1
|
Panneerselvan L, Raghuraman Rengarajan HJ, Kandaiah R, Bhagwat-Russell G, Palanisami T. Fibrous foes: First report on insidious microplastic contamination in dietary fiber supplements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125248. [PMID: 39510303 DOI: 10.1016/j.envpol.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Regular consumption of health supplements to balance dietary intake has gained popularity worldwide. One such supplement that has gained popularity among consumers is dietary fibers. Microplastic (MPs) contamination in various food products is being reported worldwide. However, there is a paucity of understanding of the occurrence of MPs in dietary supplements. This study addresses this gap by investigating the degree of MPs contamination in dietary fiber supplements. Nine commonly consumed (powder and gummy-based) over-the-counter dietary fiber supplements in Australia were tested in this study. Microscopic examination revealed the presence of MPs fibers and fragments in all the tested products. Further categorization showed that MPs particles were of various colours, including black, blue, red, green, and white. The order of polymer abundance was Polyamide > Polydiallyl Phthalate > polyethylene polypropylene diene > Polyurethane = Polyethylene terephthalate > Polyethylene = Ethylene acrylic acid copolymer. Among the supplements, powder-based samples had higher MPs (at the adult dosage suggested by the manufacturer) than gummy-based product. The average predicted ingestion of microplastics from these supplements (all nine samples) was 5.89 ± 2.89 particles day-1. The dietary exposure for children and adults ranged from 0.1-0.48 and 0.18-4.08 particles day-1, respectively. Based on the microplastic contamination factor (MCF), among the nine samples tested, 69.81% exhibited a moderate level, while 20.76% showed a significant level of microplastic contamination. The polymer risk index (pRi) indicates products with very high and high-risk categories. The possible sources of MPs contamination in the products were studied. To our knowledge, this is the first study to record and quantify the presence of MPs in dietary fiber supplements, which is a direct source of MPs exposure to humans via., ingestion.
Collapse
Affiliation(s)
- Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Haryni Jayaradhika Raghuraman Rengarajan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
2
|
Wang X, Huang G, Chen Q, Pang R, Han Z, Zhu J, Xie B, Su Y, Zhou S. Entry pathways determined the effects of MPs on sludge anaerobic digestion system: The views of methane production and antibiotic resistance genes fates. ENVIRONMENTAL RESEARCH 2024; 252:119061. [PMID: 38704011 DOI: 10.1016/j.envres.2024.119061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Sludge is one of the primary reservoirs of microplastics (MPs), and the effects of MPs on subsequent sludge treatment raised attention. Given the entry pathways, MPs would exhibit different properties, but the entry pathway-dependent effect of MPs on sludge treatment performance and the fates of antibiotic resistance genes (ARGs), another high-risk emerging contaminant, were seldom documented. Herein, MPs with two predominant entry pathways, including wastewater-derived (WW-derived) and anaerobic digestion-introduced (AD-introduced), were used to investigate the effects on AD performance and ARGs abundances. The results indicated that WW-derived MPs, namely the MPs accumulated in sludge during the wastewater treatment process, exhibited significant inhibition on methane production by 22.8%-71.6%, while the AD-introduced MPs, being introduced in the sludge AD process, slightly increased the methane yield by 4.7%-17.1%. Meanwhile, MPs were responsible for promoting transmission of target ARGs, and polyethylene terephthalate MPs (PET-MPs) showed a greater promotion effect (0.0154-0.0936) than polyamide MPs (PA-MPs) (0.0013-0.0724). Compared to size, entry pathways and types played more vital roles on MPs influences. Investigation on mechanisms based on microbial community structure revealed characteristics (aging degree and types) of MPs determined the differences of AD performance and ARGs fates. WW-derived MPs with longer aging period and higher aging degree would release toxics and decrease the activities of microorganisms, resulting in the negative impact on AD performance. However, AD-introduced MPs with short aging period exhibited marginal impacts on AD performance. Furthermore, the co-occurrent network analysis suggested that the variations of potential host bacteria induced by MPs with different types and aging degree attributed to the dissemination of ARGs. Distinctively from most previous studies, the MPs with different sizes did not show remarkable effects on AD performance and ARGs fates. Our findings benefited the understanding of realistic environmental behavior and effect of MPs with different sources.
Collapse
Affiliation(s)
- Xueting Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guangchen Huang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qirui Chen
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jundong Zhu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Sun J, Zhang X, Gong X, Sun Y, Zhang S, Wang F. Metagenomic analysis reveals gene taxonomic and functional diversity response to microplastics and cadmium in an agricultural soil. ENVIRONMENTAL RESEARCH 2024; 251:118673. [PMID: 38493845 DOI: 10.1016/j.envres.2024.118673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong Province, 261000, PR China
| | - Xiaoqing Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Xiaoqiang Gong
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan Province, 621010, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
4
|
Zhang J, Hao A, Zhao B, Ma F, Zhang X, Zhang Y, Duan K, Li Y. Effects of microplastics and cadmium co-contamination on soil properties, maize (Zea mays L.) growth characteristics, and cadmium accumulation in maize in loessial soil-maize systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124363. [PMID: 38880325 DOI: 10.1016/j.envpol.2024.124363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Microplastics (MPs) are pervasive pollutants found in agricultural soils, yet research on the combined impacts of MPs and heavy metals on soil-plant systems remains limited. This study investigates the combined impact of low-density polyethylene (LDPE) microplastics (L: 1 mm, S: 100 μm, 0.1%, 1%) and Cd on soil properties, available Cd content, maize growth, and Cd accumulation by mazie through pot experiments. The findings unveiled notable impacts of the treatment groups, namely MP-L0.1%, MP-S0.1%, MP-L1%, and MP-S1%, on soil organic carbon (SOC), maize height, and catalase (CAT) activity (P < 0.05). The dosage of MPs significantly influenced maize height, MP-S0.1% treatment resulted in a 5.6% reduction, while the other groups had insignificant effects. Particle size and dosage significantly affected SOC and CAT (P < 0.01). The MP-L1% and MP-S1% groups resulted in increases of SOC by 121.5% and 281.0%, respectively. CAT reductions were 32.6%, 62.8%, 41.9%, and 34.9% in MP-L0.1%, MP-S0.1%, MP-L1%, and MP-S1% groups, individually. The Cd treatment induced a significant decrease in soil cation exchange capacity (CEC), maize stem diameter, and root length, accompanied by significant increases in maize plant height, malondialdehyde (MDA), CAT, and superoxide dismutase (SOD) activities. Combined LDPE and Cd contamination had significant effects on maize height and Cd content in leaves. Specifically, MP-L0.1%+Cd, MP-S0.1%+Cd, MP-L1%+Cd, and MP-S1%+Cd reduced maize height by 4.1%, 4.5%, 8.7%, and 13.8%, respectively. The co-presence of LDPE and Cd increased available Cd content in soil while elevating Cd concentration in maize shoots and roots, with a notable 25.5% increase in Cd concentration in maize leaves in the MP-L1%+Cd group compared to the Cd group. Furthermore, LDPE effects on soil-plant systems varied depending on particle size and dosage. This research provides important perspectives on evaluating the concurrent contamination and potential dangers of MPs and toxic metals in soil-plant environments.
Collapse
Affiliation(s)
- Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Aihong Hao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China.
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| |
Collapse
|
5
|
Okeke ES, Ezeorba TPC, Chen Y, Mao G, Feng W, Wu X. Association of tetrabromobisphenol A (TBBPA) with micro/nano-plastics: A review of recent findings on ecotoxicological and health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172308. [PMID: 38599396 DOI: 10.1016/j.scitotenv.2024.172308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
6
|
Ferrari M, Laranjeiro F, Sugrañes M, Oliva J, Beiras R. Weathering increases the acute toxicity of plastic pellets leachates to sea-urchin larvae-a case study with environmental samples. Sci Rep 2024; 14:11784. [PMID: 38782918 PMCID: PMC11116416 DOI: 10.1038/s41598-024-60886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Microplastics, particles under 5 mm, pervade aquatic environments, notably in Tarragona's coastal region (NE Iberian Peninsula), hosting a major plastic production complex. To investigate weathering and yellowness impact on plastic pellets toxicity, sea-urchin embryo tests were conducted with pellets from three locations-near the source and at increasing distances. Strikingly, distant samples showed toxicity to invertebrate early stages, contrasting with innocuous results near the production site. Follow-up experiments highlighted the significance of weathering and yellowing in elevated pellet toxicity, with more weathered and colored pellets exhibiting toxicity. This research underscores the overlooked realm of plastic leachate impact on marine organisms while proposes that prolonged exposure of plastic pellets in the environment may lead to toxicity. Despite shedding light on potential chemical sorption as a toxicity source, further investigations are imperative to comprehend weathering, yellowing, and chemical accumulation in plastic particles.
