1
|
Sireesha S, Sumanth M, Patel CM, Sreedhar I. Ultrahigh and rapid removal of Ni 2+ using a novel polymer-zeolite-biochar tri-composite through one-pot synthesis route. ENVIRONMENTAL RESEARCH 2025; 268:120764. [PMID: 39793878 DOI: 10.1016/j.envres.2025.120764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
In this work, a novel adsorbent from alginate, zeolite and biochar has been made through one-pot synthesis route with highly compatible Sodium Dodecyl Sulphate (SDS) modification. This gave ultra-high Ni2+ removal of 1205 mg/g in batch mode while treating almost 200 L of solution in column mode with 1171 mg/g capacity, which are the one of the highest reported values. The Point of Zero Charge (pHzpc) for Ni2+ removal was determined to be 5, with optimal removal efficiency being observed at pH 7, indicating a negative surface charge of the ABPC beads, which aligns with the anionic charge provided by SDS enhancement. Mechanistic studies have been done to show the most prominent mechanisms of metal removal besides demonstrating stability up to 20 cylces with desorption efficiency as high as 97%. The adsorbent is found to be highly cost effective at 1.87USD per kg.
Collapse
Affiliation(s)
- Sadamanti Sireesha
- Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Madivada Sumanth
- Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Chetan M Patel
- Department of Chemical Engineering, SVNIT Surat, Surat-Gujarat-395007, India
| | - Inkollu Sreedhar
- Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
2
|
Xiao F, Su D, Ren Y, Zhou J, Xu H, Li Z, He J. Efficient Removal of Cadmium (Cd 2+) from Aqueous Solutions by Chitosan@ fig Branch Biochar: Adsorption Performance and Enhanced Complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3909-3921. [PMID: 39919112 DOI: 10.1021/acs.langmuir.4c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
In this study, fig branch biochar (FBB) was modified by chitosan to improve the Cd2+ adsorption performance from an aqueous solution. The surface area, pores, and functional groups of chitosan-modified fig branch biochar (CMFBB) were characterized by DTG-TGA, BET, SEM-EDS, FTIR, and XRD. In addition, the impact of various conditions on the Cd adsorption performance of the biochar was analyzed, including dosage, initial pH, concentration, temperature, reaction time, and coexisting cations. The adsorption kinetics, isotherms, and practical applications were also investigated. Under the optimized conditions including pH 6, adsorbent dose 2 g L-1, reaction time 90 min, Cd2+ concentration 100 mg L-1, and 25 °C, the Cd2+ adsorption capacity was 62.25 mg g-1, representing a 78.26% increase compared to FBB. The adsorption data for Cd2+ by CMFBB were found to be well-described by the pseudo-second-order kinetic and Langmuir isothermal models, indicating that a monolayer chemical adsorption process occurred. The Cd2+ adsorption was a spontaneous endothermic process, and the coexisting cations exerted negligible influence on the adsorption process. After five adsorption-desorption cycles, CMFBB maintained an adsorption efficiency of 92.3%, demonstrating excellent regeneration capability. The quantification of adsorption mechanisms suggested that physical adsorption, cation exchange, precipitation, complexation, and π-π interactions accounted for 3.70, 2.50, 33.04, 58.76, and 2.0% of the total adsorbed Cd2+ in CMFBB, respectively. Compared with FBB, the level of CMFBB increased 26.52% in complexation. This work implies that CMFBB has great potential as an effective absorbent for treating Cd2+ polluted water.
Collapse
Affiliation(s)
- Fan Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Dongming Su
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jieyu Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Haojie Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zhaojun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
3
|
Nazzari EC, Wernke G, Magalhães Ghiotto GAV, Bergamasco R, Gomes RG. Hydrogel Biocomposite of Alginate and Mucilage of Opuntia ficus-indica Cactus in the Adsorption of Methylene Blue in Aqueous Solution. ACS OMEGA 2025; 10:627-636. [PMID: 39829539 PMCID: PMC11739939 DOI: 10.1021/acsomega.4c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
This work analyzes the production of a hydrogel composed of mucilage from the cactus Opuntia ficus-indica (OFI) and sodium alginate. In obtaining the new material, green synthesis was used, free of chemical compounds, and applied in the treatment of textile effluent for the adsorption of methylene blue (MB). The hydrogel was characterized by FT-IR, XRD, SEM, and zeta potential. The swelling study showed a maximum value of 262% at pH 6.0. Adsorption studies revealed a maximum adsorptive capacity of 7.21 mg g-1 in 400 min at 298 K. Furthermore, the experimental data showed better fit to the pseudo-second order and Langmuir models for kinetic and isothermal studies, respectively. The adsorptive process showed spontaneous and exothermic behavior as well as a chemisorptive nature. It is noteworthy that in the studies conducted at a higher concentration of the contaminant, the maximum adsorption was 760 mg g-1. The reuse of the hydrogel was effective for five cycles, maintaining the adsorption of approximately 50% MB removal. Therefore, the biodegradable hydrogel is a material that contributes to the environment, is low cost, with simple synthesis, and is a promising new material for large-scale applications, considering its sustainable character and high efficiency in the adsorption of MB in aqueous solution.
Collapse
Affiliation(s)
- Estefane Caetano Nazzari
- Department
of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Gessica Wernke
- Department
of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Grace Anne Vieira Magalhães Ghiotto
- Department
of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Rosângela Bergamasco
- Department
of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department
of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
4
|
Liao X, Guo R, Mei M, Li J, Wang T, Liu J, Chen S, Wang W. Insights into the performance and mechanism of a reinforced lignocellulosic sorbent fabricated from sawdust biomass for multi-tasking application in enrofloxacin removal and monitoring. Int J Biol Macromol 2024; 285:138316. [PMID: 39638168 DOI: 10.1016/j.ijbiomac.2024.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Natural lignocellulose-based materials have numerous strengths such as abundance, cheap price and biodegradability, which indicates a brilliant prospect for environmental protection. This work aimed to design an efficient sorbent (NaSS-PSD) by pine sawdust (PSD) for the surveillance and management of enrofloxacin (ENR). In the study, sodium styrenesulfonate (NaSS) was chosen as an effective monomer to ameliorate the performance of PSD by graft copolymerization. The removal of ENR by NaSS-PSD was enhanced in comparison with the ungrafted ones under investigated conditions. Pseudo-second-order and Temkin were the best-fitted models to describe the adsorption behavior. For the first time, NaSS-PSD was employed as a novel extractant of solid-phase extraction (SPE) and dispersive solid-phase microextraction (DSPME) to develop accurate, eco-friendly and economic analytical techniques for trace ENR determination. Good linearity and reproducibility were obtained. The limits of detection were 0.41 μg/L for DSPME-HPLC-DAD technique and 0.15 μg/L for SPE-HPLC-DAD technique. These two methods exhibited satisfying practicability when applied to quantify ENR residue in real waters. The study on interfacial interaction mechanism and preferential binding sites suggested that hydrogen bond and π-π interactions took the primary responsibility. Our work provides a good perspective for tailoring natural lignocellulosic biomass to be alternative adsorbents for emerging pollutants.
Collapse
Affiliation(s)
- Xuan Liao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Ruiyu Guo
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Wenxia Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
5
|
Alqudah SM, Hailat M, Zakaraya Z, Abu Dayah AA, Abu Assab M, Alarman SM, Awad RM, Hamad MF, Vicaș LG, Abu Dayyih W. Impact of Opuntia ficus-indica Juice and Empagliflozin on Glycemic Control in Rats. Curr Issues Mol Biol 2024; 46:12343-12353. [PMID: 39590327 PMCID: PMC11593303 DOI: 10.3390/cimb46110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a major global health concern characterized by high blood glucose levels. This study investigates the effects of Opuntia ficus-indica (cactus) juice and empagliflozin, both alone and in combination, on glycated hemoglobin (HbA1c) levels in healthy and streptozotocin-induced diabetic rats. Eighty Wistar albino male rats were divided into eight groups, with four groups being diabetic. Treatment options included cactus juice, empagliflozin, or both. HbA1c levels were measured at baseline and 100 days later using ELISA. In diabetic and non-diabetic rats treated with cactus juice or empagliflozin, HbA1c levels were significantly reduced, but diabetic rats had significantly lower HbA1c values than non-diabetic rats. The combined treatment provided no additional benefits over individual therapies. These findings indicate that cactus juice and empagliflozin effectively lower HbA1c levels, making their use a promising complementary approach to diabetes management. However, the combined treatment of Opuntia ficus-indica juice and empagliflozin did not yield additional reductions in HbA1c levels compared to individual treatments, with no significant synergistic effects observed throughout the study period. More research is needed to better understand the clinical applications and mechanisms in humans.
Collapse
Affiliation(s)
- Sondos M. Alqudah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan; (S.M.A.); (R.M.A.)
| | - Mohammad Hailat
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Zainab Zakaraya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan; (Z.Z.); (A.A.A.D.)
| | - Alaa Azeez Abu Dayah
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan; (Z.Z.); (A.A.A.D.)
| | | | | | - Riad M. Awad
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan; (S.M.A.); (R.M.A.)
| | - Mohammed F. Hamad
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Wael Abu Dayyih
- Faculty of Pharmacy, Mutah University, Al Karak 61710, Jordan;
| |
Collapse
|
6
|
Wei W, Wang B, Huang X, Zhou Z, Yan Y, Li L, Yang Y. Potassium salts activated lignin-based biochar as an effective adsorbent for malachite green adsorption. Int J Biol Macromol 2024; 277:134209. [PMID: 39069048 DOI: 10.1016/j.ijbiomac.2024.134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Herein, a series of lignin-based porous carbons (LC) were prepared from sulfonated lignin through a simple and environmentally-friendly one-pot activated carbonization together with various potassium compounds as activators, and used for malachite green (MG) adsorption. The results showed that the prepared biochar, especially after K2CO3 activation, exhibited a honeycomb profile with large surface area (2107.6 m2/g) and high total pore volume (1.1591 cm3/g), having excellent efficiency for MG adsorption, and the biggest adsorption capacity was 2970.0 mg/g. The kinetic study together with thermodynamic analysis indicated that the adsorption of MG by LC-K2CO3 conformed to pseudo-second-order model and the adsorption process was spontaneous, feasible, and endothermic. Moreover, LC-K2CO3 also displayed good stability and selectivity, and can selective separate the cationic dye from binary-dye system. Furthermore, the adsorption mechanism proposed in this work manifested that the high-efficient MG adsorption by LC-K2CO3 was a result of multiple actions including hydrogen bonding, electrostatic attraction, π-π interaction and n-π interaction as well as physical absorption. The work not only provide a fundamental theory for dye removal from wastewater, but offered a new insight for lignin valorization.
