1
|
Alygizakis N, Kostopoulou N, Gkotsis G, Nika MC, Orfanioti A, Ng K, Bizani E, Nikolopoulou V, Badry A, Brownlow A, Centelleghe C, Chadwick EA, Ciesielski TM, Cincinelli A, Claßen D, Danielsson S, Dekker RWRJ, Duke G, Glowacka N, Gol'din P, Jansman HAH, Jauniaux T, Knopf B, Koschorreck J, Krone O, Lekube X, Martellini T, Movalli P, O'Rourke E, Oswald P, Oswaldova M, Saavedra C, Persson S, Rohner S, Roos A, Routti H, Schmidt B, Sciancalepore G, Siebert U, Treu G, van den Brink NW, Vishnyakova K, Walker LA, Thomaidis NS, Slobodnik J. Network analysis to reveal the most commonly detected compounds in predator-prey pairs in freshwater and marine mammals and fish in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175303. [PMID: 39127197 DOI: 10.1016/j.scitotenv.2024.175303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Marine and freshwater mammalian predators and fish samples, retrieved from environmental specimen banks (ESBs), natural history museum (NHMs) and other scientific collections, were analysed by LIFE APEX partners for a wide range of legacy and emerging contaminants (2545 in total). Network analysis was used to visualize the chemical occurrence data and reveal the predominant chemical mixtures for the freshwater and marine environments. For this purpose, a web tool was created to explore these chemical mixtures in predator-prey pairs. Predominant chemicals, defined as the most prevalent substances detected in prey-predator pairs were identified through this innovative approach. The analysis established the most frequently co-occurring substances in chemical mixtures from AP&P in the marine and freshwater environments. Freshwater and marine environments shared 23 chemicals among their top 25 predominant chemicals. Legacy chemical, including perfluorooctanesulfonic acid (PFOS), brominated diphenyl ethers (BDEs), polychlorinated biphenyls (PCBs), hexachlorobenzene and mercury were dominant chemicals in both environments. Furthermore, N-acetylaminoantipyrine was a predominant pharmaceutical in both environments. The LIFE APEX chemical mixture application (https://norman-data.eu/LIFE_APEX_Mixtures) was proven to be useful to establish most prevalent compounds in terms of number of detected counts in prey-predator pairs. Nonetheless, further research is needed to establish food chain associations of the predominant chemicals.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Niki Kostopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Anastasia Orfanioti
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Erasmia Bizani
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Varvara Nikolopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Elizabeth A Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Sara Danielsson
- Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | | | - Guy Duke
- Environmental Change Institute, University of Oxford, 3 South Parks Rd, Oxford OX1 3QY, United Kingdom
| | - Natalia Glowacka
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Pavel Gol'din
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Hugh A H Jansman
- Wageningen University & Research, Wageningen Environmental Research, Droevendaalsesteeg 3-3 A, 6708 PB Wageningen, the Netherlands
| | - Thierry Jauniaux
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Burkhard Knopf
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 57392 Schmallenberg, Germany
| | | | - Oliver Krone
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Xabier Lekube
- Biscay Bay Environmental Biospecimen Bank (BBEBB), Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza 47, 48620 Plentzia, Basque Country, Spain; CBET+ Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Movalli
- Naturalis Biodiversity Center, 2333 RA Leiden, the Netherlands
| | - Emily O'Rourke
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | | | - Camilo Saavedra
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de Vigo, Vigo, Spain
| | - Sara Persson
- Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany
| | - Anna Roos
- Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany
| | - Giuseppe Sciancalepore
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany; Department of Ecoscience, Marine Mammal Research, Aarhus University, Denmark
| | | | | | - Karina Vishnyakova
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65062 Odesa, Ukraine
| | | | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
2
|
Carneiro RB, Nika MC, Gil-Solsona R, Diamanti KS, Thomaidis NS, Corominas L, Gago-Ferrero P. A critical review of wastewater-based epidemiology as a tool to evaluate the unintentional human exposure to potentially harmful chemicals. Anal Bioanal Chem 2024:10.1007/s00216-024-05596-z. [PMID: 39422714 DOI: 10.1007/s00216-024-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool to gather epidemiological insights at the community level, providing objective data on population exposure to harmful substances. A considerable portion of the human exposure to these potentially harmful chemicals occurs unintentionally, unlike substances such as pharmaceuticals, illicit drugs, or alcohol. In this context, this comprehensive review analyzes WBE studies focused on classes of organic chemicals to which humans are unintentionally exposed, namely organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFAS), benzotriazoles and benzothiazoles, phthalates and terephthalates, benzophenones, pesticides, bisphenols, and parabens. The review highlights some advantages of WBE for public health surveillance, e.g., non-invasive analysis, predictive capability, nearly real-time data, population-wide insights, no ethical approval, and unbiased sampling. It also discusses challenges and future research directions in WBE regarding exposure to harmful chemicals from various sources. The review emphasizes the critical role of wastewater sampling, sample preparation, quality control, and instrumental analysis in achieving accurate and reliable results. Furthermore, it examines the selection of human biomarkers for WBE studies and explores strategies to link WBE with human biomonitoring (HBM), which together enhance both the precision and effectiveness of exposure assessments.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Chromatography, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Maria-Christina Nika
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Konstantina S Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Catalonia, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Catalonia, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
3
|
Silva C, Figueira E, Matos D, Sá C, Vidal T, Gonçalves FJM, Abrantes N, Pereira JL. Assessment of extracellular polymeric substances production and antioxidant defences in periphytic communities exposed to effluent contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39417561 DOI: 10.1039/d4em00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Periphyton is frequently used in the evaluation of the ecological status of aquatic ecosystems using diatoms as a proxy. However, periphyton has a particularity, the production of extracellular polymeric substances (EPS), which might play a protective role against exposure to harmful environmental contaminants. Effluents originating in wastewater treatment plants (WWTPs) constitute some of the most complex mixtures of contaminants, to which aquatic ecosystems are frequently exposed, often containing tens to hundreds of different chemicals. In such challenging scenarios, a putative protective role of EPS may obscure the bioindicator value of diatoms. To address this problem, we sampled periphyton upstream and downstream of the effluent outfall from three different WWTPs, quantifying EPS production and simultaneously evaluating general stress responses in the community (protein and sugar content, photosynthetic pigments, antioxidant enzyme activity and oxidative damage). By combining these endpoints with a characterization of the sediments of the riverine systems receiving the effluents made in a previous study (metals, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products), we aimed to elucidate whether effluent contaminants trigger negative effects, which may be mitigated by EPS layers protecting the communities. Our results indicated that under a comparatively milder contamination burden, EPS production is enhanced in samples collected downstream of the effluent outfall; under a higher contamination burden, EPS production is hampered. Stress-coping mechanisms were activated by environmental contaminants, including the antioxidant defense, particularly through catalase and superoxide dismutase activity. The findings support the generally assumed protective effect of EPS, but also suggest that EPS production depends on the contamination burden and that protective effects should be in place under specific scenarios of, for example, relatively low contamination levels. Overall, the integrative approach used in this study contributes to a better understanding of the complex interplay of interactions between effluent-driven contamination and thriving periphytic communities inhabiting recipient waterways, including evolved protection mechanisms.
Collapse
Affiliation(s)
- Carlos Silva
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Etelvina Figueira
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Diana Matos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Carina Sá
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Tânia Vidal
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | | | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| |
Collapse
|
4
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
5
|
Misolas A, Sleiman M, Sakkas V. Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples. Molecules 2024; 29:4834. [PMID: 39459205 PMCID: PMC11509965 DOI: 10.3390/molecules29204834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Due to the increased prevalence of diabetes, the consumption of anti-diabetic drugs for its treatment has likewise increased. Metformin is an anti-diabetic drug that is commonly prescribed for patients with type 2 diabetes and has been frequently detected in surface water and wastewaters, thus representing an emerging contaminant. Metformin can be prescribed in combination with other classes of anti-diabetic drugs; however, these drugs are not sufficiently investigated in environmental samples. Fabric phase sorptive extraction (FPSE) has emerged as a simple and green method for the extraction of analytes in environmental samples. In this study, FPSE coupled with a high-performance liquid chromatography diode array detector (HPLC-DAD) was employed for the simultaneous analysis of different classes of anti-diabetic drugs (metformin, dapagliflozin, liraglutide, pioglitazone, gliclazide, glimepiride, glargine, repaglinide, sitagliptin, and vildagliptin) in environmental water samples. Four different fabric membranes were synthesized but the microfiber glass filter coated with sol-gel polyethylene glycol (PEG 300) was observed to be the best FPSE membrane. The parameters affecting the FPSE process were optimized using a combination of one-factor-at-a-time processes and the design of experiments. The FPSE was evaluated as a green extraction method, based on green sample preparation criteria. The FPSE-HPLC-DAD method achieved acceptable validation results and was applied for the simultaneous analysis of anti-diabetic drugs in surface and wastewater samples. Glimepiride was detected below the quantification limit in both lake and river water samples. Dapagliflozin, liraglutide, and glimepiride were detected at 69.0 ± 1.0 μg·L-1, 71.9 ± 0.4 μg·L-1, and 93.9 ± 1.3 μg·L-1, respectively, in the city wastewater influent. Dapagliflozin and glimepiride were still detected below the quantification limit in city wastewater effluent. For the hospital wastewater influent, metformin and glimepiride were detected at 1158 ± 21 μg·L-1 and 28 ± 0.8 μg·L-1, respectively, while only metformin (392.6 ± 7.7 μg·L-1) was detected in hospital wastewater effluent.
