1
|
Ullah H, Hassan SHA, Yang Q, Salama ES, Liu P, Li X. Dynamic interaction of antibiotic resistance between plant microbiome and organic fertilizers: sources, dissemination, and health risks. World J Microbiol Biotechnol 2024; 41:4. [PMID: 39690351 DOI: 10.1007/s11274-024-04214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Antibiotic resistance is a global health problem driven by the irrational use of antibiotics in different areas (such as agriculture, animal farming, and human healthcare). Sub-lethal concentrations of antibiotic residues impose selective pressure on environmental, plant-associated, and human microbiome leading to the emergence of antibiotic-resistant bacteria (ARB). This review summarizes all sources of antibiotic resistance in agricultural soils (including manure, sewage sludge, wastewater, hospitals/pharmaceutical industry, and bioinoculants). The factors (such as the physicochemical properties of soil, root exudates, concentration of antibiotic exposure, and heavy metals) that facilitate the transmission of resistance in plant microbiomes are discussed. Potential solutions for effective measures and control of antibiotic resistance in the environment are also hypothesized. Manure exhibits the highest antibiotics load, followed by hospital and municipal WW. Chlortetracycline, tetracycline, and sulfadiazine have the highest concentrations in the manure. Antibiotic resistance from organic fertilizers is transmitted to the plant microbiome via horizontal gene transfer (HGT). Plant microbiomes serve as transmission routes of ARB and ARGS to humans. The ingestion of ARB leads to human health risks (such as ineffectiveness of medication, increased morbidity, and mortality).
Collapse
Affiliation(s)
- Habib Ullah
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Sedky H A Hassan
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Muscat, Oman
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
2
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2024:1-15. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
3
|
Stromer BS, Woodbury BL, Williams CF, Spiehs MJ. Combined Treatment Methods for Removal of Antibiotics from Beef Wastewater. ACS OMEGA 2024; 9:48721-48726. [PMID: 39676941 PMCID: PMC11635675 DOI: 10.1021/acsomega.4c08114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Use of antibiotics is common practice in agriculture; however, they can be released into the environment, potentially causing antimicrobial resistance. Naturally mined diatomaceous earth with bentonite was tested as a remediation material for tylosin, chlortetracycline, and ceftiofur in wastewater from a beef cattle feedlot. Langmuir binding affinity in 10 mM sodium phosphate buffer at pH 6.7 was established prior to testing wastewater to determine binding potential. Chlortetracycline was found to have a binding affinity of 15.2 mM-1 and a binding capacity of 123 mg per g of diatomaceous earth while ceftiofur showed a much lower binding affinity and loading at 7.8 mM-1 and 3 mg per g of diatomaceous earth, respectively. From spiked wastewater, tylosin (50 μg mL-1, pH 8) and chlortetracycline (300 μg mL-1, pH 6) were removed (100 and 80%, respectively) when treated with 20 mg of diatomaceous earth while ceftiofur (300 μg mL-1, pH 8) remained in solution. When the spiked wastewater was flocculated with aluminum sulfate, a change in pH from 8 to 4 was observed, and chlortetracycline was removed from the wastewater; tylosin and ceftiofur remained in solution. When subsequently treated with diatomaceous earth, ceftiofur and tylosin were completely removed by diatomaceous earth from the flocculated wastewater.
Collapse
Affiliation(s)
- Bobbi S. Stromer
- U.S.
Meat Animal Research Center, Agricultural Research Service, United
States Department of Agriculture, Clay Center, Nebraska 68933, United States
| | - Bryan L. Woodbury
- U.S.
Meat Animal Research Center, Agricultural Research Service, United
States Department of Agriculture, Clay Center, Nebraska 68933, United States
| | - Clinton F. Williams
- U.S.
Arid Land Agricultural Research Center, Agricultural Research Service,
United States Department of Agriculture, Maricopa, Arizona 85138, United States
| | - Mindy J. Spiehs
- U.S.
Meat Animal Research Center, Agricultural Research Service, United
States Department of Agriculture, Clay Center, Nebraska 68933, United States
| |
Collapse
|
4
|
Li S, Wang R, Zhang Y, Zheng H, Dong X, Leong YK, Chang JS. Ecological risks of sulfonamides and quinolones degradation intermediates: Toxicity, microbial community, and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2024; 418:131967. [PMID: 39662843 DOI: 10.1016/j.biortech.2024.131967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH2 oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen. Toxic degradation intermediates were found to be enriched with bacteria in real water samples, including Aeromonas (SDZ-50, 9.61%), Acinetobacter (SMZ-50, 21.91%), unclassified Archaea (CIP-50, 19.32%), and Herbaspirillum (NOR-50, 17.36%). Meanwhile, the abundance of sulfonamide-associated antibiotic resistance genes (ARGs) (sul1 and sul2) and quinolone-associated ARGs (mfpA, emrA, and lfrA) significantly increased, with SMZ-50 and NOR-50 reaching 659.34 and 2009.98 RPKM, respectively. Correlation analysis revealed differences in host diversity and composition driven by the same classes of antibiotics and their intermediates.