Collapse
Affiliation(s)
- Weiqi Wei
- School of Environmental & Resource Science, Shanxi University, Taiyuan 030006, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Zhejiang Kan New Material Co., Ltd., Suichang 323300, China
| | - Baoxian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xinrui Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Zhou
- Zhejiang Kan New Material Co., Ltd., Suichang 323300, China
| | - Yongping Yan
- Zhejiang Kan New Material Co., Ltd., Suichang 323300, China
| | - Lizi Li
- Zhejiang Kan New Material Co., Ltd., Suichang 323300, China.
| | - Yonggang Yang
- School of Environmental & Resource Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Srivastav AL, Rani L, Sharda P, Patel A, Patel N, Chaudhary VK. Sustainable biochar adsorbents for dye removal from water: present state of art and future directions. ADSORPTION 2024; 30:1791-1804. [DOI: 10.1007/s10450-024-00522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
|
8
|
Zhao X, Wang J, Zhu G, Zhang S, Wei C, Liu C, Cao L, Zhao S, Zhang S. Efficient removal of high concentration dyes from water by functionalized in-situ N-doped porous biochar derived from waste antibiotic fermentation residue. CHEMOSPHERE 2024; 364:143215. [PMID: 39214407 DOI: 10.1016/j.chemosphere.2024.143215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Using biochar for dye wastewater treatment is attracting interest due to its excellent adsorption properties and low costs. In this work, a novel biochar derived from oxytetracycline fermentation residue (functionalized OFR biochar, FOBC) was investigated as a efficient adsorbent for typical dyes removal. At 25 °C, the maximum adsorption capacity calculated by Langmuir model of FOBC-3-600 for methylene blue (MB), malachite green (MG), and methyl orange (MO) reached 643.97, 617.89, and 521.03 mg/g, respectively. The kinetics and isotherm model fitting showed that the chemisorption and physisorption both occurred during the adsorption process. Dyes were efficiently adsorbed through pore filling, electrostatic attraction, π-π interactions, and surface complexation. And the cycling experiment and environmental risk assessment indicated that the FOBC-3-600 had excellent recyclability and utilization safety. Overall, this study provides a practical method to simultaneously treat the dyeing wastewater and utilize the antibiotic fermentation residue.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Guokai Zhu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenlin Wei
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China; Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, 450018, China.
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, 450018, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Franco DSP, Georgin J, Allasia D, Meili L, López-Maldonado EA, Khan AH, Hasan MA, Husain A. Investigation of propranolol hydrochloride adsorption onto pyrolyzed residues from Bactris guineensis through physics statistics modeling. Sci Rep 2024; 14:18101. [PMID: 39103455 DOI: 10.1038/s41598-024-68977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
In this study, PROP adsorption was investigated using activated carbon derived from Bactris Guineensis residues and physical statistical modeling. The characterization results indicate high specific surface areas (624.72 and 1125.43 m2 g-1) and pore diameters (2.703 and 2.321 nm) for the peel and stone-activated carbon, respectively. Adsorption equilibrium was investigated at different temperatures (298 to 328 K), and it was found that the adsorption capacity increased with temperature, reaching maximum values of 168.7 and 112.94 mg g-1 for the peel and stone-activated carbon, respectively. The application of physical statistical modeling indicates that a monolayer model with one energy site is adequate for describing both systems, with an R2 above 0.986 and a low BIC of 20.021. According to the steric parameters, the density of molecules per site tends to increase by 116.9% for the stone and 61.6% for the peel. In addition, the model indicates that the number of molecules decreases with increasing temperature from 1.36 to 0.81 and from 1.03 to 0.82. These results indicate that temperature controls the number of receptor sites and the orientation in which propranolol is adsorbed at the surface. The adsorption energies were similar for both systems (approximately 10 kJ mol-1), which indicates that the adsorption occurred due to physical interactions. Finally, the application of thermodynamic potential functions indicates that the maximum entropy is reached at concentrations of half-saturation (Ce 3.85 and 4.6 mg L-1), which corresponds to 1.60 × 10-18 and 1.86 × 10-18 kJ mol-1 K-1 for the stone and peel, respectively. After this point, the number of available sites tends to decrease, which indicates the stabilization of the system. The Gibbs energy tended to decrease with increasing concentration at equilibrium, reaching minimum values of - 1.73 × 10-19 and - 1.99 × 10-19 kJ mol-1, respectively. Overall, the results obtained here further elucidate how the adsorption of propranolol occurs for different activated carbons from the same source.
Collapse
Affiliation(s)
- Dison S P Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Department of Civil and Environmental, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Daniel Allasia
- Department of Civil and Environmental, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Lucas Meili
- Process Laboratory, Technology Center, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, PO Box. 706, 45142, Jazan, Saudi Arabia.
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Arshad Husain
- Department of Civil Engineering, Zakir Hussain College of Engg and Technology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
10
|
Wang X, Liu S, Chen S, He X, Duan W, Wang S, Zhao J, Zhang L, Chen Q, Xiong C. Prediction of adsorption performance of ZIF-67 for malachite green based on artificial neural network using L-BFGS algorithm. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134629. [PMID: 38762987 DOI: 10.1016/j.jhazmat.2024.134629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Given the necessity and urgency in removing organic pollutants such as malachite green (MG) from the environment, it is vital to screen high-capacity adsorbents using artificial neural network (ANN) methods quickly and accurately. In this study, a series of ZIF-67 were synthesized, which adsorption properties for organic pollutants, especially MG, were systematically evaluated and determined as 241.720 mg g-1 (25 ℃, 2 h). The adsorption process was more consistent with pseudo-second-order kinetics and Langmuir adsorption isotherm, which correlation coefficients were 0.995 and 0.997, respectively. The chemisorption mechanism was considered to be π-π stacking interaction between imidazole and aromatic ring. Then, a Python-based neural network model using the Limited-memory BFGS algorithm was constructed by collecting the crucial structural parameters of ZIF-67 and the experimental data of batch adsorption. The model, optimized extensively, outperformed similar Matlab-based ANN with a coefficient of determination of 0.9882 and mean square error of 0.0009 in predicting ZIF-67 adsorption of MG. Furthermore, the model demonstrated a good generalization ability in the predictive training of other organic pollutants. In brief, ANN was successfully separated from the Matlab platform, providing a robust framework for high-precision prediction of organic pollutants and guiding the synthesis of adsorbents.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Zhejiang Longsheng Group Co., Ltd, Shaoxing 312300, China
| | - Shangkun Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shaolei Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xubin He
- Zhejiang Longsheng Group Co., Ltd, Shaoxing 312300, China
| | - Wenjing Duan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Siyuan Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junzi Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Liangquan Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Qing Chen
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310023, China
| | - Chunhua Xiong
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310023, China.
| |
Collapse
|
11
|
Kanwal A, Rehman R, Imran M, Alakhras F, T Al-Thagafi Z, E Al-Hazemi M, Akram M, Dar A, Ali S. Mechanistic studies of phytoremediative eradication of brilliant green dye from water by acid-treated Acacia concinna lignocellulosic waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2034-2047. [PMID: 38963333 DOI: 10.1080/15226514.2024.2372848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A rapidly growing problem for life on earth is contamination of fresh water which is addressed in this article. By taking a glimpse on the causes of contaminations, persistent organic pollutants, especially synthetic dyes got prominent role. Here, out of commonly used techniques, adsorption using plant wastes was chosen for phytofiltration of such dyes. A natural adsorbent from plant source was selected and processed with acid, characterized with FTIR and SEM and then checked the efficacy on cationic dye brilliant green. Phytofiltration of dye was done to check the effectivity of both untreated (OA) and acid treated (OA-AC) form of Acacia concinna biowaste. Results were obtained, evaluated and presented here, giving maximum adsorption capacities (Qm) of AC and OA-AC 95.24 and 909.09 mg.g-1, respectively following Langmuir, pseudo second order kinetics and spontaneous exothermic nature, indicating their suitability to adopt on larger scale wastewater treatment effectively using green technology.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Fadi Alakhras
- College of Pharmacy, Middle East University, Amman, Jordan
| | - Zahrah T Al-Thagafi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha E Al-Hazemi
- Department of Chemistry, College of Science and Art at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Mehwish Akram
- Institute of Geology, University of the Punjab, Lahore, Pakistan
| | - Amara Dar
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Saadat Ali
- Department of Engineering, University of Engineering and Technology, Pakistan
| |
Collapse
|
12
|
Dada AO, Inyinbor AA, Tokula BE, Bayode AA, Obayomi KS, Ajanaku CO, Adekola FA, Ajanaku KO, Pal U. Zinc oxide decorated plantain peel activated carbon for adsorption of cationic malachite green dye: Mechanistic, kinetics and thermodynamics modeling. ENVIRONMENTAL RESEARCH 2024; 252:119046. [PMID: 38704004 DOI: 10.1016/j.envres.2024.119046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.