Collapse
Affiliation(s)
- Augosto Misolas
- Department of Chemistry, School of Science, University of Ioannina, 451110 Ioannina, Greece;
- Institute of Chemistry of Clermont Ferrand, Sigma Clermont, UCA Campus Des Cezeaux, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France;
| | - Mohamad Sleiman
- Institute of Chemistry of Clermont Ferrand, Sigma Clermont, UCA Campus Des Cezeaux, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France;
| | - Vasilios Sakkas
- Department of Chemistry, School of Science, University of Ioannina, 451110 Ioannina, Greece;
| |
Collapse
|
6
|
Huang J, Yang C, Zhang X, Wu X. Characteristics and functional bacteria of an efficient benzocaine-mineralizing bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135773. [PMID: 39270583 DOI: 10.1016/j.jhazmat.2024.135773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The extensive use of pharmaceutical and personal care products (PPCPs) has led to widespread residual pollution, which increases the risk of the development of drug resistance in pathogenic microorganisms. Benzocaine is a PPCP that is widely used medical anesthesia and in sunscreen. Microorganisms are essential for the degradation of residual PPCPs. However, no studies have reported the microbial degradation of benzocaine. In this study, through continuous enrichment of the initial consortium HJ1, the highly efficient benzocaine-degrading consortium HJ7 was obtained, HJ7 exhibited a degradation rate that was 1.92 times greater than that of HJ1. Methyl 4-aminobenzoate and 4-aminobenzoic acid were identified as major intermediate products during benzocaine biodegradation by consortium HJ1 or HJ7. Methylobacillus (57.8 % ± 0.9 %) and Pseudomonas (22.1 % ± 0.7 %), which are thought to harbor essential species for benzocaine degradation, were significantly enriched in consortium HJ7. Two benzocaine-degrading strains, Pseudomonas sp. A8 and Microbacterium sp. A741, and one methyl 4-aminobenzoate-degrading strain, Achromobacter sp. A5, were isolated from consortium HJ7, and they synergistically mineralized benzocaine. These findings not only provide new insights into the biotransformation of benzocaine but also provide strain resources for the bioremediation of residual benzocaine in the environment.
Collapse
Affiliation(s)
- Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Chen Yang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Xiaohan Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
7
|
Szabo D, Fischer S, Mathew AP, Kruve A. Prioritization, Identification, and Quantification of Emerging Contaminants in Recycled Textiles Using Non-Targeted and Suspect Screening Workflows by LC-ESI-HRMS. Anal Chem 2024; 96:14150-14159. [PMID: 39160693 PMCID: PMC11375621 DOI: 10.1021/acs.analchem.4c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Recycled textiles are becoming widely available to consumers as manufacturers adopt circular economy principles to reduce the negative impact of garment production. Still, the quality of the source material directly impacts the final product, where the presence of harmful chemicals is of utmost concern. Here, we develop a risk-based suspect and non-targeted screening workflow for the detection, identification, and prioritization of the chemicals present in consumer-based recycled textile products after manufacture and transport. We apply the workflow to characterize 13 recycled textile products from major retail outlets in Sweden. Samples were extracted and analyzed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). In positive and negative ionization mode, 20,119 LC-HRMS features were detected and screened against persistent, mobile, and toxic (PMT) as well as other textile-related chemicals. Six substances were matched with PMT substances that are regulated in the European Union (EU) with a Level 2/3 confidence. Forty-three substances were confidently matched with textile-related chemicals reported for use in Sweden. For estimating the relative priority score, aquatic toxicity and concentrations were predicted for 7416 features with tandem mass spectra (MS2) and used to rank the non-targeted features. The top 10 substances were evaluated due to elevated environmental risk linked to the recycling process and potential release at end-of-life.
Collapse
Affiliation(s)
- Drew Szabo
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Retention time dataset for heterogeneous molecules in reversed-phase liquid chromatography. Sci Data 2024; 11:946. [PMID: 39209861 PMCID: PMC11362277 DOI: 10.1038/s41597-024-03780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Quantitative structure-property relationships have been extensively studied in the field of predicting retention times in liquid chromatography (LC). However, making transferable predictions is inherently complex because retention times are influenced by both the structure of the molecule and the chromatographic method used. Despite decades of development and numerous published machine learning models, the practical application of predicting small molecule retention time remains limited. The resulting models are typically limited to specific chromatographic conditions and the molecules used in their training and evaluation. Here, we have developed a comprehensive dataset comprising over 10,000 experimental retention times. These times were derived from 30 different reversed-phase liquid chromatography methods and pertain to a collection of 343 small molecules representing a wide range of chemical structures. These chromatographic methods encompass common LC setups for studying the retention behavior of small molecules. They offer a wide range of examples for modeling retention time with different LC setups.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China.
| | - Xiu Qin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Kang Cong Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Qing He Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
10
|
Ota M, Kasuga I, Kurisu F. Sensitivity and quantitativeness of large-volume injection combined with liquid chromatography/high-resolution mass spectrometry for target screening analysis of emerging contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124180. [PMID: 38768676 DOI: 10.1016/j.envpol.2024.124180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Solid phase extraction (SPE) has been widely used for pretreatment in target screening (TS) analysis. However, some compounds are difficult to recover by SPE or their recovery is unstable for environmental samples. In this study, we tested large-volume injection (LVI) without SPE for TS analysis of 103 compounds listed by the Ministry of the Environment (Japan)-so-called 'items to be surveyed'-using liquid chromatography high-resolution mass spectrometry. We evaluated the limit of quantification (LOQ) by LVI and compared this LOQ with the LOQ by SPE pretreatment using a hydrophilic-lipophilic balance (HLB) combined with activated carbon, which was found previously to afford the best SPE cartridges for target compounds recovery. The LOQ generally decreased as the injection volume increased, and the LOQ was at least 250 times lower for a 500-μL injection than for a 2-μL injection for half of the compounds. LVI provided LOQs lower than the predicted no effect concentration for more compounds than the SPE method. The average matrix effect (ME) by LVI was in the range 70%-130% for 69 out of 97 compounds. The ME was higher or lower for some of the remaining compounds, but the ME was in the range 10%-1000% for all 18 water samples for 84 of the 97 compounds. Comparing the ME by LVI and the recovery ratio by the SPE method showed that LVI achieved more accurate quantitation than the SPE method for a larger number of compounds. Therefore, LVI provides better sensitivity and quantitativeness than the SPE method using HLB and activated carbon for TS analysis of as many 'items to be surveyed' as possible.
Collapse
Affiliation(s)
- Maho Ota
- Department of Urban Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Ikuro Kasuga
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
11
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134651. [PMID: 38843640 DOI: 10.1016/j.jhazmat.2024.134651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024]
Abstract
As emerging pollutants, antidepressants (AD) must be urgently investigated for risk identification and assessment. This study constructed a comprehensive-effect risk-priority screening system (ADRank) for ADs by characterizing AD functionality, occurrence, persistence, bioaccumulation and toxicity based on the integrated assignment method. A classification model for ADs was constructed using an improved mixup-transformer deep learning method, and its classification accuracy was compared with those of other models. The accuracy of the proposed model improved by up to 23.25 % compared with the random forest model, and the reliability was 80 % more than that of the TOPSIS method. A priority screening candidate list was proposed to screen 33 high-priority ADs. Finally, SHapley Additive explanation (SHAP) visualization, molecular dynamics, and amino acid analysis were performed to analyze the correlation between AD structure and toxic receptor binding characteristics and reveal the differences in AD risk priority. ADs with more intramolecular hydrogen bonds, higher hydrophobicity, and electronegativity had a more significant risk. Van der Waals and electrostatic interactions were the primary influencing factors, and significant differences in the types and proportions of the main amino acids in the interaction between ADs and receptors were observed. The results of the study provide constructive schemes and insights for AD priority screening and risk management.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
13
|
Ninga E, Hakme E, Poulsen ME. Assessing the performance of various sorbents in micro-solid phase extraction cartridges for pesticide residue analysis in feed. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3784-3797. [PMID: 38828558 DOI: 10.1039/d4ay00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Newly designed micro-solid phase extraction cartridges are now available, reflecting the increasing shift towards laboratory automation, especially in the clean-up step for the analysis of pesticide residues in food and feed. In the present study, the introduction of different sorbents on the newly designed PAL µSPE CTC cartridges was investigated for the removal of matrix interferents and the recovery of pesticides. Eight cartridges containing different sorbent combinations and different amounts were used including EMR-lipid (not activated), Z-sep, chitin, C18, PSA, and GCB. The evaluation of co-extractive removal for each cartridge showed that the optimal choice for removing fatty acids was the cartridges containing PSA and Z-sep as clean-up sorbents. However, the presence of C18 and EMR-lipid was still required for the removal of sterols and tocopherols. Two grams of sample, fish feed (FF) and rapeseed cake (RSC) were extracted using QuEChERS citrate buffer, followed by a freeze-out step. The recoveries and repeatability of QuEChERS using µ-SPE clean-up were evaluated for 216 pesticide residues (112 compounds analyzed by GC-MS/MS and 143 compounds by LC-MS/MS, from which 39 compounds were analyzed using both techniques). The best results, with recovery between 70 and 120% and RSD <20%, were achieved when FF samples were cleaned-up with 15 mg EMR-lipid and 20 mg MgSO4. This was achieved for 94% of GC-amenable compounds and 86% of LC-amenable compounds. In the case of RSC, the best results were seen when samples were cleaned-up with the cartridge containing only 20 mg Z-sep and 20 mg MgSO4. This was achieved for 88% of GC-amenable compounds and 90% of LC-amenable compounds. Although these cartridges yielded optimal results in terms of recovery, their use could require more instrument maintenance, especially for GC-MS/MS, due to the lower removal of co-extractives.