Collapse
Affiliation(s)
- Shuo Li
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Ran Wang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yunfei Zhang
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Heshan Zheng
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xu Dong
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
5
|
Vergara-Luis I, Rutkoski CF, Urionabarrenetxea E, Almeida EA, Anakabe E, Olivares M, Soto M, Prieto A. Assessment of sulfamethoxazole and oxytetracycline uptake and transformation in Eisenia fetida earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176397. [PMID: 39304161 DOI: 10.1016/j.scitotenv.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The scientific community is becoming increasingly concerned about the recent detection of transformation products (TPs) of antimicrobials (AMs) and their presence in the food chain. There are growing concerns about the potential consequences on food safety and the proliferation of antimicrobial resistance. In this work, the transformation process of sulfamethoxazole (SMX) and oxytetracycline (OTC) in soil was thoroughly evaluated. For that purpose, soils were homogeneously contaminated at three concentration levels of SMX and OTC, independently, and samples were analysed after 7 and 14 days by Ultra High-Performance Liquid Chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS). The results have demonstrated a remarkable transformation, particularly noteworthy for SMX, as it exhibited an 89 % - 94 % decrease in concentration within the initial 7 days of the experiment. In addition, to assess whether terrestrial organisms would be able to accumulate the AMs, Eisenia fetida (E. fetida) earthworms were exposed to the above-mentioned concentration levels of AMs in soil. Both AMs were accumulated in the organisms after 14 days, but higher bioaccumulation factor values (BCF) were determined for SMX (0.52-17.84) compared to OTC (0.02-0.21) at all tested concentrations. The analyses were extended to search for TPs in earthworms and soils using a suspect screening approach. Concretely, by means of UHPLC-high resolution mass spectrometry (UHPLC-HRMS) three TPs were identified at 2a and 2b of confidence level. To the best of our knowledge, one SMX-TP and one OTC-TP were identified in earthworms and soil, respectively, for the first time in the present work. Earthworms did not experience weight loss or mortality in the presence of these AMs at levels found in the environment, but there was a decrease in riboflavin levels, which is linked to changes in the immune system. This study represents a significant advancement in understanding the impact of AMs in soil and their subsequent entry into the food chain. It also provides valuable insights into the potential effects of AMs and their TPs on organisms.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - E Anakabe
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
6
|
Adane WD, Chandravanshi BS, Tessema M. Hypersensitive electrochemical sensor based on thermally annealed gold-silver alloy nanoporous matrices for the simultaneous determination of sulfathiazole and sulfamethoxazole residues in food samples. Food Chem 2024; 457:140071. [PMID: 38905827 DOI: 10.1016/j.foodchem.2024.140071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
In this study, we have developed a novel, hypersensitive, and ultraselective electrochemical sensor containing thermally annealed gold-silver alloy nanoporous matrices (TA-Au-Ag-ANpM) integrated with f-MWCNTs-CPE and poly(l-serine) nanocomposites for the simultaneous detection of sulfathiazole (SFT) and sulfamethoxazole (SFM) residues in honey, beef, and egg samples. TA-Au-Ag-ANpM/f-MWCNTs-CPE/poly(l-serine) was characterized using an extensive array of analytical (UV-Vis, FT-IR, XRD, SEM, and EDX), and electrochemical (EIS, CV and SWV) techniques. It exhibited outstanding performance over a wide linear range, from 4.0 pM to 490 μM for SFT and 4.0 pM to 520 μM for SFM, with picomolar detection and quantification limits (0.53 pM and 1.75 pM for SFT, 0.41 pM and 1.35 pM for SFM, respectively). The sensor demonstrated exceptional repeatability, reproducibility, and anti-interference capability, with percentage recovery of 95.6-102.4% in food samples and RSD below 5%. Therefore, the developed sensor is an ideal tool to address the current antibiotic residue crisis in food sources.