Collapse
Affiliation(s)
- Adewumi Oluwasogo Dada
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 7: Affordable and Clean Energy, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria.
| | - Abosede Adejumoke Inyinbor
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Blessing Enyojo Tokula
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria.
| | - Abiodun Ajibola Bayode
- Department of Chemical Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC, 3030, Australia
| | - Christiana Oluwatoyin Ajanaku
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Folahan Amoo Adekola
- Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
| | - Kolawole Oluseyi Ajanaku
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| |
Collapse
|
13
|
El Messaoudi N, Franco DSP, Gubernat S, Georgin J, Şenol ZM, Ciğeroğlu Z, Allouss D, El Hajam M. Advances and future perspectives of water defluoridation by adsorption technology: A review. ENVIRONMENTAL RESEARCH 2024; 252:118857. [PMID: 38569334 DOI: 10.1016/j.envres.2024.118857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Fluoride contamination in water sources poses a significant challenge to human health and the environment. In recent years, adsorption technology has emerged as a promising approach for water defluoridation due to its efficiency and cost-effectiveness. This review article comprehensively explores the advances in water defluoridation through adsorption processes. Various adsorbents, including natural and synthetic materials, have been investigated for their efficacy in removing fluoride ions from water. The mechanisms underlying adsorption interactions are elucidated, shedding light on the factors influencing defluoridation efficiency. Moreover, the review outlines the current state of technology, highlighting successful case studies and field applications. Future perspectives in the field of water defluoridation by adsorption are discussed, emphasizing the need for sustainable and scalable solutions. The integration of novel materials, process optimization, and the development of hybrid technologies are proposed as pathways to address existing challenges and enhance the overall efficacy of water defluoridation. This comprehensive assessment of the advances and future directions in adsorption-based water defluoridation provides valuable insights for researchers, policymakers, and practitioners working towards ensuring safe and accessible drinking water for all.
Collapse
Affiliation(s)
- Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco.
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Sylwia Gubernat
- Inżynieria Rzeszów S.A., ul. Podkarpacka 59A, 35-082, Rzeszów, Poland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak, 64300, Turkey
| | - Dalia Allouss
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, FSTM, Hassan II University, Casablanca, Morocco
| | - Maryam El Hajam
- Advanced Structures and Composites Center, University of Maine, Orono, 04469, United States
| |
Collapse
|
14
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
15
|
Xu S, Yuan JY, Zhang YT, Yang QL, Zhang CX, Guo Q, Qin Z, Liu HM, Wang XD, Mei HX, Duan YH. Effects of different precursors on the structure of lignin-based biochar and its ability to adsorb benzopyrene from sesame oil. Int J Biol Macromol 2024; 269:132216. [PMID: 38729483 DOI: 10.1016/j.ijbiomac.2024.132216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.
Collapse
Affiliation(s)
- Shuai Xu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Ya-Ting Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou University, Zhengzhou 450001, China
| | - Qiao-Li Yang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Guo
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hong-Xian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| | - Ying-Hui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| |
Collapse
|
16
|
Wang Y, Yan X, Zhang Y, Qin X, Yu X, Jiang L, Li B. Efficient Removal of Nickel from Wastewater Using Copper Sulfate-Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism. Molecules 2024; 29:2405. [PMID: 38792266 PMCID: PMC11124251 DOI: 10.3390/molecules29102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The necessity to eliminate nickel (Ni) from wastewater stems from its environmental and health hazards. To enhance the Ni adsorption capacity, this research applied a copper sulfate-ammonia complex (tetraamminecopper (II) sulfate monohydrate, [Cu(NH3)4]SO4·H2O) as a modifying agent for a Phragmites australis-based activated carbon preparation. The physiochemical properties of powdered activated carbon (PAC) and a modified form ([Cu(NH3)4]-PAC) were examined by measuring their surface areas, analyzing their elemental composition, and using Boehm's titration method. Batch experiments were conducted to investigate the impact of various factors, such as Ni(II) concentration, contact time, pH, and ionic strength, on its substance adsorption capabilities. Additionally, the adsorption mechanisms of Ni(II) onto activated carbon were elucidated via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The findings indicated that modified activated carbon ([Cu(NH3)4]-PAC) exhibited a lower surface area and total volume than the original activated carbon (PAC). The modification of PAC enhanced its surface's relative oxygen and nitrogen content, indicating the incorporation of functional groups containing these elements. Furthermore, the modified activated carbon, [Cu(NH3)4]-PAC, exhibited superior adsorption capacity relative to unmodified PAC. Both adsorbents' adsorption behaviors conformed to the Langmuir model and the pseudo-second-order kinetics model. The Ni(II) removal efficiency of PAC and [Cu(NH3)4]-PAC diminished progressively with rising ionic strength. Modified activated carbon [Cu(NH3)4]-PAC demonstrated notable pH buffering and adaptability. The adsorption mechanism for Ni(II) on activated carbon involves surface complexation, cation exchange, and electrostatic interaction. This research presents a cost-efficient preparation technique for preparing activated carbon with enhanced Ni(II) removal capabilities from wastewater and elucidates its underlying adsorption mechanisms.
Collapse
Affiliation(s)
- Yifei Wang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
- Department of Civil and Environmental Engineering E4130 Engineering Gateway Building, University of California, Irvine, CA 92697-2175, USA
| | - Xiaoxiao Yan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Yidi Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Xiaoxin Qin
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Xubiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
- College of Environmental and Resource Science, Zhejiang University, 866 Yuhuangtang Rd, Hangzhou 310058, China
| | - Bing Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| |
Collapse
|
17
|
Tang C, Xu C, Zhong G, Cen Z, Ni Z, Yao Z, Fang Y, Qiu R, Zhang S. Unveiling activation mechanism of persulfate by homologous hemp-derived biochar catalysts for enhanced tetracycline wastewater remediation. BIORESOURCE TECHNOLOGY 2024; 400:130684. [PMID: 38614146 DOI: 10.1016/j.biortech.2024.130684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Advancements in biochar activating persulfate advanced oxidation processes (PS-AOP), have gained significant attention. However, the understanding of biochar-based catalysts in activating PS remains limited. Herein, biochar (BC) and N-doped biochar (NBC) were synthesized from hemp for activating PS to treat tetracycline (TC) wastewater and analyzed their mechanisms separately. Surprisingly, N-doped in biochar leads to a change in the activation mechanism of PS. The BC-PS system operates mainly through a radical pathway, advantageous for treating soil organic pollution (68%) with pH adaptability (less than 10% variation). Nevertheless, the NBC-PS system primarily employs an electron transfer non-radical pathway, demonstrating stability (only 7% performance degradation over four cycles) and enhanced resistance to anionic interference (less than 10% variation) in organic wastewater treatment. This study provides a technical reference and theoretical foundation for enhancing biochar activation of PS in the removal of organic pollutants from aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Chengyang Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Chuanyi Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China; Zhenjiang Institute of Agricultural Sciences in Hilly Region of Jiangsu Province, Jurong 212400, China
| | - Guoyu Zhong
- School of Chemical Engineering and Energy Technology, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Zhan Cen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Zhuobiao Ni
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zuofang Yao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China.
| |
Collapse
|
18
|
Dubey S, Mishra RK, Kaya S, Rene ER, Giri BS, Sharma YC. Microalgae derived honeycomb structured mesoporous diatom biosilica for adsorption of malachite green: Process optimization and modeling. CHEMOSPHERE 2024; 355:141696. [PMID: 38499077 DOI: 10.1016/j.chemosphere.2024.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The present study investigated the removal of malachite green dye from aquifers by means of microalgae-derived mesoporous diatom biosilica. The various process variables (dye concentration, pH, and adsorbent dose) influencing the removal of the dye were optimized and their interactive effects on the removal efficiency were explored by response surface methodology. The pH of the solution (pH = 5.26) was found to be the most dominating among other tested variables. The Langmuir isotherm (R2 = 0.995) best fitted the equilibrium adsorption data with an adsorption capacity of 40.7 mg/g at 323 K and pseudo-second-order model (R2 = 0.983) best elucidated the rate of dye removal (10.6 mg/g). The underlying mechanism of adsorption was investigated by Weber-Morris and Boyd models and results revealed that the film diffusion governed the overall adsorption process. The theoretical investigations on the dye structure using DFT-based chemical reactivity descriptors indicated that malachite green cations are electrophilic, reactive and possess the ability to accept electrons, and are strongly adsorbed on the surface of diatom biosilica. Also, the Fukui function analysis proposed the favorable adsorption sites available on the adsorbent surface.
Collapse
Affiliation(s)
- Shikha Dubey
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal) 246174, India; Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal) 246174, India
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, the Netherlands
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| | - Yogesh C Sharma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
19
|
Song K, Xiong H, Zhao X, Wang J, Yang Z, Han L. In-situ registration subtraction image segmentation algorithm for spatiotemporal visualization of copper adsorption onto corn stalk-derived pellet biochar by micro-computed tomography. BIORESOURCE TECHNOLOGY 2024; 397:130440. [PMID: 38346594 DOI: 10.1016/j.biortech.2024.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The non-homogeneous structure and high-density ash composition of biochar matrix pose significant challenges in characterizing the dynamic changes of heavy metal adsorption onto biochar with micro-computed tomography (Micro-CT). A novel in-situ registration subtraction image segmentation method (IRS) was developed to enhance micro-CT characterization accuracy. The kinetics of Cu(II) adsorption onto pellet biochar derived from corn stalks were tested. Respectively, the IRS and traditional K-means algorithms were used for image segmentation to the in-situ three-dimensional (3D) visual characterization of the Cu(II) adsorption onto biochar. The results indicated that the IRS algorithm reduced interference from high-density biochar composition, and thus achieved more precise results (R2 = 0.95) than that of K-means (R2 = 0.72). The visualized dynamic migration of Cu(II) from surface adsorption to intraparticle diffusion reflexed the complex mechanism of heavy metal adsorption. The developed Micro-CT method with high generalizability has great potential for studying the process and mechanism of biochar heavy metal adsorption.