Collapse
Affiliation(s)
- Ederina Ninga
- National Food Institute, Technical University of Denmark, DTU-Food, Lyngby, Denmark.
| | - Elena Hakme
- National Food Institute, Technical University of Denmark, DTU-Food, Lyngby, Denmark.
| | - Mette Erecius Poulsen
- National Food Institute, Technical University of Denmark, DTU-Food, Lyngby, Denmark.
| |
Collapse
|
14
|
Meyer C, Stravs MA, Hollender J. How Wastewater Reflects Human Metabolism─Suspect Screening of Pharmaceutical Metabolites in Wastewater Influent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9828-9839. [PMID: 38785362 PMCID: PMC11154963 DOI: 10.1021/acs.est.4c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Pharmaceuticals and their human metabolites are contaminants of emerging concern in the aquatic environment. Most monitoring studies focus on a limited set of parent compounds and even fewer metabolites. However, more than 50% of the most consumed pharmaceuticals are excreted in higher amounts as metabolites than as parents, as confirmed by a literature analysis within this study. Hence, we applied a wide-scope suspect screening approach to identify human pharmaceutical metabolites in wastewater influent from three Swiss treatment plants. Based on consumption amounts and human metabolism data, a suspect list comprising 268 parent compounds and over 1500 metabolites was compiled. Online solid phase extraction combined with liquid chromatography coupled to high-resolution tandem mass spectrometry was used to analyze the samples. Data processing, annotation, and structure elucidation were achieved with various tools, including molecular networking as well as SIRIUS/CSI:FingerID and MetFrag for MS2 spectra rationalization. We confirmed 37 metabolites with reference standards and 16 by human liver S9 incubation experiments. More than 25 metabolites were detected for the first time in influent wastewater. Semiquantification with MS2Quant showed that metabolite to parent concentration ratios were generally lower compared to literature expectations, probably due to further metabolite transformation in the sewer system or limitations in the metabolite detection. Nonetheless, metabolites pose a large fraction to the total pharmaceutical contribution in wastewater, highlighting the need for metabolite inclusion in chemical risk assessment.
Collapse
Affiliation(s)
- Corina Meyer
- Eawag:
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse
16, 8092 Zurich, Switzerland
| | - Michael A. Stravs
- Eawag:
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Juliane Hollender
- Eawag:
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse
16, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Drakopoulou SK, Kokolakis SE, Karagiannidis AL, Dasenaki ME, Maragou NC, Thomaidis NS. A comprehensive HRMS methodology using LC-(ESI)-/GC-(APCI)-QTOF MS complementary platforms for wide-scope target screening of >750 pesticides in olive oil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2684-2692. [PMID: 38623768 DOI: 10.1039/d4ay00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study presents the development and validation of a comprehensive high-resolution mass spectrometry (HRMS) methodology for the detection of 771 pesticides in olive oil, using liquid chromatography with electrospray ionization, operating in positive and negative mode, and gas chromatography with atmospheric-pressure chemical ionization in positive mode, both coupled to quadrupole-time-of-flight mass spectrometry (LC-(ESI)-/GC-(APCI)-QTOF MS). Special reference is made to the post-acquisition evaluation step, in which all LC/GC-HRMS analytical evidence (i.e. mass accuracy, retention time, isotopic pattern, MS/MS fragmentation) is taken into account in order to successfully identify the compounds. The sample preparation of the method involves a QuEChERS-based protocol, common for both techniques, differentiated only on the reconstitution step, making the method highly applicable in routine analysis. A smart evaluation of method's performance was carried out, with 65 representative analytes comprising the validation set. The method was validated in terms of linearity, accuracy, matrix effect and precision, while the limits of detection and quantification of the method were estimated. Finally, twenty Greek olive oil samples were analysed in both analytical platforms and the findings included the pesticides lambda-cyhalothrin, chlorpyrifos, phosphamidon, pirimiphos-methyl and esprocarb at low ng g-1 level.
Collapse
Affiliation(s)
- Sofia K Drakopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Stefanos E Kokolakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Apostolos L Karagiannidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Marilena E Dasenaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Niki C Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
16
|
Hrichi H, Kouki N, Elkanzi NAA. Chromatographic Methods for the Analysis of the Antipsychotic Drug Clozapine and Its Major Metabolites: A Review. J Chromatogr Sci 2024:bmae016. [PMID: 38576210 DOI: 10.1093/chromsci/bmae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Clozapine (CLZ), a second-generation antipsychotic, can effectively reduce schizophrenia, bipolar disorder and major depression symptoms. This review provides an overview of all reported chromatographic methods (62 references) for the quantification of CLZ and its two main metabolites, norclozapine and clozapine N-oxide in pharmaceutical formulations, biological matrices and environmental samples.
Collapse
Affiliation(s)
- Hajer Hrichi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Noura Kouki
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Nadia Ali Ahmed Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
17
|
Tkalec Ž, Antignac JP, Bandow N, Béen FM, Belova L, Bessems J, Le Bizec B, Brack W, Cano-Sancho G, Chaker J, Covaci A, Creusot N, David A, Debrauwer L, Dervilly G, Duca RC, Fessard V, Grimalt JO, Guerin T, Habchi B, Hecht H, Hollender J, Jamin EL, Klánová J, Kosjek T, Krauss M, Lamoree M, Lavison-Bompard G, Meijer J, Moeller R, Mol H, Mompelat S, Van Nieuwenhuyse A, Oberacher H, Parinet J, Van Poucke C, Roškar R, Togola A, Trontelj J, Price EJ. Innovative analytical methodologies for characterizing chemical exposure with a view to next-generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 186:108585. [PMID: 38521044 DOI: 10.1016/j.envint.2024.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.
Collapse
Affiliation(s)
- Žiga Tkalec
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia.
| | | | - Nicole Bandow
- German Environment Agency, Laboratory for Water Analysis, Colditzstraße 34, 12099 Berlin, Germany.
| | - Frederic M Béen
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), Section Chemistry for Environment and Health, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; KWR Water Research Institute, Nieuwegein, The Netherlands.
| | - Lidia Belova
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Jos Bessems
- Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt, Germany.
| | | | - Jade Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Nicolas Creusot
- INRAE, French National Research Institute For Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France.
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France.
| | | | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory of Fougères, Toxicology of Contaminants Unit, 35306 Fougères, France.
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| | - Thierry Guerin
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Strategy and Programs Department, F-94701 Maisons-Alfort, France.
| | - Baninia Habchi
- INRS, Département Toxicologie et Biométrologie Laboratoire Biométrologie 1, rue du Morvan - CS 60027 - 54519, Vandoeuvre Cedex, France.
| | - Helge Hecht
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology - Eawag, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France.
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia.
| | - Martin Krauss
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), Section Chemistry for Environment and Health, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Gwenaelle Lavison-Bompard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, F-94701 Maisons-Alfort, France.
| | - Jeroen Meijer
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), Section Chemistry for Environment and Health, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Ruth Moeller
- Unit Medical Expertise and Data Intelligence, Department of Health Protection, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg.
| | - Hans Mol
- Wageningen Food Safety Research - Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - Sophie Mompelat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory of Fougères, Toxicology of Contaminants Unit, 35306 Fougères, France.
| | - An Van Nieuwenhuyse
- Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit of Leuven (KU Leuven), 3000 Leuven, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg.
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Insbruck, 6020 Innsbruck, Austria.
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, F-94701 Maisons-Alfort, France.
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries And Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium.
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Slovenia.
| | - Anne Togola
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France.
| | | | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
18
|
Wilk J, Bajkacz S. Protecting the Last Line of Defense: Analytical Approaches for Sample Preparation and Determination of the Reserve Group of Antibiotics in the Environment. Crit Rev Anal Chem 2024:1-19. [PMID: 38493337 DOI: 10.1080/10408347.2024.2321161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Drug resistance in microorganisms is a serious threat to life and health due to the limited number of antibiotics that show efficacy in treating infections and the difficulty in discovering new compounds with antibacterial activity. To address this issue, the World Health Organization created the AWaRe classification, a tool to support global and national antimicrobial stewardship programs. The AWaRe list categorizes antimicrobials into three groups - Access, Watch, and Reserve - according to their intended use. The Reserve group comprises "last resort" medicines used solely for treating infections caused by bacterial strains that are resistant to other treatments. It is therefore necessary to protect them, not only by using them as prudently as possible in humans and animals, but also by monitoring their subsequent fate. Unmetabolized antibiotics enter the environment through hospital and municipal wastewater or from manure, subsequently contaminating bodies of water and soils, thus contributing to the emergence and spread of antibiotic resistance. This article presents a review of determination methods for the Reserve group of antimicrobials in water, wastewater, and manure. Procedures for extracting and determining these substances in environmental samples are described, showing the limited research available, which is typically on a local level.
