1
|
Ren Y, Liu C, Luo J, Deng X, Zheng D, Shao J, Xu Z, Zhang N, Xiong W, Liu H, Li R, Miao Y, Zhang R, Shen Q, Xun W. Substrate preference triggers metabolic patterns of indigenous microbiome during initial composting stages. BIORESOURCE TECHNOLOGY 2025; 419:132034. [PMID: 39761730 DOI: 10.1016/j.biortech.2024.132034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages. Indigenous synthetic communities exhibit substrate-specific adaptations, increasing compost temperatures by 2 %-10 %, microbial abundance by 44 %-233 %, and microbial activity by 26 %-60 %. Key dissolved substrates, such as choline and succinic acid in straw compost, and phloretin and uric acid in manure compost, drive these microbial preferences. These findings highlight how substrate-specific microbiomes can be engineered to enhance microbial activity, accelerate temperature rise, and extend the thermophilic phase, providing a targeted framework to improve composting efficiency and tailor strategies to different organic waste types.
Collapse
Affiliation(s)
- Yi Ren
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiayu Luo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Daoyue Zheng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
2
|
Feng B, Chen J, Wang C, Wang P, You G, Lin J, Gao H. Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137020. [PMID: 39733752 DOI: 10.1016/j.jhazmat.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Junkai Lin
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
3
|
Sun B, Bai Z, Li R, Song M, Zhang J, Wang J, Zhuang X. Efficient elimination of antibiotic resistome in livestock manure by semi-permeable membrane covered hyperthermophilic composting. BIORESOURCE TECHNOLOGY 2024; 407:131134. [PMID: 39038713 DOI: 10.1016/j.biortech.2024.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Livestock manure is a hotspot for antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and an important contributor to antibiotic resistance in non-clinical settings. This study investigated the effectiveness and potential mechanisms of a novel composting technology, semi-permeable membrane covered hyperthermophilic composting (smHTC), in removal of ARGs and MGEs in chicken manure. Results showed that smHTC was more efficient in removal of ARGs and MGEs (92% and 93%) compared to conventional thermophilic composting (cTC) (76% and 92%). The efficient removal in smHTC is attributed to direct or indirect negative effects caused by the high temperature, including reducing the involvement of bio-available heavy metals (HMs) in co-selection processes of antibiotic resistance, decreasing the bacterial abundance and diversity, suppressing the horizontal gene transfer and killing potential ARGs hosts. Overall, smHTC can efficiently remove the resistome in livestock manure, reducing the risk to crops and humans from ARGs residues in compost products.
Collapse
Affiliation(s)
- Bo Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Innovation Institute, Xiongan New Area, Hebei 071000, China.
| | - Rui Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manjiao Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 102699, China.
| |
Collapse
|
4
|
Ai C, Cui P, Liu C, Wu J, Xu Y, Liang X, Yang QE, Tang X, Zhou S, Liao H, Friman VP. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl Environ Microbiol 2024; 90:e0069524. [PMID: 39078126 PMCID: PMC11337816 DOI: 10.1128/aem.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024] Open
Abstract
While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.
Collapse
Affiliation(s)
- Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiawei Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Qiu-e Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
5
|
Wang G, Gao X, Cai Y, Li G, Ma R, Yuan J. Dynamics of antibiotic resistance genes during manure composting: Reduction in herbivores manure and accumulation in carnivores. ENVIRONMENT INTERNATIONAL 2024; 190:108900. [PMID: 39053194 DOI: 10.1016/j.envint.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The elevated levels of antibiotic resistance genes (ARGs) in livestock manure represent a significant threat to both the environment and human health. Composting has been recognized as an effective strategy to mitigate the abundance of ARGs in manure. However, notable rebounds in ARGs abundance have been observed during this process. This study explored the changes in ARGs abundance and the underlying influencing factors during the composting of carnivore (chicken and pig) and herbivore (sheep and cow) manures, along with mushroom residues. The findings revealed that the total relative abundance of ARGs increased by 6.96 and 10.94 folds in chicken and pig manure composts, respectively, whereas it decreased by a remarkable 91.72% and 98.37% in sheep and cow manure composts. Nitrogen content emerged as the primary physicochemical factors governing the abundance of ARGs in chicken and pig manure composts. Conversely, carbon content played a pivotal role in determining ARGs abundance in chicken and pig manure composts. Furthermore, the presence of dominant hosts, such as Corynebacterium, Bacillus, and Clostridium, along with emerging bacteria like Thermobifida, Saccharomonospora, and Actinomadura, contributed significantly to the enrichment of total ARGs, including tetG, tetO, tetX, and sul2, in chicken and pig manure composts. The coexistence of these genes with mobile genetic elements and a plethora of host bacteria, coupled with their high abundance, renders them particularly high-risk ARGs. On the other hand, the observed decrease in the abundance of total ARGs in sheep and cow manure composts can be attributed to the decline in the population of host bacteria, specifically Atopostipes, Psychrobacter, and Corynebacterium. Collectively, these results provide crucial insights into the management of ARGs risks and offer essential theoretical support for enhancing the safe utilization of organic fertilizer in agriculture.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yu Cai
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Wei H, You A, Wang D, Zhang A. Plant-derived essential oil contributes to the reduction of multidrug resistance genes in the sludge composting process. ENVIRONMENT INTERNATIONAL 2024; 190:108854. [PMID: 38950496 DOI: 10.1016/j.envint.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Multidrug-resistant bacteria and multi-resistance genes in sludge have become a serious issue for public health. It is imperative to develop feasible and environmentally friendly methods of sludge composting to alleviate multidrug resistance genes. Plant-derived essential oil is an effective natural and eco-friendly antibacterial, which has great utilization in inhibiting pathogens in the agricultural industry. Nevertheless, the application of plant-derived essential oil to control pathogenic bacteria and antibiotic resistance in composting has not been reported. This study conducted a composting system by adding plant-derived essential oil i.e., oregano essential oil (OEO), to sludge composting. The findings indicated that multidrug resistance genes and priority pathogens (critical, high, and medium categories) were reduced by (17.0 ± 2.2)% and (26.5 ± 3.0)% in the addition of OEO (OH treatment) compared to control. Besides, the OH treatment changed the bacterial community and enhanced the gene sequences related to carbohydrate metabolism in compost microorganisms. Mantel test and variation partitioning analysis revealed that the target virulence factors (VFs), target mobile genetic elements (MGEs), and priority pathogens were the most important factors affecting multidrug resistance in composting. The OH treatment could significantly inhibit the target VFs, target MGEs, and priority pathogens, which were helpful for the suppression and elimination of multidrug resistance genes. These findings provide new insights into the regulation of multidrug resistance genes during sludge composting and a novel way to diminish the environmental risk of antibiotic resistance.
Collapse
Affiliation(s)
- Huawei Wei
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China.
| | - Anbo You
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China.
| |
Collapse
|
7
|
Du X, Xing R, Lin Y, Chen M, Chen Z, Zhou S. Reduced greenhouse gas emission by reactive oxygen species during composting. BIORESOURCE TECHNOLOGY 2024; 404:130910. [PMID: 38821423 DOI: 10.1016/j.biortech.2024.130910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Reactive oxygen species (ROS) is produced in the composting, which effectively promote organic matter transformation and humification process, but the effect of ROS on greenhouse gas emissions in this process has not been understood. This study proposed and validated that ROS can effectively reduce greenhouse gas emissions intheprocessofcomposting. Compared with ordinary thermophilic composting (oTC), thermophilic composting (imTC) that was supplemented by iron mineral increased ROS production by 1.38 times, and significantly reduced greenhouse gas emissions by 45.12%. Microbial community analysis showed no significant difference in the abundance of microbes involved in greenhouse gas production between oTC and imTC. Further correlation analysis proved that ROS played a crucial role in influencing greenhouse gas emissions throughout the composting process, especially in the initial phase. These findings provide new strategies for managing livestock and poultry manure to mitigate climate change.