Collapse
Affiliation(s)
| | | | - Merid Tessema
- Department of Chemistry, Addis Ababa University, P. O. Box, 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2024. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
8
|
Li C, Li A, Hui X, Wang A, Wang L, Chang S. Concentrations, probabilistic human and ecological risks assessment attribute to antibiotics residues in river water in China: Systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117022. [PMID: 39277999 DOI: 10.1016/j.ecoenv.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Antibiotics residues even low concentrations increases human health risk and ecological risk. The current study was conducted with the aims of meta-analysis concentrations of antibiotics in river water including amoxicillin (AMX), tetracyclines (TCN), sulfamethoxazole (SMX), ciprofloxacin (CIP), trimethoprim (TMP), azithromycin (AZM) and amoxicillin (AMX) and estimates human health and ecological risks. Search was performed in databases including Scopus, PubMed, Web of Science, Embase, Science direct, Cochrane, Science Direct, Google Scholar were used to retrieve scientific papers from January 1, 2004 to June 15, 2024. The concentration of antibiotics residues was meta-analyzed using random effects model in water river water based on type of antibiotics subgroups. Human health risk assessment from ingestion and dermal contact routs was estimated using target hazard quotient (THQ), total target hazard quotient (TTHQ), carcinogenic (CR) and ecological hazard quotient (EHQ) of antibiotics in river water was estimated using monte carlo simulations (MCS) model. Sixty-two papers on antibiotics in river water with 272 data-reports (n = 28,522) were included. The rank order of antibiotics residues in river water based on pooled concentration was SMX (66.086 ng/L) > CIP (26.005 ng/L) > TCN (17.888 ng/L) > TMP (6.591 ng/L) > AZM (2.077 ng/L) > AMX (0.029 ng/L). The overall pooled concentration of antibiotics residues in river water was 24.262 ng/L, 95 %CI (23.110-25.413 ng/L). TTHQ for adults and children due to antibiotics in water was 2.41E-3 and 2.36E-3, respectively. The sort of antibiotics based on their quota in TTHQ for adults and children was AMX > CIP > TMP > AZM > TCN > SMX. Total CR in adults and children was 2.41E-03 and 2.36E-03, respectively. The sort of antibiotics based on percentile 95 % EHQ was SMX (7.70E+03) > TCN (7.63E+01) > TMP (7.03E-03) > CIP (2.86E-03) > AMX (5.71E-04) and TEHQ values due to antibiotics in river water in China was equal to 7.78E+03. Current study suggests that conduct effective monitoring and water quality control plans to reduce concentration of antibiotics especially SMX, TCN, and CIP in river water of China.
Collapse
Affiliation(s)
- Chao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Anhui Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaomei Hui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Aihua Wang
- Shanxi Provincial Water Conservancy Development Center, Taiyuan, China
| | - Lu Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Sheng Chang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
9
|
Earl K, Sleight H, Ashfield N, Boxall ABA. Are pharmaceutical residues in crops a threat to human health? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:773-791. [PMID: 38959023 DOI: 10.1080/15287394.2024.2371418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The application of biosolids, manure, and slurry onto agricultural soils and the growing use of treated wastewater in agriculture result in the introduction of human and veterinary pharmaceuticals to the environment. Once in the soil environment, pharmaceuticals may be taken up by crops, resulting in consequent human exposure to pharmaceutical residues. The potential side effects of pharmaceuticals administered in human medicine are widely documented; however, far less is known regarding the risks that arise from incidental dietary exposure. The aim of this study was to evaluate human exposure to pharmaceutical residues in crops and assess the associated risk to health for a range of pharmaceuticals frequently detected in soils. Estimated concentrations of carbamazepine, oxytetracycline, sulfamethoxazole, trimethoprim, and tetracycline in soil were used in conjunction with plant uptake and crop consumption data to estimate daily exposures to each compound. Exposure concentrations were compared to Acceptable Daily Intakes (ADIs) to determine the level of risk. Generally, exposure concentrations were lower than ADIs. The exceptions were carbamazepine, and trimethoprim and sulfamethoxazole under conservative, worst-case scenarios, where a potential risk to human health was predicted. Future research therefore needs to prioritize investigation into the health effects following exposure to these compounds from consumption of contaminated crops.