Collapse
Affiliation(s)
- Joanna Wilk
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Gliwice, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Gliwice, Poland
| |
Collapse
|
19
|
Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Generic and accurate prediction of retention times in liquid chromatography by post-projection calibration. Commun Chem 2024; 7:54. [PMID: 38459241 PMCID: PMC10923921 DOI: 10.1038/s42004-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Retention time predictions from molecule structures in liquid chromatography (LC) are increasingly used in MS-based targeted and untargeted analyses, providing supplementary evidence for molecule annotation and reducing experimental measurements. Nevertheless, different LC setups (e.g., differences in gradient, column, and/or mobile phase) give rise to many prediction models that can only accurately predict retention times for a specific chromatographic method (CM). Here, a generic and accurate method is present to predict retention times across different CMs, by introducing the concept of post-projection calibration. This concept builds on the direct projections of retention times between different CMs and uses 35 external calibrants to eliminate the impact of LC setups on projection accuracy. Results showed that post-projection calibration consistently achieved a median projection error below 3.2% of the elution time. The ranking results of putative candidates reached similar levels among different CMs. This work opens up broad possibilities for coordinating retention times between different laboratories and developing extensive retention databases.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China.
| | - Xiu Qin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Kang Cong Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Qing He Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
20
|
Sanz C, Sunyer-Caldú A, Casado M, Mansilla S, Martinez-Landa L, Valhondo C, Gil-Solsona R, Gago-Ferrero P, Portugal J, Diaz-Cruz MS, Carrera J, Piña B, Navarro-Martín L. Efficient removal of toxicity associated to wastewater treatment plant effluents by enhanced Soil Aquifer Treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133377. [PMID: 38237439 DOI: 10.1016/j.jhazmat.2023.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Sylvia Mansilla
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Lurdes Martinez-Landa
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Dept. of Civil and Environmental Engineering. Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Geosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Ruben Gil-Solsona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jose Portugal
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| |
Collapse
|
21
|
Gutierrez M, Mutavdžić Pavlović D, Stipaničev D, Repec S, Avolio F, Zanella M, Verlicchi P. A thorough analysis of the occurrence, removal and environmental risks of organic micropollutants in a full-scale hybrid membrane bioreactor fed by hospital wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169848. [PMID: 38190908 DOI: 10.1016/j.scitotenv.2023.169848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
The Urban Wastewater Treatment Directive recent draft issued last October 2022 pays attention to contaminants of emerging concern including organic micropollutants (OMPs) and requires the removal of some of them at large urban wastewater treatment plants (WWTPs) calling for their upgrading. Many investigations to date have reported the occurrence of a vast group of OMPs in the influent and many technologies have been tested for their removal at a lab- or pilot-scale. Moreover, it is well-known that hospital wastewater (HWW) contains specific OMPs at high concentration and therefore its management and treatment deserves attention. In this study, a 1-year investigation was carried out at a full-scale membrane bioreactor (MBR) treating mainly HWW. To promote the removal of OMPs, powdered activated carbon (PAC) was added to the bioreactor at 0.1 g/L and 0.2 g/L which resulted in the MBR operating as a hybrid MBR. Its performance was tested for 232 target and 90 non-target OMPs, analyzed by UHPLC-QTOF-MS using a direct injection method. A new methodology was defined to select the key compounds in order to evaluate the performance of the treatments. It was based on their frequency, occurrence, persistence to removal, bioaccumulation and toxicity. Finally, an environmental risk assessment of the OMP residues was conducted by means of the risk quotient approach. The results indicate that PAC addition increased the removal of most of the key OMPs (e.g., sulfamethoxazole, diclofenac, lidocaine) and OMP classes (e.g., antibiotics, psychiatric drugs and stimulants) with the highest loads in the WWTP influent. The hybrid MBR also reduced the risk in the receiving water as the PAC dosage increased mainly for spiramycin, lorazepam, oleandomycin. Finally, uncertainties and issues related to the investigation being carried out at full-scale under real conditions are discussed.
Collapse
Affiliation(s)
- Marina Gutierrez
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| | - Dragana Mutavdžić Pavlović
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Analytical Chemistry, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Draženka Stipaničev
- Josip Juraj Strossmayer Water Institut, Central Water Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
| | - Siniša Repec
- Josip Juraj Strossmayer Water Institut, Central Water Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
| | - Francesco Avolio
- HERA S.p.A., Direzione Acqua, Via Cesare Razzaboni 80, 41122 Modena, Italy
| | - Marcello Zanella
- HERA S.p.A., Direzione Acqua, Via Cesare Razzaboni 80, 41122 Modena, Italy
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| |
Collapse
|
22
|
Petromelidou S, Anagnostopoulou K, Koronaiou LA, Kalaronis D, Ainali NM, Evgenidou E, Papageorgiou M, Christodoulou A, Lioumbas I, Kyzas GZ, Mitropoulos A, Bikiaris DN, Lambropoulou DA. Exploring patterns of antibiotics during and after COVID-19 pandemic in wastewaters of northern Greece: Potential adverse effects on aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169832. [PMID: 38190919 DOI: 10.1016/j.scitotenv.2023.169832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Antibiotics, recognized as Emerging Contaminants (ECs), have raised concerns due to their pervasive presence in wastewater treatment plants (WWTPs) and subsequent release into aquatic environments, posing potential ecological risks and contributing to the development of antibiotic-resistant genes. The COVID-19 pandemic prompted an unprecedented surge in antibiotic consumption, necessitating a comprehensive assessment of its impact on antibiotic levels in wastewater. In this light, a four-year monitoring study (2020-2023) was conducted in a WWTP located in the Northern Greece (Thessaloniki), employing High-Resolution Mass Spectrometry (HRMS) technology to monitor twenty antibiotics, during distinct phases pre-, during, and post-COVID-19. Our findings revealed that macrolides and fluoroquinolones were among the most often detected categories during the sampling period. Among the compounds detected, azithromycin and clarithromycin showed the most significant increases during the pandemic, doubling their average concentrations. This establishes a clear correlation between the rise in their concentrations and the incidence of COVID-19 cases. A general downward trend after 2021 was attributed to the new restrictions posed in Greece during this year, regarding the liberal prescription of antibiotics. Seasonal variation revealed a minute augmentation of antibiotics' use during the months that infections are increased. Additionally, the study highlights the ecological risks associated with elevated antibiotic presence and emphasizes the need for continued monitoring and regulatory measures to mitigate potential ecological repercussions. These findings contribute to our understanding of the complex interplay between antibiotic consumption, environmental presence, and the COVID-19 pandemic's impact on antibiotic pollution in WWTPs.
Collapse
Affiliation(s)
- Styliani Petromelidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Kyriaki Anagnostopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitrios Kalaronis
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Matthildi Papageorgiou
- EYATH S.A., Thessaloniki Water Supply & Sewerage Company, Egnatias 127, GR 54635, Thessaloniki, Greece
| | - Aikaterini Christodoulou
- EYATH S.A., Thessaloniki Water Supply & Sewerage Company, Egnatias 127, GR 54635, Thessaloniki, Greece
| | - Ioannis Lioumbas
- EYATH S.A., Thessaloniki Water Supply & Sewerage Company, Egnatias 127, GR 54635, Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
23
|
Rogers JD, Leusch FD, Chambers B, Daniels KD, Everett LJ, Judson R, Maruya K, Mehinto AC, Neale PA, Paul-Friedman K, Thomas R, Snyder SA, Harrill J. High-Throughput Transcriptomics of Water Extracts Detects Reductions in Biological Activity with Water Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2027-2037. [PMID: 38235672 PMCID: PMC11003563 DOI: 10.1021/acs.est.3c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
Collapse
Affiliation(s)
- Jesse D. Rogers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Logan J. Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Keith Maruya
- Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
| | - Alvine C. Mehinto
- Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
| | - Peta A. Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Russell Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Shane A. Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
24
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
25
|
Tisler S, Kilpinen K, Pattison DI, Tomasi G, Christensen JH. Quantitative Nontarget Analysis of CECs in Environmental Samples Can Be Improved by Considering All Mass Adducts. Anal Chem 2024; 96:229-237. [PMID: 38128072 PMCID: PMC10782417 DOI: 10.1021/acs.analchem.3c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Quantitative nontarget analysis (qNTA) for liquid chromatography coupled to high-resolution mass spectrometry enables a more comprehensive assessment of environmental samples. Previous studies have shown that correlations between a compound's ionization efficiency and a range of molecular descriptors can predict the compound's concentration within a factor of 5. In this study, the qNTA approach was further improved by considering all mass adducts instead of only the protonated ion. The model was based on a quantitative structure-property relationship (QSPR), including 216 contaminants of emerging concern (CECs), of which 80 exhibited adduct formation that accounted for >10% of the total peak intensity. When all mass adducts were included, the test set coefficient of determination improved to Q2 = 0.855 compared to Q2 = 0.670 when only the protonated ions were considered (test set median RF error factor 1.6). The inclusion of all adducts was also important to transfer the RF QSPR model reliably. It was assumed that RF variations are sequence-dependent; therefore, a second QSPR model for the prediction of the transferability factor was built for each sequence. For validation, samples were analyzed up to two years apart. The median prediction fold change was 1.74 for analytical standards (63 compounds) and 2.4 for enriched wastewater effluent samples (41 compounds), with 80% of the compounds predicted within a fold change of 2.4 and 3.3, respectively. The model was also validated on a second instrument, where 80% of the 26 compounds in wastewater effluent were predicted within a factor of 3.8.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical
Chemistry Group, Department of Plant and Environmental Science, Faculty
of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kristoffer Kilpinen
- Analytical
Chemistry Group, Department of Plant and Environmental Science, Faculty
of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Eurofins
Miljø Denmark A/S, Ladelundvej 85, 6600 Vejen, Denmark
| | - David I. Pattison
- Analytical
Chemistry Group, Department of Plant and Environmental Science, Faculty
of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Giorgio Tomasi
- Analytical
Chemistry Group, Department of Plant and Environmental Science, Faculty
of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan H. Christensen
- Analytical
Chemistry Group, Department of Plant and Environmental Science, Faculty
of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
26
|
Maddalon A, Pierzchalski A, Krause JL, Bauer M, Finckh S, Brack W, Zenclussen AC, Marinovich M, Corsini E, Krauss M, Herberth G. Impact of chemical mixtures from wastewater treatment plant effluents on human immune cell activation: An effect-based analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167495. [PMID: 37804965 DOI: 10.1016/j.scitotenv.2023.167495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Humans are exposed to many different chemicals on a daily basis, mostly as chemical mixtures, usually from food, consumer products and the environment. Wastewater treatment plant effluent contains mixtures of chemicals that have been discarded or excreted by humans and not removed by water treatment. These effluents contribute directly to water pollution, they are used in agriculture and may affect human health. The possible effect of such chemical mixtures on the immune system has not been characterized. OBJECTIVE The aim of this study was to investigate the effect of extracts obtained from four European wastewater treatment plant effluents on human primary immune cell activation. METHODS Immune cells were exposed to the effluent extracts and modulation of cell activation was performed by multi-parameter flow cytometry. Messenger-RNA (mRNA) expression of genes related to immune system and hormone receptors was measured by RT-PCR. RESULTS The exposure of immune cells to these extracts, containing 339 detected chemicals, significantly reduced the activation of human lymphocytes, mainly affecting T helper and mucosal-associated invariant T cells. In addition, basophil activation was also altered upon mixture exposure. Concerning mRNA expression, we observed that 12 transcripts were down-regulated by at least one extract while 11 were up-regulated. Correlation analyses between the analyzed immune parameters and the concentration of chemicals in the WWTP extracts, highlighted the most immunomodulatory chemicals. DISCUSSION Our results suggest that the mixture of chemicals present in the effluents of wastewater treatment plants could be considered as immunosuppressive, due to their ability to interfere with the activation of immune cells, a process of utmost importance for the functionality of the immune system. The combined approach of immune effect-based analysis and chemical content analysis used in our study provides a useful tool for investigating the effect of environmental mixtures on the human immune response.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jannike Lea Krause
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research (DRFZ), Centre-a Leibniz Institute, Berlin, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Saskia Finckh
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Germany
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
27
|
Sánchez-Resino E, Marquès M, Gutiérrez-Martín D, Restrepo-Montes E, Martínez MÁ, Salas-Huetos A, Babio N, Salas-Salvadó J, Gil-Solsona R, Gago-Ferrero P. Exploring the Occurrence of Organic Contaminants in Human Semen through an Innovative LC-HRMS-Based Methodology Suitable for Target and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19236-19252. [PMID: 37934628 PMCID: PMC10722465 DOI: 10.1021/acs.est.3c04347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Understanding the potential impact of organic contaminants on male fertility is crucial, yet limited studies have examined these chemicals in semen, with most focusing on urine and blood. To address this gap, we developed and validated a robust LC-HRMS methodology for semen analysis, with a focus on polar and semipolar chemicals. Our methodology enables the quantitative (or semiquantitative) analysis of >2000 chemicals being compatible with suspect and nontarget strategies and providing unprecedented insights into the occurrence and potential bioaccumulation of diverse contaminants in this matrix. We comprehensively analyzed exogenous organic chemicals and associated metabolites in ten semen samples from Spanish participants collected in an area with a large presence of the chemical industry included in the LED-FERTYL Spanish study cohort. This investigation revealed the presence of various contaminants in semen, including plastic additives, PFAS, flame retardants, surfactants, and insecticides. Notably, prevalent plastic additives such as phthalic acid esters and bisphenols were identified, indicating potential health risks. Additionally, we uncovered previously understudied chemicals like the tire additive 2-mercaptobenzothiazole and specific organophosphate flame retardants. This study showcases the potential of our methodology as a valuable tool for large-scale cohort studies, providing insights into the association between contaminant exposure and the risk of male fertility impairments.