Collapse
Affiliation(s)
- Xian Du
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ying Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mingli Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Zhang B, Fu Y, Wang F, Jin P, Xu P, Li H, Xu X, Shen C. The risk of viable but non-culturable (VBNC) enterococci and antibiotic resistance transmission during simulated municipal sludge composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:1-9. [PMID: 38703551 DOI: 10.1016/j.wasman.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Sludge composting is a sludge resource utilization method that can reduce pollutants, such as pathogens. Enterococci are regarded as more reliable and conservative indicators of pathogen inactivation than fecal coliforms, which are typically used as indicators of fecal pollution. Non-spore pathogenic bacteria may enter a viable but non-culturable (VBNC) state during composting, leading to residual risk. The VBNC status of bacteria is related to their survival during composting. However, the survival mechanisms of enterococci during sludge composting remain unclear. Therefore, this study aimed to investigate the VBNC state of enterococci in different phases of simulated sludge composting and the fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) during the composting process. This study is expected to provide a basis for subsequent exploration of possible methods to completely inactivate enterococci and reduce ARGs during sludge composting. Culturable enterococci were reduced in the thermophilic phase of sludge composting, but the proportion of VBNC subpopulation increased. It was reported for the first time that most VBNC enterococci were killed by extending the cooling phase of sludge compost, and by prolonging the cooling phase the types of ARG were reduced. However, there was a certain quantity (approximately 104/g dry weight) of culturable and VBNC enterococci in the compost products. In addition, MGEs and ARGs exist in both bacteria and compost products, leading to the risk of spreading antibiotic-resistant bacteria and antibiotic resistance when sludge compost products are used.
Collapse
Affiliation(s)
- Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Fu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pingri Jin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Beijing Enterprises Water Group (CHINA) Investment Limited, Beijing 100102, China
| | - Pengcheng Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoming Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
9
|
Wang F, Pan T, Fu D, Fotidis IA, Moulogianni C, Yan Y, Singh RP. Pilot-scale membrane-covered composting of food waste: Initial moisture, mature compost addition, aeration time and rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171797. [PMID: 38513870 DOI: 10.1016/j.scitotenv.2024.171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ting Pan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ioannis A Fotidis
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Department of Environment, Ionian University, 29100 Zakynthos, Greece
| | | | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | | |
Collapse
|
10
|
Zhang Y, Deng F, Su X, Su H, Li D. Semi-permeable membrane-covered high-temperature aerobic composting: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120741. [PMID: 38522273 DOI: 10.1016/j.jenvman.2024.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.
Collapse
Affiliation(s)
- Yanzhao Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiongshuang Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haifeng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
11
|
Wang J, Jiao M, Zhan X, Hu C, Zhang Z. Humification and fungal community succession during pig manure composting: Membrane covering and mature compost addition. BIORESOURCE TECHNOLOGY 2024; 393:130030. [PMID: 37977497 DOI: 10.1016/j.biortech.2023.130030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The objective of this study was to elucidate the combined effect of a semi-permeable membrane (M) and mature compost (MC) on humification and fungal community succession in pig manure composting. Compared with the control, the concentrations of humic substances (HSs) increased by 44.54 % (M + 15 % MC) and 43.90 % (M). During the thermophilic phase, Aspergillus (67.26 %) was the dominant genus in the M + 15 % MC treatment. Membrane covering increased the relative abundance (RA) of other phyla (except for Ascomycetes and Basidiomycetes) on the 14th day and Basidiomycetes on the 80th day in M treatment. Humic acid, HSs were positively correlated with the RA of genera Myceliophthora, Kernia, and Mycothermus. Myceliophthora was the key genus in the M + 15 % MC treatment on the 80th day. The results showed that 15 % MC addition under membrane covering optimizes the quality of composting products.
Collapse
Affiliation(s)
- Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
12
|
Yin S, Gao L, Fan X, Gao S, Zhou X, Jin W, He Z, Wang Q. Performance of sewage sludge treatment for the removal of antibiotic resistance genes: Status and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167862. [PMID: 37865259 DOI: 10.1016/j.scitotenv.2023.167862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Wastewater treatment plants (WWTPs) receive wastewater containing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), which are predominant contributors to environmental pollution in water and soil. Of these sources, sludge is a more significant contributor than effluent. Knowing how sludge treatment affects the fate of ARGs is vital for managing the risk of these genes in both human and natural environments. This review therefore discusses the sources and transmission of ARGs in the environment and highlights the risks of ARGs in sludge. The effects of co-existing constituents (heavy metals, microplastics, etc.) on sludge and ARGs during treatment are collated to highlight the difficulty of treating sludge with complex constituents in ARGs. The effects of various sludge treatment methods on the abundances of ARGs in sludge and in soil from land application of treated sludge are discussed, pointing out that the choice of sludge treatment method should take into account various potential factors, such as soil and soil biology in subsequent land application. This review offers significant insights and explores the abundances of ARGs throughout the process of sludge treatment and disposal. Unintentional addition of antibiotic residues, heavy metals, microplastics and organic matter in sludge could significantly increase the abundance and reduce the removal efficiency of ARGs during treatment, which undoubtedly adds a barrier to the removal of ARGs from sludge treatment. The complexity of the sludge composition and the diversities of ARGs have led to the fact that no effective sludge treatment method has so far been able to completely eliminate the ecological risk of ARGs. In order to reduce risks resulting by transmission of ARGs, technical and management measures need to be implemented.
