hemolysis of rare earth ions and nanoscale/bulk oxides (La, Gd, and Yb): Interaction with lipid membranes and protein corona formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163259. [PMID: 37011679 DOI: 10.1016/j.scitotenv.2023.163259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The widespread application of rare earth elements (REEs) has raised concerns about their potential release into the environment and subsequent ingestion by humans. Therefore, it is essential to evaluate the cytotoxicity of REEs. Here, we investigated the interactions between three typical REEs (La, Gd, and Yb) ions as well as their nanometer/μm-sized oxides and red blood cells (RBCs), a plausible contact target for nanoparticles when they enter the bloodstream. Hemolysis of REEs at 50-2000 μmol L-1 was examined to simulate their cytotoxicity under medical or occupational exposure. We found that the hemolysis due to the exposure of REEs was highly dependent on their concentration, and the cytotoxicity followed the order of La3+ > Gd3+ > Yb3+. The cytotoxicity of REE ions (REIs) is higher than REE oxides (REOs), while nanometer-sized REO caused more hemolysis than that μm-sized REO. The production of reactive oxygen species (ROS), ROS quenching experiment, as well as the detection of lipid peroxidation, confirmed that REEs causes cell membrane rupture by ROS-related chemical oxidation. In addition, we found that the formation of a protein corona on REEs increased the steric repulsion between REEs and cell membranes, hence mitigating the cytotoxicity of REEs. The theoretical simulation indicated the favorable interaction of REEs with phospholipids and proteins. Therefore, our findings provide a mechanistic explanation for the cytotoxicity of REEs to RBCs once they have entered the blood circulation system of organisms.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyi Wu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Wenhao Lao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongda Zhan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Longyong Lin
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yirong Deng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| |
Collapse
|
25
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
26
|
Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. ADVANCED FIBER MATERIALS 2023; 5:1-37. [PMID: 37361104 PMCID: PMC10201051 DOI: 10.1007/s42765-023-00297-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed. Graphical Abstract The figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Qingshuo Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Zhong Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Haitao Niu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
27
|
Borymski S, Markowicz A, Nowak A, Matus K, Dulski M, Sułowicz S. Copper-oxide nanoparticles exert persistent changes in the structural and functional microbial diversity: A 60-day mesocosm study of zinc-oxide and copper-oxide nanoparticles in the soil-microorganism-nanoparticle system. Microbiol Res 2023; 274:127395. [PMID: 37327605 DOI: 10.1016/j.micres.2023.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in nanotechnology and development of nanoformulation methods, has enabled the emergence of precision farming - a novel farming method that involves nanopesticides and nanoferilizers. Zinc-oxide nanoparticles serve as a Zn source for plants, but they are also used as nanocarriers for other agents, whereas copper-oxide nanoparticles possess antifungal activity, but in some cases may also serve as a micronutrient providing Cu ions. Excessive application of metal-containing agents leads to their accumulation in soil, where they pose a threat to non-target soil organisms. In this study, soils obtained from the environment were amended with commercial zinc-oxide nanoparticles: Zn-OxNPs(10-30), and newly-synthesized copper-oxide nanoparticles: Cu-OxNPs(1-10). Nanoparticles (NPs) in 100 and 1000 mg kg-1 concentrations were added in separate set-ups, representing a soil-microorganism-nanoparticle system in a 60-day laboratory mesocosm experiment. To track environmental footprint of NPs on soil microorganisms, a Phospholipd Fatty Acid biomarker analysis was employed to study microbial community structure, whereas Community-Level Physiological Profiles of bacterial and fungal fractions were measured with Biolog Eco and FF microplates, respectively. The results revealed a prominent and persistent effects exerted by copper-containing nanoparticles on non-target microbial communities. A severe loss of Gram-positive bacteria was observed in conjunction with disturbances in bacterial and fungal CLPPs. These effects persisted till the end of a 60-day experiment, demonstrating detrimental rearrangements in microbial community structure and functions. The effects imposed by zinc-oxide NPs were less pronounced. As persistent changes were observed for newly synthesized Cu-containing NPs, this work stresses the need for obligatory testing of nanoparticle interactions with non-target microbial communities in long-term experiments, especially during the approval procedures of novel nano-substances. It also underlines the role of in-depth physical and chemical studies of NP-containing agents, which may be tweaked to mitigate the unwanted behavior of such substances in the environment and preselect their beneficial characteristics.
Collapse
Affiliation(s)
- Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Anna Nowak
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland.