Collapse
Affiliation(s)
- Elena Sánchez-Resino
- Laboratory
of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant LLorenç 21, Reus, Catalonia 43201, Spain
- Center
of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Montse Marquès
- Laboratory
of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant LLorenç 21, Reus, Catalonia 43201, Spain
- Center
of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Daniel Gutiérrez-Martín
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
- Institute
of Sustainable Processes (ISP) and Department of Analytical Chemistry,
Faculty of Sciences, University of Valladolid
(UVa), Valladolid 47011, Spain
| | - Esteban Restrepo-Montes
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - María Ángeles Martínez
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Albert Salas-Huetos
- Departament
de Ciències Mèdiques Bàsiques, Unitat de Medicina
Preventiva, Grup ANut-DSM, Institut d’Investigació Sanitària
Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad y Nutrición
(ISCIII), Universitat Rovira i Virgili, Reus 43201, Spain
- Department
of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nancy Babio
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Jordi Salas-Salvadó
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Rubén Gil-Solsona
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| |
Collapse
|
28
|
Gutiérrez-Martín D, Restrepo-Montes E, Golovko O, López-Serna R, Aalizadeh R, Thomaidis NS, Marquès M, Gago-Ferrero P, Gil-Solsona R. Comprehensive profiling and semi-quantification of exogenous chemicals in human urine using HRMS-based strategies. Anal Bioanal Chem 2023; 415:7297-7313. [PMID: 37946034 PMCID: PMC10684428 DOI: 10.1007/s00216-023-04998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Chemicals infiltrate our daily experiences through multiple exposure pathways. Human biomonitoring (HBM) is routinely used to comprehensively understand these chemical interactions. Historically, HBM depended on targeted screening methods limited to a relatively small set of chemicals with triple quadrupole instruments typically. However, recent advances in high-resolution mass spectrometry (HRMS) have facilitated the use of broad-scope target, suspect, and non-target strategies, enhancing chemical exposome characterization within acceptable detection limits. Despite these advancements, establishing robust and efficient sample treatment protocols is still essential for trustworthy broad-range chemical analysis. This study sought to validate a methodology leveraging HRMS-based strategies for accurate profiling of exogenous chemicals and related metabolites in urine samples. We evaluated five extraction protocols, each encompassing various chemical classes, such as pharmaceuticals, plastic additives, personal care products, and pesticides, in terms of their extraction recoveries, linearity, matrix effect, sensitivity, and reproducibility. The most effective protocol was extensively validated and subsequently applied to 10 real human urine samples using wide-scope target analysis encompassing over 2000 chemicals. We successfully identified and semi-quantified a total of 36 chemicals using an ionization efficiency-based model, affirming the methodology's robust performance. Notably, our results dismissed the need for a deconjugation step, a typically labor-intensive and time-consuming process.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Martín
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Rebeca López-Serna
- Institute of Sustainable Processes (ISP), Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Montse Marquès
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant LLorenç 21, 43201, Reus, Catalonia, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain.
| |
Collapse
|
29
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
30
|
Kilpinen K, Devers J, Castro M, Tisler S, Jørgensen MB, Mortensen P, Christensen JH. Catchment area, fate, and environmental risks investigation of micropollutants in Danish wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121107-121123. [PMID: 37950122 DOI: 10.1007/s11356-023-30331-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to investigate the spatial distribution of micropollutants in wastewater related to catchment area, and their environmental risks and fate. About 24-h flow proportional effluent (n = 26) wastewater samples were collected from eight WWTPs across Denmark. From five of these WWTPs corresponding influent samples (n = 20) were collected. Samples were enriched by multi-layer solid phase and analysed by liquid chromatography-high-resolution mass spectrometry and comprehensive two-dimensional gas chromatography with high-resolution mass spectrometry detection. We detected and quantified 79 micropollutants from a list of 291 micropollutants in at least one influent or effluent wastewater sample. From this we found that 54 micropollutants decreased in concentrations during wastewater treatment, while O-desmethylvenlafaxine, carbamazepine, amitriptyline, benzothiazole, terbutryn, and citalopram increased in concentrations through the WWTP.The toxicity of effluent wastewater samples was assessed by EC50 using Raphidocelis subcapitata (R. subcapitata) and LC50 using the crustacean Daphnia magna (D. Magna), for which six micropollutants were detected above the predicted no-effect concentration. Our study demonstrates that catchment area influences the micropollutant composition of wastewater. Out of 19 pharmaceuticals, the measured concentration in influent wastewater was predicted within a factor of 10 from sale numbers and human excretion, which demonstrates the strong influence of catchment area on micropollutant composition.
Collapse
Affiliation(s)
- Kristoffer Kilpinen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Eurofins Environment Denmark, Ladelundvej 85, DK-6600, Vejen, Denmark.
| | - Jason Devers
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Mafalda Castro
- Environmental Toxicology, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Selina Tisler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | | | - Peter Mortensen
- Eurofins Environment Denmark, Ladelundvej 85, DK-6600, Vejen, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
31
|
Zhang J, Liu L, Ning X, Lin M, Lai X. Isomer-specific analysis of nonylphenol and their transformation products in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165982. [PMID: 37536583 DOI: 10.1016/j.scitotenv.2023.165982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Nonylphenols (NPs) are crucial fine chemicals widely employed in producing industrial and consumer surfactants that ultimately enter the environment through various pathways, leading to environmental pollution. NPs are suspected endocrine-disrupting chemicals that may accumulate in the body over time, resulting in unusual reproductive function. Due to limitations in analytical methods, NPs have typically been quantified as a whole in some studies. However, NPs are a mixture of multibranched structures, and different NP isomers exhibit distinct environmental behaviors and toxic effects. Therefore, it is critical to analyze environmental and human biological samples at the isomer-specific level to elucidate the contamination characteristics, human exposure load, and toxic effects of NPs. Accurately analyzing NP samples with various isomers, metabolites, and transformation products presents a significant challenge. This review summarizes recent advances in analytical research on NPs in technical products, environmental, and human biological samples, particularly emphasizing the synthesis and separation of standards and the transformation of NP homolog isomers in samples. Finally, the review highlights the research gaps and future research directions in this domain.