Collapse
Affiliation(s)
- Michele Ferrari
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain
| | - Filipe Laranjeiro
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain
| | - Marta Sugrañes
- Associació Good Karma Projects, Manila 49 Àtic 2, 08034, Barcelona, Spain
| | - Jordi Oliva
- Associació Good Karma Projects, Manila 49 Àtic 2, 08034, Barcelona, Spain
| | - Ricardo Beiras
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain.
| |
Collapse
|
7
|
Song H, Xiao S, Zhou X, Li Y, Tao M, Wu F, Xu X. Temporal dynamics of bacterial colonization on five types of microplastics in a freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169697. [PMID: 38163614 DOI: 10.1016/j.scitotenv.2023.169697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs), as a new substrate, provide a unique niche for microbial colonization in the freshwater ecosystems; however, the impacts of long-term MP exposure on colonized bacteria are still unclear. In this study, five MP types were exposed in a freshwater lake for approximately one year, and the MP particles, together with the surrounding water, were collected on days 60, 150, 250 and 330 during the in situ field experiment. Bacteria on the MP surface, as well as free-living bacteria in the surrounding water, were analyzed to evaluate the temporal dynamics of these bacterial communities. Results show that all five MP types exhibited signs of degradation during the exposure process. Additionally, the alpha diversity, community structure and composition of MP-attached bacteria significantly differed from that of the free-living bacteria in the surrounding water, indicating that the five MP types could provide a preferable niche for bacterial colonization in a freshwater environment. Proteobacteria, Chloroflexi, Verrucomicrobiota, Actinobacteriota and Firmicutes were the top five dominant phyla. Some plastic-degrading bacteria included in these phyla were detected, verifying that MP-attached biofilms had a certain degree of MP degradation potential. Some potentially pathogenic bacteria were also detected, suggesting an ecological threat for spreading disease in the aquatic ecosystem. Furthermore, the bacterial community and some metabolic pathways were significantly affected by the MP type (P < 0.01) and exposure time (P < 0.01), indicating that the presence of MPs not only alters the bacterial community structure and composition, but also influences their potential functional properties in freshwater ecosystems. Multiple factors, including the physicochemical properties related to MPs and the environmental parameters of the surrounding water, affect the community composition and the function of MP-attached bacteria to different degrees. Our findings indicate that the presence of MPs has a potential ecological impact on freshwater ecosystems.
Collapse
Affiliation(s)
- Haiya Song
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yanan Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Tao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohong Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Ferreira T, Homem V, Cereceda-Balic F, Fadic X, Alves A, Ratola N. Are volatile methylsiloxanes in downcycled tire microplastics? Levels and human exposure estimation in synthetic turf football fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11950-11967. [PMID: 38228949 PMCID: PMC10869416 DOI: 10.1007/s11356-024-31832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Downcycled rubber, derived from end-of-life tires (ELTs), is frequently applied as crumb rubber (CR) as infill of synthetic turf in sports facilities. This practice has been questioned in recent years as numerous studies have reported the presence of potentially hazardous chemicals in this material. CR particles fall into the category of microplastics (MPs), making them possible vectors for emerging micropollutants. A preliminary study where volatile methylsiloxanes (VMSs) were found in CR originated the hypothesis that VMSs are present in this material worldwide. Consequently, the present work evaluates for the first time the levels and trends of seven VMSs in CR from synthetic turf football fields, while attempting to identify the main sources and impacts of these chemicals. A total of 135 CR samples and 12 other of alternative materials were analyzed, employing an ultrasound-assisted dispersive solid-phase extraction followed by gas chromatography-mass spectrometry (GC-MS), and the presence of VMSs was confirmed in all samples, in total concentrations ranging from 1.60 to 5089 ng.g-1. The levels were higher in commercial CR (before field application), a reflection of the use of VMS-containing additives in tire production and/or the degradation of silicone polymers employed in vehicles. The VMSs generally decreased over time on the turf, as expected given their volatile nature and the wearing of the material. Finally, the human exposure doses to VMSs in CR (by dermal absorption and ingestion) for people in contact with synthetic turf in football fields were negligible (maximum total exposure of 20.5 ng.kgBW-1.year-1) in comparison with the European Chemicals Agency (ECHA) reference doses: 1.35 × 109 ng.kgBW-1.year-1 for D4 and 1.83 × 109 ng.kgBW-1.year-1 for D5. Nevertheless, more knowledge on exposure through inhalation and the combined effects of all substances is necessary to provide further corroboration. This work proved the presence of VMSs in CR from ELTs, another family of chemical of concern to take into account when studying MPs as vectors of other contaminants.
Collapse
Affiliation(s)
- Tiago Ferreira
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vera Homem
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisco Cereceda-Balic
- Centre for Environmental Technologies (CETAM) and Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ximena Fadic
- Centre for Environmental Technologies (CETAM) and Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Arminda Alves
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno Ratola
- LEPABE-Laboratory for Process Engineering, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
9
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
10
|
Thi YVN, Vu TD, Do VQ, Ngo AD, Show PL, Chu DT. Residual toxins on aquatic animals in the Pacific areas: Current findings and potential health effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167390. [PMID: 37758133 DOI: 10.1016/j.scitotenv.2023.167390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The Pacific Ocean is among the five largest and deepest oceans in the world. The area of the Pacific Ocean covers about 28 % of the Earth's surface. This is the habitat of many marine species, and its diversity is recognized as a fundamental element of Pacific culture and heritage. The ecosystems of aquatic animals are highly affected by climate change and by other factors. Residual toxins on aquatic animals can be categorized into two types based on origin: toxins of marine origin and toxins associated with human activity. Residual toxins have emerged as a global concern in recent years due to their frequent presence in aquatic environments. Furthermore, residual toxins in organisms living in the marine environment in the Pacific Ocean region also seriously affect food safety, food security, and especially human health. In this review we discuss important issues about residual toxins on aquatic animals in the Pacific areas specifically about the types of toxins that exist in marine animals, their contamination pathways in the Asia, Pacific region and the potential health effects for humans, the application of information technology and artificial intelligence in residual toxins on aquatic animal.
Collapse
Affiliation(s)
- Yen Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Viet Nam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Van Quy Do
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Anh Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinh Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Viet Nam.
| |
Collapse
|
11
|
García-Pimentel MM, Fernández B, Campillo JA, Castaño-Ortiz JM, Gil-Solsona R, Fernández-González V, Muniategui-Lorenzo S, Rodríguez-Mozaz S, León VM. Floating plastics as integrative samplers of organic contaminants of legacy and emerging concern from Western Mediterranean coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166828. [PMID: 37690766 DOI: 10.1016/j.scitotenv.2023.166828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the role of floating plastics as integrative samplers of organic contaminants. To this end, plastics items were collected in two Western Mediterranean coastal areas: the Mar Menor lagoon, and the last transect of Ebro river. Floating plastics were identified and characterized by attenuated total reflection Fourier-transform infrared spectrometry. Then, organic contaminants were extracted from plastic items by ultrasonic extraction with methanol, and the concentrations of 168 regulated and emerging contaminants were analysed. These compounds were analysed by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (GC-MS), except for bisphenol analogues, which were analysed with a ultraperformance liquid chromatography pump coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS), and pharmaceutical compounds, determined by UPLC coupled to hybrid triple quadrupole-linear ion trap mass spectrometer (UPLC-MS/MS). All the contaminants groups considered were detected in the samples, being particularly relevant the contribution of plastic additives. The most frequently detected contaminants were UV-filters, PAHs, pharmaceuticals and synthetic musks. Apart from plasticizers, the individual contaminants octocrylene, homosalate, galaxolide, salycilic acid and ketoprofen were frequently detected in plastics items. The results pointed out to urban and touristic activities as the main sources of pollution in the coastal areas investigated. The utility of floating plastics as integrative samplers for the detection of organic contaminants in aquatic ecosystems has been demonstrated.
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - B Fernández
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V Fernández-González
- Grupo de Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus A Coruña, E-15071 A Coruña, Spain
| | - S Muniategui-Lorenzo
- Grupo de Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus A Coruña, E-15071 A Coruña, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; University of Girona, Girona, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
12
|
Frescura LM, Funari Junior RA, Brummelhaus de Menezes B, Flávia de Moraes Bastos A, Barcellos da Rosa M. Interaction of fluorene and its analogs with high-density polyethylene microplastics: An assessment of the adsorption mechanism to establish the effects of heteroatoms in the molecule. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122573. [PMID: 37722476 DOI: 10.1016/j.envpol.2023.122573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The threat of microplastics (MP) pollution in aquatic ecosystems can be even more severe for they are able to interact with organic pollutants that can migrate to adjacent environments. The presence of heteroatoms in organic pollutants can directly influence adsorption onto MP. This research evaluated the adsorption of fluorene (FLN) and its heteroatom analogs dibenzothiophene (DBT), dibenzofuran (DBF) and carbazole (CBZ) onto high-density polyethylene (HDPE) MP from residual (HDPEres) and commercial (HDPEcom) sources. The Langmuir isotherm showed a better fit, while DBT showed higher maximum adsorption capacity (19.2 and 15.8 μmol g-1) followed by FLN (13.4 and 11.7 μmol g-1), and DBF (13.5 and 10.3 μmol g-1) to the HDPEcom and HDPEres, respectively, which indicates a direct correlation with the hydrophobicity of the molecules determined by Log Kow. In contrast, CBZ showed no significant interaction with MP, due to their polar characteristic, thus, no kinetic and thermodynamic parameters could be determined. The adsorption process of all PAH was determined to be exothermic and spontaneous, with low temperatures favoring the process. The pseudo-second-order kinetic models have fitted to the adsorption onto both HDPE; intraparticle diffusion was also observed. Computational studies, physical characterization techniques and batch adsorption experiments demonstrated that the mechanism is governed by hydrophobic interactions, with van der Waals forces as a secondary effect in the adsorption of FLN, DBT and DBF onto HDPEres and HDPEcom. Thus, allowing a deeper understanding of the interactions between HDPE MP and FLN as well with its derivatives.