Collapse
Affiliation(s)
- Shiyu Yin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Le Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiumin Fan
- Shenzhen Ecological and Environmental Intelligent Management and Control Center, Shenzhen 518034, China
| | - Shuhong Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
13
|
Zhu N, Long Y, Kan Z, Zhu Y, Jin H. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment. BIORESOURCE TECHNOLOGY 2023; 387:129672. [PMID: 37586429 DOI: 10.1016/j.biortech.2023.129672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Animal manure is a primary repository of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This work explored the efficiency of ARGs and MGEs removal during pig manure composting after thermal pretreatment (TPC) and the underlying mechanisms. TPC resulted in a decrease of 94.7% and 92.3% in the relative abundance of ARGs and MGEs which was 48.9% and 76.6% lower than control, respectively. Network analysis indicated that reductions of ARGs and MGEs in TPC were relevant to decrease in the amount and abundance of bacterial hosts. Furthermore, total ARGs abundance in TPC was correlated with that of intI1 and Tn916/1545 (P < 0.001). Redundancy analysis supported a leading role of MGEs in ARGs dynamics in TPC. Reduction of MGEs rather than bacterial hosts contributed mainly to ARGs removal in TPC, as revealed by structural equation modeling. In conclusion, TPC was an effective method to treat animal manure containing ARGs.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujiao Long
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zexin Kan
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyun Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162772. [PMID: 36933744 DOI: 10.1016/j.scitotenv.2023.162772] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Song Y, Li R, Wang Y, Hou Y, Chen G, Yan B, Cheng Z, Mu L. Co-composting of cattle manure and wheat straw covered with a semipermeable membrane: organic matter humification and bacterial community succession. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32776-32789. [PMID: 36471148 DOI: 10.1007/s11356-022-24544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Semipermeable membrane-covered composting is one of the most commonly used composting technologies in northeast China, but its humification process is not yet well understood. This study employed a semipermeable membrane-covered composting system to detect the organic matter humification and bacterial community evolution patterns over the course of agricultural waste composting. Variations in physicochemical properties, humus composition, and bacterial communities were studied. The results suggested that membrane covering improved humic acid (HA) content and degree of polymerization (DP) by 9.28% and 21.57%, respectively. Bacterial analysis indicated that membrane covering reduced bacterial richness and increased bacterial diversity. Membrane covering mainly affected the bacterial community structure during thermophilic period of composting. RDA analysis revealed that membrane covering may affect the bacterial community by altering the physicochemical properties such as moisture content. Correlation analysis showed that membrane covering activated the dominant genera Saccharomonospora and Planktosalinus to participate in the formation of HS and HA in composting, thus promoting HS formation and its structural complexity. Membrane covering significantly reduced microbial metabolism during the cooling phase of composting.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruiyi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yu Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
- School of Science, Tibet University, Lhasa, 850012, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
16
|
Sun H, Xing R, Ye X, Yin K, Zhang Y, Chen Z, Zhou S. Reactive oxygen species accelerate humification process during iron mineral-amended sludge composting. BIORESOURCE TECHNOLOGY 2023; 370:128544. [PMID: 36584721 DOI: 10.1016/j.biortech.2022.128544] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The production of hydroxyl radicals (OH) has been documented during composting. However, the effect of OH on composting efficiency remains unclear. Here, iron mineral supplemented thermophilic composting (imTC) is proposed and demonstrated for enhancing OH production and accelerating the maturation of composting. The results indicated that the maximum OH production of imTC was 1922.74 μmol·kg-1, which increased by 1.39 times than that of ordinary thermophilic composting (oTC). Importantly, the increase of OH could greatly enhance organic matter degradation and humic substances formation during imTC, resulting in shorting the maturity time by 25 %. Enrichment of laccase-producing bacteria resulted in higher laccase activity (31.85 U·g-1) in imTC compared with oTC (23.82 U·g-1), which may have contributed to the higher level of humification in imTC treatment. This work, for the first time, proposes a feasible strategy for improving composting efficiency through the regulation of OH production during aerobic composting.
Collapse
Affiliation(s)
- Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keke Yin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159497. [PMID: 36257427 DOI: 10.1016/j.scitotenv.2022.159497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a major global public health concern. Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of its high levels of resistance to many antibiotics, particularly those considered as last-resort antibiotics, such as carbapenems. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antibiotic resistance genes (ARGs), including the mobilization of ARGs within and between species. We conducted an in-depth, systematic investigation of the occurrence and dissemination of ARGs associated with MGEs in A. baumannii. We focused on a cross-sectoral approach that integrates humans, animals, and environments. Four strategies for the prevention of ARG dissemination through MGEs have been discussed: prevention of airborne transmission of ARGs using semi-permeable membrane-covered thermophilic composting; application of nanomaterials for the removal of emerging pollutants (antibiotics) and pathogens; tertiary treatment technologies for controlling ARGs and MGEs in wastewater treatment plants; and the removal of ARGs by advanced oxidation techniques. This review contemplates and evaluates the major drivers involved in the transmission of ARGs from the cross-sectoral perspective and ARG-transfer prevention processes.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
18
|
Zhu P, Wu Y, Ru Y, Hou Y, San KW, Yu X, Guo W. Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120270. [PMID: 36162559 DOI: 10.1016/j.envpol.2022.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yuning Ru
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yihang Hou
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Kim Woon San
- Tounong Organic Fertilizer Co. Ltd., Qingdao, 266733, PR China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
19
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Xing R, Yang X, Sun H, Ye X, Liao H, Qin S, Chen Z, Zhou S. Extensive production and evolution of free radicals during composting. BIORESOURCE TECHNOLOGY 2022; 359:127491. [PMID: 35724905 DOI: 10.1016/j.biortech.2022.127491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The production of free radicals has been widely documented in natural systems, where they play an important role in most organic matter and contaminants transformation. Here, the production and evolution of free radicals were systematically investigated during composting. Results indicated that multiple reactive oxygen species and environmentally persistent free radicals (G-factor 2.003-2.004) were generated with dynamic changes during composting. The ·OH yield fluctuated significantly with a maximum content of 365.7-1,262.3 μmol/kg at the thermophilic phase of composting, which was closely correlated with the changes of Fe (II) (Pearson's r = 0.928-0.932) and the electron-donating capacity of humus (Pearson's r = 0.958-0.896) during composting. Further investigation suggested that microorganisms driven iron/humus redox conversion could contribute to the production and dynamic changes of free radical during composting. These findings highlight the abiotic processes involving free radicals, and provide a new perspective for humification and contaminants removal during composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinggui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Qiu T, Huo L, Guo Y, Gao M, Wang G, Hu D, Li C, Wang Z, Liu G, Wang X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. ENVIRONMENTAL MICROBIOME 2022; 17:42. [PMID: 35953830 PMCID: PMC9367140 DOI: 10.1186/s40793-022-00437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Antibiotics and antibiotic resistance genes (ARGs) used in intensive animal farming threaten human health worldwide; however, the common resistome, ARG mobility, and ARG host composition in different animal manures and mixed manure composts remain unclear. In the present study, metagenomic assembly and cross-sample mapping were used to comprehensively decipher the common resistome and its potential mobility and hosts in animal manure and composts. RESULTS In total, 201 ARGs were shared among different animal (layer, broiler, swine, beef cow, and dairy cow) manures and accounted for 86-99% of total relative abundance of ARGs. Except for multidrug, sulfonamide, and trimethoprim resistance genes, the relative abundance of most ARGs in composts was significantly lower than that in animal manure. Procrustes analysis indicated that antibiotic residues positively correlated with ARG composition in manure but not in composts. More than 75% ARG subtypes were shared between plasmids and chromosomes in our samples. Transposases could play a pivotal role in mediating the transfer of ARGs between different phyla in animal manure and composting. Cross-sample mapping to contigs carrying ARGs showed that the hosts of common resistome in manure had preference on animal species, and the dominant genus of ARG host shifted from Enterococcus in manure to Pseudomonas in composts. The broad host range and linking with diverse mobile genetic elements (MGEs) were two key factors for ARGs, such as sul1 and aadA, which could survive during composting. The multidrug resistance genes represented the dominant ARGs in pathogenic antibiotic-resistant bacteria in manure but could be effectively controlled by composting. CONCLUSIONS Our experiments revealed the common resistome in animal manure, classified and relative quantified the ARG hosts, and assessed the mobility of ARGs. Composting can mitigate ARGs in animal manure by altering the bacterial hosts; however, persistent ARGs can escape from the removal because of diverse host range and MGEs. Our findings provide an overall background for source tracking, risk assessment, and control of livestock ARGs.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Linhe Huo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Dong Hu
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Cheng Li
- Institute of Quality Standard and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
22
|
Luo L, Deng D, Zhao X, Hu H, Li X, Gu J, He Y, Yang G, Deng O, Xiao Y. The Dual Roles of Nano Zero-Valent Iron and Zinc Oxide in Antibiotics Resistance Genes (ARGs) SPREAD in Sediment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159405. [PMID: 35954758 PMCID: PMC9368363 DOI: 10.3390/ijerph19159405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticles (NPs) are widely used and ubiquitous in the environment, but the consequences of their release into the environment on antibiotics resistance genes (ARGs), microbial abundance, and community, are largely unknown. Therefore, this study examined the effect of nano zero-valent iron (nZVI) and zinc oxide (nZnO) on tetracycline resistance genes (tet-ARGs) and class 1 integron (intI1) in sediment under laboratory incubation. The coexistence of NPs and tetracycline (TC) on tet-ARGs/intI1 was also investigated. It was found that nZVI and nZnO promoted tet-ARGs/intI1 abundance in sediment without TC but reduced the inducing effect of TC on tet-ARGs/intI1 in sediment overlaid with TC solution. Without TC, nZVI, intI1, and the bacterial community could directly promote tet-ARGs spread in nZVI sediment, while intI1 and bacterial abundance were the most directly important reasons for tet-ARGs spread in nZnO sediment. With TC, nZVI and bacterial community could reduce tet-ARGs abundance in nZVI sediment, while nZnO and bacterial community could directly promote tet-ARGs in nZnO sediment. Finally, these findings provided valuable information for understanding the role of NPs in promoting and reducing ARGs in the environment.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
- Correspondence: (L.L.); (Y.X.)