Collapse
Affiliation(s)
- Kirsten Earl
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Nahum Ashfield
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Alistair B A Boxall
- Department of Environment and Geography, University of York, York, Heslington, UK
| |
Collapse
|
10
|
Akhter S, Bhat MA, Ahmed S, Siddiqui WA. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:387. [PMID: 39167284 DOI: 10.1007/s10653-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic residues are widely recognized as major pollutants in the aquatic environment on a global scale. As a significant class of pharmaceutically active compounds (PhACs), antibiotics are extensively consumed worldwide. The primary sources of these residues include hospitals, municipal sewage, household disposal, and manures from animal husbandry. These residues are frequently detected in surface and drinking waters, sewage effluents, soils, sediments, and various plant species in countries such as China, Japan, South Korea, Europe, the USA, Canada, and India. Antibiotics are used medicinally in both humans and animals, with a substantial portion excreted into the environment as metabolites in feces and urine. With the advancement of sensitive and quantitative analytical techniques, antibiotics are consistently reported in environmental matrices at concentrations ranging from nanograms per liter (ng/L) to milligrams per liter (mg/L). Agricultural soils, in particular, serve as a significant reservoir for antibiotic residues due to their strong particle adsorption capacities. Plants grown in soils irrigated with PhAC-contaminated water can uptake and accumulate these pharmaceuticals in various tissues, such as roots, leaves, and fruits, raising serious concerns regarding their consumption by humans and animals. There is an increasing need for research to understand the potential human health risks associated with the accumulation of antibiotics in the food chain. The present reviews aims to shed light on the rising environmental pharmaceutical contamination concerns, their sources in the environment, and the potential health risks as well as remediation effort. To discuss the main knowledge gaps and the future research that should be prioritized to achieve the risk assessment. We examined and summarized the available data and information on the antibiotic resistance associated with antibiotic residues in the environment. As studies have indicated that vegetables can absorb, transport, and accumulate antibiotics in edible parts when irrigated with wastewater that is either inadequately treated or untreated. These residues and their metabolites can enter the food chain, with their persistence, bioaccumulation, and toxicity contributing to drug resistance and adverse health effects in living organisms.
Collapse
Affiliation(s)
- Suriyah Akhter
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Sirajuddin Ahmed
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Weqar Ahmed Siddiqui
- Department of Applied Science and Humanities Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
11
|
Sayed K, Wan-Mohtar WHM, Mohd Hanafiah Z, Bithi AS, Md Isa N, Abd Manan TSB. Occurrence of pharmaceuticals in rice (Oryza sativa L.) plant through wastewater irrigation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104475. [PMID: 38777114 DOI: 10.1016/j.etap.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The present investigation focuses on the identification of popular PhACs in roots, leaves and rice grains, which are cultivated in soil irrigated with waters and wastewater. The present study reveals the presence of PhACs in rice grains from different brands which are available in the current market, which has thus motivated these experiments. The rice plants were cultivated in garden containers and irrigated with three different water sources. All PhAC compounds were recovered within an 89-111 % range using the extraction technique, reproducibility, and sensitivity (LOQ <25 µg/g). Further, PhAC compounds were identified using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS). Interestingly, several PhAC compounds were detected in rice grains, aligning with hypotheses and findings from published literature. A total of ten (10) PhACs were found in the root, leaf, and rice grain of the 20 popular PhACs that were targeted. The annual exposure and medical dose equivalent for individual PhACs was negligible. According to our knowledge, this study is the first to show the accumulation of several categories (cocktail) of PhACs in rice grains and show the approximate human health risk assessment by its consumption. The study's results provide valuable insights for researchers, policymakers, and agricultural practitioners working on sustainable agriculture and public health.
Collapse
Affiliation(s)
- Khalid Sayed
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia.
| | - Wan Hanna Melini Wan-Mohtar
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia; Environmental Management Centre, Institute of Climate Change, National University of Malaysia (Universiti Kebangsaan Malaysia), Selangor Darul Ehsan, Malaysia.
| | - Zarimah Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aziza Sultana Bithi
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia
| | - Nurulhikma Md Isa
- Faculty of Science & Technology, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman 21030, Malaysia
| |
Collapse
|
12
|
Ayala Cabana L, de Santiago-Martín A, Meffe R, López-Heras I, de Bustamante I. Pharmaceutical and Trace Metal Interaction within the Water-Soil-Plant Continuum: Implications for Human and Soil Health. TOXICS 2024; 12:457. [PMID: 39058109 PMCID: PMC11281246 DOI: 10.3390/toxics12070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Unplanned water reuse for crop irrigation may pose a global health risk due to the entry of contaminants into the food chain, undesirable effects on crop quality, and impact on soil health. In this study, we evaluate the impact derived from the co-occurrence of pharmaceuticals (Phs), trace metals (TMs), and one metalloid within the water-soil-plant continuum through bioassay experiments with Lactuca sativa L. Results indicate that the co-occurrence of Phs and TMs has synergistic or antagonistic effects, depending on target contaminants and environmental compartments. Complex formations between drugs and TMs may be responsible for enhanced sorption onto the soil of several Phs and TMs. Concerning plant uptake, the co-occurrence of Phs and TMs exerts antagonistic and synergistic effects on carbamazepine and diazepam, respectively. With the exception of Cd, drugs exert an antagonistic effect on TMs, negatively affecting their uptake and translocation. Drug contents in lettuce edible parts do not pose any threat to human health, but Cd levels exceed the maximum limits set for leafy vegetable foodstuffs. Under Ph-TM conditions, lettuce biomass decreases, and a nutrient imbalance is observed. Soil enzyme activity is stimulated under Ph-TM conditions (β-galactosidase) and Ph and Ph-TM conditions (urease and arylsulfatase), or it is not affected (phosphatase).