Collapse
Affiliation(s)
- Kai Song
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| | - Haoxiang Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| | - Xiaojing Zhao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| | - Jieyu Wang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| | - Zengling Yang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
20
|
Liu X, Han B, He PL, Wang Q, Chen ZQ. Modeling competitive biosorption for methylene blue removal on rape straw powders using response surface methodology in a ternary dye aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1453-1464. [PMID: 38505937 DOI: 10.1080/15226514.2024.2327614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The improvement of biosorption efficiency for selective dye removal in a multi-dye aqueous system has become an increasingly significant research topic. However, the competitive effects of coexisting dyes and the target dye in such systems remain uncertain due to complex interactions between adsorbent and coexisting dyes. Therefore, in this research, response surface methodology (RSM) model was effectively employed to investigate the competitive effects of allura red (AR) and malachite green (MG) on methylene blue (MB) removal in a ternary dye aqueous system using three different parts of rape straw powders. In the current design of RSM, the initial concentrations of AR and MG dyes ranging from 0 mg·L-1 to 500 mg·L-1 were considered as influencing factors, while the removal rates of MB on adsorbents at an initial concentration of 500 mg·L-1 were established as response values. The RSM models exhibited high correlation coefficients with adjusted R2 values of 0.9908 (pith core), 0.9870 (seedpods), and 0.9902 (shells), respectively, indicating a close fitted between predicted and actual values. The proposed models indicated that the perturbation effects of initial AR and MG concentrations were observed on the removal rates of MB by three types of rape straw powders in a ternary dye aqueous system, resulting in a decrease in MB removal rates, particularly at higher initial AR concentration due to stronger competitive effects compared to initial MG concentration. The structures of rape straw powders, including pith core, seedpods and shell, were analyzed using scanning eletron microscoe (SEM), energy dispersive spectroscopy (EDS), N2 physisorption isotherm, frourier transform infared spectroscopy (FTIR), Zeta potential classes and fluorescence spectrum before and after adsorption of MB in various dye aqueous systems. The characteristics of rape straw powders suggested that similar adsorption mechanisms, such as electrostatic attraction, pore diffusion, and group complex formation for MB, AR, and MG, respectively, occurred on the surfaces of adsorbents during their respective adsorption processes. This leads to significant competitive effects on the removal rates of MB in a ternary dye aqueous system, which are particularly influenced by initial AR concentrations as confirmed through fluorescence spectrum analysis.
Collapse
Affiliation(s)
- Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Pei-Lin He
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qian Wang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Zhao-Qiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
21
|
Wang Q, Qiao J, Xiong Y, Dong F, Xiong Y. A novel ZIF-8@IL-MXene/poly (N-isopropylacrylamide) nanocomposite hydrogel toward multifunctional adsorption. ENVIRONMENTAL RESEARCH 2024; 242:117568. [PMID: 37979930 DOI: 10.1016/j.envres.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/20/2023]
Abstract
Phenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater. Ionic liquid (IL) was grafted onto MXene surfaces using a one-step method, and then incorporated into NIPAM monomer solutions to obtain the IL-MXene/PNIPAM composite hydrogel via in-situ polymerization. ZIF-8@IL-MXene/PNIPAM nanocomposite hydrogels were obtained by in-situ growth of ZIF-8 on the pore walls of composite hydrogels. As-prepared nanocomposite hydrogel showed excellent mechanical properties and can withstand ten repeated compressions without any damage, the specific surface area increased by 100 times, and the maximum adsorption capacities for p-nitrophenol (4-NP), crystal violet (CV), and copper ion (Cu2+) were 198.40, 325.03, and 285.65 mg g-1, respectively, at room temperature. The VPTTs of all hydrogels ranged from 33 to 35 °C, so the desorption process can be achieved in deionized water at 35-40 °C, and its adsorption capacities after five adsorption-desorption cycles decreased to 79%, 91%, and 29% for 4-NP, CV, and Cu2+, respectively. The adsorption data fitting results follow pseudo-second-order kinetics and Freundlich models, which is based on multiple interactions between the functional groups contained in hydrogels and adsorbent molecules. The hydrogel is the first to realize the high-efficiency adsorption of phenols, dyes and metal ions in industrial wastewater simultaneously, and the preparation process of hydrogels is environmentally friendly. Also, giving hydrogel multifunctional adsorption is beneficial to promote the development of multifunctional adsorption materials.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Qiao
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yukun Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
22
|
Li Z, Niu R, Yu J, Yu L, Cao D. Removal of cadmium from aqueous solution by magnetic biochar: adsorption characteristics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6543-6557. [PMID: 38153572 DOI: 10.1007/s11356-023-31664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Experiments were conducted to investigate the potential of the efficient resource utilization of waste cow manure and corn straw in an agricultural ecosystem. In this study, a magnetic cow manure and straw biochar were synthesized by a co-precipitation method, and cadmium (Cd(II)) was removed by adsorption in aqueous solution. Several physicochemical characterization techniques were applied, including SEM, BET, Zeta, FTIR, Raman, XPS, and VSM. The effects of pH value, magnetic biochar content, adsorption kinetics, and isothermal adsorption on the adsorption of Cd(II) were investigated. The physicochemical characterizations revealed that the physical and chemical properties of the magnetic biochar were substantially changed compared to the unmodified biochar. The results showed that the surface of the biochar became rough, the number of oxygen (O)-containing functional groups increased, and the specific surface area increased. The results of the adsorption experiments showed that the adsorption capacity was affected by pH, magnetic biochar addition, Cd(II) concentration, and adsorption time. The adsorption kinetics and isothermal adsorption experiments showed that the Cd(II) adsorption processes of the cow manure and corn straw magnetic biochars were consistent with the Freundlich model and pseudo-second-order kinetic model. The results also showed that the Cd(II) adsorption effect of cow manure magnetic biochar was found to be more effective than that of corn straw magnetic biochar. The optimal conditions for Cd(II) adsorption were 800 ℃ for cow manure magnetic biochar, with a pH value of 5 and 0.14 g biochar addition, and 600 ℃ for straw magnetic biochar with a pH value of 8 and 0.12 g biochar addition. In conclusion, the cow manure magnetic biochar was an effective adsorbent for the absorption of Cd(II) in wastewater.
Collapse
Affiliation(s)
- Zhiwen Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ruiyan Niu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jiaheng Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Di Cao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
23
|
Dixit U, Singh K, Mohan S, Singh AK, Kumar A. Surface activity, mechanisms, kinetics, and thermodynamic study of adsorption of malachite green dye onto sulfuric acid-functionalized Moringa oleifera leaves from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:78. [PMID: 38135791 DOI: 10.1007/s10661-023-12234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
In the present study, activated carbon prepared from H2SO4-functionalized Moringa oleifera leaves (ACMOL) was used as a potential adsorbent for the effective removal of malachite green (MG) dye from aqueous media. FT-IR, SEM, EDS, Zeta potential, XRD, BET, proximate, and CHNS analysis techniques were used for surface characterization of the ACMOL. The adsorption efficiency of the ACMOL was investigated as a function of varying adsorbent dosage (0.02-0.2 g/100 mL), pH (3.0-9.0), ionic strength (0.1-0.5 M KCl), urea concentration (0.1-0.5 M), contact time (30-210 min), and temperature (303-323 K). The representative adsorption isotherms belong to the typical L-type. Maximum percentage removal was found to be 84% (124.40 mg/g) for MG dye concentration (30 mg/L) at pH 7.0 and 303 K with ACMOL dose 0.02 g/100 mL. The adsorption kinetics and equilibrium experimental data of MG dye adsorption on the ACMOL were well explained by the pseudo-second-order kinetics (R2 = 0.99) and Langmuir isotherm model (R2 = 0.99), respectively. The value of adsorption and desorption coefficient was found to be 0.036 min-1 and 0.025 mg min-1/L, respectively. Thermodynamic study showed the spontaneous (ΔG° = - 31.33, - 31.92, and - 32.49 kJ/mol at temperatures 303 K, 313 K, and 323 K, respectively) and exothermic (ΔH° = - 13.7 kJ/mol) nature of the adsorption with some structural changes occurring on the ACMOL surface (ΔS° = 58.198 J/K·mol).