| | - Dahang Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Hairong Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Xinyi Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Jidong Gu
- Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China;
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China;
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
- Correspondence: (L.L.); (Y.X.)
| |
Collapse
|
23
|
Tong Z, Liu F, Tian Y, Zhang J, Liu H, Duan J, Bi W, Qin J, Xu S. Effect of biochar on antibiotics and antibiotic resistance genes variations during co-composting of pig manure and corn straw. Front Bioeng Biotechnol 2022; 10:960476. [PMID: 35979171 PMCID: PMC9377313 DOI: 10.3389/fbioe.2022.960476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Pig manure is a reservoir of antibiotics and antibiotic resistance genes (ARGs). The effect of biochar on the variations in physicochemical properties, bacterial communities, antibiotics, ARGs, and mobile genetic elements (MGEs) of compost product during co-composting of pig manure and corn straw have been investigated in this study. Compared with the control treatment (CK), biochar addition accelerated the increase in pile temperature and prolonged the high temperature period (>55°C) for 2 days. Under biochar influence, organic matter degradation, NH4+-N conversion and NO3−-N production was accelerated, and dissolved total organic carbon (DOC) and dissolved total nitrogen (DTN) utilization by microorganisms were enhanced. Biochar addition altered the microbial community and promoted the vital activity of Actinobacteria in the later composting stage. The antibiotics removal efficiency (except danofloxacin and enrofloxacin) was accelerated in the early composting stage (1–14 days) by biochar addition, the pile temperature had a positive effect on antibiotics removal, and the total antibiotics removal efficiency in CK and CK+Biochar treatments was 69.58% and 78.67% at the end of the composting process, respectively. The absolute abundance of most of the ARGs in the CK+Biochar treatment was lower than that in the CK treatment during composting, and the ARGs removal mainly occurred in the early (1–14 days) and later (28–50 days) stages. Biochar addition reduced the absolute abundance of MGEs (intI1, intI2) in the compost product, and most of the ARGs had a significant positive correlation with MGEs. Network analysis and redundancy analysis showed that ARGs and MGEs occurred in various host bacteria (Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Halanaerobiaeota), and that DTN and NH4+-N are the main factors regulating the changes in bacterial communities, antibiotics, ARGs, and MGEs during composting. Moreover, MGEs contributed the most to the variation in ARGs. In summary, biochar addition during composting accelerated antibiotics removal and inhibited accumulation and transmission of ARGs. The results of this study could provide theoretical and technical support for biochar application for antibiotics and ARGs removal during livestock and poultry manure composting.
Collapse
Affiliation(s)
- Zhenye Tong
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Fenwu Liu,
| | - Yu Tian
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Jingzhi Zhang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Hui Liu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Jiaze Duan
- Nongshengyuan Family Farm, Jinzhong, China
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Junmei Qin
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
24
|
Zhao C, Li C, Wang X, Cao Z, Gao C, Su S, Xue B, Wang S, Qiu Z, Wang J, Shen Z. Monitoring and evaluation of antibiotic resistance genes in three rivers in northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44148-44161. [PMID: 35122641 DOI: 10.1007/s11356-022-18555-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) have become an important public health problem. In this study, we used metagenomic sequencing to analyze the composition of ARGs in selected original habitats of northeast China, comprising three different rivers and riverbank soils of the Heilongjiang River, Tumen River, and Yalu River. Twenty types of ARG were detected in the water samples. The major ARGs were multidrug resistance genes, at approximately 0.5 copies/16S rRNA, accounting for 57.5% of the total ARG abundance. The abundance of multidrug, bacitracin, beta-lactam, macrolide-lincosamide-streptogramin, sulfonamide, fosmidomycin, and polymyxin resistance genes covered 96.9% of the total ARG abundance. No significant ecological boundary of ARG diversity was observed. The compositions of the resistance genes in the three rivers were very similar to each other, and 92.1% of ARG subtypes were shared by all water samples. Except for vancomycin resistance genes, almost all ARGs in riverbank soils were detected in the river water. About 31.05% ARGs were carried by Pseudomonas. Opportunistic pathogenic bacteria carrying resistance genes were mainly related to diarrhea and respiratory infections. Multidrug and beta-lactam resistance genes correlated positively with mobile genetic elements (MGEs), indicating a potential risk of diffusion. The composition of ARGs in three different rivers was similar, indicating that climate plays an important role in ARG occurrence. ARG subtypes in river water were almost completely the same as those in riverbank soil. ARGs had no significant geographical distribution characteristics. Many ARGs were carried by human pathogenic bacteria related to diarrhea and respiratory infections, such as Pseudomonas aeruginosa and Aeromonas caviae. In general, our results provide a valuable dataset of river water ARG distribution in northeast China. The related ecological and geographical distribution characteristics should be further explored.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaoming Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhuosong Cao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Chao Gao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Sicong Su
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
25
|
Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S. Free radicals accelerate in situ ageing of microplastics during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128405. [PMID: 35236030 DOI: 10.1016/j.jhazmat.2022.128405] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 μmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
27
|
Cai M, Wang Z, Gu H, Dong H, Zhang X, Cui N, Zhou L, Chen G, Zou G. Occurrence and temporal variation of antibiotics and antibiotic resistance genes in hospital inpatient department wastewater: Impacts of daily schedule of inpatients and wastewater treatment process. CHEMOSPHERE 2022; 292:133405. [PMID: 34958787 DOI: 10.1016/j.chemosphere.2021.133405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The temporal variation of antibiotics and ARGs as well as the impact of daily schedule of inpatients on their regular occurrence in hospital wastewater (HWW) were previously obscure. In this study, the wastewater of the inpatient department pre- and posttreatment (hydraulic retention time = 8 h) was collected intraday and intraweek. The absolute concentrations of antibiotics/metabolites and ARGs in HWW were analyzed to investigate the temporal variations of their occurrence levels. Fluoroquinolones were the predominant drugs used in the inpatient department (681.30-881.66 ng/mL in the effluent) and the main contaminant in the outlet of the disinfection pond (538.29-671.47 ng/mL). Diurnal variations peaked at 19:00 for most antibiotics and ARGs, while the maximum of them occurred on weekends. Aminoglycoside resistance genes (AMRGs, 21.6-23000 copies/mL) and β-lactam resistance genes (BLGRs, 1.24-8500 copies/mL) were the dominant ARGs before and after treatment processing, respectively (p < 0.05). The significant removal rates (>50%) of most antibiotics and ARGs, as well as the integrase gene intI1 and 16S rRNA gene, were found to be subjected solely to the chloride disinfection process, suggesting the necessity of the self-contained wastewater treatment process. Meanwhile, the statistically significant correlation among antibiotics, ARGs, intI1, and 16S rRNA (p < 0.05) demonstrated that the risk of selective pressure, horizontal transfer and vertical propagation of ARGs in the effluent of the hospital was warranted. Principal component analysis (PCA) showed that the daily schedule of inpatients and wastewater treatment processes could markedly induce fluctuations in antibiotic and ARG levels in HWW, indicating that they should be considered an impact factor for environmental monitoring. This study demonstrated for the first time the temporal variations in the abundance and dissemination of antibiotics and ARGs in a semiclosed zone and provided new insight into the development of assessments of the associated ecological risk and human health.