Collapse
Affiliation(s)
- Lesly Ayala Cabana
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, 28802 Madrid, Spain
| | - Ana de Santiago-Martín
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Raffaella Meffe
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Isabel López-Heras
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Irene de Bustamante
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, 28802 Madrid, Spain
| |
Collapse
|
13
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
14
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
15
|
Yang J, Xiang J, Goh SG, Xie Y, Nam OC, Gin KYH, He Y. Food waste compost and digestate as novel fertilizers: Impacts on antibiotic resistome and potential risks in a soil-vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171346. [PMID: 38438039 DOI: 10.1016/j.scitotenv.2024.171346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
As a novel agricultural practice, the reuse of food waste compost and digestate as fertilizers leads to a circular economy, but inevitably introduces bio-contaminants such as antibiotic resistance genes (ARGs) into the agroecosystem. Moreover, heavy metal and antibiotic contamination in farmland soil may exert selective pressures on the evolution of ARGs, posing threats to human health. This study investigated the fate, influencing mechanisms and potential risks of ARGs in a soil-vegetable system under different food waste fertilization and remediation treatments and soil contamination conditions. Application of food waste fertilizers significantly promoted the pakchoi growth, but resulted in the spread of ARGs from fertilizers to pakchoi. A total of 56, 80, 84, 41, and 73 ARGs, mobile genetic elements (MGEs) and metal resistance genes (MRGs) were detected in the rhizosphere soil (RS), bulk soil (BS), control soil (CS), root endophytes (RE), and leaf endophytes (LE), respectively. Notably, 7 genes were shared in the above five subgroups, indicating a specific soil-root-endophytes transmission pathway. 36 genes were uniquely detected in the LE, which may originate from airborne ARGs. The combined application of biochar and fertilizers reduced the occurrence of ARGs and MGEs to some extent, showing the remediation effect of biochar. The average abundance of ARGs in the RS, BS and CS was 3.15 × 10-2, 1.31 × 10-2 and 2.35 × 10-1, respectively. Rhizosphere effects may reduce the abundance of ARGs in soil. The distribution pattern of ARGs was influenced by the types of soil, endophyte and contaminant. MGEs is the key driver shaping ARGs dynamics. Soil properties and pakchoi growth status may affect the bacterial composition, and consequently regulate ARGs fate, while endophytic ARGs were more impacted by biotic factors. Moreover, the average daily doses of ARGs from pakchoi consumption is 107-109 copies/d/kg, and its potential health risks should be emphasized.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ong Choon Nam
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
16
|
Zhang L, Cui W, Zhai H, Cheng S, Wu W. Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes. CHEMOSPHERE 2024; 352:141459. [PMID: 38360417 DOI: 10.1016/j.chemosphere.2024.141459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.
Collapse
Affiliation(s)
- Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Wenjie Cui
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- Tianjin LVYIN Landscape & Ecology Construction Co. Ltd., Kaihua Road 20, Hi-Tech, Tianjin, 300110, China
| | - Wenling Wu
- China Construction Industrial Engineering and Technology Research Academy Co. Ltd., Beijing, 101399, China
| |
Collapse
|
17
|
Lange CN, Freire BM, Monteiro LR, de Jesus TA, Dos Reis RA, Nakazato G, Kobayashi RKT, Batista BL. Multiple potentially toxic elements in urban gardens from a Brazilian industrialized city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:36. [PMID: 38227076 DOI: 10.1007/s10653-023-01808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
Urban agriculture should be promoted as long as the food produced is safe for consumption. Located in the metropolitan region of São Paulo-Brazil, Santo André has intense industrial activities and more recently an increasing stimulus to urban gardening. One of the potential risks associated to this activity is the presence of potentially toxic elements (PTEs). In this study, the concentration of PTEs (As, Ba, Cd, Co, Cu, Cr, Ni, Mo, Pb, Sb, Se, V and Zn) was evaluated by soil (n = 85) and soil amendments (n = 19) in urban gardens from this municipality. Only barium was above regulatory limits in agricultural soil ranging from 20 to 112 mg kg-1. Geochemical indexes (Igeo, Cf and Er) revealed moderate to severe pollution for As, Ba, Cr, Cu, Pb Se and Zn, especialy in Capuava petrochemical complex gardens. A multivariate statistical approach discriminated Capuava gardens from the others and correlated As, Cr and V as main factors of pollution. However, carcinogenic and non-carcinogenic risks were below the acceptable range for regulatory purposes of 10-6-10-4 for adults. Soil amendments were identified as a possible source of contamination for Ba, Zn and Pb which ranged from 37 to 4137 mg kg-1, 20 to 701 mg kg-1 and 0.7 to 73 mg kg-1, respectively. The results also indicated the presence of six pathogenic bacteria in these amendments. Besides that, the occurrence of antimicrobial resistance for Shigella, Enterobacter and Citrobacter isolates suggests that soil management practices improvement is necessary.