Collapse
Affiliation(s)
- Utkarsh Dixit
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow, 226025, Lucknow, Uttar Pradesh, India
| | - Kaman Singh
- Surface Science Laboratory, Department of Chemistry, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow, 226025, Lucknow, Uttar Pradesh, India.
| | - Sudhanshu Mohan
- Physical Chemistry Division, National Sugar Institute, Kanpur, 208017, Uttar Pradesh, India
| | - Alok Kumar Singh
- Department of Chemistry, University of Lucknow, Lucknow, 226025, Uttar Pradesh, India
| | - Arun Kumar
- Department of Chemistry, University of Lucknow, Lucknow, 226025, Uttar Pradesh, India
| |
Collapse
|
24
|
Ali OI, Azzam AB. Functional Ag-EDTA-modified MnO 2 nanocoral reef for rapid removal of hazardous copper from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123751-123769. [PMID: 37991610 PMCID: PMC10746771 DOI: 10.1007/s11356-023-30805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
A novel MnO2@EDTA-Ag nanocoral reef was constructed via a simplified redox reaction followed by EDTA and Ag nanoparticles impregnation to capture hazardous copper (II) from wastewater. A comprehensive characterization of the synthesized materials was conducted. The morphology of MnO2@EDTA-Ag in the form of a nanocoral reef was constructed of two-dimensional nanoplatelets and nanorod-like nanostructures. The optimal adsorption conditions proposed by the Plackett-Burman design (PBD) that would provide a removal % of 99.95 were pH 5.5, a contact time of 32.0 min, a Cu(II) concentration of 11.2 mg L-1, an adsorbent dose of 0.05 g, and a temperature of 40.3 °C. The loading of Ag nanoparticles onto MnO2@EDTA improved the adsorption capability of MnO2@EDTA-Ag. Additionally, the recyclability of MnO2@EDTA-Ag nanocoral reef was maintained at 80% after three adsorption-desorption cycles, and there was no significant change in the XRD analysis before and after the recycling process, implying its stability. It was found that nanocoral reef-assisted EDTA formed a chelation/complexation reaction between COO- groups and C-N bonds of EDTA with Cu(II) ions. In addition, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis proved the synergistic effect of the electrostatic interaction and chelation/complexation was responsible for the removal mechanism of Cu(II). Also, the results demonstrated no significant variation in MnO2@EDTA-Ag removal efficiency for all the tested real water samples, revealing its efficacy in wastewater treatment. Therefore, the current study suggests that MnO2@EDTA-Ag has substantial potential to be used as a feasible adsorbent for probable hazardous metals remediation.
Collapse
Affiliation(s)
- Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Ahmed B Azzam
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
25
|
Mei C, Wang L, Tao W. Characterization of Magnetic Biochar Modified Using the One-Step and Electrochemical Methods and Its Impact on Phosphate Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7092. [PMID: 38005022 PMCID: PMC10671889 DOI: 10.3390/ma16227092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The properties and phosphate adsorption capability of the one-step method and electrochemical method in modifying peanut shell biochar have been determined. The one-step method deposits MgO and Fe3O4 onto biochar through chemical impregnation and regularly affects the functional groups and magnetic separation of biochar, thereby enhancing its ability to adsorb phosphate. In contrast, the electrochemical method is not favorable for modifying functional groups of biochar but can promote phosphate adsorption because of the formation of MgFe2O4 and Fe3O4 using electrolysis. The adsorption isotherm and kinetics data suggest that adsorption is monolayer onto a homogeneous surface and phosphate adsorption could be controlled by chemical processes. Biochar with the addition of both Fe2+ and Mg2+ shows better phosphate adsorption capability than those with barely any Fe2+ additions. It was concluded that the one-step method is a better modification method than the electrochemical method for enhancing the phosphate adsorption capability of biochars.
Collapse
Affiliation(s)
| | | | - Wei Tao
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
26
|
Wang K, Kou Y, Wang K, Liang S, Guo C, Wang W, Lu Y, Wang J. Comparing the adsorption of methyl orange and malachite green on similar yet distinct polyamide microplastics: Uncovering hydrogen bond interactions. CHEMOSPHERE 2023; 340:139806. [PMID: 37574090 DOI: 10.1016/j.chemosphere.2023.139806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) and dye pollutants are widespread in aquatic environments. Here, the adsorption characteristics of anionic dye methyl orange (MO) and cationic dye malachite green (MG) on polyamide 6 (PA6) and polyamide 66 (PA66) MPs were investigated, including kinetics, isotherm equilibrium and thermodynamics. The co-adsorption of MO and MG under different pH was also evaluated. The results reveal that the adsorption process of MO and MG is suitably expounded by a pseudo-second-order kinetic model. The process can be characterized by two stages: internal diffusion and external diffusion. The isothermal adsorption equilibrium of MO and MG can be effectively described using the Langmuir model, signifying monolayer adsorption. Furthermore, the thermodynamic results indicated that the adsorption was spontaneous with exothermic and endothermic properties, respectively. The results of binary systems reveal that MO dominates the adsorption at low pH (2-5), while MG dominates at high pH (8-10). Strong competitive adsorption was observed between MO and MG in neutral conditions (pH 6-8). The desorption experiments confirm that PA6 and PA66 could serve as potential carriers of MO and MG. The interaction between dyes and polyamide MPs is primarily mediated through hydrogen bonds and electrostatic attraction. The results reveal that PA6 formed more hydrogen bonds with the dyes, resulting in higher adsorption capacity than that of PA66. This difference can be attributed to the disparities in the synthesis process and polymerization method. Our study uncovered the adsorption mechanism of dye pollutants on PA6 and PA66, and provided a more comprehensive theoretical basis for the risk assessment concerning different types of polyamide MPs in aquatic environments.
Collapse
Affiliation(s)
- Kangkang Wang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China; Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, 5007, Norway
| | - Yuli Kou
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Kefu Wang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Siqi Liang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Changyan Guo
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Wei Wang
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, 5007, Norway.
| | - Yi Lu
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Jide Wang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
27
|
Cho SH, Jung S, Park J, Lee S, Kim Y, Lee J, Fai Tsang Y, Kwon EE. Strategic use of crop residue biochars for removal of hazardous compounds in wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129658. [PMID: 37591466 DOI: 10.1016/j.biortech.2023.129658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Crop residues are affordable lignocellulosic waste in the world, and a large portion of the waste has been burned, releasing toxic pollutants into the environment. Since the crop residue is a carbon and ingredient rich material, it can be strategically used as a sorptive material for (in)organic pollutants in the wastewater after thermo-chemical valorization (i.e., biochar production). In this review, applications of crop residue biochars to adsorption of non-degradable synthetic dyes, antibiotics, herbicides, and inorganic heavy metals in wastewater were discussed. Properties (porosity, functional groups, heteroatom, and metal(oxide)s, etc.) and adsorption capacity relationships were comprehensively reviewed. The current challenges of crop residue biochars and guidelines for development of efficient adsorbents were also provided. In the last part, the future research directions for practical applications of the crop residue biochars in wastewater treatment plants have been suggested.
Collapse
Affiliation(s)
- Seong-Heon Cho
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - JongHyun Park
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangyoon Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youkwan Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
28
|
Qu J, Du Z, Lei Y, Li M, Peng W, Wang M, Liu J, Hu Q, Wang L, Wang Y, Zhang Y. Microwave-assisted one-pot preparation of magnetic cactus-derived hydrochar for efficient removal of lead(Ⅱ) and phenol from water: Performance and mechanism exploration. BIORESOURCE TECHNOLOGY 2023; 388:129789. [PMID: 37741577 DOI: 10.1016/j.biortech.2023.129789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
A novel magnetic hydrochar derived from cactus cladode (MW-MHC) was successfully synthesized through one-pot microwave-assisted process for efficiently removing lead(Pb)(Ⅱ) and phenol. From batch adsorption experiments, MW-MHC possessed the highest uptake amounts for Pb(Ⅱ) and phenol of 139.34 and 175.32 mg/g within 20 and 60 min, respectively. Moreover, the removal of Pb(Ⅱ) and phenol by MW-MHC remained essentially stable under the interference of different co-existing cations, presenting the excellent adaptability of MW-MHC. After three cycles of regeneration experiments, MW-MHC still had preferable adsorption performance and could be easily recycled, indicating its excellent reusability. Significantly, the uptake mechanisms of Pb(Ⅱ) on MW-MHC were regarded as chemical complexation, pore filling, precipitation, and electrostatic attraction. Meanwhile, the phenol uptake might be dominated by π-π interaction and hydrogen bonding. The above consequences revealed that MW-MHC with high removal performance was a promising adsorbent for remediating wastewater containing heavy metals and organics.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yue Lei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Man Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Peng J, Wang B, Cao Z, Zhang Y, Ding L, Cao X, Chang Y, Liu H. Photo-induced adsorption-desorption behavior of methylene blue on CA-BMO under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110079-110088. [PMID: 37782365 DOI: 10.1007/s11356-023-30103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
In this work, the modification of Bi2MoO6 with critic acid (CA-BMO) to achieve enhanced adsorption of methylene blue (MB) solution in dark and desorption under visible light irradiation was reported. The as-prepared materials were synthesized by a hydrothermal method and characterized via SEM, FT-IR, XRD, and XPS techniques. Only 16.5% of 10 mg L-1 MB was removed within 10 min by using 0.5 g L-1 Bi2MoO6, while 92.9% removal of MB could be achieved by using 0.5 g L-1 CA-BMO, which enhanced the adsorption removal by a factor of 4.6. The adsorption capacity for MB was 18.9 mg g-1. Desorption efficiency of MB was only observed in CA-BMO system, and it depends on the wavelength of the light source, pH, and the presence of metal ions. Characterization results suggested that carboxyl groups, which were modified onto the surface of Bi2MoO6, could serve as adsorption sites for MB, and the connections were damaged under light, thus leading to the desorption of MB from the surface of the CA-BMO. This study provides a novel reagent-free desorption strategy for dye recovery without secondary pollution, which facilitates the development and application of Bi-based adsorbent for dye-containing wastewater treatment.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Bingjie Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yakun Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Li Ding
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xin Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yu Chang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Haijin Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
30
|
Farias KCS, Guimarães RCA, Oliveira KRW, Nazário CED, Ferencz JAP, Wender H. Banana Peel Powder Biosorbent for Removal of Hazardous Organic Pollutants from Wastewater. TOXICS 2023; 11:664. [PMID: 37624169 PMCID: PMC10459949 DOI: 10.3390/toxics11080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Disposing of pollutants in water sources poses risks to human health and the environment, but biosorption has emerged as an eco-friendly, cost-effective, and green alternative for wastewater treatment. This work shows the ability of banana peel powder (BPP) biosorbents for efficient sorption of methylene blue (MB), atrazine, and glyphosate pollutants. The biosorbent highlights several surface chemical functional groups and morphologies containing agglomerated microsized particles and microporous structures. BPP showed a 66% elimination of MB in 60 min, with an adsorption capacity (qe) of ~33 mg g-1, and a combination of film diffusion and chemisorption governed the sorption process. The biosorbent removed 91% and 97% of atrazine and glyphosate pesticides after 120 min, with qe of 3.26 and 3.02 mg g-1, respectively. The glyphosate and atrazine uptake best followed the Elovich and the pseudo-first-order kinetic, respectively, revealing different sorption mechanisms. Our results suggest that BPP is a low-cost biomaterial for green and environmentally friendly wastewater treatment.