| | - Mateusz Dulski
- University of Silesia, Faculty of Science and Technology, Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
28
|
Liu HH, Yang L, Li XT, Shi H, Guo LK, Tu LX, Wang J, Li YL. The ecotoxicological effects of chromium (III) oxide nanoparticles to Chlorella sp.: perspective from the physiological and transcriptional responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55079-55091. [PMID: 36890403 DOI: 10.1007/s11356-023-26301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Extensive application of nanomaterials enlarges its concentrations in the aquatic environments and poses a threat to algae. This study comprehensively analyzed the physiological and transcriptional responses of Chlorella sp. after being exposed to chromium (III) oxide nanoparticles (nCr2O3). The nCr2O3 at 0-100 mg/L presented adverse effects on cell growth (96 h EC50 = 16.3 mg/L), decreasing the photosynthetic pigment concentrations and photosynthetic activity. Moreover, more extracellular polymeric substances (EPS), especially polysaccharides in soluble EPS, were produced in algae cell, which mitigated the damage of nCr2O3 to cells. However, with the increase of nCr2O3 doses, the EPS protective responses were exhausted, accompanied by toxicity in the form of organelle damage and metabolic disturbance. The enhanced acute toxicity was closely related to the physical contact of nCr2O3 with cells, oxidative stress, and genotoxicity. Firstly, large amounts of nCr2O3 aggregated around and were attached to cells, causing physical damage. Then, the intracellular reactive oxygen species and malondialdehyde levels were significantly increased that led to lipid peroxidation, especially at 50-100 mg/L nCr2O3. Finally, the transcriptomic analysis further revealed that the transcription of ribosome, glutamine, and thiamine metabolism-related genes were impaired under 20 mg/L nCr2O3, suggesting nCr2O3 inhibited algal cell growth through metabolism, cell defense, and repair, etc.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hui Shi
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li-Xin Tu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jia Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan-Li Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
29
|
Suner SS, Sahiner M, Umut E, Ayyala RS, Sahiner N. Physically Crosslinked Chondroitin Sulfate (CS)-Metal Ion (M: Fe(III), Gd(III), Zn(II), and Cu(II)) Particles for Versatile Applications and Their Biosafety. Pharmaceuticals (Basel) 2023; 16:ph16040483. [PMID: 37111240 PMCID: PMC10144968 DOI: 10.3390/ph16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Chondroitin sulfate (CS), a well-known glycosaminoglycan, was physically crosslinked with Fe(III), Gd(III), Zn(II), and Cu(II) ions to obtain CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) polymeric particles for multipurpose biological applications. The CS-metal ion-containing particles in the micrometer to a few hundred nanometer size range are injectable materials for intravenous administration. The CS-metal ion-containing particles are safe biomaterials for biological applications because of their perfect blood compatibility and no significant cytotoxicity on L929 fibroblast cells up to a 10 mg/mL concentration. Furthermore, CS-Zn(II) and CS-Cu(II) particles show excellent antibacterial susceptibility, with 2.5-5.0 mg/mL minimum inhibition concentration (MIC) values against Escherichia coli and Staphylococcus aureus. Moreover, the in vitro contrast enhancement abilities of aqueous CS-metal ion particle suspensions in magnetic resonance imaging (MRI) were determined by obtaining T1- and T2-weighted MR images using a 0.5 Tesla MRI scanner and by calculating the water proton relaxivities. Therefore, these CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) particles have significant potential as antibacterial additive materials and MRI contrast enhancement agents with less toxicity.
Collapse
Affiliation(s)
- Selin S Suner
- Department of Chemistry, Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Evrim Umut
- Department of Medical Imaging Techniques, School of Healthcare, Dokuz Eylul University, 35330 Izmir, Turkey
- Bioİzmir-Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv, MDC 21, Tampa, FL 33612, USA
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
30
|
What function of nanoparticles is the primary factor for their hyper-toxicity? Adv Colloid Interface Sci 2023; 314:102881. [PMID: 36934512 DOI: 10.1016/j.cis.2023.102881] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Nanomaterials have applications in environmental protection, hygiene, medicine, agriculture, and the food industry due to their enhanced bio-efficacy/toxicity as science and technology have progressed, notably nanotechnology. The extension in the use of nanoparticles in day-to-day products and their excellent efficacy raises worries about safety concerns associated with their use. Therefore, to understand their safety concerns and find the remedy, it is imperative to understand the rationales for their enhanced toxicity at low concentrations to minimize their potential side effects. The worldwide literature quotes different nanoparticle functions responsible for their enhanced bio-efficacy/ toxicity. Since the literature on the comparative toxicity study of nanoparticles of different shapes and sizes having different other physic-chemical properties like surface areas, surface charge, solubility, etc., evident that the nanoparticle's toxicity is not followed the fashion according to their shape, size, surface area, surface charge, solubility, and other Physico-chemical properties. It raises the question then what function of nanoparticle is the primary factor for their hyper toxicity. Why do non-spherical and large-sized nanoparticles show the same or higher toxicity to the same or different cell line or test organism instead of having lower surface area, surface charge, larger size, etc., than their corresponding spherical and smaller-sized nanoparticles? Are these factors a secondary, not primary, factor for nanoparticles hyper-toxicity? If so, what function of nanoparticles is the primary function for their hyper-toxicity? Therefore, in this article, literature related to the comparative toxicity of nanoparticles was thoroughly studied, and a hypothesis is put forth to address the aforesaid question, that the number of atoms/ions/ molecules per nanoparticles is the primary function of nanoparticles toxicity.
Collapse
|
31
|
Gräf T, Gummi K, Filser J, Thöming J, Köser J. Improving Membrane Filtration for Copper Speciation: Optimal Salt Pretreatments of Polyethersulfone Membranes to Prevent Analyte Retention. ACS OMEGA 2023; 8:5742-5751. [PMID: 36816661 PMCID: PMC9933229 DOI: 10.1021/acsomega.2c07355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Membrane filtration has been increasingly used to separate dissolved metal ions from dispersed particles, commonly using ultrafiltration membranes, for example, polyethersulfone (PES) membranes with a molecular weight cut-off of 3 kDa. The disadvantage of this technique is an undesired retention of ions, resulting from Coulomb interactions with sulfonic acid groups of the membrane. Therefore, such a membrane acts similar to a cation exchanger column. We solved this drawback by a pretreatment of the PES membrane by other cations. Using CuSO4 as a model compound, we compared the effectiveness of five cations using their salt solutions (Ca2+, Mg2+, Fe2+, Ag+, Ba2+) as pretreatment agents and identified the most effective pretreatment component for a high recovery of copper ions. After membrane filtration without pretreatment, only 52 ± 10%, 64 ± 5%, 75 ± 8%, and 89 ± 7% of nominal Cu concentrations were obtained using initial concentrations of 0.2, 0.5, 1.0, and 4.0 mg L-1, respectively. The efficiency of the investigated cations increased in the order Fe < Ag < Mg < Ca < Ba. Furthermore, we analyzed the most efficient concentration of the pretreatment agent. The best performance was achieved using 0.1 mol L-1 CaCl2 which increased copper recovery to slightly below 100%, even at the lowest tested Cu concentration (recovery 93 ± 10% at 0.2 mg L-1). In the environmentally relevant Cu concentration range of 0.2 mg L-1, 0.1 mol L-1 BaCl2 was identified as the most efficient pretreatment (103 ± 11%).