Collapse
Affiliation(s)
- Camila Neves Lange
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil.
| | - Bruna Moreira Freire
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Lucilena Rebelo Monteiro
- Centro de Química e Meio Ambiente, Ipen/CNEN-SP - Instituto de Pesquisas Energéticas e Nucleares/Comissão Nacional de Energia Nuclear, São Paulo, SP, Brazil
| | - Tatiane Araújo de Jesus
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Roberta Albino Dos Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia Cid PR 445 Km 380, Campus Universitário, Londrina, PR, 86055-990, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia Cid PR 445 Km 380, Campus Universitário, Londrina, PR, 86055-990, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| |
Collapse
|
18
|
Yévenes K, Ibáñez MJ, Pokrant E, Flores A, Maturana M, Maddaleno A, Cornejo J. A Suitable HPLC-MS/MS Methodology for the Detection of Oxytetracycline, Enrofloxacin, and Sulfachloropyridazine Residues in Lettuce Plants. Foods 2024; 13:153. [PMID: 38201182 PMCID: PMC10779216 DOI: 10.3390/foods13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Oxytetracycline (OTC), enrofloxacin (EFX), and sulfachloropyridazine (SCP) are critically important antimicrobials (AMs) in both human and veterinary medicine, where they are widely used in farm animals. Lettuce has become a matrix of choice for studying the presence of residues of these AMs in plants, as the concentrations of residues detected in lettuce can range from ng to mg. While several analytical methodologies have been developed for the purpose of detecting AMs in lettuce, these currently do not detect both the parent compound and its active metabolites or epimers, such as in the case of ciprofloxacin (CFX) and 4-epi-oxitetracycline (4-epi-OTC), which also pose a risk to public health and the environment due to their AM activity. In light of this situation, this work proposes an analytical method that was developed specifically to allow for the detection of OTC, 4-epi-OTC, EFX, CFX, and SCP in a lettuce matrix. This method uses acetonitrile, methanol, 0.5% formic acid, and McIlvaine-EDTA buffer as extraction solvents, and dispersive solid-phase extraction (dSPE) for the clean-up. The analytes were detected using a liquid chromatography technique coupled to mass spectrometry (HPLC-MS/MS). Parameters such as the specificity, linearity, recovery, precision, limit of detection, and limit (LOD) of quantification (LOQ) were calculated according to the recommendations established in the European Union decision 2021/808/EC and VICH GL2: Validation of analytical procedures. The LOQ for the analytes OTC, 4-epi-OTC, CFX, and SCP was 1 μg·kg-1, whereas for EFX, it was 5 μg·kg-1 dry weight. All calibration curves showed a coefficient of determination (R2) of >0.99. The recovery levels ranged from 93.0 to 110.5% and the precision met the acceptance criteria, with a coefficient of variation of ≤14.02%. Therefore, this methodology allows for the precise and reliable detection and quantification of these analytes. The analysis of commercial samples confirmed the suitability of this method.
Collapse
Affiliation(s)
- Karina Yévenes
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
- Doctorate Program of Forestry, Agricultural and Veterinary Sciences (DCSAV), Southern Campus, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - María José Ibáñez
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
| | - Ekaterina Pokrant
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Andrés Flores
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Matías Maturana
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Javiera Cornejo
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| |
Collapse
|
19
|
Gudda F, Odinga ES, Tang L, Waigi MG, Wang J, Abdalmegeed D, Gao Y. Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122696. [PMID: 37804902 DOI: 10.1016/j.envpol.2023.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Wastewater irrigation may introduce antibiotic residues in the soil-plant systems. This study aimed to investigate the uptake of tetracyclines by spinach and collard greens and assess associated ecological and human health risks. Synthetic wastewater spiked with 1 ppm and 10 ppm of oxytetracycline, doxycycline, and tetracycline was used to grow vegetables in a greenhouse pot experiment. The uptake and accumulation of the tetracyclines were low and residual concentrations in the soil were negligible. All the tetracyclines were detected at concentrations ranging from 1.68 to 51.41 μg/g (spinach) and 1.94-30.95 μg/g (collard greens). The accumulation rate was in a dose-response scenario with a bioconcentration factor of 6.34 mL/kg (spinach) and 2.64 mL/kg (collard greens). Oxytetracycline had the highest accumulation in leaves, followed by doxycycline and tetracycline, and the residual concentrations followed the same order. The highest residual concentration was in soils receiving 10 ppm oxytetracycline. Residual concentrations in the soil were lower than accumulated levels and exerted negligible ecological risks. Tetracyclines accumulation in spinach significantly differed between the vegetables demonstrating a subspecies difference in uptake and accumulation. Ecological risk quotient (RQ) and human health risk quotient (HQ) were below thresholds that would exert toxicity and resistance selection impacts. Although RQs and HQs are low (<0.1), this study shows that the vegetables accumulate tetracyclines from irrigation water, posing plausible human health risks to allergic individuals. Similarly, the ecological risks cannot be ignored because the synergistic and antagonistic effects of sublethal concentrations can perturb ecosystem processes.