Collapse
Affiliation(s)
- Lucas Mironuk Frescura
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ronaldo Antunes Funari Junior
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Bryan Brummelhaus de Menezes
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia de Moraes Bastos
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Marcelo Barcellos da Rosa
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Wang T, Hosseinzadeh M, Cuccagna A, Alakenova R, Casademunt P, Reyes Rovatti A, López-Rubio A, Porte C. Comparative toxicity of conventional versus compostable plastic consumer products: An in-vitro assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132123. [PMID: 37499498 DOI: 10.1016/j.jhazmat.2023.132123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study investigates the toxicity of methanolic extracts obtained from compostable plastics (BPs) and conventional plastics (both virgin and recycled). Additionally, it explores the potential influence of plastic photodegradation and composting on toxic responses using a battery of in vitro assays conducted in PLHC-1 cells. The extracts of BPs, but not those of conventional plastics, induced a significant decrease in cell viability (<70%) in PLHC-1 cells after 24 h of exposure. Toxicity was enhanced by either photodegradation or composting of BPs. Extracts of conventional plastics, and particularly those of recycled plastics, induced 7-ethoxyresorufin-O-deethylase (EROD) activity and micronucleus formation in exposed cells, indicating the presence of significant amounts of CYP1A inducers and genotoxic compounds in the extracts, which was enhanced by photodegradation. These findings highlight the importance of investigating the effects of degradation mechanisms such as sunlight and composting on the toxicity of BPs. It is also crucial to investigate the composition of newly developed formulations for BPs, as they may be more harmful than conventional ones.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain.
| | - Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alice Cuccagna
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Rakhat Alakenova
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Paula Casademunt
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Alcira Reyes Rovatti
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
14
|
Li J, Li Y, Maryam B, Chen X, Zong Y, Tu J, Zhang P, Liu X. Microplastic aging alters the adsorption-desorption behaviors of sulfamethoxazole in marine animals: A study in simulated biological liquids. MARINE POLLUTION BULLETIN 2023; 195:115473. [PMID: 37659385 DOI: 10.1016/j.marpolbul.2023.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Antibiotics and microplastics (MPs) coexisting as unique environmental contaminants may cause unintended environmental issues. In this study, the adsorption-desorption behaviors of sulfamethoxazole (SMX) on both original and UV-aged MPs were examined. Polyhydroxyalkanoates (PHA) and polyethylene (PE), which represent degradable and refractory MPs, respectively, were chosen as two distinct types of MPs. Furthermore, simulated fish intestinal fluids (SFIF) and simulated mammalian stomach fluids (SMGF) were employed to evaluate the desorption behaviors of SMX from aged MPs. Our findings demonstrate that UV-aging altered the polarity, hydrophilicity, and structure of the MPs. Aged MPs showed a higher adsorption capacity than the original MPs and they have a higher desorption capacity than original MPs in simulated body fluids. PE has a higher SMX desorption capacity in SFIF and the opposite happened in SMGF. Our results highlight the importance of considering the different adsorption-desorption behaviors of antibiotics on MPs when evaluating their environmental impact.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Yunxue Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Xiaochen Chen
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, PR China
| | - Yanping Zong
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin 300457, PR China
| | - Jianbo Tu
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin 300457, PR China
| | - Pingping Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, PR China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
15
|
Xie S, Yang B, Li S, Ge L, Li M, Chen Q, Qing X, Zou J. Generation and application of a novel transgenic zebrafish line Tg(GAcyp1a:eGFP/Luc) as an in vivo assay to sensitive and specific monitoring of DLCs in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115471. [PMID: 37729807 DOI: 10.1016/j.ecoenv.2023.115471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
CYP1A is the most commonly used biomarker and transgenic fish which carrying a cyp1a promoter to drive a reporter gene can be used as reliable way to monitor dioxin/dioxin-like compounds (DLCs) in the environment. Here, we cloned the cyp1a promoter of Gambusia affinis and this promoter showed stronger transcriptional activity than that of zebrafish. Then, a Tg(GAcyp1a:eGFP/Luc) transgenic zebrafish line was first constructed with the G. affinis cyp1a promoter driving eGFP expression using meganuclease I-SceI mediated transgenesis technology. The Tg(GAcyp1a:eGFP/Luc) larvae at 72 h post-fertilization (hpf) were tested by exposing to TCDD for 72 h, and induced GFP was mainly expressed in the liver with low background. The Tg(GAcyp1a:eGFP/Luc) zebrafish showed high sensitivity (limit of detection of 0.322 ng/L TCDD and 0.7 TEQ-ng/L PCDD/Fs) and specificity (insensitive to responses to PAHs and PCBs). In addition, the transgenic line showed a low detection concentration of the DLCs contaminated environmental samples (as low as 1.8 TEQ-ng/L), and the eGFP fluorescence intensity and the chemical-TEQ values were closely correlated. In conclusion, a sensitively and specifically transgenic zebrafish line was established to convenient and effective to detect DLCs in the environment.
Collapse
Affiliation(s)
- Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bing Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Siying Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liangjun Ge
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Min Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingshi Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xian Qing
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Kılıç Ö, Belivermiş M, Sıkdokur E, Sezer N, Aksüt Y, Pekmez M, Kösesakal T, Gerçek YC. The combined effects of polyethylene microplastics and benzoanthracene on Manila clam Ruditapes philippinarum. CHEMOSPHERE 2023; 329:138664. [PMID: 37044146 DOI: 10.1016/j.chemosphere.2023.138664] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/19/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Microplastic (MP) toxicity has recently been explored in various marine species. Along with the toxicity of plastics polymer itself, additional substances or pollutants that are absorbed onto it may also be harmful. In the present study, we investigated the combined impacts of polyethylene microplastics (PE MPs) and an organic pollutant (Benzo(a)anthracene, BaA) on Manila clam Ruditapes philippinarum during a one-week exposure. Two PE MPs concentrations (26 μg L-1 and 260 μg L-1) and one BaA concentration (3 μg L-1) were tested. The clams were exposed to BaA and PE MPs either alone or in combination. BaA and PE MPs were incubated before the combined exposure. The biological effects of PE MPs and BaA on the clams were evaluated by considering several assays such as feeding rate, anti-oxidant enzyme activities, and the expression levels of stress-related genes. The feeding rate significantly decreased in individual PE MPs and individual BaA groups while it remained unchanged in combined groups. Superoxide dismutase (SOD) was the most affected among the biochemical parameters. Malondialdehyde (MDA), and glutathione peroxidase (GPx) activities were slightly affected, whereas no changes were observed in glutathione s-transferase (GST) activities. CYP1A1, CYP3A4, and HSP70 gene expressions displayed slightly significant changes. Considering all stressor groups, high PE MPs exposure (260 μg L-1 PE MPs) more effectively altered the biological parameters in the clams compared to individual low PE MPs and BaA exposure, and their combination. The results also indicated the negligible vector role of PE MPs to transport BaA into the clam tissues.
Collapse
Affiliation(s)
- Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye.
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye
| | - Ercan Sıkdokur
- Department of Molecular Biology and Genetics, Koç University, 34450, Istanbul, Türkiye
| | - Narin Sezer
- Head of Medical Services and Techniques Department, Medical Laboratory Techniques Program, Istanbul Arel University, 34295, Sefaköy, Istanbul, Türkiye
| | - Yunus Aksüt
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye
| | - Taylan Kösesakal
- Botany Division, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Türkiye
| | - Yusuf Can Gerçek
- Botany Division, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Türkiye
| |
Collapse
|
18
|
Tumwesigye E, Felicitas Nnadozie C, C Akamagwuna F, Siwe Noundou X, William Nyakairu G, Odume ON. Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121829. [PMID: 37196837 DOI: 10.1016/j.envpol.2023.121829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) are becoming ubiquitous, and their environmental fate is becoming an issue of concern. Our review aims to synthesize current knowledge status and provide future perspectives regarding the vector effect of MPs for chemical contaminants and biological agents. The evidence in the literature indicates that MPs are a vector for persistent organic pollutants (POPs), metals and pharmaceuticals. Concentrations of chemical contaminant in orders of six-fold higher on MPs surfaces than in the surrounding environmental waters have been reported. Chemical pollutants such as perfluoroalkyl substances (PAFSs), hexachlorocyclohexane (HCHs) and polycyclic aromatic hydrocarbons (PAHs), exhibiting polarities in the range of 3.3-9 are the commonest chemicals reported on MP surfaces. Regarding metals on MPs including chromium (Cr), lead (Pb), cobalt (Co), the presence of C-O and N-H in MPs promote a relatively high adsorption of these metals onto MP surfaces. Regarding pharmaceuticals, not much has been done, but a few studies indicate that commonly used drugs such as ibuprofen, ibuprofen, diclofenac, and naproxen have been associated with MPs. There is sufficient evidence supporting the claim that MPs can act as vectors for viruses, bacterial and antibiotic-resistant bacteria and genes, and MPs act to accelerate horizontal and vertical gene transfer. An area that deserves urgent attention is whether MPs can act as vectors for invertebrates and vertebrates, mainly non-native, invasive freshwater species. Despite the ecological significance of invasive biology, little research has been done in this regard. Overall, our review summarises the state of the current knowledge, identifies critical research gaps and provides perspectives for future research.
Collapse
Affiliation(s)
- Edgar Tumwesigye
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa
| | - Chika Felicitas Nnadozie
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa
| | - Frank C Akamagwuna
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa
| | | | | | - Oghenekaro Nelson Odume
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa.