Collapse
Affiliation(s)
- Kelly C. S. Farias
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Rita C. A. Guimarães
- Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Karla R. W. Oliveira
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Carlos E. D. Nazário
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Julio A. P. Ferencz
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Faculty of Engineering, Architecture, Urbanism, and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
31
|
Liu W, Zhang X, Ren H, Hu X, Yang X, Liu H. Co-production of spirosiloxane and biochar adsorbent from wheat straw by a low-cost and environment-friendly method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117851. [PMID: 37019023 DOI: 10.1016/j.jenvman.2023.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
To enhance the value of wheat straw derivatives, wheat straw ash (WSA) was used as a reactant for the first time to synthesize spirocyclic alkoxysilane, an important organosilicon raw material, using an energy-saving and environmentally friendly non-carbon thermal reduction method. After spirocyclic alkoxysilane extraction, the biochar in the wheat straw ash prepared an adsorbent for Cu2+. The maximum copper ion adsorption capacity (Qm) of silica-depleted wheat straw ash (SDWSA) was 31.431nullmg/g, far exceeding those of WSA and similar biomass adsorbents. The effects of the pH, adsorbent dose, and contact time on the adsorption behaviour of the SDWSA for Cu2+ adsorption were systematically investigated. The adsorption mechanism of Cu2+ by the SDWSA was investigated using the Langmuir, Freundlich, pseudo-first-order kinetic, pseudo-second-order kinetic, and Weber and Morris models by combining the preliminary experimental data and characterization results. The adsorption isotherm and Langmuir equation matched perfectly. The Weber and Morris model can describe the mass-transfer mechanism of Cu2+ adsorption by SDWSA. Both film and intraparticle diffusion are rapid control steps. Compared to WSA, SDWSA has a larger specific surface area and a higher content of oxygen-containing functional groups. A large specific surface area provides more adsorption sites. Oxygen-containing functional groups react with Cu2+ through electrostatic interactions, surface complexation, and ion exchange, which are the possible adsorption mechanisms for SDWSA. These methods improve the added value of wheat straw derivatives and promote wheat straw ash recovery and centralized treatment. This makes it possible to use the thermal energy of wheat straw and facilitates the treatment of exhaust gases and carbon capture.
Collapse
Affiliation(s)
- Wenlong Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xingwen Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| | - Hongyu Ren
- School of Resources and Environment, Northeast Agricultural University, No. 600, Changjiang Street, Harbin, 150030, China.
| | - Xingcheng Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xinyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Hui Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
32
|
Bondarev A, Popovici DR, Călin C, Mihai S, Sȋrbu EE, Doukeh R. Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4285. [PMID: 37374469 DOI: 10.3390/ma16124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The aim of the study was to prepare effective low-cost green adsorbents based on spent black tea leaves for the removal of nitrate ions from aqueous solutions. These adsorbents were obtained either by thermally treating spent tea to produce biochar (UBT-TT), or by employing the untreated tea waste (UBT) to obtain convenient bio-sorbents. The adsorbents were characterized before and after adsorption by Scanning Electron Microscopy (SEM), Energy Dispersed X-ray analysis (EDX), Infrared Spectroscopy (FTIR), and Thermal Gravimetric Analysis (TGA). The experimental conditions, such as pH, temperature, and nitrate ions concentration were studied to evaluate the interaction of nitrates with adsorbents and the potential of the adsorbents for the nitrate removal from synthetic solutions. The Langmuir, Freundlich and Temkin isotherms were applied to derive the adsorption parameters based on the obtained data. The maximum adsorption intakes for UBT and UBT-TT were 59.44 mg/g and 61.425 mg/g, respectively. The data obtained from this study were best fitted to the Freundlich adsorption isotherm applied to equilibrium (the values R2 = 0.9431 for UBT and R2 = 0.9414 for UBT-TT), this assuming the multi-layer adsorption onto a surface with a finite number of sites. The Freundlich isotherm model could explain the adsorption mechanism. These results indicated that UBT and UBT-TT could serve as novel biowaste and low-cost materials for the removal of nitrate ions from aqueous solutions.
Collapse
Affiliation(s)
- Andreea Bondarev
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Daniela Roxana Popovici
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Cătalina Călin
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Sonia Mihai
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Elena-Emilia Sȋrbu
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 060021 Bucharest, Romania
| | - Rami Doukeh
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| |
Collapse
|
33
|
Barbera M, Indelicato S, Bongiorno D, Censi V, Saiano F, Piazzese D. Untreated Opuntia ficus indica for the Efficient Adsorption of Ni(II), Pb(II), Cu(II) and Cd(II) Ions from Water. Molecules 2023; 28:molecules28093953. [PMID: 37175363 PMCID: PMC10179860 DOI: 10.3390/molecules28093953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The raw cladode of Opuntia ficus indica (OFI) was evaluated as a sustainable biosorbent for the removal of heavy metals (Ni, Pb, Cu, and Cd) from aqueous solutions. The functional groups of OFI were identified by employing DRIFT-FTIR and CP-MAS-NMR techniques before and after contact with the ions in an aqueous media, showing a rearrangement of the biomass structure due to the complexation between the metal and the functional groups. The adsorption process was studied in both single- and multi-component systems under batch conditions at different pHs (4.0, 5.0, and 6.0), different metal concentrations, and different biomass amounts. The results show that the raw OFI had a removal capacity at room temperature of over 80% for all metals studied after only 30 min of contact time, indicating a rapid adsorption process. Biosorption kinetics were successfully fitted by the pseudo-second-order equation, while Freundlich correctly modelled the biosorption data at equilibrium. The results of this work highlight the potential use of the untreated cladode of OFI as an economical and environmentally friendly biosorbent for the removal of heavy metals from the contaminated aqueous solution.
Collapse
Affiliation(s)
- Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, 90123 Palermo, Italy
| | - Valentina Censi
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Filippo Saiano
- Department of Agricultural Food and Forestry Sciences, University of Palermo, 90128 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
34
|
Cai Y, Jiang W, Liu D, Chang C. Adsorption of sulfanilamides using biochar derived from Suaeda salsa: adsorption kinetics, isotherm, thermodynamics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27228-2. [PMID: 37147545 DOI: 10.1007/s11356-023-27228-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Suaeda biochar (SBC) was prepared by muffle furnace with Suaeda salsa at 600, 700, 800, and 900 ℃. The physical and chemical properties of biochar at different pyrolysis temperatures and the adsorption mechanism of sulfanilamide (SM) were studied by SEM-EDS, BET, FTIR, XRD, and XPS analysis. The adsorption kinetics and adsorption isotherms were fitted. The results showed that the kinetics was in line with the quasi-second-order adsorption model and belonged to chemisorption. The adsorption isotherm conformed to Langmuir adsorption isotherm model and belonged to monolayer adsorption. The adsorption of SM on SBC was spontaneous and exothermic. The adsorption mechanism may be pore filling, hydrogen bonding, and π-π electron donor acceptor (EDA) interaction.
Collapse
Affiliation(s)
- Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
- Institute of Ocean Research, Bohai University, Jinzhou, 121013, China
| | - Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
35
|
Ye S, Xu M, Sun H, Ni Y, Wang R, Ye R, Wan L, Liu F, Deng X, Wu J. Using deep eutectic solvent dissolved low-value cotton linter based efficient magnetic adsorbents for heavy metal removal. RSC Adv 2023; 13:13592-13603. [PMID: 37152574 PMCID: PMC10155191 DOI: 10.1039/d3ra01248d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
In this study, a novel magnetic bio-adsorbent was synthesized by modifying cotton linter (CL) cellulose with deep eutectic solvents (DESs) and Fe3O4 magnetic nanoparticles. The adsorption capacity of CL, Fe3O4/CL, Fe3O4/CL-oxidation, and Fe3O4/CL-DES for Cu2+ was 11.0, 66.1, 85.7, and 93.1 mg g-1, respectively, under the optimal adsorption conditions of an initial pH value of 6.0, stirring rate of 300 rpm, and a temperature of 30 °C. The presence of Fe3O4 nanoparticles increased the proportion of hydroxyl groups and thus improved the ion-exchange ability of Cu2+. The dissolution of DES significantly decreased fiber crystallinity and increased the number of hydroxyl group (amorphous regions increased), thus improving the chelation reaction of Cu2+, which was favorable for surface adsorption. In addition, we used the Langmuir and Freundlich isothermal models to simulate the adsorption behavior of Fe3O4/CL-DES, and the results indicated that Cu2+ follows a Freundlich isotherm model of multilayer adsorption. The fitting of the adsorption kinetics model indicated that the adsorption process involves multiple adsorption mechanisms and can be described by a quasi-second-order model. These results provide a potential method for the preparation of high-efficiency adsorbents from low-value cotton linter, which has broad application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Sihong Ye
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Mingli Xu
- Department of Life Sciences, Anhui Agricultural University Hefei China
| | - Hui Sun
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Ying Ni
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Rui Wang
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University Nanchang China
| | - Lingzhong Wan
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Fangzhi Liu
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Xiaonan Deng
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| | - Juan Wu
- Institute of Cotton, Anhui Academy of Agricultural Sciences Hefei China
| |
Collapse
|
36
|
Yang X, Zhu W, Chen F, Song Y, Yu Y, Zhuang H. Modified biochar prepared from Retinervus luffae fructus for dyes adsorption and aerobic sludge granulation. CHEMOSPHERE 2023; 322:138088. [PMID: 36754295 DOI: 10.1016/j.chemosphere.2023.138088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Retinervus luffae fructus biochar (RLFB) and ZnCl2 pretreated Retinervus luffae fructus biochar (ZRLFB) were prepared by pyrolysis. The as-prepared biochar was investigated for its applicability as a dye adsorber using sunset yellow (SY) and basic red 46 (BR46) dyes. Additionally, ZRLFB was used for the experimental cultivation of granular sludge. The results indicated that the adsorption effect of ZRLFB on the two dyes was higher than RLFB. The adsorption of RLFB to SY was related to the Langmuir and Freundlich models, whereas the adsorption of RLFB-BR46, ZRLFB-SY, and ZRLFB-BR46 was more in line with the Langmuir model. The adsorption process of dyes on two kinds of biochars can be described using pseudo-second-order mechanisms. The maximum adsorption capacity obtained was 1.9586 (RLFB-SY), 6.1286 (RLFB-BR46), 49.2611 (ZRLFB-SY), and 181.4882 mg g-1 (RLFB-BR46). The result of the SBR operation showed that ZRLFB can potentially be applied as the core of aerobic granular sludge.