Collapse
Affiliation(s)
- Tonya Gräf
- UFT—Centre
for Environmental Research and Sustainable Technology, University of Bremen, General and Theoretical Ecology, Leobener Str. 6, D-28359 Bremen, Germany
| | - Katharina Gummi
- UFT—Centre
for Environmental Research and Sustainable Technology, University of Bremen, Chemical Process Engineering, Leobener Str. 6, D-28359 Bremen, Germany
| | - Juliane Filser
- UFT—Centre
for Environmental Research and Sustainable Technology, University of Bremen, General and Theoretical Ecology, Leobener Str. 6, D-28359 Bremen, Germany
| | - Jorg Thöming
- UFT—Centre
for Environmental Research and Sustainable Technology, University of Bremen, Chemical Process Engineering, Leobener Str. 6, D-28359 Bremen, Germany
| | - Jan Köser
- UFT—Centre
for Environmental Research and Sustainable Technology, University of Bremen, Chemical Process Engineering, Leobener Str. 6, D-28359 Bremen, Germany
| |
Collapse
|
32
|
Yan Z, Liu C, Liu Y, Tan X, Li X, Shi Y, Ding C. The interaction of ZnO nanoparticles, Cr(VI), and microorganisms triggers a novel ROS scavenging strategy to inhibit microbial Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130375. [PMID: 36444067 DOI: 10.1016/j.jhazmat.2022.130375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) contaminated water usually contains other contaminants like engineered nanomaterials (ENMs). During the process of microbial treatment, the inevitable interaction of Cr(VI), ENMs, and microorganisms probably determines the efficiency of Cr(VI) biotransformation, however, the corresponding information remains elusive. This study investigated the interaction of ZnO nanoparticles (NPs), Cr(VI), and Pannonibacter phragmitetus BB (hereafter BB), which changed the process of microbial Cr(VI) reduction. ZnO NPs inhibited Cr(VI) reduction, but had no effect on bacterial viability. In particular, Cr(VI) induced BB to produce organic acids and to drive Zn2+ dissolution from ZnO NPs inside and outside of cells. The dissolved Zn2+ not only promoted Cr(VI) reduction to Cr(V)/Cr(IV) by strengthening sugar metabolism and inducing increase in NAD(P)H production, but also hindered Cr(V)/Cr(IV) transformation to Cr(III) through down-regulating Cr(VI) reductase genes. A novel bacterial driven ROS scavenging mechanism leading to the inhibition of Cr(VI) reduction was elucidated. Specifically, the accumulated Cr(VI) and Cr(V)/Cr(IV) formed a redox dynamic equilibrium, which triggered the disproportionation of superoxide radicals mimicking superoxide dismutase through the flip-flop of Cr(VI) and Cr(V)/Cr(IV) in bacterial cells. This study provided a realistic insight into design the applicability of biological remediation technology for Cr(VI) contaminant and evaluating environmental risks of ENMs.
Collapse
Affiliation(s)
- Zhiyan Yan
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Chenrui Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoqian Tan
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Xinyue Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083 Changsha, China.
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
33
|
Pastor F, Rodriguez JC, Barrera JM, García-Menocal JAD, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2780. [PMID: 36833476 PMCID: PMC9956897 DOI: 10.3390/ijerph20042780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Metal ion release studies were carried out on three of the most commonly used orthodontic wires in the clinic: austenitic stainless steel, Ti-Mo, and superelastic NiTi, using three mouthwashes with different fluoride concentrations: 130, 200, and 380 ppm. Immersions were carried out in these mouthwashes at 37 °C for 1, 4, 7, and 14 days, and the ions released were determined by inductively coupled plasma-mass spectrometry (ICP-MS). All wires were observed by scanning electron microscopy (SEM). The results showed a moderate ion release in the stainless steel wires, with nickel and chromium values of 500 and 1000 ppb in the worst conditions for the wires: concentrations of 380 ppm fluoride and 14 days of immersion. However, in the Ti-Mo and NiTi alloys, an abrupt change in release was observed when the samples were immersed in 380 ppm fluoride concentrations. Titanium releases in Ti-Mo wires reached 200,000 ppb, creating numerous pits on the surface. Under the same conditions, the release of Ni and Ti ions from the superelastic wires also exceeded 220,000 ppb and 180,000 ppb, respectively. This release of ions causes variations in the chemical composition of the wires, causing the appearance of martensite plates in the austenitic matrix after 4 days of immersion. This fact causes it to lose its superelastic properties at a temperature of 37 °C. In the case of immersion in 380 ppm mouthwashes for more than 7 days, rich-nickel precipitates can be seen. These embrittle the wire and lose all tooth-correcting properties. It should be noted that the release of Ni ions can cause hypersensitivity in patients, particularly women. The results indicate that the use of mouthwashes with a high content of fluoride should not be recommended with orthodontic archwires.