| |
Collapse
|
19
|
Muhib MI, Uddin MK, Rahman MM, Malafaia G. Occurrence of microplastics in tap and bottled water, and food packaging: A narrative review on current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161274. [PMID: 36587673 DOI: 10.1016/j.scitotenv.2022.161274] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, microplastic has been detected in many environmental samples, including aquatic and terrestrial environments. However, few studies recently have addressed their attention to microplastic contamination in different drinking sources and food packages. This review paper has narrated those few findings in brief. Literature showed that different pieces of microplastic fragments, e.g., polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), etc. are detected in plastic drinking bottle, tap water, and food packaging containers. Microplastic fragmentation may be associated with mechanical stress, UV radiation, low plastic material quality, aging factor, and atmospheric deposition. Besides these, microplastic is a hub of different chemical compounds and can also retain other complex materials from the surroundings. This makes the microplastic contamination even more complicated and difficult to detect them accurately in a single method. Additionally, one of the common practices at the community level is the long-time repeated usage of plastic drinking bottles and food boxes that subsequently cause microplastic leaching and potential health threats to consumers. This narrative study summarizes the current scenario of microplastic contamination from drinking bottles and food containers and emphasizes doing more quality research in this subtle but highly imposed field to understand potential exposure better.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
20
|
Islam MS, Hasan MR, Islam Z. Abundance, characteristics, and spatial-temporal distribution of microplastics in sea salts along the Cox's Bazar coastal area, Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19994-20005. [PMID: 36242671 DOI: 10.1007/s11356-022-23596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs), together with microfibers, have emerged as a contaminant of concern all around the globe. MPs have been detected in freshwater, seawater, sediment, and aquatic species among others. As suggested by several recent investigations, sea salts, a daily intake item by humans, are also contaminated by MPs. The current article describes MPs' occurrence, distribution, type, and timeline variation in raw sea salts from Cox's Bazar, Bangladesh. MPs have been detected in every collected salt sample, and quantity varied from 28.53 ± 2.43 to 93.53 ± 4.21 particles per kg, which was about 52.48 ± 1.72 to 67.46 ± 3.81 µg/kg of raw salt. Microfibers were MPs' dominant shape category, and the plastic types were mainly polyester or nylon. Other types of MPs were polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyurethane (PU), and polystyrene (PS) in decreasing amounts. The majority of the MPs in the sea salts were in the size range of ˂ 3-1 mm. The total amount of MPs and plastic-type variation due to sampling location (p ˃ 0.05) and because of the time period (p ˃ 0.05) was found insignificant. Acetaldehyde, a volatile toxic substance produced by the degradation of polyester polymer chains, was detected in MPs in the range of 0.37 to 1.72 µg/g by headspace GC-MS analysis. Hence, the sea salts contaminated with MPs pose a public health hazard. Microplastics extraction from sea salts and their characterization.
Collapse
Affiliation(s)
- Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| | - Md Rashed Hasan
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Zahidul Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
21
|
Sönmez VZ, Akarsu C, Sivri N. Impact of coastal wastewater treatment plants on microplastic pollution in surface seawater and ecological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120922. [PMID: 36574808 DOI: 10.1016/j.envpol.2022.120922] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study aims to understand the influence of wastewater treatment plant discharge on the microplastic status in the surface seawater of Istanbul. For this purpose, for the first time, the distribution, composition, and ecological risk of microplastics at nine sampling stations on the southern coast of Istanbul, Marmara, were investigated at monthly intervals over a one-year period. The results showed that the microplastic abundance ranged from 0 to over 1000 particles per liter. Fibers were the dominant form at all stations. Microplastics 249-100 μm were the dominant size, and transparency was the color most found at all stations. Polyethylene and ethylene-vinyl acetate were the major types of microplastics, accounting for 50% overall. The pollution load index revealed that over 70% of sampling stations were at hazard level I. However, the hazardous index was categorized as level III with a value of 662.3 due to the presence of the most hazardous polymer named polyurethane. Further investigations into the risk assessment of MP can reveal crucial knowledge for understanding the microplastic cycle.
Collapse
Affiliation(s)
- Vildan Zülal Sönmez
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey.
| | - Ceyhun Akarsu
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey
| | - Nüket Sivri
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey
| |
Collapse
|
22
|
Shan J, Ren T, Li X, Jin M, Wang X. Study of microplastics as sorbents for rapid detection of multiple antibiotics in water based on SERS technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121779. [PMID: 36041262 DOI: 10.1016/j.saa.2022.121779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Online monitoring of antibiotics in the environment attracts more and more attention. Surface-enhanced Raman scattering (SERS) is a promising technique for the detection of trace amounts of antibiotics in the environment, which is fast, non-invasive and sensitive. To investigate the enrichment of trace amounts of antibiotics in water, polyethylene microplastics (PE MPs) were prepared as sorbents to simply concentrate enrofloxacin, ciprofloxacin hydrochloride monohydrate and triclosan in water, followed by the SERS measurement of antibiotics extract washed from MPs on an AgNPs@Si SERS substrate. Limit of detection of Rhodamine 6G is 2.1 × 10-12 M achieved from the AgNPs@Si SERS, indicating a high enhancement. The detection results show that SERS peaks of the antibiotics could be observed from the spectra of the extracts eluted from MPs, indicating MPs could adsorb and desorb antibiotics from water. Besides, for enrofloxacin and triclosan, the intensity of SERS measured from the MPs extracts are higher than that of directly from the spiked water, demonstrating the proposed method could lower the detectable concentration of hydrophobic antibiotics in water. Moreover, the proposed MPs sorbents combined with SERS method was applied to detect the antibiotics in real river water, with minimal detection of 10-10 M, 10-8 M, and 10-8 M achieved for enrofloxacin, ciprofloxacin hydrochloride monohydrate and triclosan, respectively. The proposed method provides a promising simple, rapid and low reagent consuming means for monitoring antibiotics in water.
Collapse
Affiliation(s)
- Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Tao Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xinjing Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Mengke Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
23
|
Yip YJ, Mahadevan G, Tay TS, Neo ML, Lay-Ming Teo S, Valiyaveettil S. Understanding the biological impact of organic pollutants absorbed by nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120407. [PMID: 36228860 DOI: 10.1016/j.envpol.2022.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Many organisms are consuming food contaminated with micro- and nanoparticles of plastics, some of which absorb persistent organic pollutants (POPs) from the environment and acting as carrier vectors for increasing the bioavailability in living organisms. We recently reported that polymethylmethacrylate (PMMA) nanoparticles at low concentrations are not toxic to animal models tested. In this study, the toxicity of diphenylamine (DPA) incorporated PMMA nanoparticles are assessed using barnacle larvae as a model organism. The absorption capacity of DPA from water for commercially available virgin PMMA microparticles is relatively low (0.14 wt%) during a 48 h period, which did not induce exposure toxicity to barnacle nauplii. Thus, PMMA nanoparticles encapsulated with high concentrations of DPA (DPA-enc-PMMA) were prepared through a reported precipitation method to achieve 40% loading of DPA inside the particles. Toxicity of DPA-enc-PMMA nanoparticles were tested using freshly spawned acorn barnacle nauplii. The observed mortality of nauplii from DPA-enc-PMMA exposure was compared to the values obtained from pure DPA exposure in water. The mortality among the exposed acorn barnacle nauplii did not exceed 50% even at a high concentration of DPA inside the PMMA nanoparticles. The results suggest that the slow release of pollutants from polymer nanoparticles may not induce significant toxicity to the organism living in a dynamic environment. The impact of long-term exposure of DPA absorbed plastic nanoparticles need to be investigated in the future.
Collapse
Affiliation(s)
- Yong Jie Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Teresa Stephanie Tay
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Mei Lin Neo
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Serena Lay-Ming Teo
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
24
|
Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Secondary brain injury after polystyrene microplastic-induced intracerebral hemorrhage is associated with inflammation and pyroptosis. Chem Biol Interact 2022; 367:110180. [PMID: 36113630 DOI: 10.1016/j.cbi.2022.110180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/21/2022]
Abstract
Unlike regular environmental pollutants, microplastics cannot dissolve in liquids. Physical contact of microplastic (MPs) with tissue can damage tissue structure, and it is unclear how this physical secondary injury affects brain tissue. Through CTD database analysis, it was determined that cerebral ischemia may be one of the main ways of brain tissue damage caused by MPs, and inflammatory response may play a key role in it. In the present study, PS-MPs (L-PS group:1 mg/L, M - PS group:10 mg/L, H-PS group: 100 mg/L in water) were assessed to brain tissue damage in chicken after six weeks of continuous exposure. Exposure to PS-MPs caused cerebral hemorrhage as well as generation of microthrombi and loss of Purkinje cells. Intracerebral hemorrhage caused a strong infiltration of inflammatory cells and activated the ASC-NLRP3-GSDMD signaling pathway to induce pyroptosis. Disruption of mitochondrial dynamics by PS-MPs exposure disrupts mitochondrial function and activates AMPK signaling. In conclusion, this study explored the mechanism regulation of subsequent brain injury from the perspective of physical injury (cerebral hemorrhage) of PS-MPs. To provide a reference for elucidating the neurotoxicity induced by microplastic exposure.
Collapse
|
26
|
Tian Y, Yang Z, Yu X, Jia Z, Rosso M, Dedman S, Zhu J, Xia Y, Zhang G, Yang J, Wang J. Can we quantify the aquatic environmental plastic load from aquaculture? WATER RESEARCH 2022; 219:118551. [PMID: 35561617 DOI: 10.1016/j.watres.2022.118551] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Aquaculture provides livelihoods for hundreds of millions of people, but it also forms a significant source of plastic litter that poses a serious hazard to aquatic ecosystems. How to assess and subsequently manage plastic loads from aquaculture is a pending and pressing issue for aquaculture sustainability, and an important concern for water environment monitoring and management. In this study, we developed the first framework for estimating plastic litter from aquaculture by combining data from satellite remote sensing, drones, questionnaires, and in situ measurements. By acquiring multidimensional (human and nature) and multiscale (centimeter to basin scale) data, this framework helped us understand the aquaculture farming patterns and its spatial and temporal evolution, and thus estimate the plastic load it generates and suggest effective management approaches. Applying this framework, we assessed the marine plastic load from oyster floating raft farming in the Maowei Sea, a typical mariculture bay in China, with an increasing farming area. Approximately 3840 tons of plastic waste is expected to be discharged into the sea in the next four years (the average service life of a floating raft) without improvements in aquaculture waste management. Strengthening governance, timely plastic removal, innovative replacement, and transforming farmers' behavior patterns are recommended as the subsequent measures for plastic management. This framework can be extended to other regions and other aquaculture patterns, and is applicable to local, regional, and global aquaculture plastic litter assessments. It is a source-based method for evaluating plastic pollution that is more conducive to subsequent plastic management than traditional post-contamination environmental monitoring. In the context of the global expansion of mariculture and the global commitment to action to combat plastic pollution, this approach could play a critical role in the investigation and management of plastic waste in aquatic environments.