Collapse
Affiliation(s)
- Fredrick Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; International Livestock Research Institute, Nairobi, Kenya
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dyaaaldin Abdalmegeed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Shen M, Hu Y, Zhao K, Li C, Liu B, Li M, Lyu C, Sun L, Zhong S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. TOXICS 2023; 11:966. [PMID: 38133367 PMCID: PMC10747319 DOI: 10.3390/toxics11120966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Lei Sun
- Liaoning Provincial Mineral Exploration Institute Co., Ltd., Shenyang 110031, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Sunyer-Caldú A, Quintana G, Diaz-Cruz MS. Factors driving PPCPs uptake by crops after wastewater irrigation and human health implications. ENVIRONMENTAL RESEARCH 2023; 237:116923. [PMID: 37598843 DOI: 10.1016/j.envres.2023.116923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Currently, water scarcity affects more than three billion people. Nevertheless, the volume of treated wastewater discharged into the environment is estimated to exceed 100 m3 per inhabitant/year. These water resources are regularly used in agriculture worldwide to overcome water shortages. Such a practice, however, entails the uptake of waterborne pollutants, such as pharmaceuticals and personal care products (PPCPs), by crops and their further access to the food web, constituting an additional route of human exposure to PPCPs, with potential health outcomes. In this study, the occurrence of 56 PPCPs in tomatoes, lettuce, and carrot, together with soil and irrigation water, was evaluated using a QuEChERS-based methodology for extraction and LC-MS/MS for analysis. The influence of the selected cultivation conditions on the plant uptake levels of PPCPs was assessed. Two irrigation water qualities (secondary and tertiary treatment effluents), two soil compositions (sandy and clayey), two irrigation systems (dripping and sprinkling), and three crop types (lettuce, tomato, and carrot) were tested. Carrots showed the highest load of PPCPs (7787 ng/g dw), followed by tomatoes (1692 ng/g dw) and lettuces (1248 ng/g dw). The most translocated PPCPs were norfluoxetine (fluoxetine antidepressant main metabolite) (521 ng/g dw), and the anti-inflammatory diclofenac (360 ng/g dw). Nine PPCPs, are reported to be accumulated in crops for the first time. Water quality was the most important factor for reducing PPCPs' plant uptake. Overall, the best conditions for reducing PPCP uptake by crops were irrigation with reclaimed water by sprinkling in soils with higher clay content. The risk assessment performed revealed that the crops' consumption posed no risk to human health. This study serves as the first comprehensive assessment of the relevance of diverse cultivation factors on PPCPs' plant uptake under field agricultural practices.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain; Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
22
|
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges MC, Charles TC, Cotter PD, Ferrocino I, Kriaa A, Lebre P, Cowan D, Lange L, Kiran S, Markiewicz L, Meisner A, Olivares M, Sarand I, Schelkle B, Selvin J, Smidt H, van Overbeek L, Berg G, Cocolin L, Sanz Y, Fernandes WL, Liu SJ, Ryan M, Singh B, Kostic T. Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet. Microbiol Mol Biol Rev 2023; 87:e0021222. [PMID: 37367231 PMCID: PMC10521359 DOI: 10.1128/mmbr.00212-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
Collapse
Affiliation(s)
| | | | | | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Tomislav Cernava
- University of Southampton, Faculty of Environmental and Life Sciences, Southampton, United Kingdom
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | | | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pedro Lebre
- University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- University of Pretoria, Pretoria, South Africa
| | - Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | - Lidia Markiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Olsztyn, Poland
| | - Annelein Meisner
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inga Sarand
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | | | | | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Leo van Overbeek
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - S. J. Liu
- Chinese Academy of Sciences, Institute of Microbiology, Beijing, China
| | - Matthew Ryan
- Genetic Resources Collection, CABI, Egham, United Kingdom
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
23
|