Collapse
Affiliation(s)
- Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210024, PR China.
| | - Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China
| | - Hui Dong
- Agro-food Standards and Testing Technology Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China
| | - Xu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Naxin Cui
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Li Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
28
|
Werner KA, Schneider D, Poehlein A, Diederich N, Feyen L, Axtmann K, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Front Microbiol 2022; 13:826071. [PMID: 35432262 PMCID: PMC9009411 DOI: 10.3389/fmicb.2022.826071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLSB group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.
Collapse
Affiliation(s)
- Katharina A. Werner
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Nina Diederich
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lara Feyen
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Katharina Axtmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—Umweltforschungszentrum Leipzig (UFZ), Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
- *Correspondence: Elisabeth Grohmann,
| |
Collapse
|
29
|
Sun B, Li Y, Song M, Li R, Li Z, Zhuang G, Bai Z, Zhuang X. Molecular characterization of the composition and transformation of dissolved organic matter during the semi-permeable membrane covered hyperthermophilic composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127496. [PMID: 34896709 DOI: 10.1016/j.jhazmat.2021.127496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Current knowledge of dissolved organic matter (DOM) in semi-permeable membrane-covered thermophilic compost (smHTC) is limited. Therefore, this study provided a comprehensive characterization of composition and transformation of DOM in smHTC using multiple spectroscopic methods and ultrahigh resolution mass spectrometry. The results showed that the values of SUVA280, SUVA254, A240-400 (0.042, 0.048, 34.193) in smHTC were higher than those of conventional thermophilic composting (cTC) (0.030, 0.037, 18.348), and the increment of PV,n in smHTC were 2.4 times higher than that of cTC. These results suggested that smHTC accelerated the humification process by promoting the degradation of labile DOM and the production of humus-like substances. Mass spectrometry further confirmed that the DOM of smHTC possessed higher degree of aromatization and humification, based on the lower H/C (1.14), higher aromaticity index (0.34) and double bond equivalence (10.36). Additionally, smHTC increased the proportion of carboxyl-rich, unsaturated and aromatic compounds, and simultaneously improved the degradation of aliphatic/proteins, lipids, carbohydrates, along with even some refractory substances such as CHO subcategory (24.1%), especially lignin-like structures (14.8%). This investigation provided molecular insights into the composition and transformations of DOM in smHTC, and extended the current molecular mechanisms of humification in composting.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuang Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Manjiao Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Yin Z, Zhou X, Kang J, Pei F, Du R, Ye Z, Ding H, Ping W, Ge J. Intraspecific and interspecific quorum sensing of bacterial community affects the fate of antibiotic resistance genes during chicken manure composting under penicillin G stress. BIORESOURCE TECHNOLOGY 2022; 347:126372. [PMID: 34801721 DOI: 10.1016/j.biortech.2021.126372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of penicillin G (PENG) on the fate of bacterial communities and β-lactamase antibiotic resistance genes (ARGs) during chicken manure composting were assessed, to illustrate the roles of PENG in ARGs behavior. The results showed that the total absolute abundances of 9 ARGs and 4 mobile genetic elements (MGEs) was significantly increased by PENG (P < 0.05). Dozens of potential hosts for ARGs were predominantly affiliated with Firmicutes, Proteobacteria, and Actinobacteria. Meanwhile, the higher concentration of PENG significantly increased the abundance of luxI and luxS in quorum sensing (QS) (P < 0.05), which enhanced the frequency of inter/intraspecific gene "communication." Redundancy analysis and structural equation modeling further revealed that QS had a strong regulatory role in horizontal gene transfer of ARGs mediated via MGEs. These results provide new insight into the mechanism of ARGs propagation in aerobic composting modified by PENG.
Collapse
Affiliation(s)
- Ziliang Yin
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Xiaohang Zhou
- College of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157000, China
| | - Jie Kang
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Fangyi Pei
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Renpeng Du
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Zeming Ye
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Hao Ding
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Wenxiang Ping
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Jingping Ge
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
| |
Collapse
|
31
|
Werner KA, Poehlein A, Schneider D, El-Said K, Wöhrmann M, Linkert I, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Thermophilic Composting of Human Feces: Development of Bacterial Community Composition and Antimicrobial Resistance Gene Pool. Front Microbiol 2022; 13:824834. [PMID: 35250940 PMCID: PMC8895236 DOI: 10.3389/fmicb.2022.824834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
In times of climate change, practicing sustainable, climate-resilient, and productive agriculture is of primordial importance. Compost from different resources, now treated as wastes, could be one form of sustainable fertilizer creating a resilience of agriculture to the adverse effects of climate change. However, the safety of the produced compost regarding human pathogens, pharmaceuticals, and related resistance genes must be considered. We have assessed the effect of thermophilic composting of dry toilet contents, green cuttings, and straw, with and without biochar, on fecal indicators, the bacterial community, and antibiotic resistance genes (ARGs). Mature compost samples were analyzed regarding fecal indicator organisms, revealing low levels of Escherichia coli that are in line with German regulations for fertilizers. However, one finding of Salmonella spp. exceeded the threshold value. Cultivation of bacteria from the mature compost resulted in 200 isolates with 36.5% of biosafety level 2 (BSL-2) species. The majority is known as opportunistic pathogens that likewise occur in different environments. A quarter of the isolated BSL-2 strains exhibited multiresistance to different classes of antibiotics. Molecular analysis of total DNA before and after composting revealed changes in bacterial community composition and ARGs. 16S rRNA gene amplicon sequencing showed a decline of the two most abundant phyla Proteobacteria (start: 36-48%, end: 27-30%) and Firmicutes (start: 13-33%, end: 12-16%), whereas the abundance of Chloroflexi, Gemmatimonadetes, and Planctomycetes rose. Groups containing many human pathogens decreased during composting, like Pseudomonadales, Bacilli with Bacillus spp., or Staphylococcaceae and Enterococcaceae. Gene-specific PCR showed a decline in the number of detectable ARGs from 15 before to 8 after composting. The results reveal the importance of sufficiently high temperatures lasting for a sufficiently long period during the thermophilic phase of composting for reducing Salmonella to levels matching the criteria for fertilizers. However, most severe human pathogens that were targeted by isolation conditions were not detected. Cultivation-independent analyses also indicated a decline in bacterial orders comprising many pathogenic bacteria, as well as a decrease in ARGs. In summary, thermophilic composting could be a promising approach for producing hygienically safe organic fertilizer from ecological sanitation.