Collapse
Affiliation(s)
- Yichao Tian
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Zongyao Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xueying Yu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Zhen Jia
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | | | - Simon Dedman
- Hopkins Marine Station, Stanford University, Pacific Grove Pacific Grove 93950, California, USA
| | - Jingmin Zhu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Yuxiang Xia
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Guangping Zhang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Jiaqi Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China; CIMA Research Foundation, Savona, 17100, Italy; Hopkins Marine Station, Stanford University, Pacific Grove Pacific Grove 93950, California, USA; Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
27
|
Abihssira-García IS, Kögel T, Gomiero A, Kristensen T, Krogstad M, Olsvik PA. Distinct polymer-dependent sorption of persistent pollutants associated with Atlantic salmon farming to microplastics. MARINE POLLUTION BULLETIN 2022; 180:113794. [PMID: 35659665 DOI: 10.1016/j.marpolbul.2022.113794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Interactions of microplastics and persistent organic pollutants (POPs) associated with Atlantic salmon farming were studied to assess the potential role of microplastics in relation to the environmental impact of aquaculture. HDPE, PP, PET and PVC microplastics placed for 3 months near fish farms sorbed POPs from aquafeeds. PET and PVC sorbed significantly higher levels of dioxins and PCBs compared to HDPE, while the levels sorbed to PP were intermediate and did not differ statistically from PET, PVC or HDPE. In addition, the composition of dioxins accumulated in caged blue mussels did not reflect the patterns observed on the microplastics, probably due to polymer-specific affinity of POPs. In conclusion, the results of this study show that microplastics occurring near fish farms can sorb aquafeed-associated POPs and, therefore, microplastics could potentially be vectors of such chemicals in the marine environment and increase the environmental impact of fish farming.
Collapse
Affiliation(s)
| | - Tanja Kögel
- Institute of Marine Research (IMR), Bergen, Norway.
| | - Alessio Gomiero
- Environment Department, Norwegian Research Centre (NORCE), Randaberg, Norway.
| | | | - Morten Krogstad
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research (IMR), Bergen, Norway.
| |
Collapse
|
28
|
Yaghmour F, Samara F, Ghalayini T, Kanan SM, Elsayed Y, Al Bousi M, Al Naqbi H. Junk food: Polymer composition of macroplastic marine debris ingested by green and loggerhead sea turtles from the Gulf of Oman. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154373. [PMID: 35278539 DOI: 10.1016/j.scitotenv.2022.154373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Pollution of the marine environment by plastic marine debris has become one of the most pervasive threats impacting marine environments. In this study, for the first time, we evaluate the polymer types of the plastic marine debris ingested by 49 green and 14 loggerhead sea turtle strandings in the Gulf of Oman. Plastic marine debris was ingested by 73.5% of green and 42.9% of loggerhead sea turtles in this study. Overall, evidence suggested that green sea turtles from the Gulf of Oman coast of the United Arab Emirates ingested high levels of plastic marine debris, predominantly Polypropylene (PP) & Polyethylene (PE), followed by Nylon, PP-PE mixture, Polystyrene (PS), Poly vinyl chloride (PVC) and Ethylene vinyl acetate (EVA), respectively. Loggerhead sea turtles also ingested high levels of plastic marine debris, which also predominantly consisted of PP & PE, followed by PP-PE mixture, Nylon and PS. While recent studies were directed into polymer characterization of micro-plastics in aquatic life, our study focuses on macro-plastics which impose significantly greater risks.
Collapse
Affiliation(s)
- Fadi Yaghmour
- Hefaiyah Mountain Conservation Centre (Scientific Research Department), Environment and Protected Areas Authority, Kalba, Sharjah, United Arab Emirates..
| | - Fatin Samara
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Thouraya Ghalayini
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sofian M Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Yehya Elsayed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Marwa Al Bousi
- EPAA Kalba Office (Scientific Research Department), Environment and Protected Areas Authority, Kalba, United Arab Emirates
| | - Halima Al Naqbi
- EPAA Kalba Office (Scientific Research Department), Environment and Protected Areas Authority, Kalba, United Arab Emirates
| |
Collapse
|
29
|
Prajapati A, Narayan Vaidya A, Kumar AR. Microplastic properties and their interaction with hydrophobic organic contaminants: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49490-49512. [PMID: 35589887 DOI: 10.1007/s11356-022-20723-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have been defined as particles of size < 5 mm and are characterized by hydrophobicity and large surface areas. MPs interact with co-occurring hydrophobic organic contaminants (HOCs) via sorption-desorption processes in aquatic and terrestrial environments. Ingestion of MPs by living organisms may increase exposure to HOC levels. The key mechanisms for the sorption of HOCs onto MPs are hydrophobic interaction, electrostatic interaction, π-π interactions, hydrogen bonding, and Van der Waals forces (vdW). Polymer type, UV-light-induced surface modifications, and the formation of oxygen-containing functional groups have a greater influence on electrostatic and hydrogen bonding interactions. In contrast, the formation of oxygen-containing functional groups negatively influences hydrophobic interaction. MP characteristics such as crystallinity, weathering, and surface morphology affect sorption capacity. Matrix properties such as pH, ionic strength, and dissolved organic matter (DOM) also influence sorption capacity by exerting synergistic/antagonistic effects. We reviewed the mechanisms of HOC sorption onto MPs and the polymer and matrix properties that influence the HOC sorption. Knowledge gaps and future research directions are outlined.
Collapse
Affiliation(s)
- Archana Prajapati
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India, 440 020
| | - Atul Narayan Vaidya
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India, 440 020
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India, 440 020.
| |
Collapse
|
30
|
Sridharan S, Kumar M, Saha M, Kirkham MB, Singh L, Bolan NS. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153828. [PMID: 35157873 DOI: 10.1016/j.scitotenv.2022.153828] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Due to the increasing concerns on global ecosystems and human health, the environmental risks posed by microplastics (MPs) and nanoplastics (NPs) have become an important topic of research. Their ecological impacts on various faunal species have been extensively researched and reviewed. However, the majority of those studies perceive these micro(nano)-plastics (MNPs) as a single entity rather than a collective term for a group of chemically distinct polymeric particulates. Each of the plastic polymers can possess unique physical and chemical behavior, which, in turn, can determine the possible environmental impacts. Furthermore, many studies explore the adsorption, absorption, and release of other environmental pollutants by MNPs. But only a handful of them explore the leaching of additives possessed by these polymers. Data on the environmental behavior and toxicity of individual additives associated with different polymer particulates are scarce. Knowledge about the leachability and ecotoxicity of the additives associated with environmental MNPs (unlike large plastic particles) remains limited. The ecological impacts of different MNPs together with their additives and the basis of their toxicity have not been explored yet. The present review systematically explores the potential implications of environmentally predominant polymers and their associated additives and discusses their physicochemical characteristics. The review ultimately aims to provide novel insights on what components precisely make MNPs hazardous to the fauna. The paper also discusses the major challenges proposed in the available literature along with recommendations for future research to throw light on possible solutions to overcome the hazards of MNPs.
Collapse
Affiliation(s)
- Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Mahua Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Lal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India.
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA 6009, Australia.
| |
Collapse
|
31
|
Temporiti MEE, Nicola L, Nielsen E, Tosi S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022; 10:1180. [PMID: 35744698 PMCID: PMC9230134 DOI: 10.3390/microorganisms10061180] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plastic pollution is a growing environmental problem, in part due to the extremely stable and durable nature of this polymer. As recycling does not provide a complete solution, research has been focusing on alternative ways of degrading plastic. Fungi provide a wide array of enzymes specialized in the degradation of recalcitrant substances and are very promising candidates in the field of plastic degradation. This review examines the present literature for different fungal enzymes involved in plastic degradation, describing their characteristics, efficacy and biotechnological applications. Fungal laccases and peroxidases, generally used by fungi to degrade lignin, show good results in degrading polyethylene (PE) and polyvinyl chloride (PVC), while esterases such as cutinases and lipases were successfully used to degrade polyethylene terephthalate (PET) and polyurethane (PUR). Good results were also obtained on PUR by fungal proteases and ureases. All these enzymes were isolated from many different fungi, from both Basidiomycetes and Ascomycetes, and have shown remarkable efficiency in plastic biodegradation under laboratory conditions. Therefore, future research should focus on the interactions between the genes, proteins, metabolites and environmental conditions involved in the processes. Further steps such as the improvement in catalytic efficiency and genetic engineering could lead these enzymes to become biotechnological applications in the field of plastic degradation.