Collapse
Affiliation(s)
- Jianyi Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Lang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xunan Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China.
| | - Meiqing Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xiaojun Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| |
Collapse
|
32
|
Cancade M, Thiebault T, Mignon P. Selective Adsorption of Organic Micro-Pollutants by Smectite Clays Revealed from Atomistic Simulations. Int J Mol Sci 2023; 24:14781. [PMID: 37834226 PMCID: PMC10572936 DOI: 10.3390/ijms241914781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In this study, atomistic simulations were carried out to study the difference in the adsorption process between two similar molecules, diazepam and oxazepam, on Na+-montmorillonite. Kinetic and XRD measurements showed a contrasting adsorption mechanism of these two molecules, differing only by the presence/absence of methyl and hydroxyl groups, with a larger adsorption amount and intercalation for the oxazepam. The structural characterization of these molecules was investigated through DFT calculations and showed the vicinity of hydroxyl and carbonyl groups for only the chair conformation of oxazepam compared to the boat conformation. Classical molecular dynamics simulations of diazepam and the two forms of oxazepam on the external surface of Na+-montmorillonite highlighted the better coordination of the oxazepam-chair conformation, compared to its boat counterpart and diazepam. This has been confirmed through DFT calculations, from which a coordination energy that is greater by 10 kcal·mol-1 is observed. This strongly suggests that the experimentally observed intercalation of oxazepam occurs only in the chair form because of the strong coordination with the Na+ cation present in the Na-Mt interlayer. Classical MD simulations of the intercalated oxazepam chair molecule in the Na-Mt interlayer allowed the evaluation of the interlayer spacing d001, which was in very good agreement with the experimental XRD measurement.
Collapse
Affiliation(s)
- Mathieu Cancade
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Thomas Thiebault
- Milieux Environnementaux, Transferts et Interactions dans les Hydrosystèmes et les Sols, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, 75005 Paris, France;
| | - Pierre Mignon
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne, France;
| |
Collapse
|
33
|
Souihi A, Mohai MP, Martin JW, Kruve A. Mobile phase and column chemistry selection for high sensitivity non-targeted LC/ESI/HRMS screening of water. Anal Chim Acta 2023; 1274:341573. [PMID: 37455083 DOI: 10.1016/j.aca.2023.341573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Systematic selection of mobile phase and column chemistry type can be critical for achieving optimal chromatographic separation, high sensitivity, and low detection limits in liquid chromatography electrospray high resolution mass spectrometry (LC/MS). However, the selection process is challenging for non-targeted screening where the compounds of interest are not preselected nor available for method optimization. To provide general guidance, twenty different mobile phase compositions and four columns were compared for the analysis of 78 compounds with a wide range of physicochemical properties (logP range from -1.46 to 5.48), and analyte sensitivity was compared between methods. The pH, additive type, column, and organic modifier had significant effects on the analyte response factors, and acidic mobile phases (e.g. 0.1% formic acid) yielded highest sensitivity. In some cases, the effect was attributable to the difference in organic modifier content at the time of elution, depending on the mobile phase and column chemistry. Based on these findings, 0.1% formic acid, 0.1% ammonia and 5.0 mM ammonium fluoride were further evaluated for their performance in non-targeted LC/ESI/HRMS analysis of wastewater treatment plan influent and effluent, using a data dependent MS2 acquisition and two different data processing workflows (MS-DIAL, patRoon 2.1) to compare number of detected features and sensitivity. Both data-processing workflows indicated that 0.1% formic acid yielded the highest number of features in full scan spectrum (MS1), as well as the highest number of features that triggered fragmentation spectra (MS2) when dynamic exclusion was used.
Collapse
Affiliation(s)
- Amina Souihi
- Department of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106 91, Stockholm, Sweden
| | - Miklos Peter Mohai
- Department of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106 91, Stockholm, Sweden
| | - Jonathan W Martin
- Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91, Stockholm, Sweden; Science for Life Laboratory, Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91, Stockholm, Sweden
| | - Anneli Kruve
- Department of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106 91, Stockholm, Sweden; Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91, Stockholm, Sweden.
| |
Collapse
|
34
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Alharbi OA, Jarvis E, Galani A, Thomaidis NS, Nika MC, Chapman DV. Assessment of selected pharmaceuticals in Riyadh wastewater treatment plants, Saudi Arabia: Mass loadings, seasonal variations, removal efficiency and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163284. [PMID: 37031940 DOI: 10.1016/j.scitotenv.2023.163284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Despite increasing interest in pharmaceutical emissions worldwide, studies of environmental contamination with pharmaceuticals arising from wastewater discharges in Saudi Arabia are scarce. Therefore, this study examined occurrence, mass loads and removal efficiency for 15 pharmaceuticals and one metabolite (oxypurinol) from different therapeutic classes in three wastewater treatment plants (WWTPs), in Riyadh city in Saudi Arabia. A total of 144 samples were collected from the influents and effluents between March 2018 and July 2019 and analyzed using Solid Phase Extraction followed by triple quadrupole LC-MS/MS. The average concentrations in the influents and effluents were generally higher than their corresponding concentrations found either in previous Saudi Arabian or global studies. The four most dominant compounds in the influent were acetaminophen, ciprofloxacin, caffeine, and diclofenac, with caffeine and acetaminophen having the highest concentrations ranging between 943 and 2282 μg/L. Metformin and ciprofloxacin were the most frequently detected compounds in the effluents at concentrations as high as 33.2 μg/L. Ciprofloxacin had the highest mass load in the effluents of all three WWTPs, ranging between 0.20 and 20.7 mg/day/1000 inhabitants for different WWTPs. The overall average removal efficiency was estimated high (≥80), with no significant different (p > 0.05) between the treatment technology applied. Acetaminophen and caffeine were almost completely eliminated in all three WWTPs. The samples collected in the cold season generally had higher levels of detected compounds than those from the warm seasons, particularly for NSAID and antibiotic compounds. The estimated environmental risk from pharmaceutical compounds in the studied effluents was mostly low, except for antibiotic compounds. Thus, antibiotics should be considered for future monitoring programmes of the aquatic environment in Saudi Arabia.
Collapse
Affiliation(s)
- Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia; School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland.
| | - Edward Jarvis
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Deborah V Chapman
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland; Environmental Research Institute, University College Cork, T23 XE10, Ireland
| |
Collapse
|
36
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
37
|
Panara A, Gikas E, Tzavellas I, Thomaidis NS. Comprehensive HRMS Chemical Characterization of Pomegranate-Based Antioxidant Drinks via a Newly Developed Suspect and Target Screening Workflow. Molecules 2023; 28:4986. [PMID: 37446648 DOI: 10.3390/molecules28134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Antioxidants play a significant role in human health, protecting against a variety of diseases. Therefore, the development of products with antioxidant activity is becoming increasingly prominent in the human lifestyle. New antioxidant drinks containing different percentages of pomegranate, blackberries, red grapes, and aronia have been designed, developed, and manufactured by a local industry. The comprehensive characterization of the drinks' constituents has been deemed necessary to evaluate their bioactivity. Thus, LC-qTOFMS has been selected, due to its sensitivity and structure identification capability. Both data-dependent and -independent acquisition modes have been utilized. The data have been treated according to a novel, newly designed workflow based on MS-DIAL and MZmine for suspect, as well as target screening. The classical MS-DIAL workflow has been modified to perform suspect and target screening in an automatic way. Furthermore, a novel methodology based on a compiled bioactivity-driven suspect list was developed and expanded with combinatorial enumeration to include metabolism products of the highlighted metabolites. Compounds belonging to ontologies with possible antioxidant capacity have been identified, such as flavonoids, amino acids, and fatty acids, which could be beneficial to human health, revealing the importance of the produced drinks as well as the efficacy of the new in-house developed workflow.
Collapse
Affiliation(s)
- Anthi Panara
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ilias Tzavellas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
38
|
Barbosa H, Leite C, Pinto J, Soares AMVM, Pereira E, Freitas R. Are Lithium batteries so eco-friendly? Ecotoxicological impacts of Lithium in estuarine bivalves. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104197. [PMID: 37356678 DOI: 10.1016/j.etap.2023.104197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Lithium (Li) is now widely used in green energies/clean technologies, although its inefficient recycling and treatment means it is an emerging contaminant in aquatic systems. Bivalves, such as clams, are considered good bioindicators of pollution, hence we evaluated the biochemical effects of Li in the clam Venerupis corrugata. Clams were exposed (14 days) to an increasing Li gradient (0, 200, 400, 800µg/L). Bioconcentration capacity tended to decrease with increasing Li exposure possibly due to efforts to eliminate Li from the cells, to avert damage. No influences on the clams' metabolic capacity and protein content were observed. Antioxidant and detoxification defences were activated, especially at 400 and 800µg/L of Li, avoiding lipid damage while protein injuries were observed at higher concentrations. Furthermore, a loss of redox balance was observed. This study highlights the importance of preventing and regulating Li discharges into the environment, avoiding adverse consequences to aquatic ecosystems.
Collapse
Affiliation(s)
- Helena Barbosa
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
39
|
Hernández F, Fabregat-Safont D, Campos-Mañas M, Quintana JB. Efficient Validation Strategies in Environmental Analytical Chemistry: A Focus on Organic Micropollutants in Water Samples. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:401-428. [PMID: 37068748 DOI: 10.1146/annurev-anchem-091222-112115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.
Collapse
Affiliation(s)
- Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
- Applied Metabolomics Research Laboratory, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
40
|
Santana-Viera S, Lara-Martín PA, González-Mazo E. High resolution mass spectrometry (HRMS) determination of drugs in wastewater and wastewater based epidemiology in Cadiz Bay (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118000. [PMID: 37201289 DOI: 10.1016/j.jenvman.2023.118000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Multi-residue methods for the determination of the myriad of compounds of emerging concern (CECs) entering in the environment are key elements for further assessment on their distribution and fate. Here, we have developed an analytical protocol for the simultaneous analysis of 195 prescription, over-the-counter, and illicit drugs by using a combination of solid phase extraction (SPE) and determination by liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). The method was applied to the analysis of influent sewage samples from 3 wastewater treatment plants (WWTPs) from Cadiz Bay (SW Spain), enabling the quantification of more than 100 pharmaceuticals, 19 of them at average concentrations higher than 1 μg L-1, including caffeine (92 μg L-1), paracetamol (72 μg L-1), and ibuprofen (56 μg L-1), as well as several illicit drugs (e.g., cocaine). Wastewater based epidemiology (WBE) was applied for 27 of the detected compounds to establish their consumption in the sampling area, which has been never attempted before. Caffeine, naproxen, and salicylic acid stood out because of their high consumption (638, 51, and 20 g d-1·1000pop-1, respectively). Regarding illicit drugs, cocaine showed the highest frequency of detection and we estimated an average consumption of 3683 mg d-1·1000pop-1 in Cadiz Bay. The combination of new HRMS methods, capable of discriminating thousands of chemicals, and WBE will allow for a more comprehensive characterization of chemical substances and their consumption in urban environments in the near future.