Collapse
Affiliation(s)
- Xinyuan Yang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China
| | - Wenfang Zhu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, China.
| | - Fangyuan Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, China
| | - Ya Yu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China
| | - Haifeng Zhuang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310000, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, China
| |
Collapse
|
37
|
Ding Z, Ge Y, Gowd SC, Singh E, Kumar V, Chaurasia D, Kumar V, Rajendran K, Bhargava PC, Wu P, Lin F, Harirchi S, Ashok Kumar V, Sirohi R, Sindhu R, Binod P, Taherzadeh MJ, Awasthi MK. Production of biochar from tropical fruit tree residues and ecofriendly applications - A review. BIORESOURCE TECHNOLOGY 2023; 376:128903. [PMID: 36931447 DOI: 10.1016/j.biortech.2023.128903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Environmental contamination is considered a major issue with the growing urbanization and industrialization. In this context, the scientific society is engaged in searching for a sustainable, safe, and eco-friendly solution. Sustainable materials such as biochar play an important role in environmental contamination. It has some specific properties such as micropores which increase the surface area to bind the pollutants. This review endeavors to analyze the potential of fruit wastes especially tropical fruit tree residues as potential candidates for producing highly efficient biochar materials. The review discusses various aspects of biochar production viz. pyrolysis, torrefaction, hydrothermal carbonization, and gasification. In addition, it discusses biochar use as an adsorbent, wastewater treatment, catalyst, energy storage, carbon sequestration and animal feed. The review put forward a critical discussion about key aspects of applying biochar to the environment.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Yu Ge
- School of Tropical Crops, Yunnan Agricultural University, Pu'er, Yunnan 665000, China
| | - Sarath C Gowd
- Department of Environmental Science & Engineering, School of Engineering and Sciences, SRM University - Andhra Pradesh, India
| | - Ekta Singh
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Deepshi Chaurasia
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Vikas Kumar
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Karthik Rajendran
- Department of Environmental Science & Engineering, School of Engineering and Sciences, SRM University - Andhra Pradesh, India
| | - Preeti Chaturvedi Bhargava
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Peicong Wu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Fei Lin
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Veeramuthu Ashok Kumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies Dehradun, 248001 Uttarakhand, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
38
|
Chen L, Mi B, He J, Li Y, Zhou Z, Wu F. Functionalized biochars with highly-efficient malachite green adsorption property produced from banana peels via microwave-assisted pyrolysis. BIORESOURCE TECHNOLOGY 2023; 376:128840. [PMID: 36906238 DOI: 10.1016/j.biortech.2023.128840] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, functionalized banana peel biochar (BPB) was prepared by microwave-assisted pyrolysis for the first time to investigate its adsorption to malachite green (MG) dye. Adsorption experiments showed that the maximum adsorption capacity of BPB500 and BPB900 to malachite green reached 1790.30 and 2297.83 mg·g-1 within 120 min. The adsorption behaviour was well-fitted by the pseudo-second-order kinetic model and Langmuir isotherm model, and ΔG0 < 0, ΔH0 > 0, indicated that the adsorption process was endothermic and spontaneous, dominated by chemisorption. The adsorption mechanism of MG dye on BPB included hydrophobic interaction, hydrogen bonding, π-π interaction, n-π interaction, and ion exchange. Meanwhile, through regeneration tests, simulated wastewater treatment experiments, and cost calculations, it was found that BPB has great potential for practical applications. This work demonstrated that microwave-assisted pyrolysis is a viable low-cost approach for producing excellent sorbents from biomass, and banana peel is a promising feedstock to prepare biochar for dye removal.
Collapse
Affiliation(s)
- Long Chen
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, College of Agronomy, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Baobin Mi
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, College of Agronomy, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China
| | - Jiangnan He
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, College of Agronomy, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuchen Li
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, College of Agronomy, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, College of Agronomy, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, College of Agronomy, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
39
|
Catalytic Degradation of Ciprofloxacin in Aqueous Solution by Peroxymonosulfate Activated with a Magnetic CuFe2O4@Biochar Composite. Int J Mol Sci 2023; 24:ijms24065702. [PMID: 36982776 PMCID: PMC10051636 DOI: 10.3390/ijms24065702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
A magnetic copper ferrite and biochar composite (CuFe2O4@BC) catalyst was prepared by an improved sol-gel calcination method and initially used for the removal of antibiotics ciprofloxacin (CIP) by activated peroxymonosulfate (PMS). Using CuFe2O4@BC as the activator, 97.8% CIP removal efficiency could be achieved in 30 min. After a continuous degradation cycle, CuFe2O4@BC catalyst still exhibited great stability and repeatability and could also be quickly recovered by an external magnetic field. Meanwhile, the CuFe2O4@BC/PMS system presented good stability for metal ion leaching, which was far less than the leaching of metal ions in the CuFe2O4/PMS system. Moreover, the effects of various influencing factors, such as initial solution pH, activator loading, PMS dosage, reaction temperature, humic acid (HA), and the inorganic anions were explored. The quenching experiments and the electron paramagnetic resonance (EPR) analysis manifested that hydroxyl radical (•OH), sulfate radical (SO4•−), superoxide radical (O2•−), and singlet oxygen (1O2) were generated in the CuFe2O4@BC/PMS system, while 1O2 and O2•− are mainly involved in the degradation process. The synergistic effect between CuFe2O4 and BC enhanced the structural stability and electrical conductivity of the material, which promoted the bonding between the catalyst and PMS, resulting in the enhanced catalytic activity of CuFe2O4@BC. This indicates that CuFe2O4@BC activating PMS is a promising remediation technique for CIP-contaminated water.
Collapse
|
40
|
Liu X, Yin H, Liu H, Cai Y, Qi X, Dang Z. Multicomponent adsorption of heavy metals onto biogenic hydroxyapatite: Surface functional groups and inorganic mineral facilitating stable adsorption of Pb(Ⅱ). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130167. [PMID: 36270188 DOI: 10.1016/j.jhazmat.2022.130167] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Due to the coexistence of various heavy metals in the contaminated environment, it is essential to comprehensively study the multicomponent adsorption of heavy metals in order to tackle these combined pollutants. Herein, the adsorption processes of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by biogenic hydroxyapatite (BHAp) were investigated in single and multicomponent systems. The maximum adsorption capacity for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by BHAp in single system reached 311.16, 82.05 and 92.54 mg g-1, respectively, while adsorption capacity for Cu(Ⅱ) and Cd(Ⅱ) in multicomponent system decreased more obviously than that of Pb(Ⅱ). Furthermore, the stability of Cu(Ⅱ) and Cd(Ⅱ) adsorbed on BHAp was indeed influenced in multicomponent system. By means of the characterization analysis, it was found that ion exchange was more instrumental in the adsorption processes of Cu(Ⅱ) and Cd(Ⅱ) in single system than in multicomponent system. Significantly, it was observed that the proportion of generally stable Pb(II) adsorbed on BHAp exceeded 95% in both single and multicomponent systems. This result might be due to the in-site growth of stable crystals of PbxCa10-x(PO4)6(OH)2, which was synergistically induced by surface functional groups and inorganic mineral of BHAp, and was unaffected by the coexistence of Cu(Ⅱ) and Cd(Ⅱ).
Collapse
Affiliation(s)
- Xiaofei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Hang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
41
|
Na4P2O7-Modified Biochar Derived from Sewage Sludge: Effective Cu(II)-Adsorption Removal from Aqueous Solution. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/8217910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of industrialization, the amount of copper-containing wastewater is increasing, thereby posing a threat to the aquatic ecological environment and human health. Sludge biochar has received extensive concern in recent years due to its advantages of low cost and sustainability for the treatment of heavy-metal-containing wastewater. However, the heavy-metal-adsorption capacity of sludge biochar is limited. This study prepared a sodium pyrophosphate- (Na4P2O7-) modified municipal sludge-based biochar (SP-SBC) and evaluated its adsorption performance for Cu(II). Results showed that SP-SBC had higher yield, ash content, pH, Na and P content, and surface roughness than original sewage sludge biochar (SBC). The Cu(II)-adsorption capacity of SP-SBC was 4.55 times than that of SBC at room temperature. For Cu(II) adsorption by SP-SBC, the kinetics and isotherms conformed to the pseudo-second-order model and the Langmuir–Freundlich model, respectively. The maximum adsorption capacity of SP-SBC was 38.49 mg·g−1 at 35°C. Cu(II) adsorption by SP-SBC primarily involved ion exchange, electrostatic attraction, and precipitation. The desired adsorption performance for Cu(II) in the fixed-bed column experiment indicated that SP-SBC can be reused and had good application potential to treat copper-containing wastewater. Overall, this study provided a desirable sorbent (SP-SBC) for Cu(II) removal, as well as a new simple chemical-modification method for SBC to enhance Cu(II)-adsorption capacity.