Collapse
Affiliation(s)
- Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| |
Collapse
|
32
|
Hanslik L, Huppertsberg S, Kämmer N, Knepper TP, Braunbeck T. Rethinking the relevance of microplastics as vector for anthropogenic contaminants: Adsorption of toxicants to microplastics during exposure in a highly polluted stream - Analytical quantification and assessment of toxic effects in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151640. [PMID: 34774627 DOI: 10.1016/j.scitotenv.2021.151640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Given the increasing amounts of plastic debris entering marine and freshwater ecosystems, there is a growing demand for environmentally relevant exposure scenarios to improve the risk assessment of microplastic particles (MPs) in aquatic environments. So far, data on adverse effects in aquatic organisms induced by naturally exposed MPs are scarce and controversially discussed. As a consequence, we investigated the potential role of MPs regarding the sorption and transfer of environmental contaminants under natural conditions. For this end, a mixture of four common polymer types (polyethylene, polypropylene, polystyrene, polyvinyl chloride) was exposed to natural surface water in a polluted stream for three weeks. Samples of water, MP mixture, sediment, and suspended matter were target-screened for the presence of pollutants using GC/LC-MS, resulting in up to 94 different compounds. Possible adverse effects were investigated using several biomarkers in early developmental stages of zebrafish (Danio rerio). Exposure to natural stream water samples significantly inhibited acetylcholinesterase activity, altered CYP450 induction and modified behavioral patterns of zebrafish. In contrast, effects by samples of both non-exposed MPs and exposed MPs in zebrafish were less prominent than effects by water samples. In fact, the analytical target screening documented only few compounds sorbed to natural particles and MPs. Regarding acute toxic effects, no clear differentiation between different MPs and natural particles could be made, suggesting that - upon exposure in natural water bodies - MPs seem to approximate the sorption behavior of natural particles, presumably to a large extent due to biofilm formation. Thus, if compared to natural inorganic particles, MPs most likely do not transfer elevated amounts of environmental pollutants to biota and, therefore, do not pose a specific additional threat to aquatic organisms.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein, D-65510, Germany
| | - Nadine Kämmer
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein, D-65510, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| |
Collapse
|
33
|
Hanslik L, Seiwert B, Huppertsberg S, Knepper TP, Reemtsma T, Braunbeck T. Biomarker responses in zebrafish (Danio rerio) following long-term exposure to microplastic-associated chlorpyrifos and benzo(k)fluoranthene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106120. [PMID: 35183844 DOI: 10.1016/j.aquatox.2022.106120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Continuously increasing plastic production causes a constant accumulation of microplastic particles (MPs) in the aquatic environment, especially in industrialized and urbanized areas with elevated wastewater discharges. This coincides with the release of persistent organic pollutants (polycyclic aromatic hydrocarbons (PAHs), pesticides) entering limnic ecosystems. Although the assessment of potential effects of environmental pollutants sorbed to MPs under chronic exposure scenarios seems vital, data on potential hazards and risk by combined exposure to pollutants and microplastics for aquatic vertebrates is still limited. Therefore, zebrafish (Danio rerio) were exposed over 21 days to the organophosphate insecticide chlorpyrifos (CPF; 10 and 100 ng/L) and the PAH benzo(k)fluoranthene (BkF; 0.78 and 50 µg/L) either dissolved directly in water or sorbed to different MPs (irregular polystyrene, spherical polymethyl methacrylate; ≤ 100 µm), where CPF was sorbed to polystyrene MPs and BkF was sorbed to polymethyl methacrylate MPs. Contaminant sorption to MPs and leaching were documented using GC-EI-MS; potential accumulation was studied in cryosections of the gastrointestinal tract. Enzymatic biomarkers and biotransformation were measured in liver and brain. Overall, exposure to non-contaminated MPs did not induce any adverse effects. Results of fluorescence tracking, CYP1A modulation by BkF as well as changes in acetylcholinesterase activity (AChE) by CPF were less pronounced when contaminants were sorbed to MPs, indicating reduced bioavailability of pollutants. Overall, following exposure to waterborne BkF, only minor amounts of parent BkF and biotransformation products were detected in zebrafish liver. Even high loads of MPs and sorbed contaminants did not induce adverse effects in zebrafish; thus, the potential threat of MPs as vectors for contaminant transfer in limnic ecosystems can be considered limited.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg d-69120, Germany.
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig d-04318, Germany
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein d-65510, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein d-65510, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig d-04318, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg d-69120, Germany.
| |
Collapse
|
34
|
Lu J, Wu J, Gong L, Cheng Y, Yuan Q, He Y. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19273-19282. [PMID: 34714475 DOI: 10.1007/s11356-021-17198-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Despite extensive investigation on the toxicity of microplastics (MPs), an emerging global concern, little is known about the combined toxicity of MPs and co-occurring pollutants in aquatic environments. In this study, the combined toxicity of polystyrene MPs and sulfamethoxazole (SMZ) antibiotics was explored in zebrafish embryos in terms of the developmental, physiological, and endocrine toxicities. Exposure to PS and SMZ induced mortality (rate: 25.0 ± 7.5%) and malformation (rate: 20~35%) at multiple regions and stages of zebrafish development. Physiological toxicity was also induced as shown by the significant decrease in fetal movement (by 31.1~37.0%) and swimming frequency (by 26.9~36.8%) and the increase in heartbeat rate (by 19.0~20.9%). Finally, PS and SMZ exposure also induced extensive endocrine toxicities in zebrafish as confirmed by increases in various biomarkers including vitellogenin, 17β-estradiol, testosterone, and triiodothyronine. The combination index showed that antagonistic effects were present between PS and SMZ toxicity, which slightly decreased their combined toxicity. This study aims to further understand the combined toxicity of MPs and co-occurring pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jiarui Lu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Jie Wu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lulin Gong
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yide He
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
35
|
Zhang M, Lin Y, Booth AM, Song X, Cui Y, Xia B, Gu Z, Li Y, Liu F, Cai M. Fate, source and mass budget of sedimentary microplastics in the Bohai Sea and the Yellow Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118640. [PMID: 34875265 DOI: 10.1016/j.envpol.2021.118640] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
As reservoirs for pollutants transported via the Yangtze and Yellow Rivers, the Bohai Sea (BS) and Yellow Sea (YS) play an important role in transporting microplastics (MPs) to the Pacific Ocean. The fate, sources and mass budget of MPs in the BS and the YS were investigated by Pearson correlation, principal component analysis-multilinear regression analysis (PCA-MRLA) and a mass balance model to sedimentary MPs data. Average MP abundances were 137 and 119 items kg-1 in the Bohai and Yellow Seas, respectively. MPs <1000 μm exhibited similar distribution patterns to total organic carbon and fine-grained sediments, while MPs >1000 μm were confined in the BS and exhibited a strong positive correlation with chlorophyll-a and polyethylene terephthalate, suggesting that larger MPs might deposit faster due to biofouling or when comprised of high density polymers. PCA-MLRA analysis indicated land-based inputs (packing materials, textile material and daily commodities) were dominant in the BS, while maritime activities (fishing and mariculture) were the main source of MPs in the YS. The mass balance model revealed that the total MP input and output to the BS and the YS was 3396.92 t yr-1 and 3814.81 t yr-1, respectively. The major input pathway of MPs to the BS and the YS were river discharge and air deposition, respectively. Notably, 94% of MPs in the BS and the YS were deposited to sediments. This study revealed that BS and YS sediments play an important role in preventing MPs from being further transported to the Pacific Ocean, thus more attention should be paid to local ecological risk assessment.
Collapse
Affiliation(s)
- Mingyu Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
| | - Yan Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China; College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361002, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim, 7465, Norway
| | - Xikun Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
| | - Yaozong Cui
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Zhangjie Gu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
| | - Yifan Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
36
|
Xiang Y, Jiang L, Zhou Y, Luo Z, Zhi D, Yang J, Lam SS. Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126843. [PMID: 34419846 DOI: 10.1016/j.jhazmat.2021.126843] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 05/27/2023]
Abstract
Nowadays, a growing number of microplastics are released into the environment due to the extensive use and inappropriate management of plastic products. With the increasing body of evidence about the pollution and hazards of microplastics, microplastics have drawn major attention from governments and the scientific community. As a kind of emerging and persistent environmental pollutants, microplastics have recently been detected on a variety of substrates in the world. Therefore, this paper reviews the recent progress in identifying the sources of microplastics in soil, water, and atmosphere and describing the transport and fate of microplastics in the terrestrial, aquatic and atmospheric ecosystems for revealing the circulation of microplastics in the ecosystem. In addition, considering the persistence of microplastics, this study elucidates the interactions of microplastics with other pollutants in the environment (i.e., organic pollutants, heavy metals) with emphasis on toxicity and accumulation, providing a novel insight into the ecological risks of microplastics in the environment. The negative impacts of microplastics on organisms and environmental health are also reviewed to reveal the environmental hazards of microplastics. The knowledge gaps and key research priorities of microplastics are identified to better understand and mitigate the environmental risks of microplastics.
Collapse
Affiliation(s)
- Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Li Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
37
|
Crawford SE, Brinkmann M, Ouellet JD, Lehmkuhl F, Reicherter K, Schwarzbauer J, Bellanova P, Letmathe P, Blank LM, Weber R, Brack W, van Dongen JT, Menzel L, Hecker M, Schüttrumpf H, Hollert H. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126691. [PMID: 34315022 DOI: 10.1016/j.jhazmat.2021.126691] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 05/24/2023]
Abstract
While it is well recognized that the frequency and intensity of flood events are increasing worldwide, the environmental, economic, and societal consequences of remobilization and distribution of pollutants during flood events are not widely recognized. Loss of life, damage to infrastructure, and monetary cleanup costs associated with floods are important direct effects. However, there is a lack of attention towards the indirect effects of pollutants that are remobilized and redistributed during such catastrophic flood events, particularly considering the known toxic effects of substances present in flood-prone areas. The global examination of floods caused by a range of extreme events (e.g., heavy rainfall, tsunamis, extra- and tropical storms) and subsequent distribution of sediment-bound pollutants are needed to improve interdisciplinary investigations. Such examinations will aid in the remediation and management action plans necessary to tackle issues of environmental pollution from flooding. River basin-wide and coastal lowland action plans need to balance the opposing goals of flood retention, catchment conservation, and economical use of water.