Collapse
Affiliation(s)
- Katharina A. Werner
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Khaliel El-Said
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Michael Wöhrmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Isabel Linkert
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| |
Collapse
|
32
|
Greff B, Szigeti J, Nagy Á, Lakatos E, Varga L. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114088. [PMID: 34798585 DOI: 10.1016/j.jenvman.2021.114088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The rapidly developing agro-industry generates huge amounts of lignocellulosic crop residues and animal manure worldwide. Although co-composting represents a promising and cost-effective method to treat various agricultural wastes simultaneously, poor composting efficiency prolongs total completion time and deteriorates the quality of the final product. However, supplementation of the feedstock with beneficial microorganisms can mitigate these negative effects by facilitating the decomposition of recalcitrant materials, enhancing microbial enzyme activity, and promoting maturation and humus formation during the composting process. Nevertheless, the influence of microbial inoculation may vary greatly depending on certain factors, such as start-up parameters, structure of the feedstock, time of inoculation, and composition of the microbial cultures used. The purpose of this contribution is to review recent developments in co-composting procedures involving different lignocellulosic crop residues and farm animal manure combined with microbial inoculation strategies. To evaluate the effectiveness of microbial additives, the results reported in a large number of peer-reviewed articles were compared in terms of composting process parameters (i.e., temperature, microbial activity, total organic carbon and nitrogen contents, decomposition rate of lignocellulose fractions, etc.) and compost characteristics (humification, C/N ratio, macronutrient content, and germination index). Most studies confirmed that the use of microbial amendments in the co-composting process is an efficient way to facilitate biodegradation and improve the sustainable management of agricultural wastes. Overall, this review paper provides insights into various inoculation techniques, identifies the limitations and current challenges of co-composting, especially with microbial inoculation, and recommends areas for further research in this field.
Collapse
Affiliation(s)
- Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary.
| | - Jenő Szigeti
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Ágnes Nagy
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - László Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| |
Collapse
|
33
|
Hoang SA, Bolan N, Madhubashani AMP, Vithanage M, Perera V, Wijesekara H, Wang H, Srivastava P, Kirkham MB, Mickan BS, Rinklebe J, Siddique KHM. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118564. [PMID: 34838711 DOI: 10.1016/j.envpol.2021.118564] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.
Collapse
Affiliation(s)
- Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - A M P Madhubashani
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Vishma Perera
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia, 5064, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
34
|
Lu Y, Meng X, Wang J, Yorgan Dieketseng M, Xiao Y, Yan S, Chen Y, Zhou L, Zheng G. Bioleaching rather than chemical conditioning using Fe[III]/CaO or polyacrylamide mitigates antibiotic resistance in sludge composting via pre-removing antibiotic resistance genes and limiting horizontal gene transfer. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:89-99. [PMID: 34749181 DOI: 10.1016/j.wasman.2021.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Conditioning can drastically improve the dewaterability of sewage sludge and is widely practiced in most wastewater treatment plants (WWTPs). Sludge conditioning was also reported as a crucial step in sludge treatment to attenuate antibiotic resistance, but it remains unclear whether the attenuated antibiotic resistance by conditioning treatments would guarantee low abundance of antibiotic resistance genes (ARGs) in the compost products of municipal sewage sludge. Herein, the impacts of three conditioning treatments, including bioleaching and chemical conditioning using Fe[III]/CaO or polyacrylamide (PAM), on the abundances of 20 ARGs and 4 mobile genetic elements (MGEs) during conventional aerobic composting of dewatered sludge were investigated. It was found that the absolute and relative abundances of total ARGs in compost product of bioleached sludge accounted for only 13.8%-28.8% of that in compost products of un-conditioned, Fe[III]/CaO-conditioned, or PAM-conditioned sludges. Besides, bioleaching conditioning resulted in the lowest abundances of ARG subtypes and ARG-associated bacteria in the sludge compost product. The shift of ARG profiles in the bioleached sludge composting can be mainly ascribed to the ARG-associated bacteria, while the MGEs drove the ARG profiles during conventional composting of un-conditioned sludge and the two chemically conditioned sludge. Thus, bioleaching conditioning is superior to the chemical conditioning using Fe[III]/CaO or PAM in mitigating antibiotic resistance in sludge compost products, which was contributed by the pre-removal of ARGs prior to composting treatment and the potential limitation of ARGs transfer during conventional composting.
Collapse
Affiliation(s)
- Yi Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaoqing Meng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajun Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahlatsi Yorgan Dieketseng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Xiao
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Su Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Chen
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
35
|
Tang Z, Huang C, Tian Y, Xi B, Guo W, Tan W. Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118155. [PMID: 34530239 DOI: 10.1016/j.envpol.2021.118155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Collapse
Affiliation(s)
- Zhurui Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Wei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
36
|
Cai L, Sun J, Yao F, Yuan Y, Zeng M, Zhang Q, Xie Q, Wang S, Wang Z, Jiao X. Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148815. [PMID: 34247085 DOI: 10.1016/j.scitotenv.2021.148815] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.