Collapse
Affiliation(s)
- Sergio Santana-Viera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, Spain.
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, Spain
| | - Eduardo González-Mazo
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, Spain
| |
Collapse
|
41
|
Burzio C, Mohammadi AS, Malmberg P, Modin O, Persson F, Wilén BM. Chemical Imaging of Pharmaceuticals in Biofilms for Wastewater Treatment Using Secondary Ion Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7431-7441. [PMID: 37130040 DOI: 10.1021/acs.est.2c05027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment is a global water quality challenge for several reasons, such as deleterious effects on ecological and human health, antibiotic resistance development, and endocrine-disrupting effects on aquatic organisms. To optimize their removal from the water cycle, understanding the processes during biological wastewater treatment is crucial. Time-of-flight secondary ion mass spectrometry imaging was successfully applied to investigate and analyze the distribution of pharmaceuticals as well as endogenous molecules in the complex biological matrix of biofilms for wastewater treatment. Several compounds and their localization were identified in the biofilm section, including citalopram, ketoconazole, ketoconazole transformation products, and sertraline. The images revealed the pharmaceuticals gathered in distinct sites of the biofilm matrix. While citalopram penetrated the biofilm deeply, sertraline remained confined in its outer layer. Both pharmaceuticals seemed to mainly colocalize with phosphocholine lipids. Ketoconazole concentrated in small areas with high signal intensity. The approach outlined here presents a powerful strategy for visualizing the chemical composition of biofilms for wastewater treatment and demonstrates its promising utility for elucidating the mechanisms behind pharmaceutical and antimicrobial removal in biological wastewater treatment.
Collapse
Affiliation(s)
- Cecilia Burzio
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Amir Saeid Mohammadi
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Oskar Modin
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Frank Persson
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
42
|
Ciccarelli D, Christopher Braddock D, Surman AJ, Arenas BIV, Salal T, Marczylo T, Vineis P, Barron LP. Enhanced selectivity for acidic contaminants in drinking water: From suspect screening to toxicity prediction. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130906. [PMID: 36764252 DOI: 10.1016/j.jhazmat.2023.130906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A novel analytical workflow for suspect screening of organic acidic contaminants in drinking water is presented, featuring selective extraction by silica-based strong anion-exchange solid-phase extraction, mixed-mode liquid chromatography-high resolution accurate mass spectrometry (LC-HRMS), peak detection, feature reduction and compound identification. The novel use of an ammonium bicarbonate-based elution solvent extended strong anion-exchange solid-phase extraction applicability to LC-HRMS of strong acids. This approach performed with consistently higher recovery and repeatability (88 ± 7 % at 500 ng L-1), improved selectivity and lower matrix interference (mean = 12 %) over a generic mixed-mode weak anion exchange SPE method. In addition, a novel filter for reducing full-scan features from fulvic and humic acids was successfully introduced, reducing workload and potential for false positives. The workflow was then applied to 10 London municipal drinking water samples, revealing the presence of 22 confirmed and 37 tentatively identified substances. Several poorly investigated and potentially harmful compounds were found which included halogenated hydroxy-cyclopentene-diones and dibromomethanesulfonic acid. Some of these compounds have been reported as mutagenic in test systems and thus their presence here requires further investigation. Overall, this approach demonstrated that employing selective extraction improved detection and helped shortlist suspects and potentially toxic chemical contaminants with higher confidence.
Collapse
Affiliation(s)
- Davide Ciccarelli
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; NIHR-HPRU Chemical and Radiation Threats and Hazards, NIHR-HPRU Environmental Exposures and Health, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | | | - Andrew J Surman
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | | | - Tara Salal
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Tim Marczylo
- NIHR-HPRU Chemical and Radiation Threats and Hazards, NIHR-HPRU Environmental Exposures and Health, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; UK Health Security Agency, Harwell Science Campus, Femi Avenue, Harwell, Didcot OX11 0GD, UK
| | - Paolo Vineis
- NIHR-HPRU Chemical and Radiation Threats and Hazards, NIHR-HPRU Environmental Exposures and Health, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Leon P Barron
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; NIHR-HPRU Chemical and Radiation Threats and Hazards, NIHR-HPRU Environmental Exposures and Health, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
43
|
Movalli P, Biesmeijer K, Gkotsis G, Alygizakis N, Nika MC, Vasilatos K, Kostakis M, Thomaidis NS, Oswald P, Oswaldova M, Slobodnik J, Glowacka N, Hooijmeijer JCEW, Howison RA, Dekker RWRJ, van den Brink N, Piersma T. High resolution mass spectrometric suspect screening, wide-scope target analysis of emerging contaminants and determination of legacy pollutants in adult black-tailed godwit Limosa limosa limosa in the Netherlands - A pilot study. CHEMOSPHERE 2023; 321:138145. [PMID: 36791819 DOI: 10.1016/j.chemosphere.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The Dutch breeding population of the black-tailed godwit Limosa limosa limosa has declined substantially over recent decades; the role of contaminants is unknown. We analysed liver samples from 11 adult birds found dead on their breeding grounds in SW Friesland 2016-2020, six from extensive, herb-rich grasslands, five from intensive grasslands. We carried out LC and GC wide-scope target analysis of more than 2400 substances, LC suspect screening for more than 60,000 substances, target analysis for Cd, Hg, Ni and Pb, organo-phosphate flame retardants (OPFRs), dechlorane plus compounds and selected polybrominated diphenyl ether flame retardants (PBDEs), and bioassay for polybrominated dibenzo-p-dioxins and dibenzofurans (PBDDs/PDBFs) and dioxin-like polychlorinated biphenyls (dl-PCBs). Residues of 29 emerging contaminants (ECs) were determined through wide-scope target analysis. Another 20 were tentatively identified through suspect screening. These contaminants include industrial chemicals (personal care products, surfactants, PAHs and others), plant protection products (PPPs) and pharmaceuticals and their transformation products. Total contaminant load detected by wide-scope target analysis ranged from c. 155 to c. 1400 ng g-1 and was generally lower in birds from extensive grasslands. Heatmaps suggest that birds from intensive grasslands have a greater mix and higher residue concentrations of PPPs, while birds from extensive grasslands have a greater mix and higher residue concentrations of per- and polyfluoroalkyl substances (PFAS). All four metals and two OPFRs were detected. All tested PBDEs were below the respective LODs. Bioassay revealed presence of PBDDs, PBDFs and dl-PCBs. Further research is required to elucidate potential health risks to godwits and contaminant sources.
Collapse
Affiliation(s)
- P Movalli
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands.
| | - K Biesmeijer
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - G Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - M C Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - K Vasilatos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - M Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - P Oswald
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - M Oswaldova
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - J Slobodnik
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - N Glowacka
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - J C E W Hooijmeijer
- Conservation Ecology Group, Groningen Institute for Evolutionary Science (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands
| | - R A Howison
- Knowledge Infrastructures Department, Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE Leeuwarden, The Netherlands
| | - R W R J Dekker
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands
| | - N van den Brink
- Wageningen University, Division of Toxicology, Box 8000, NL6700 EA, Wageningen, the Netherlands
| | - T Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Science (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands; NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, PO Box 59, 1790 AB Den Burg, Texel, the Netherlands
| |
Collapse
|
44
|
Maurer L, Carmona E, Machate O, Schulze T, Krauss M, Brack W. Contamination Pattern and Risk Assessment of Polar Compounds in Snow Melt: An Integrative Proxy of Road Runoffs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4143-4152. [PMID: 36862848 PMCID: PMC10018729 DOI: 10.1021/acs.est.2c05784] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 μg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 μg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.
Collapse
Affiliation(s)
- Loïc Maurer
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Eric Carmona
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver Machate
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute
of Ecology, Evolution and Diversity, Goethe
University, Max-von-Laue-Str.
13, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
45
|
Zhang Q, Xu H, Song N, Liu S, Wang Y, Ye F, Ju Y, Jiao S, Shi L. New insight into fate and transport of organic compounds from pollution sources to aquatic environment using non-targeted screening: A wastewater treatment plant case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161031. [PMID: 36549534 DOI: 10.1016/j.scitotenv.2022.161031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
A variety of chemicals discharged into the aquatic environment by the wastewater treatment plant (WWTP), which is a potential source of hazard to the ecological environment and human health. This study established a novel analytical method for all compounds using non-targeted screening to comprehensively explore the fate and transport of organic compounds from WWTP to aquatic environment. 3967 and 3636 features were detected in WWTP samples and river samples, respectively. Multi-level classification was applied to all identified compounds, and results showed that aliphatics were dominant in both abundance and response, accounting for an average of 35.49 % and 74.10 %, respectively. A total of 88 Emerging Contaminants (ECs), including 22 endocrine disrupting chemicals (EDCs), 12 pharmaceuticals and personal care products (PPCPs), 12 pesticides, 10 volatile organic compounds (VOCs), 5 persistent organic pollutants (POPs) and 27 chemicals with other uses, were identified from all compounds, and their traceability analysis was performed. Furthermore, the contribution rate of organic compounds from WWTP effluent to river was calculated to be 33.60 % by the analysis of source-sink relationship. An in-depth and comprehensive exploration of the fate and transport of all organic compounds will help to provide guidelines for the treatment technologies and achieve the traceability of pollutants.