Collapse
Affiliation(s)
- Sarah E Crawford
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Jacob D Ouellet
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Lehmkuhl
- Department of Geography, RWTH Aachen University, Aachen, Germany
| | - Klaus Reicherter
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
| | - Piero Bellanova
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany; Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
| | - Peter Letmathe
- Chair of Management Accounting, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Chair of Applied Microbiology, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Germany
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - Werner Brack
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Joost T van Dongen
- Institute of Biology I, Aachen Biology and Biotechnology, RWTH Aachen University, Germany
| | - Lucas Menzel
- Department of Geography, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Holger Schüttrumpf
- Institute for Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Liu P, Wu X, Shi H, Wang H, Huang H, Shi Y, Gao S. Contribution of aged polystyrene microplastics to the bioaccumulation of pharmaceuticals in marine organisms using experimental and model analysis. CHEMOSPHERE 2022; 287:132412. [PMID: 34597650 DOI: 10.1016/j.chemosphere.2021.132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) in the environment would undergo extensive weathering, which can act as a vector affecting the accumulation of pollutants in organisms. However, the risk of organic pollutants adsorbed on aged MPs to marine organisms is poorly understood. This study revealed the contribution of aged polystyrene (PS) MPs to the total bioaccumulation of atorvastatin (ATV) and amlodipine (AML), and assessed the environmental risks via experimental and model analysis. The results showed that pharmaceuticals were more easily released in gastrointestinal fluids from aged MPs relative to that in simulated seawater. The hydrophobic pharmaceuticals were more bioaccessible than hydrophilic ones by organisms. Model analysis showed that ingestion of water and food were the most important uptake routes for pharmaceuticals in marine fish and seabirds, while aged PS MPs could decrease the bioaccumulation of pharmaceuticals (contributed for -2.9% and -1.2% for the total uptake of ATV, and -25.8% and -4.4% for AML), indicating the cleaning effect of aged MPs, and the potential higher exposure risks of pharmaceuticals in warm-blooded organisms than that in cold-blooded ones via ingested MPs. The study revealed the effect of aged MPs to the bioaccumulation of pharmaceuticals in marine organisms, and highlighted the combined risks of aged MPs and pharmaceuticals in the environment.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
39
|
Araújo APDC, Rocha TL, E Silva DDM, Malafaia G. Micro(nano)plastics as an emerging risk factor to the health of amphibian: A scientometric and systematic review. CHEMOSPHERE 2021; 283:131090. [PMID: 34153909 DOI: 10.1016/j.chemosphere.2021.131090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics (MPs) and nanoplastics (NPs) is recognized at different trophic levels, our know-how about their effects on amphibians is limited. Thus, we present and discuss the current state on studies involving amphibians and plastic particles, based on a broad approach to studies published in the last 5 years. To search for the articles, the ISI Web of Science, ScienceDirect, and Scopus databases were consulted, using different descriptors related to the topic of study. After the systematic search, we identified 848 publications. Of these, 12 studies addressed the relationship "plastic particles and amphibians" (7 studies developed in the laboratory and 5 field studies). The scientometric analysis points to geographic concentration of studies in Brazil and China; low investment in research in the area, and limited participation of international authors in the studies carried out. In the systematic approach, we confirm the scarcity of available data on the toxicity of plastic particles in amphibians; we observed a concentration of studies in the Anura order, only one study explored the toxicological effects of NPs and polystyrene and polyethylene are the most studied plastic types. Moreover, the laboratory tested concentrations are distant from those of the environmentally relevant; and little is known about the mechanisms of action of NPs/MPs involved in the identified (eco)toxicological effects. Thus, we strongly recommend more investments in this area, given the ubiquitous nature of NPs/MPs in aquatic environments and their possible consequences on the dynamics, reproduction, and survival of species in the natural environment.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| |
Collapse
|
40
|
Conti I, Simioni C, Varano G, Brenna C, Costanzi E, Neri LM. Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117708. [PMID: 34256282 DOI: 10.1016/j.envpol.2021.117708] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
Plastic pollution is an emerging problem and is a consequence of the post-consumer plastic waste accumulation in the environment coupled to mismanaged waste programmes. Countries are counteracting the continuous growth of plastic litter with different strategies: introducing bans and limits on both plastic items and materials, promoting plastic recycling and recovery strategies and encouraging voluntary clean up actions, as well as raising public awareness. However, the toxicity of plastics to the environment and organisms is not only related to their polymer chains, but also to the fact that plastic materials contain hazardous additives and can adsorb environmental pollutants (i.e. heavy metals and persistent organic contaminants, respectively). The plastic/additives/pollutants combination may be ingested by marine organisms and then enter in the food chain. Therefore, legislation for additives and contaminants is crucial both to reduce environmental pollution and their toxic effects on organisms, which of course includes humans. In this review, the current policies on plastics and related contaminants are described focusing on current laws. Moreover, recommendations for seafood consumption are suggested, since each fish or mollusc eaten may potentially result in plastic particles, additives or contaminants ingestion.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy; LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy; LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
41
|
Masry M, Rossignol S, Gardette JL, Therias S, Bussière PO, Wong-Wah-Chung P. Characteristics, fate, and impact of marine plastic debris exposed to sunlight: A review. MARINE POLLUTION BULLETIN 2021; 171:112701. [PMID: 34245992 DOI: 10.1016/j.marpolbul.2021.112701] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The increase of plastic production from the middle of the twentieth century was inevitably followed by an increase in the amount of plastic dumped in the natural environment. There, the plastic debris are exposed to sunlight, temperature, humidity, and physical stress. This can induce photo-oxidative and thermal degradation. This review discusses the mechanism of plastics UV weathering and its characteristics. Comparison of the photodegradation rate and physico-chemical properties are made according to the weathering mode (natural/accelerated) and medium (air/water). Since the photodegradation can lead to plastics fragmentation, this phenomenon is described along with the methodologies used in literature to evaluate the fragmentation. The impact of the photodegraded plastic debris on the marine environment is also presented in term of (i) photodegradation products and stabilizers leakage, (ii) organic pollutants accumulation, transfer, and leakage, and (iii) toxicity on marine organisms.
Collapse
Affiliation(s)
- Maria Masry
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | | | - Jean-Luc Gardette
- Université Clermont Auvergne, CNRS, UMR 6296, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), 8 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière cedex, France.
| | - Sandrine Therias
- Université Clermont Auvergne, CNRS, UMR 6296, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), 8 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière cedex, France.
| | - Pierre-Olivier Bussière
- Université Clermont Auvergne, CNRS, UMR 6296, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), 8 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière cedex, France.
| | | |
Collapse
|
42
|
Shih CY, Wang YH, Chen YJ, Chen HA, Lin AYC. Enhanced sorption of the UV filter 4-methylbenzylidene camphor on aged PET microplastics from both experimental and theoretical perspectives. RSC Adv 2021; 11:32494-32504. [PMID: 35495538 PMCID: PMC9042197 DOI: 10.1039/d1ra05013c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, the morphology and sorption behavior of polyethylene terephthalate (PET) microplastics during the aging process are investigated. To clarify the sorption mechanism of aged PET microplastics, the common sunblock 4-methylbenzylidene camphor (4-MBC) was chosen as the target contaminant, and UV irradiation was used for the laboratory aging simulation. The results show that oxygen-containing functional groups (carboxylic, carbonyl, ketone and hydroxyl groups) increase on the surface of aged PET microplastics. Based on density functional theory (DFT) simulations, the camphor part of 4-MBC acts as a hydrogen bond acceptor, whereas the carboxylic group on aged PET microplastics acts as a hydrogen bond donor. The formation of hydrogen bonding causes increased sorption of 4-MBC on aged PET microplastics. The sorption capacity increased from 5 to 11 μg g-1 for 50 ppb 4-MBC with 100 mg PET microplastics after a five-day aging process. Other environmental factors that affect sorption were also identified; a higher pH value and the presence of salinity reduced the amount of sorption. The sorption of virgin PET ranged from 8.0 to 3.4 μg g-1 and the sorption of aged PET ranged from 22 to 5 μg g-1 at pH 4 to 10. In the presence of salinity (10% seawater), the virgin PET sorption dropped to 2.1 μg g-1 while the aged PET sorption dropped to 4 μg g-1. A similar phenomenon was also observed in the sorption behavior under natural sunlight (the sorption of PET increased from 0.4 to 0.8 μg g-1 after 6 months of aging). The potential risk to ecosystems of aged PET microplastics under prolonged sunlight exposure in the natural environment could be greater than that predicted for virgin microplastics.
Collapse
Affiliation(s)
- Chun-Yu Shih
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| | - Yu-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| | - Yi-Ju Chen
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology 1, Sec. 3, Zhong-Xiao E. Rd. Taipei 106 Taiwan Republic of China
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| |
Collapse
|
43
|
Gurjar UR, Xavier M, Nayak BB, Ramteke K, Deshmukhe G, Jaiswar AK, Shukla SP. Microplastics in shrimps: a study from the trawling grounds of north eastern part of Arabian Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48494-48504. [PMID: 33907955 DOI: 10.1007/s11356-021-14121-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
Accumulation of microplastics (MPs) in marine organisms poses an imminent environmental threat and health risk due to the possibility of trophic transfer of accumulated MPs in ecologically important food chains. In this context, a field-level study was conducted on the fishing grounds of the north eastern part of the Arabian Sea through experimental fishing, and the gastrointestinal tracts (GT) of three different species of shrimps (n=180) were examined for the incidence of microplastics. The results showed that all shrimp caught from the fishing grounds had significant levels of MPs in the gastrointestinal tracts. A total number of 1220 microplastic items were recorded from the pooled samples, with an average of 6.78 ± 2.80 items per individual. The gastrointestinal tract showed an average number of 70.32 ± 34.67 MPs per gram of the gut material. The MPs with the size range of 100-250 μm were the most abundant form found in the shrimp species analyzed. Among the colored MP particles, black color was the most dominant (30.16%) form of MP. Fibers, fragments, pellets, beads, and films were the common morphotypes; however, fibers showed an occurrence of 39.40%, 47.39%, and 41.89% in the GTs of Metapenaeus monoceros, Parapeneopsis stylifera, and Penaeus indicus, respectively. In the present study, six types of plastic polymers were identified from the GTs of the studied samples. The findings confirm the presence of microplastics in the natural habitats of shrimps beyond the coast and indicate that shrimps caught from these coastal fishing grounds contain MPs in their gut. The findings underline the immediate scientific intervention for the microplastic reduction in the marine environment.