Collapse
Affiliation(s)
- Francisco Pastor
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Juan Carlos Rodriguez
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José María Barrera
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José Angel Delgado García-Menocal
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Department Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
34
|
Cai X, Jin M, Yao L, He B, Ahmed S, Safdar W, Ahmad I, Cheng DB, Lei Z, Sun T. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers. J Mater Chem B 2023; 11:716-733. [PMID: 36594785 DOI: 10.1039/d2tb02001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a promising delivery nanosystem for drug controlled-release, nanocarriers (NCs) have been investigated widely. Although various studies have concentrated on the preparation and characterization of nanoparticles (NPs), clinical applications are rarely reported, due to the unclear distribution, absorption, metabolism, toxicology processes and drug release mechanism. The clinical application of NCs is therefore still a long way off. This review describes the effects of the properties of NCs (including size, shape, surface properties, porosity, elasticity and so on) on pharmacological and toxicological behaviours in vivo and medical applications. Moreover, this study is intended to help the readers understand the behaviours and mechanisms of NCs and positively face the challenges caused by the variety of complicated and limited processes of NCs in vivo. Importantly, this article provides some strategies for the clinical application of NCs and may provide ideas to enhance the therapeutic efficacy of NCs without increasing the toxicology, by introducing tracing technology, which can be more suitable in contributing to the development of safety and efficacy of NCs and the growth of nanotechnology.
Collapse
Affiliation(s)
- Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ijaz Ahmad
- Department of Animal Health, University of Agriculture, Peshawar, Pakistan
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
35
|
Chen D, Xu W, Cao S, Xia Y, Du W, Yin Y, Guo H. Divergent responses of earthworms (Eisenia fetida) in sandy loam and clay soils to cerium dioxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5231-5241. [PMID: 35982389 DOI: 10.1007/s11356-022-22448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The reported biological effects of cerium dioxide nanoparticles (nCeO2) in soils range from toxic to protective. However, divergences of nCeO2 toxicity in soils of different textures are not known. In this study, the availability of nCeO2 on earthworms (Eisenia fetida) in sandy loam soils and clay soils was discussed, and the biological effects of nCeO2 (0-1000 mg/kg) on earthworms in two soils were investigated. The results showed the bioaccumulation and biological effects of Ce on earthworms in the two soils were inconsistent. The European Community Bureau of Reference (BCR) sequential extraction revealed that the major portions of Ce in both soils were in the residual form (98-99%), and the acid-soluble Ce fraction was greater in clay soils. However, nCeO2 was more toxic to earthworms in sandy loam soils than that in clay soils as assessed by earthworm biomass, morphology, and antioxidative damage. Thus, the high ecological risk of nCeO2 in sandy loam soils with higher pH and lower clay contents needs to be avoided, being used in agriculture to improve both crop yield and quality.
Collapse
Affiliation(s)
- Dun Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenxuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shenglai Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Ningxia Hui Autonomous Region Coal Geology Bureau, Yinchuan, 750004, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
- Joint International Research Centre for Critical Zone Science - University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Joint International Research Centre for Critical Zone Science - University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
36
|
Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 2023; 107:1039-1061. [PMID: 36635395 PMCID: PMC9838533 DOI: 10.1007/s00253-023-12364-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
Collapse
|
37
|
Ravikumar V, Mijakovic I, Pandit S. Antimicrobial Activity of Graphene Oxide Contributes to Alteration of Key Stress-Related and Membrane Bound Proteins. Int J Nanomedicine 2022; 17:6707-6721. [PMID: 36597432 PMCID: PMC9805717 DOI: 10.2147/ijn.s387590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Antibacterial activity of graphene oxide (GO) has been extensively studied, wherein penetration of the bacterial cell membrane and oxidative stress are considered to play a major role in the bactericidal activity of GO. However, the specific mechanism responsible for the antibacterial activity of GO remains largely unknown. Hence, the goal of this study was to explore the mode of action of GO, via an in-depth proteomic analysis of the targeted bacteria. Methods Staphylococcus aureus was grown in the presence of GO and samples were collected at different growth phases to examine the cell viability and to analyze the changes in protein expression. Antimicrobial efficiency of GO was tested by assessing bacterial viability, live/dead staining and scanning electron microscopy. The intracellular reactive oxygen species (ROS) induced by GO treatment were examined by fluorescence microscopy. Label-free quantitative proteomics analysis was performed to examine the differentially regulated proteins in S. aureus after GO treatment. Results GO treatment was observed to reduce S. aureus viability, from 50 ± 17% after 4 h, to 93 ± 2% after 24 h. The live/dead staining confirmed this progressive antimicrobial effect of GO. SEM images revealed the wrapping of bacterial cells and their morphological disruption by means of pore formation due to GO insertion. GO treatment was observed to generate intracellular ROS, correlating to the loss of cell viability. The proteomics analysis revealed alteration in the expression of cell membrane, oxidative stress response, general stress response, and virulence-associated proteins in GO-treated bacterial cells. The time-dependent bactericidal activity of GO correlated with a higher number of differentially regulated proteins involved in the above.-mentioned processes. Conclusion The obtained results suggest that the time-dependent bactericidal effect of GO is attributed to its wrapping/trapping ability, ROS production and due to physical disruption of the cell membrane.