Collapse
Affiliation(s)
- Qian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Sitao Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yixuan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fei Ye
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Shaojun Jiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|
46
|
Chen WL, Yu SY, Liu SY, Lin SC, Lee TH. Using HRMS fingerprinting to explore micropollutant contamination in soil and vegetables caused by swine wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160830. [PMID: 36526190 DOI: 10.1016/j.scitotenv.2022.160830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Livestock wastewater has been reused for agricultural irrigation to save water and fertilise the soil. However, micropollutants excreted by livestock animals may contaminate the soil and crops through livestock wastewater irrigation. This study employed high-resolution mass spectrometry (HRMS) to facilitate broad-scope suspect screening of soil and vegetables and identify changes in micropollutant fingerprints caused by swine wastewater irrigation. Field trials were performed to simulate the practical cultivation of small leafy vegetables. Soil and pak choi were irrigated with groundwater, a reasonable amount of swine wastewater, and excessive swine wastewater (three times the reasonable amount) and were sampled at three time points. The samples were extracted using organic solvents and analysed with a liquid chromatography-quadrupole-time-of-flight HRMS system. The molecular features were compared to over 3000 micropollutants in commercial libraries. The relative concentrations of suspect micropollutants among the irrigation groups were compared using multivariate and univariate analyses. The marker micropollutants that increased with swine wastewater irrigation were rigorously identified based on the MS/MS spectra. Fifty-three micropollutants were frequently found in the soil (n = 54) and 36 in the pak choi (n = 53). Partial least squares discriminant analysis (PLS-DA) models revealed significant differences in the micropollutant fingerprints in the soil among the three irrigation groups, but not in the pak choi. Eight micropollutants with variable importance in projection scores above 1.0 in the PLS-DA model and significantly higher relative concentrations (p < 0.05) in the soil irrigated with swine wastewater were confirmed as markers. Besides veterinary drugs and their metabolites, cinnamic acid and phenylalanine were the markers relevant to swine feed that were not previously reported. Nevertheless, accumulations of micropollutants in the soil or contamination of the pak choi due to swine wastewater irrigation were not found under the trial conditions.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan; Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taiwan.
| | - Sih-Yi Yu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan
| | - Shu-Yen Liu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan
| | - Sheng-Chi Lin
- Hydrotech Research Institute, National Taiwan University, Taiwan
| | - Tsung-Han Lee
- National Taiwan University Plant Teaching Hospital, Taiwan
| |
Collapse
|
47
|
Neale PA, Escher BI, de Baat ML, Enault J, Leusch FDL. Effect-Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in Water Safety Planning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:714-726. [PMID: 36524849 DOI: 10.1002/etc.5544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Effect-based methods (EBMs) using in vitro bioassays and well plate-based in vivo assays are recommended for water quality monitoring because they can capture the mixture effects of the many chemicals present in water. Many in vitro bioassays are highly sensitive, so an effect in a bioassay does not necessarily indicate poor chemical water quality. Consequently, effect-based trigger values (EBTs) have been introduced to differentiate between acceptable and unacceptable chemical water quality and are required for the wider acceptance of EBMs by the water sector and regulatory bodies. These EBTs have been derived for both drinking water and surface water to protect human and ecological health, respectively, and are available for assays indicative of specific receptor-mediated effects, as well as assays indicative of adaptive stress responses, apical effects, and receptor-mediated effects triggered by many chemicals. An overview of currently available EBTs is provided, and a simple approach is proposed to predict interim EBTs for assays currently without an EBT based on the effect concentration of the assay reference compound. There was good agreement between EBTs predicted using this simplistic approach and EBTs from the literature derived using more robust methods. Finally, an interpretation framework that outlines the steps to take if the effect of a sample exceeds the EBT was developed to help facilitate the uptake of EBMs in routine water quality monitoring and water safety planning for drinking water production. Environ Toxicol Chem 2023;42:714-726. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Milo L de Baat
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
48
|
Ng K, Alygizakis N, Nika MC, Galani A, Oswald P, Oswaldova M, Čirka Ľ, Kunkel U, Macherius A, Sengl M, Mariani G, Tavazzi S, Skejo H, Gawlik BM, Thomaidis NS, Slobodnik J. Wide-scope target screening characterization of legacy and emerging contaminants in the Danube River Basin by liquid and gas chromatography coupled with high-resolution mass spectrometry. WATER RESEARCH 2023; 230:119539. [PMID: 36610182 DOI: 10.1016/j.watres.2022.119539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A state-of-the-art wide-scope target screening of 2,362 chemicals and their transformation products (TPs) was performed in samples collected within the Joint Danube Survey 4 (JDS4) performed in 2019. The analysed contaminants of emerging concern (CECs) included three major categories: plant protection products (PPPs), industrial chemicals and pharmaceuticals and personal care products (PPCPs). In total, 586 CECs were detected in the samples including 158 PPPs, 71 industrial chemicals, 348 PPCPs, and 9 other chemicals. A wide-variety of sample matrices were collected including influent and effluent wastewater, groundwater, river water, sediment and biota. Forty-five CECs (19 PPPs, 8 industrial chemicals, 18 PPCPs) were detected at levels above their ecotoxicological thresholds (lowest predicted no-effect concentration (PNEC) values) in one or more of the investigated environmental compartments, indicating potential adverse effects on the impacted ecosystems. Among them 12 are legacy substances; 33 are emerging and qualify as potential Danube River Basin Specific Pollutants (RBSPs). Moreover, the efficiency of the wastewater treatment plants (WWTPs) was evaluated using 20 selected performance indicator chemicals. WWTPs showed effective removal (removal rate ≥80%) and medium removal (removal rate 25-80%) for 6 and 8 of the indicator chemicals, respectively. However, numerous contaminants passed the WWTPs with a lower removal rate. Further investigation on performance of WWTPs is suggested at catchment level to improve their removal efficiency. WWTP effluents are proven to be one of the major sources of contaminants in the Danube River Basin (DRB). Other sources include sewage discharges, industrial and agricultural activities. Continuous monitoring of the detected CECs is suggested to ensure water quality of the studied area.
Collapse
Affiliation(s)
- Kelsey Ng
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; MU - RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Nikiforos Alygizakis
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Maria-Christina Nika
- UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Aikaterini Galani
- UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Peter Oswald
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic
| | - Martina Oswaldova
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic
| | - Ľuboš Čirka
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; Faculty of Chemical and Food Technology, STU - Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, Slovak Republic
| | - Uwe Kunkel
- LfU - Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, Augsburg 86179, Germany
| | - André Macherius
- LfU - Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, Augsburg 86179, Germany
| | - Manfred Sengl
- LfU - Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, Augsburg 86179, Germany
| | - Giulio Mariani
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Simona Tavazzi
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Helle Skejo
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Bernd M Gawlik
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Nikolaos S Thomaidis
- UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Jaroslav Slobodnik
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic
| |
Collapse
|
49
|
Arvaniti OS, Arvaniti ES, Gyparakis S, Sabathianakis I, Karagiannis E, Pettas E, Gkotsis G, Nika MC, Thomaidis NS, Manios T, Fountoulakis MS, Stasinakis AS. Occurrence of pharmaceuticals in the wastewater of a Greek hospital: Combining consumption data collection and LC-QTOF-MS analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160153. [PMID: 36379345 DOI: 10.1016/j.scitotenv.2022.160153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this article we applied drug consumption approach and chemical analysis in parallel to investigate the concentrations of a large number of pharmaceuticals in different streams of a General Hospital. Drugs consumption data was collected during two periods (Period 1, 2) and the predicted environmental concentrations (PECs) were estimated for the wastewater of a building housing specific medical services (Point A) and for the entire hospital (Point B). Hospital wastewater samples (HWW) samples were also collected from these points and periods and the measured environmental concentrations (MEC) were determined using UHPLC-ESI-QTOF-MS/MS. According to consumption data, the highest number of drugs was consumed in the departments of Hematology, Intensive Care Unit, Cardiology, Internal Medicine, and Oncology, while the number of active substances used in the hospital was 413 (Period 1) and 362 (Period 2). For most substances, much higher PEC and MEC values were found at the HWW of Point A indicating that on-site treatment of this stream could be examined in the future. The application of wide-scope target analysis allowed the quantification of 122 compounds, while 21 additional substances were identified using suspect screening. The highest mean concentrations in Period 1 were found for acetaminophen (1100 μg/L) and rifaximin (723 μg/L), while in Period 2 for iopromide (458 μg/L) and acyclovir (408 μg/L). Among the detected compounds, 19 metabolites were determined. Atenolol acid, 1-hydroxy-midazolam and clopidogrel carboxylic acid were quantified at concentrations much higher than parent compounds indicating the importance of metabolites' monitoring in HWW. Calculation of PEC/MEC ratio for 36 pharmaceuticals showed sufficient correlation of these values for 19 % to 33 % of the substances depending on the examined period and sampling point. The parallel collection of drugs consumption data and chemical analysis give a thorough picture of the substances present in HWW and their main sources, facilitating decision-making for their better management.
Collapse
Affiliation(s)
- O S Arvaniti
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece; Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, Psachna 34400, Greece.
| | - E S Arvaniti
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece
| | - S Gyparakis
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - I Sabathianakis
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - E Karagiannis
- Medical Waste SA, Heraklion Industrial Area, Heraklion 71601, Greece
| | - E Pettas
- Medical Waste SA, Heraklion Industrial Area, Heraklion 71601, Greece
| | - G Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - M C Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - N S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - T Manios
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - M S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece
| | - A S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece.
| |
Collapse
|
50
|
Chen L, Yan X, Zhou X, Peng P, Sun Q, Zhao F. Advances in the on-line solid-phase extraction-liquid chromatography-mass spectrometry analysis of emerging organic contaminants. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|