Collapse
Affiliation(s)
- Udai Ram Gurjar
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India
| | - Martin Xavier
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India.
| | - Binaya Bhusan Nayak
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India
| | - Karankumar Ramteke
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India
| | - Geetanjali Deshmukhe
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India
| | - Ashok Kumar Jaiswar
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India
| | - Satya Prakash Shukla
- Aquatic Environmental Management Department, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, 400061, India
| |
Collapse
|
44
|
Abstract
The presence of different pollutants in recycled plastics is reviewed in this article. The desirable circular economy of plastics should be linked to the availability of clean recycled plastics with a non-significant and small to nil amount of substances of concern. Different researchers found polycyclic aromatic hydrocarbons (PAHs) and Persistent Organic Pollutants (POPs), such as brominated flame retardants (BFRs), pesticides, dioxins and furans (PCDD/Fs and PBDD/Fs) in plastic recyclates. This represents an added difficulty to the effective recycling process of plastics that reduces the demand for energy and materials, in addition to posing a great environmental danger since they represent a vector of accumulation of the contaminants that will finally appear in the most unexpected products. Life Cycle Analysis of the plastic wastes recycling process indicates a great saving of energy, water and CO2 emissions.
Collapse
|
45
|
Zhang J, Wu X, Guo H, Zheng X, Mai B. Pollution of plastic debris and halogenated flame retardants (HFRs) in soil from an abandoned e-waste recycling site: Do plastics contribute to (HFRs) in soil? JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124649. [PMID: 33261975 DOI: 10.1016/j.jhazmat.2020.124649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Electronic waste (e-waste) recycling site may be a "hotspot" for pollution of plastic debris, which has not been well studied. Eighteen halogenated flame retardants (HFRs) were measured in plastics and soil separated from twenty soil samples, respectively, from an abandoned e-waste recycling site. Abundances and concentrations of plastic debris ranged from 600 to 14,200 particles/kg and 0.24-153 mg/g, respectively, which were at the high end in literature. Blue, black, and red were main plastic colors, and acrylonitrile-butadiene-styrene (ABS) was the main type of plastics. Polybrominated diphenyl ether (PBDE) 209 was the main chemical, with median concentrations of 6.22-40.6 μg/g in soil and 28.1-47.2 μg/g in plastics, respectively. Contributions of HFRs in plastics were less than 10% in total HFR masses in bulk soil samples. Exposure values to HFRs from plastics via soil ingestion and dermal contact with soil were generally two orders of magnitude lower than those from soil. The results indicate that plastics in soil have little contribution to total HFR burden in soil and human exposure risks to HFRs in this study. However, ecological risks of plastics to terrestrial wildlife in e-waste sites should be paid attention.
Collapse
Affiliation(s)
- Jiecong Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodan Wu
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
46
|
Kumar M, Chen H, Sarsaiya S, Qin S, Liu H, Awasthi MK, Kumar S, Singh L, Zhang Z, Bolan NS, Pandey A, Varjani S, Taherzadeh MJ. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124967. [PMID: 33517026 DOI: 10.1016/j.jhazmat.2020.124967] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 05/23/2023]
Abstract
Micro-and nano-plastics (MNPs) (size < 5 mm/<100 nm) epitomize one of the emergent environmental pollutants with its existence all around the globe. Their high persistence nature and release of chemicals/additives used in synthesis of plastics materials may pose cascading impacts on living organism across the globe. Natural connectivity of all the environmental compartments (terrestrial, aquatic, and atmospheric) leads to migration/dispersion of MNPs from one compartment to others. Nevertheless, the information on dispersion of MNPs across the environmental compartments and its possible impacts on living organisms are still missing. This review first acquaints with dispersion mechanisms of MNPs in the environment, its polymeric/oligomeric and chemical constituents and then emphasized its impacts on living organism. Based on the existing knowledge about the MNPs' constituent and its potential impacts on the viability, development, lifecycle, movements, and fertility of living organism via several potential mechanisms, such as irritation, oxidative damage, digestion impairment, tissue deposition, change in gut microbial communities' dynamics, impaired fatty acid metabolism, and molecular damage are emphasized. Finally, at the end, the review provided the challenges associated with remediation of plastics pollutions and desirable strategies, policies required along with substantial gaps in MNPs research were recommended for future studies.
Collapse
Affiliation(s)
- Manish Kumar
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Hongyu Chen
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin 14195, Germany
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | | | |
Collapse
|
47
|
Zhou S, Peng S, Brack W, Doering JA, Seiler TB, Hollert H. Bioanalytical equivalents and relative potencies for predicting the biological effects of mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143030. [PMID: 33129534 DOI: 10.1016/j.scitotenv.2020.143030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Bioanalytical equivalents (BEQs) of mixtures and environmental samples are widely used to reflect the potential threat of pollutants in the environment and can be obtained by bioassays or using chemical analysis combined with relative potencies (REPs). In this study, the relationships between bioassay-detected BEQs (Bio-BEQs) and chemically analyzed BEQs (Chem-BEQs) were studied. BEQs and REPs are correlated with effect level and the concentration-response curves of the reference standard and sample. Thus, effect level (e.g., EC10, EC25 and EC50) should be addressed for the BEQ values obtained from bioassays or chemical analyses. The previous prerequisites for REPs application (i.e., curves that are parallel and have the same maximum response) are redundant, and the use of REPs for the calculation of BEQs or in risk assessment should instead be based on the same effect level. For a complex mixture with many components, all active components can be regarded as dilutions of a standard compound for inducing a specific effect. Relative toxicity estimates based on EC50 ignore the contribution of weak-active components with maximum response below EC50 of the reference standard, especially in complex mixtures or environmental samples. REPs based on an effect level EC10 that can be clearly discriminated from background response are recommended for BEQ calculation. As an example, the aryl hydrocarbon receptor (AhR)-mediated activity of US EPA priority polycyclic aromatic hydrocarbons (PAHs) in RTL-W1 cells was used to assess the reliability of REPs for mixture toxicity prediction based on the effect level EC10.
Collapse
Affiliation(s)
- Shangbo Zhou
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Jon A Doering
- National Research Council, 6201 Congdon Blvd., Duluth, MN 55804, United States
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Fan X, Ma Z, Zou Y, Liu J, Hou J. Investigation on the adsorption and desorption behaviors of heavy metals by tire wear particles with or without UV ageing processes. ENVIRONMENTAL RESEARCH 2021; 195:110858. [PMID: 33607092 DOI: 10.1016/j.envres.2021.110858] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In recent years, tire wear particles (TWP), as the significant proportion of microplastics (MPs), has adsorbed much attention due to its widespread presence in aquatic ecosystem. Compared with typical MPs, TWP exists significant differences in composition, additives, characteristics and so on. With TWP and polypropylene (PP) as target MPs, Cd2+ and Pb2+ as target pollutants, the adsorption-desorption characteristics of heavy metal ions on original and aged MPs were studied. Compare with the PP, the SBET of TWP increased more significantly after the UV ageing process. Meanwhile, the zeta potential of TWP increased from -8.01 to -14.6 mV and PP from -5.36 to -9.52 mV, and the surface of the TWP were more negatively-charged. In addition, the hydrophilicity of MPs enhanced due to the increased oxygen-containing functional groups after ageing process. Compared with PP, the physicochemical properties of TWP changed more obviously during UV ageing processes. The adsorption results showed that the pseudo-second-order model could better describe the adsorption processes of Cd2+ and Pb2+ on MPs. Meanwhile, the orders of adsorption capacity of MPs for Cd2+ and Pb2+ were aged TWP > aged PP > original TWP > original PP. The phenomenon of adsorption confirmed that TWP had better vector effects for heavy metal ions than PP, and the ageing processes could enhance the adsorption capacity of MPs. Moreover, the desorption results demonstrated that, compared with PP, the TWP (with higher adsorption capacity) also had the better desorption capacity for heavy metal ions in simulated gastric fluid. Compared with PP, the TWP might cause a more serious hazard to aquatic environment and organisms. These investigations would contribute to assessing the potential environmental and biological risk of TWP, especially considering the effect of the ageing process.
Collapse
Affiliation(s)
- Xiulei Fan
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Zixuan Ma
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yefeng Zou
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Jiaqiang Liu
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
49
|
Jiménez-Skrzypek G, Hernández-Sánchez C, Ortega-Zamora C, González-Sálamo J, González-Curbelo MÁ, Hernández-Borges J. Microplastic-adsorbed organic contaminants: Analytical methods and occurrence. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Ghayebzadeh M, Taghipour H, Aslani H. Abundance and distribution of microplastics in the sediments of the estuary of seventeen rivers: Caspian southern coasts. MARINE POLLUTION BULLETIN 2021; 164:112044. [PMID: 33524830 DOI: 10.1016/j.marpolbul.2021.112044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Given the increase in plastic production, persistence, and toxicity in the environment, understanding the probability of microplastics (MPs) accumulation in the sediments of the rivers' estuary is urgently needed. In this study, sediments of the estuary of 17 rivers, ending to the Caspian Sea, were evaluated at two depths (0-5 cm and 5-15 cm). Plastic particles were categorized into two groups in terms of size: small MPs and large MPs. The combination of observational techniques, FTIR, and SEM analysis was applied to identify MPs. The mean of MPs in 17 rivers was obtained at a depth of 0 to 15 cm of sediments 350.6 ± 232.6 MP/kg. The fiber was identified as the predominant particles in sediments, and foam-shaped particles were the least amount in the sediment. In terms of polymer structure, polyethylene (PE) (20%) and polyvinyl chloride (PVC) (2%) showed the highest and lowest prevalence, respectively. In the current study, the number of MPs was higher than the average of MPs in sediments of recreational-tourist areas and non-tourist areas of the southern Caspian coast. Results from this study indicate that sediments of the rivers' estuary are a hotspot of plastic particle pollution. Therefore, plastic management in the path of the Caspian catchment area of Iran, and cleaning rivers coast and rivers mouth from plastic is recommended.
Collapse
Affiliation(s)
- Mehdi Ghayebzadeh
- Department of Environmental Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hassan Taghipour
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Aslani
- Department of Environmental Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|