Collapse
Affiliation(s)
- Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden,Correspondence: Santosh Pandit, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Göteborg, 41296, Sweden, Tel +46 729484011, Fax +46 317723801, Email
| |
Collapse
|
38
|
Macko M, Antoš J, Božek F, Konečný J, Huzlík J, Hegrová J, Kuřitka I. Development of New Health Risk Assessment of Nanoparticles: EPA Health Risk Assessment Revised. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:20. [PMID: 36615930 PMCID: PMC9823543 DOI: 10.3390/nano13010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The concentration of nanoparticles in the ambient air can lead to induced toxicities; however, it appears that nanoparticles’ unique properties are completely omitted when assessing health risks. This paper aims to enhance the EPA health risk assessment by incorporating two new variables that consider the size of nanoparticles: the toxicity multiplier and the size multiplier. The former considers the qualitative aspect of the size of particles within a concentration, whilst the latter takes into account the effects associated with the number of particles of the specific i-th size distribution interval. To observe the impact of the new variables, a case study was performed. The studied element was cadmium, which was measured using ICP-MS to discover concentrations of size fractions, ranging from <15.1 to <9830 nm. Next, the cadmium concentration is assessed using both the current state-of-the-art method and the proposed method with adjustments. Based on the new approach, the final risk was 1.1 × 10−5, which was almost 24 times higher compared with the current method. The contribution of nanoparticles to the risk value grew from barely 6% to an alarming 88%. Therefore, the enhanced method can lead to more realistic results when assessing the health risks of nanoparticles.
Collapse
Affiliation(s)
- Michal Macko
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Jan Antoš
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - František Božek
- Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| | - Jiří Konečný
- Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| | - Jiří Huzlík
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
39
|
Avramescu ML, Chénier M, Beauchemin S, Rasmussen P. Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:26. [PMID: 36615936 PMCID: PMC9824292 DOI: 10.3390/nano13010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Toxicological effects of metal-oxide-engineered nanomaterials (ENMs) are closely related to their distinct physical-chemical properties, especially solubility and surface reactivity. The present study used five metal-oxide ENMs (ZnO, MnO2, CeO2, Al2O3, and Fe2O3) to investigate how various biologically relevant media influenced dissolution behaviour. In both water and cell culture medium (DMEM), the metal-oxide ENMs were more soluble than their bulk analogues, with the exception that bulk-MnO2 was slightly more soluble in water than nano-MnO2 and Fe2O3 displayed negligible solubility across all tested media (regardless of particle size). Lowering the initial concentration (10 mg/L vs. 100 mg/L) significantly increased the relative solubility (% of total concentration) of nano-ZnO and nano-MnO2 in both water and DMEM. Nano-Al2O3 and nano-CeO2 were impacted differently by the two media (significantly higher % solubility at 10 mg/L in DMEM vs. water). Further evaluation of simulated interstitial lung fluid (Gamble's solution) and phagolysosomal simulant fluid (PSF) showed that the selection of aqueous media significantly affected agglomeration and dissolution behaviour. The solubility of all investigated ENMs was significantly higher in DMEM (pH = 7.4) compared to Gamble's (pH 7.4), attributable to the presence of amino acids and proteins in DMEM. All ENMs showed low solubility in Gamble's (pH = 7.4) compared with PSF (pH = 4.5), attributable to the difference in pH. These observations are relevant to nanotoxicology as increased nanomaterial solubility also affects toxicity. The results demonstrated that, for the purpose of grouping and read-across efforts, the dissolution behaviour of metal-oxide ENMs should be evaluated using aqueous media representative of the exposure pathway being considered.
Collapse
Affiliation(s)
- Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Marc Chénier
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Suzanne Beauchemin
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
40
|
Wang D, Bai L, Huang X, Yan W, Li S. Size-dependent acute toxicity and oxidative damage caused by cobalt-based framework (ZIF-67) to Photobacterium phosphoreum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158317. [PMID: 36037900 DOI: 10.1016/j.scitotenv.2022.158317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging nanomaterials with widespread applications for their superior properties. However, the potential health and environmental risks of MOFs still need further understanding. In this work, we investigated the toxicity of a typical cobalt-based MOF (ZIF-67) with varied primary particle sizes (100, 200, 400, 700 and 1200 nm) to Photobacterium Phosphoreum T3 strain, a kind of luminescent bacteria. The luminescence inhibition rate of all ZIF-67 nanoparticles (NPs) reached 40 % and higher at the concentration of 5 mg/L, exhibiting strong toxicity. Combined cellular assays and gene expression analysis confirmed that the general bioactivity inhibition and oxidative damage were induced mainly by ZIF-67 NPs, rather than Co2+ released from the ZIF-67 NPs. Additionally, the toxicity of ZIF-67 NPs demonstrated an evident size-dependent effect. For ZIF-67 smaller than 400 nm, the toxicity increased with the particle size decreased, while the trend was not significant when the particle size was larger than 400 nm. A potential explanation for this phenomenon is the smaller NPs (100 and 200 nm) may enter the cytoplasm, accumulating in the cytoplasm and causing more severe toxicity. Furthermore, Co2+ released from the ZIF-67 NPs was not the primary contributor to the toxic effect of ZIF-67 NPs which was verified by the toxicity results and the variation of toxicity-related indicators. These findings provided insight into the better design and safer use of MOFs, and it also implied the potential environmental risk of the MOF's cannot be ignored, especially for the bioapplication.