Collapse
Affiliation(s)
- Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shiwei Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Zhen Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
37
|
Duan Y, Yang J, Guo Y, Wu X, Tian Y, Li H, Awasthi MK. Pollution control in biochar-driven clean composting: Emphasize on heavy metal passivation and gaseous emissions mitigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126635. [PMID: 34329093 DOI: 10.1016/j.jhazmat.2021.126635] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Present study was focus on the pollution control aspect of gaseous mitigation and heavy metal passivation as well as their associated bacterial communities driven by apple tree branch biochar (BB) during sheep manure composting. Six treatment was performed with distinct concentration of BB from 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% as T1 to T6. Compared with compost without additive, biochar-based composting recorded faster thermophilic process (4thd) and longer duration (12-14d), lower gaseous emission in terms of ammonia (5.37-10.29 g), nitrous oxide (0.12-0.47 g) and methane (4.38-30.29 g). Notably highest temperature (65.3 ℃) and active thermophilic duration (14d), minimized gaseous volatilization were detected in 10%BB composting. Aspect of non-degradability and enrichment-concentration properties of heavy metals, the total copper (Cu) and zinc (Zn) were increased (from initial 12.71-17.91 to final 16.36-29.36 mg/kg and 107.39-146.58-161.48-211.91 mg/kg). In view of available diethylene triamine pentacetic acid (DTPA) extractable form, DTPA-Cu and DTPA-Zn from 4.29 to 6.57 and 31.66-39.32 mg/kg decreased to 3.75-4.82 and 23.43-40.54 mg/kg, especially the maximized passivation rate of 46.95% and 56.27% were present in 10%BB composting. Additionally, bacterial diversity of biochar-based composting was increased (1817-2310 OTUs) than control (1686 OTUs) and dominant by Firmicutes (52.75%), Bacteroidetes (28.41%) and Actinobacteriota (13.98%). Validated 10% biochar-based composting is the optimal option for effectively control environmental pollution to obtain hygienic composting.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jianfeng Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yaru Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoping Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuli Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
38
|
Luo L, Wang G, Wang Z, Ma J, He Y, He J, Wang L, Liu Y, Xiao H, Xiao Y, Lan T, Yang H, Deng O. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147889. [PMID: 34134394 DOI: 10.1016/j.scitotenv.2021.147889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Excess sludge contains large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), posing a risk for human health. However, most current studies usually ignored their abundance and removal in excess sludge. Therefore, this study aimed to reduce ARGs/MGEs in sludge by Fenton process, and applied single-factor experiment (SFE) and response surface methodology (RSM) to optimize the Fenton reaction condition for higher removal rates of ARGs/MGEs. The results demonstrated that the removal rates of target genes by SFE optimized condition ranged from 10.91% to 66.86%, while the removal rates caused by RSM optimized condition were 48.02% - 76.36%, indicating RSM was a useful tool to improve the removal rates of ARGs in excess sludge. Additionally, the scanning electron microscope and cell apoptosis results suggested that the Fenton treatment altered the structure of sludge and reduced the numbers of normal cells, thus causing the reductions of target genes.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Guolan Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jianhua Ma
- Changning Agricultural and Rural Bureau, Changning 644300, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jinsong He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinling Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Yang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
39
|
Ezugworie FN, Igbokwe VC, Onwosi CO. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147191. [PMID: 33905939 DOI: 10.1016/j.scitotenv.2021.147191] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic residues together with non-antibiotic drugs and heavy metals act as a selective pressure for the spread of antibiotic-resistant microorganisms (ARMs), antibiotic-resistant genes (ARGs), and mobile genetic elements (MGEs) during composting of livestock manure. ARMs, ARGs and MGEs have become emerging contaminants since they are regularly implicated in the majority of compost produced from livestock manure. The prevalence of these contaminants in agricultural soil receiving compost has drawn huge attention globally due to the risks they pose to the total environment. Although a large body of literature exists on the application of composting methods in minimizing the relative abundance of these contaminants, there is a paucity of information on the robustness, limitations and opportunities and threats of various composting protocols currently deployed. To address this knowledge gap, the current review compiled literature on the origin and mechanisms of the proliferation of ARMs, ARGs, and MGEs during composting of livestock manure. The effectiveness of current composting protocols in the reduction or removal of emerging contaminants was evaluated. Furthermore, the potential environmental impacts and human health risks of these contaminants following land application of compost were also presented. Finally, we propose some strategic approaches for the reduction of ARGs and MGEs during composting of livestock manure.
Collapse
Affiliation(s)
- Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
40
|
Yang Y, Chen N, Sun L, Zhang Y, Wu Y, Wang Y, Liao X, Mi J. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125868. [PMID: 34492815 DOI: 10.1016/j.jhazmat.2021.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive studies on the effects of cold stress on antibiotic resistance genes (ARGs) in the intestines and feces remain scarce. In this study, pigs were selected as the animal model and divided into a normal temperature group and a 48-h short-term cold stress group. The ARG profiles in fecal, cecal content and cecal mucosa samples were analyzed. The results showed that the normalized abundance of ARGs in the cecal mucosa samples in the cold stress group was significantly higher than that in the normal temperature group, while the normalized ARG abundances in the fecal and cecal content samples were significantly lower than those in the normal temperature group (P < 0.05). The bacterial community composition (especially Firmicutes) was the major driver impacting the ARG profile and accounted for 32.2% of the variation in the ARG profile, followed by metabolites (especially creatinine and oxypurinol) and mobile genetic elements (MGEs) (especially plasmids and insertion elements). And it was found that creatinine and oxypurinol can reduce the abundance of ARGs and Firmicutes in the in vitro experiment. The results indicate that short-term cold stress can reduce the abundance of ARGs in the cecum and feces of pigs, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ningxue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Liao H, Bai Y, Liu C, Wen C, Yang Q, Chen Z, Banerjee S, Zhou S, Friman VP. Airborne and indigenous microbiomes co-drive the rebound of antibiotic resistome during compost storage. Environ Microbiol 2021; 23:7483-7496. [PMID: 34259375 DOI: 10.1111/1462-2920.15672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
Composting is widely used to reduce the abundance of antibiotic resistance genes (ARGs) in solid waste. While ARG dynamics have been extensively investigated during composting, the fate and abundance of residual ARGs during the storage remain unexplored. Here, we tested experimentally how ARG and mobile genetic element (MGE) abundances change during compost storage using metagenomics, quantitative PCR and direct culturing. We found that 43.8% of ARGs and 39.9% of MGEs quickly recovered already during the first week of storage. This rebound effect was mainly driven by the regrowth of indigenous, antibiotic-resistant bacteria that survived the composting. Bacterial transmission from the surrounding air had a much smaller effect, being most evident as MGE rebound during the later stages of storage. While hyperthermophilic composting was more efficient at reducing the relative abundance of ARGs and MGEs, relatively greater ARG rebound was observed during the storage of hyperthermophilic compost, exceeding the initial levels of untreated sewage sludge. Our study reveals that residual ARGs and MGEs left in the treated compost can quickly rebound during the storage via airborne introduction and regrowth of surviving bacteria, highlighting the need to develop better storage strategies to prevent the rebound of ARGs and MGEs after composting.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
42
|
Xing SC, Wu RT, Chen YX, Cheng ZW, Liu S, Yang YW, Liao XD. Elimination and analysis of mcr-1 and bla NDM-1 in different composting pile layers under semipermeable membrane composting with copper-contaminated poultry manure. BIORESOURCE TECHNOLOGY 2021; 332:125076. [PMID: 33819854 DOI: 10.1016/j.biortech.2021.125076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The mcr-1 and blaNDM-1 elimination in copper contamination poultry manure was evaluated by semi-permeable membrane composting. The results showed the mcr-1 in control and high copper groups could not be removed, but mcr-1 decreased superlatively 80.1% in low copper treatment group. BlaNDM-1 was increased after composting, especially the copper addition groups, the results indicated that the relative abundance of mcr-1 and blaNDM-1 was obviously different in the different pile layers of copper treatment groups. Three mobile gene elements (MEGs) correlated both mcr-1 and blaNDM-1,copB correlated mcr-1, czcA and copA correlated both mcr-1 and blaNDM-1. The major phyla were Firmicutes, Bacteroidota, Actinobacteriota and Proteobacteria in all layers. The correlation analysis showed that the antibiotic resistance genes (ARGs) potential hosts could be influenced by copper form and physicochemical parameters. Semi-permeable membrane composting could decrease the abundance of major potential pathogens. Furthermore, the composting pile was not homogeneous by semi-permeable membrane composting.