Collapse
|
42
|
Ultra-high adsorption of CR from aqueous solution using LDHs decorated magnetic hydrochar: Selectivity and Anti-interference exploration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
43
|
Hasan IMA, Salman HMA, Hafez OM. Ficus-mediated green synthesis of manganese oxide nanoparticles for adsorptive removal of malachite green from surface water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28144-28161. [PMID: 36394816 PMCID: PMC9995432 DOI: 10.1007/s11356-022-24199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The extract of ficus leaves was used to prepare manganese (IV) oxide nanoparticles (MnO2 NPs) for the first time. Several different analytical techniques were used to characterize the prepared MnO2 NPs. MnO2 has spherical crystals that are ~ 7 nm on average in size and have 149.68 m2/g of surface area and 0.91 cm3/g of total pore volume. Malachite green (MG) dye was then taken out of the water by adsorption using MnO2 NPs. Optimization of various adsorption parameters resulted in 188.68-277.78 mg/g maximum adsorption capacities at 298-328 K tested temperatures and 99.6% removal of 50 mg/L MG within 90 min using MnO2 dose of 0.01 g at pH 10 and 298 K. The results were tested using pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich, and Liquid film kinetic models as well as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. The most likely models to describe the adsorption process at 298 K are pseudo-second-order kinetics (R2 = 0.997) with a rate constant of 4 × 10-4 g/(mg.min) and Langmuir isotherm (R2 = 0.973). Additionally, the positive values of enthalpy change (3.91-67.81 kJ/mol) and the negative values of Gibb's free energy (- 3.38 to - 19.7 kJ/mol) indicate that the process is endothermic, spontaneous, and thermodynamically feasible. MnO2 NPs sustained their adsorption efficiency at 90.4% after 5 sorption cycles. MnO2 appears to be more selective for MG in studies examining the adsorption of various cationic dyes. Lately, the biosynthesized MnO2 NPs can be utilized to remove MG from aqueous solutions effectively.
Collapse
Affiliation(s)
| | - Hassan M A Salman
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Olfat M Hafez
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
44
|
Amino-functionalization of lignocellulosic biopolymer to be used as a green and sustainable adsorbent for anionic contaminant removal. Int J Biol Macromol 2023; 227:1271-1281. [PMID: 36464187 DOI: 10.1016/j.ijbiomac.2022.11.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
In this work, natural biopolymer stemming from lignocellulosic peanut hull biomass was used as a green and low-cost adsorbent to eliminate anionic Congo red (CR) and Cr(VI) ions from aqueous sample. In order to enhance the removal performance, the lignocellulosic biopolymer was subjected to amino-modification by the graft copolymerization of (3-acrylamidopropyl) trimethylammonium chloride and N, N'-methylenebisacrylamide. The property of the prepared amino-functionalized biopolymer (AFB) was examined through FTIR, TG, SEM, particle size analysis, zeta potential determination and XPS. The adsorption efficacy of AFB for CR and Cr(VI) was tested at different pH, contact time and initial concentration. The kinetic, isotherm and thermodynamics investigations revealed that the uptakes of CR and Cr(VI) were the combination processes of chemical and physical interactions, and both endothermic in nature. The AFB exhibited good reusability without significant loss in adsorption capacity after five consecutive cycles. Mechanistic analysis indicated that the quaternary ammonium groups in AFB contributed a lot to the binding of anionic compounds through electrostatic attraction. In addition, n-π and hydrogen bonding while reduction and coordination were also responsible for the removal of CR and Cr(VI), respectively. The present study provides a favorable strategy for the removal of anionic contaminates in water by using green and sustainable lignocellulosic wastes.
Collapse
|
45
|
Bhapkar A, Prasad R, Jaspal D, Shirolkar M, Gheisari K, Bhame S. Visible light driven photocatalytic degradation of methylene blue by ZnO nanostructures synthesized by glycine nitrate auto combustion route. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Jha S, Gaur R, Shahabuddin S, Tyagi I. Biochar as Sustainable Alternative and Green Adsorbent for the Remediation of Noxious Pollutants: A Comprehensive Review. TOXICS 2023; 11:toxics11020117. [PMID: 36850992 PMCID: PMC9960059 DOI: 10.3390/toxics11020117] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 05/24/2023]
Abstract
The current water crisis necessitates the development of new materials for wastewater treatment. A variety of nanomaterials are continuously being investigated for their potential as adsorbents for environmental remediation. Researchers intend to develop a low-cost, simple, and sustainable material that can cater to removal of pollutants. Biochar derived from biowaste is a potential candidate for the existing problem of water pollution. The review focuses on the various aspects of biochar, such as its sources, preparation methods, mechanism, applications for wastewater treatment, and its regeneration. Compared with other adsorbents, biochar is considered as an environmentally friendly, sustainable, and cost-effective substitute for waste management, climate protection, soil improvement, wastewater treatment, etc. The special properties of biochar such as porosity, surface area, surface charge, and functional groups can be easily modified by various chemical methods, resulting in improved adsorption properties. Therefore, in view of the increasing environmental pollution and the problems encountered by researchers in treating pollutants, biochar is of great importance. This review also highlights the challenges and prospective areas that can be explored and studied in more detail in the future.
Collapse
Affiliation(s)
- Stuti Jha
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, Gujarat, India
| | - Rama Gaur
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, Gujarat, India
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, Gujarat, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Ministry of Environment, Forests and Climate Change, Kolkata 700053, West Bengal, India
| |
Collapse
|
47
|
Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar. Processes (Basel) 2022. [DOI: 10.3390/pr10122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To solve the water pollution problem caused by methylene blue (MB), areca residue biochar (ARB) was prepared by pyrolysis at 600 °C, and modified areca residue biochar (M-ARB) was obtained by modifying ARB with 1.5 mol/L NaOH, and they were utilized to adsorb and eliminate MB from water. The structural characteristics of ARB and M-ARB were examined, and the main influencing factors and adsorption mechanism of MB adsorption process were investigated. The outcomes demonstrated an increase in M-ARB’s specific surface area and total pore volume of 66.67% and 79.61%, respectively, compared with ARB, and the pore structure was more abundant, and the content of oxygen element was also significantly increased. When the reaction temperature was 25 °C, starting pH of the mixture was 10, the initial MB concentration was 50 mg/L, the ARB and M-ARB dosages were 0.07 g/L and 0.04 g/L, respectively, the adsorption equilibrium was achieved at about 210 min, and the elimination rate for MB exceeded 94%. The adsorption behaviors of ARB and M-ARB on MB were more in line with the Langmuir isotherm model (R2 > 0.95) and the quasi-secondary kinetic model (R2 > 0.97), which was characterized by single-molecule layer chemisorption. The highest amount of MB that may theoretically be absorbed by M-ARB in water ranging from 136.81 to 152.72 mg/g was 74.99–76.59% higher than that of ARB. The adsorption process was a spontaneous heat absorption reaction driven by entropy increase, and the adsorption mechanism mainly involved electrostatic gravitational force, pore filling, hydrogen bonding, and π–π bonding, which was a complex process containing multiple mechanisms of action. NaOH modification can make the ARB have more perfect surface properties and more functional group structures that can participate in the adsorption reaction, which can be used as an advantageous adsorption material for MB removal in water.
Collapse
|
48
|
Haider FU, Wang X, Zulfiqar U, Farooq M, Hussain S, Mehmood T, Naveed M, Li Y, Liqun C, Saeed Q, Ahmad I, Mustafa A. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114322. [PMID: 36455351 DOI: 10.1016/j.ecoenv.2022.114322] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
49
|
Kumar A, Upadhyay SN, Mishra PK, Mondal MK. Multivariable modeling, optimization and experimental study of Cr(VI) removal from aqueous solution using peanut shell biochar. ENVIRONMENTAL RESEARCH 2022; 215:114287. [PMID: 36087774 DOI: 10.1016/j.envres.2022.114287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Peanut shell biomass was selected and utilized to produce biochar through pyrolysis under N2 atmosphere at 923 K. After studying various effects of experimental parameters and by statistical modeling and optimization by RSM using Box-Benken design, optimized conditions of pH 2.0 ± 0.1, temperature 303 K, and adsorbent dose used of 2.5 g L-1 were obtained giving almost 99.99% removal for Cr(VI) from the solution. FESEM, FTIR, XRD, XPS, EDX, elemental mapping, and pHzpc were used for the evaluation of the surface characteristics of peanut shell biochar (PSB). Studies revealed C-O, C-H, CO, and O-H functional groups' presence with the help of FTIR, majorly in control of adsorption mechanism and the EDX confirmed the presence of Cr(VI) onto peanut shell biochar (PSB). Further adsorption mechanism for Cr(VI) adsorption followed the pseudo-second-order rate with adsorption capacity of 29.38 mg g-1 given by the Langmuir isotherm. The thermodynamic study confirmed the exothermic and spontaneous nature of the process for Cr(VI) adsorption onto PSB. The adsorption mechanism showed electrostatic attraction, reduction, and complexation mainly responsible for Cr(VI) adsorption by PSB. Thus, PSB effectively removes Cr(VI) is confirmed by the present study.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - S N Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Monoj Kumar Mondal
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
50
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Boosting highly capture of trace tetracycline with a novel water-resistant and magnetic (ZIF-8)-on-(Cu-BTC@Fe3O4) composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|