Collapse
Affiliation(s)
- Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering and NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston 77005, United States
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
41
|
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022; 10:1001572. [PMID: 36619393 PMCID: PMC9822575 DOI: 10.3389/fbioe.2022.1001572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
With the rapid progress of nanotechnology, various nanoparticles (NPs) have been applicated in our daily life. In the field of nanotechnology, metal-based NPs are an important component of engineered NPs, including metal and metal oxide NPs, with a variety of biomedical applications. However, the unique physicochemical properties of metal-based NPs confer not only promising biological effects but also pose unexpected toxic threats to human body at the same time. For safer application of metal-based NPs in humans, we should have a comprehensive understanding of NP toxicity. In this review, we summarize our current knowledge about metal-based NPs, including the physicochemical properties affecting their toxicity, mechanisms of their toxicity, their toxicological assessment, the potential strategies to mitigate their toxicity and current status of regulatory movement on their toxicity. Hopefully, in the near future, through the convergence of related disciplines, the development of nanotoxicity research will be significantly promoted, thereby making the application of metal-based NPs in humans much safer.
Collapse
Affiliation(s)
- Naiding Zhang
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guiya Xiong
- Department of Science and Research, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Zhenjie Liu,
| |
Collapse
|
42
|
Tubatsi G, Kebaabetswe LP, Musee N. Proteomic evaluation of nanotoxicity in aquatic organisms: A review. Proteomics 2022; 22:e2200008. [PMID: 36107811 DOI: 10.1002/pmic.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
The alteration of organisms protein functions by engineered nanoparticles (ENPs) is dependent on the complex interplay between their inherent physicochemical properties (e.g., size, surface coating, shape) and environmental conditions (e.g., pH, organic matter). To date, there is increasing interest on the use of 'omics' approaches, such as proteomics, genomics, and others, to study ENPs-biomolecules interactions in aquatic organisms. However, although proteomics has recently been applied to investigate effects of ENPs and associated mechanisms in aquatic organisms, its use remain limited. Herein, proteomics techniques widely applied to investigate ENPs-protein interactions in aquatic organisms are reviewed. Data demonstrates that 2DE and mass spectrometry and/or their combination, thereof, are the most suitable techniques to elucidate ENPs-protein interactions. Furthermore, current status on ENPs and protein interactions, and possible mechanisms of nanotoxicity with emphasis on those that exert influence at protein expression levels, and key influencing factors on ENPs-proteins interactions are outlined. Most reported studies were done using synthetic media and essay protocols and had wide variability (not standardized); this may consequently limit data application in actual environmental systems. Therefore, there is a need for studies using realistic environmental concentrations of ENPs, and actual environmental matrixes (e.g., surface water) to aid better model development of ENPs-proteins interactions in aquatic systems.
Collapse
Affiliation(s)
- Gosaitse Tubatsi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Lemme Prica Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
43
|
Liu W, Chen Y, Leng X, Stoll S. Embryonic exposure to selenium nanoparticles delays growth and hatching in the freshwater snail Lymnaea stagnalis. CHEMOSPHERE 2022; 307:136147. [PMID: 36037947 DOI: 10.1016/j.chemosphere.2022.136147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Selenium nanoparticles (SeNPs) have been applied in the biomedical and biocidal domain which may have potential environmental risks for aquatic systems. However, the knowledge of its toxicity and the role of functionalization on aquatic invertebrates are scarce. Thus, the present study aimed to analyze the embryotoxicity of two types of SeNPs coated with Sodium carboxymethyl cellulose (CMC-SeNPs) and Chitosan (CS-SeNPs) to the freshwater snail Lymnaea stagnalis in lake water, focusing on embryonic development. The influence of surface coatings and ions release, on the embryonic development of SeNPs to freshwater snail L. stagnalis was investigated. For this end, the snails were exposed to different concentrations of SeNPs and Se ions (0.05-1 mg L-1) during 7 days and multiple endpoints were analyzed, including developmental stage frequency, morphological alterations, embryos mortality and hatching success. The results showed that both Se forms promoted the developmental delay, mortality, morphological changes, and hatching inhibition in snail embryos in a concentration-dependent manner. CMC-SeNPs are 2.6 times more embryotoxic compared to CS-SeNPs indicating the importance of surface coating on the embryotoxicity. Moreover, the results revealed that although both forms of Se inhibited the embryo development and reduced the hatching of L. stagnalis, the mode of action on the embryogenesis was different. SeNPs had a higher toxicity to snails' embryos compared to their dissolved counterparts. Despite significant dissolution, by comparing the SeNPs with their dissolved fraction, the results suggest SeNPs inhibition effect on the snail development could be caused by both SeNPs and Se4+, and SeNPs might be the major development retardation driver rather than Se ions. The present study evidenced by the first time the toxicity effects of SeNPs on the snail embryogenesis, and highlighted how SeNPs intrinsic properties influence their transformation and toxicity in environmental relevant scenarios.