Collapse
Affiliation(s)
- Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ying-Xi Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zeng-Wen Cheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yi-Wen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
43
|
Wang J, Gu J, Wang X, Song Z, Dai X, Guo H, Yu J, Zhao W, Lei L. Enhanced removal of antibiotic resistance genes and mobile genetic elements during swine manure composting inoculated with mature compost. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125135. [PMID: 33858100 DOI: 10.1016/j.jhazmat.2021.125135] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Livestock manure is a major source of antibiotic resistance genes (ARGs) that enter the environment. This study assessed the effects of inoculation with mature compost (MC) on the fates of ARGs and the bacterial community during swine manure composting. The results showed that MC prolonged the thermophilic period and promoted the decomposition of organic matter, which was due to the rapid growth and reproduction of thermophilic bacteria (Bacillus, Thermobifida, and Thermobacillus). MC significantly reduced the relative abundances of ARGs (1.02 logs) and mobile genetic elements (MGEs) (1.70 logs) after composting, especially sulfanilamide resistance genes. The total ARGs removal rate was 1.11 times higher in MC than the control. Redundancy analysis and structural equation modeling showed that horizontal gene transfer mediated by MGEs (ISCR1 and intI1) was the main direct factor related to the changes in ARGs during composting, whereas the C/N ratio and pH were the two most important indirect factors. Network analysis showed that members of Firmicutes comprising Romboutsia, Clostridisensu_stricto_1, and Terrisporobacter were the main bacterial hosts of ARGs and MGEs. MC reduced the risk of ARGs transmission by decreasing the abundances of bacterial hosts. Thus, MC is a promising strategy for reducing the proliferation risk of ARGs.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Lü H, Chen XH, Mo CH, Huang YH, He MY, Li YW, Feng NX, Katsoyiannis A, Cai QY. Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review. BIORESOURCE TECHNOLOGY 2021; 328:124847. [PMID: 33609883 DOI: 10.1016/j.biortech.2021.124847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge contains various classes of organic pollutants, limiting its land application. Sludge composting can effectively remove some organic pollutants. This review summarizesrecent researches on concentration changes and dissipation of different organic pollutants including persistent organic pollutants during sludge composting, and discusses their dissipation pathways and the current understanding on dissipation mechanism. Some organic pollutants like PAHs and phthalates were removed mainly through biodegradation or mineralization, and their dissipation percentages were higher than those of PCDD/Fs and PCBs. Nevertheless, some recalcitrant organic pollutants could be sequestrated in organic fractions of sludge mixtures, and their levels and ARG abundance even increased after sludge composting in some studies, posing potential risks for land application. This review demonstrated that microbial community and their corresponding degradation for organic pollutants were influenced by different pollutants, bulking agents, composting methods and processes. Further research perspectives on removing organic pollutants during sludge composting were highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min-Ying He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296, Tromsø, Norway
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
Jiang J, Wang Y, Yu D, Yao X, Han J, Cheng R, Cui H, Yan G, Zhang X, Zhu G. Garbage enzymes effectively regulated the succession of enzymatic activities and the bacterial community during sewage sludge composting. BIORESOURCE TECHNOLOGY 2021; 327:124792. [PMID: 33561791 DOI: 10.1016/j.biortech.2021.124792] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated nitrogen transformation, enzymatic activities and bacterial succession during sewage sludge composting with and without garbage enzymes (GE and CK, respectively). The results showed that GE addition significantly increased fluorescein diacetate hydrolase (FDA), cellulase, and nitrogenase activities during the composting process. GE addition reduced the cumulative NH3 emissions by 66.5%, increased the peak NH4-N content by 26.3% and increased the total nitrogen (TN) content of the end compost by 39.2% compared to CK. Microbiological analysis revealed that GE addition significantly increased the relative abundance of Firmicutes during the thermophilic and cooling phases relative to CK. The selected factors affected the bacterial community composition in the following order: NH4-N > TOC > FDA > TN > C/N. Network analysis also showed that the enzymes were secreted mainly by Bacillus and norank_f_Caldilineaceae in GE, while they were secreted primarily by norank_f_Methylococcaceae in CK during the composting process.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xing Yao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jin Han
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Ronghui Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Huilin Cui
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xin Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
46
|
Wu J, Shangguan H, Fu T, Chen J, Tang J, Zeng RJ, Ye W, Zhou S. Alternating magnetic field mitigates N 2O emission during the aerobic composting of chicken manure. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124329. [PMID: 33158658 DOI: 10.1016/j.jhazmat.2020.124329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) emission is an environmental problem related to composting. Recently, the electric field-assisted aerobic composting process has been found to be effective for enhancing compost maturity and mitigating N2O emission. However, the insertion of electrodes into the compost pile causes electrode erosion and inconvenience in practical operation. In this study, a novel alternating magnetic field-assisted aerobic composting (AMFAC) process was tested by applying an alternating magnetic field (AMF) to a conventional aerobic composting (CAC) process. The total N2O emission of the AMFAC process was reduced by 39.8% as compared with that of the CAC process. Furthermore, the results demonstrate that the AMF weakened the expressions of the amoA, narG, and nirS functional genes (the maximum reductions were 96%, 83.7%, and 95.5%, respectively), whereas it enhanced the expression of the nosZ functional gene by a maximum factor of 36.5 as compared with that in CAC. A correlation analysis revealed that the nitrification and denitrification processes for N2O emission were suppressed in AMFAC, the main source of N2O emission of which was denitrification. The findings imply that AMFAC is an effective strategy for the reduction of N2O emission during aerobic composting.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjie Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
47
|
Che J, Bai Y, Li X, Ye J, Liao H, Cui P, Yu Z, Zhou S. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124281. [PMID: 33097342 DOI: 10.1016/j.jhazmat.2020.124281] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 05/23/2023]
Abstract
This study explored the interactions between dissolved organic matter (DOM) composition and microbial community structure during an industrial-scale composting by Fourier transform ion cyclotron resonance mass spectrometry and 16S rRNA sequencing analysis. The results revealed that DOM from matured compost contained primarily lignins/carboxylic-rich alicyclic molecules (73.6%), the higher double bond equivalent (5.97) and aromaticity index (0.18), indicating that the molecular composition of DOM had changed substantially. Drastic changes in microbial community structure were also observed along with the DOM transformation process of composting. Network analysis further indicated that Caldicoprobacter, Bacillus, and Dechloromonas were associated with the most DOM subcategories. Caldicoprobacter could degrade carbohydrates, Bacillus accelerated the humification by transforming N-containing compounds, and Dechloromonas could degrade polycyclic aromatic hydrocarbons distributed in low O/C. These findings are helpful for understanding the molecular mechanisms of DOM transformation and humification of sludge composting.
Collapse
Affiliation(s)
- Jiangang Che
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
48
|
Sardar MF, Zhu C, Geng B, Ahmad HR, Song T, Li H. The fate of antibiotic resistance genes in cow manure composting: shaped by temperature-controlled composting stages. BIORESOURCE TECHNOLOGY 2021; 320:124403. [PMID: 33217693 DOI: 10.1016/j.biortech.2020.124403] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Current work for animal manure processing is not up to the required standards and hence are not supposed to reflect the actual performance in antibiotic resistance control. As a result, this study carried out temperature-controlled aerobic composting, with sulfamethoxazole (SMX) as a typical antibiotic. The results of four different treatments demonstrated that temperature, water content, C/N ratio, EC, and pH showed no significant (p > 0.05) difference. Antibiotic resistance genes (ARGs) significantly decreased in the initial 10 days of the thermophilic phase, but the abundance of sul1 and sul2 increased greatly after 30 days. Moreover, ARGs were closely related with each other during the late stages of composting. A noteworthy effect of composting properties, especially temperature on bacterial community, which then had a positive effect on ARGs abundances. These findings provided evidence that the standard composting was still insufficient to control antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changxiong Zhu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bing Geng
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Tingting Song
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|