Collapse
Affiliation(s)
- Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211, Geneva, Switzerland.
| | - Yuying Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Serge Stoll
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211, Geneva, Switzerland
| |
Collapse
|
44
|
Zinc Oxide Nanoparticles Induce Toxicity in H9c2 Rat Cardiomyoblasts. Int J Mol Sci 2022; 23:ijms232112940. [PMID: 36361726 PMCID: PMC9658273 DOI: 10.3390/ijms232112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used in the cosmetic industry. They are nano-optical and nano-electrical devices, and their antimicrobial properties are applied in food packaging and medicine. ZnO NPs penetrate the body through inhalation, oral, and dermal exposure and spread through circulation to various systems and organs. Since the cardiovascular system is one of the most vulnerable systems, in this work, we studied ZnO NPs toxicity in H9c2 rat cardiomyoblasts. Cardiac cells were exposed to different concentrations of ZnO NPs, and then the morphology, proliferation, viability, mitochondrial membrane potential (ΔΨm), redox state, and protein expression were measured. Transmission electron microscopy (TEM) and hematoxylin–eosin (HE) staining showed strong morphological damage. ZnO NPs were not observed inside cells, suggesting that Zn2+ ions were internalized, causing the damage. ZnO NPs strongly inhibited cell proliferation and MTT reduction at 10 and 20 μg/cm2 after 72 h of treatment. ZnO NPs at 20 μg/cm2 elevated DCF fluorescence, indicating alterations in the cellular redox state associated with changes in ΔΨm and cell death. ZnO NPs also reduced the intracellular expression of troponin I and atrial natriuretic peptide. ZnO NPs are toxic for cardiac cells; therefore, consumption of products containing them could cause heart damage and the development of cardiovascular diseases.
Collapse
|
45
|
Lin F, Wang Z, Wu FG. Carbon Dots for Killing Microorganisms: An Update since 2019. Pharmaceuticals (Basel) 2022; 15:1236. [PMID: 36297348 PMCID: PMC9607459 DOI: 10.3390/ph15101236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Frequent bacterial/fungal infections and occurrence of antibiotic resistance pose increasing threats to the public and thus require the development of new antibacterial/antifungal agents and strategies. Carbon dots (CDs) have been well demonstrated to be promising and potent antimicrobial nanomaterials and serve as potential alternatives to conventional antibiotics. In recent years, great efforts have been made by many researchers to develop new carbon dot-based antimicrobial agents to combat microbial infections. Here, as an update to our previous relevant review (C 2019, 5, 33), we summarize the recent achievements in the utilization of CDs for microbial inactivation. We review four kinds of antimicrobial CDs including nitrogen-doped CDs, metal-containing CDs, antibiotic-conjugated CDs, and photoresponsive CDs in terms of their starting materials, synthetic route, surface functionalization, antimicrobial ability, and the related antimicrobial mechanism if available. In addition, we summarize the emerging applications of CD-related antimicrobial materials in medical and industry fields. Finally, we discuss the existing challenges of antimicrobial CDs and the future research directions that are worth exploring. We believe that this review provides a comprehensive overview of the recent advances in antimicrobial CDs and may inspire the development of new CDs with desirable antimicrobial activities.
Collapse
Affiliation(s)
| | | | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
46
|
Shivalkar S, Arshad F, Sahoo AK, Sk MP. Visible Light-Mediated Photoactivated Sulfur Quantum Dots as Heightened Antibacterial Agents. ACS OMEGA 2022; 7:33358-33364. [PMID: 36157767 PMCID: PMC9494441 DOI: 10.1021/acsomega.2c03968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The need for antimicrobial or antibacterial fabric has increased exponentially in recent past years, especially after the outbreak of the SARS-CoV-2 pandemic. Several studies have been conducted, and the primary focus is the development of simple, automated, performance efficient and cost-efficient fabric for disposable and frequent-use items such as personal protective materials. In this regard, we have explored the light-driven antibacterial activity of water-soluble Sdots for the first time. Sdots are a new class of non-metallic quantum dots of the nanosulfur family having a polymeric sulfur core. These Sdots exhibited excellent antibacterial activity by generating reactive oxygen species under sunlight or visible light. Under 6 h of sunlight irradiation, it was observed that >90% of the bacterial growth was inhibited in the presence of Sdots. Furthermore, low toxic Sdots were employed to develop antibacterial fabric for efficiently cleaning the bacterial infection. The prominent zone of inhibition of up to 9 mm was observed post 12 h incubation of Sdots treated fabric with E. coli in the presence of visible light. Furthermore, the SEM study confirmed the bactericidal effect of these Sdots-treated fabrics. Moreover, this study might help explore the photocatalytic disinfection application of Sdots in diverse locations of interest, Sdots-based photodynamic antimicrobial chemotherapy application, and provide an opportunity to develop Sdots as a visible light photocatalyst for organic transformations and other promising applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department
of Applied Sciences, Indian Institute of
Information Technology Allahabad, Jhalwa, Prayagraj 211012, Uttar Pradesh, India
| | - Farwa Arshad
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh , India
| | - Amaresh Kumar Sahoo
- Department
of Applied Sciences, Indian Institute of
Information Technology Allahabad, Jhalwa, Prayagraj 211012, Uttar Pradesh, India
| | - Md Palashuddin Sk
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh , India
| |
Collapse
|
47
|
Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119603. [PMID: 35691443 DOI: 10.1016/j.envpol.2022.119603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants' ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qing Ning
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | | | - Meng Zhang
- Shenzhen Dapeng New District Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
48
|
Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem 2022; 10:955993. [PMID: 36017162 PMCID: PMC9395639 DOI: 10.3389/fchem.2022.955993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Owing to their excellent characteristics, such as large specific surface area, favorable biosafety, and versatile application, nanomaterials have attracted significant attention in biomedical applications. Among them, metal-based nanomaterials containing various metal elements exhibit significant bone tissue regeneration potential, unique antibacterial properties, and advanced drug delivery functions, thus becoming crucial development platforms for bone tissue engineering and drug therapy for orthopedic diseases. Herein, metal-based drug-loaded nanomaterial platforms are classified and introduced, and the achievable drug-loading methods are comprehensively generalized. Furthermore, their applications in bone tissue engineering, osteoarthritis, orthopedic implant infection, bone tumor, and joint lubrication are reviewed in detail. Finally, the merits and demerits of the current metal-based drug-loaded nanomaterial platforms are critically discussed, and the challenges faced to realize their future applications are summarized.
Collapse
Affiliation(s)
| | | | | | - He Cai
- *Correspondence: He Cai, ; Zhou Zhu,
| | - Zhou Zhu
- *Correspondence: He Cai, ; Zhou Zhu,
| |
Collapse
|
49
|
Cacciamali A, Pascucci L, Villa R, Dotti S. Engineered nanoparticles toxicity on adipose tissue derived mesenchymal stem cells: A preliminary investigation. Res Vet Sci 2022; 152:134-149. [PMID: 35969916 DOI: 10.1016/j.rvsc.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
Nanoscience and nanotechnologies have recently gained importance in several fields, such as industry and medicine. A big issue of the increasing application of nanomaterials is the poor literature regarding their potential toxicity in humans and animals. Recently, adult stem cells have been proposed as putative targets of nanoparticles (NPs). This study aims to investigate the effects of zerovalent-metallic NPs on isolated and amplified equine Adipose tissue derived Mesenchymal Stem Cells (eAdMSCs). Cells were treated with Cobalt (Co-), Iron (Fe-), and Nickel (Ni-) nanoparticles (NPs) at different concentrations and were characterized for the cytotoxic and genotoxic effects of exposure. Treatment with NPs resulted in reduced cell viability and proliferative capability in comparison with untreated cells. However, this did not influence eAdMSCs potency, as treated cells were able to differentiate towards the adipogenic and osteogenic lineages. Ni- and Fe-NPs showed cytoplasmic localization, while Co-NPs entered the nucleus and mitochondria, suggesting a potential genotoxic activity. Regarding p53 expression, it was enhanced in the first 48 h after treatments, with a drastic reduction of expression within 72 h. Higher p53 expression was reported in the case of Co-NP treatment, suggesting the tumorigenic potential of these NPs. Telomerase activity was enhanced by Fe- and Ni-NP treatments in a concentration- and time-dependent way. This was not true for Co-NP treated samples, suggesting a reduced replicative capacity of eAdMSCs upon Co-NP exposure. The present study is a preliminary investigation of the influence exerted by NPs on eAdMSC physiological activity in terms of cytotoxic and genotoxic effects. The present results revealed eAdMSC physiology to be strongly influenced by NPs in a dose-, time- and NP-dependent way.
Collapse
Affiliation(s)
- Andrea Cacciamali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy.
| | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| |
Collapse
|
50
|
Powell LG, Gillies S, Fernandes TF, Murphy F, Giubilato E, Cazzagon V, Hristozov D, Pizzol L, Blosi M, Costa AL, Prina-Mello A, Bouwmeester H, Sarimveis H, Janer G, Stone V. Developing Integrated Approaches for Testing and Assessment (IATAs) in order to support nanomaterial safety. Nanotoxicology 2022; 16:484-499. [PMID: 35913849 DOI: 10.1080/17435390.2022.2103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Due to the unique characteristics of nanomaterials (NM) there has been an increase in their use in nanomedicines and innovative medical devices (MD). Although large numbers of NMs have now been developed, comprehensive safety investigations are still lacking. Current gaps in understanding the potential mechanisms of NM-induced toxicity can make it challenging to determine the safety testing necessary to support inclusion of NMs in MD applications. This article provides guidance for implementation of pre-clinical tailored safety assessment strategies with the aim to increase the translation of NMs from bench development to clinical use. Integrated Approaches to Testing and Assessment (IATAs) are a key tool in developing these strategies. IATAs follow an iterative approach to answer a defined question in a specific regulatory context to guide the gathering of relevant information for safety assessment, including existing experimental data, integrated with in silico model predictions where available and appropriate, and/or experimental procedures and protocols for generating new data to fill gaps. This allows NM developers to work toward current guidelines and regulations, while taking NM specific considerations into account. Here, an example IATA for NMs with potential for direct blood contact was developed for the assessment of haemocompatibility. This example IATA brings together the current guidelines for NM safety assessment within a framework that can be used to guide information and data gathering for the safety assessment of intravenously injected NMs. Additionally, the decision framework underpinning this IATA has the potential to be adapted to other testing needs and regulatory contexts.
Collapse
Affiliation(s)
| | - S Gillies
- Heriot-Watt University, Edinburgh, UK
| | | | - F Murphy
- Heriot-Watt University, Edinburgh, UK
| | - E Giubilato
- University Ca' Foscari of Venice, Venice, Italy.,GreenDecision Srl, Venice, Italy
| | - V Cazzagon
- University Ca' Foscari of Venice, Venice, Italy
| | - D Hristozov
- University Ca' Foscari of Venice, Venice, Italy
| | - L Pizzol
- GreenDecision Srl, Venice, Italy
| | - M Blosi
- Institute of Science and Technology for Ceramics, CNR, Italy
| | - A L Costa
- Institute of Science and Technology for Ceramics, CNR, Italy
| | - A Prina-Mello
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - H Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - H Sarimveis
- National Technical University of Athens, Athens, Greece
| | - G Janer
- Leitat Technological Centre, Barcelona, Spain
| | - V Stone
- Heriot-Watt University, Edinburgh, UK
| |
Collapse
|