Zhang Y, Cheng D, Xie J, Hu Q, Xie J, Shi X. Long-term field application of manure induces deep selection of antibiotic resistomes in leaf endophytes of Chinese cabbage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163334. [PMID: 37061064 DOI: 10.1016/j.scitotenv.2023.163334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic resistomes in leaf endophytes of vegetables threaten human health through the food chain. However, little is known about the ability of long-term manure fertilization to impact the deep selection of antibiotic resistance genes (ARGs) in leaf endophytes of vegetables planted in different types of soils. Here, by high-throughput quantitative PCR, we characterized the ARGs of leaf endophytes of Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) grown in long-term (14 year) manure-amended acidic, neutral and calcareous soils. In total, 87 ARGs and 4 mobile genetic elements (MGEs) were detected in all the samples. Manure fertilization significantly increased the ARG numbers and normalized abundance in leaf endophytes, especially in acidic soil. Moreover, in acidic soil, manure application also led to a higher increase in the normalized abundance of opportunist and specialist ARGs, and more opportunist and specialist ARGs posed a high risk according to their risk ranks. Random forest analysis revealed that Proteobacteria and MGEs were the major drivers affecting the normalized abundance of opportunist and specialist ARGs in both acidic and neutral soils, respectively. In calcareous soil, Cyanobacteria and Actinobacteria were the most important contributors. Collectively, this study expands our knowledge about the deep selection of plant resistomes under long-term manure application.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Qijuan Hu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiawei Xie
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
24
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
25
|
Proshad R, Idris AM. Evaluation of heavy metals contamination in cereals, vegetables and fruits with probabilistic health hazard in a highly polluted megacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27977-0. [PMID: 37289387 DOI: 10.1007/s11356-023-27977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Heavy metals (HMs) contamination in foodstuffs could pose serious health issues for public health and humans are continually exposed to HMs through the consumption of cereals, fruits, and vegetables. The present study was conducted to assess 11 HMs in foodstuffs to investigate pollution levels and health risks to children and adults. The mean contents of Cd, Cr, Cu, Ni, Zn, Fe, Pb, Co, As, Mn and Ba in foodstuffs were 0.69, 2.73, 10.56, 6.60, 14.50, 9.63, 2.75, 0.50, 0.94, 15.39 and 0.43 mg/kg, respectively and the concentration of Cd, Cr, Cu, Ni and Pb were higher than maximum permissible concentrations (MPCs) showing that these foods may be contaminated with metals and constitute a danger to consumers. Vegetables had relatively higher metal contents followed by cereals and fruits. The average value of the Nemerrow composite pollution index (NCPI) for cereals, fruits, and vegetables were 3.99, 6.53, and 11.34, respectively indicating cereal and fruits were moderately contaminated whereas vegetables were heavily contaminated by the studied metals. The total estimated daily and weekly intakes for all studied metals were higher than the maximum tolerable daily intake (MTDI) and provisional tolerance weekly intake (PTWI) recommended by FAO/WHO. The target hazard quotients and hazard index of all studied metals exceeded the standard limit for adults and children suggesting significant non-carcinogenic health hazards. The total cancer risk value of Cd, Cr, Ni, Pb, and As from food intake exceeded the threshold range (1.0E-04), suggesting potential carcinogenic risks. Based on practical and sensible evaluation techniques, the current work will assist policymakers in controlling metal contamination in foodstuffs.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
26
|
Wang Y, Dong X, Zang J, Zhao X, Jiang F, Jiang L, Xiong C, Wang N, Fu C. Antibiotic residues of drinking-water and its human exposure risk assessment in rural Eastern China. WATER RESEARCH 2023; 236:119940. [PMID: 37080106 DOI: 10.1016/j.watres.2023.119940] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Trace levels of antibiotics were frequently found in drinking-water, leading a growing concern that drinking-water is an important exposure source to antibiotics in humans. In this study, we investigated antibiotics in tap water and well water in two rural residential areas in Eastern China to assess the related human health exposure risks in drinking-water. Twenty-seven antibiotics were analyzed using ultra performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS). The average daily dose (ADD) and the health risk quotient (HRQ) for exposure to antibiotics in humans were evaluated using 10000 times of Monte Carlo simulations. Ten antibiotics were detected in drinking-water samples, with the maximum concentrations of antibiotic mixture of 8.29 ng/L in tap water and 2.95 ng/L in well water, respectively. Macrolides and sulfonamides were the predominant contaminants and showed the seasonality. Azithromycin had the highest detection frequencies (79.71-100%), followed by roxithromycin (25.71-100%) and erythromycin (21.43-86.96%). The estimated ADD and HRQ for human exposure to antibiotic mixture through drinking-water was less than 0.01 μg/kg/day and 0.01, respectively, which varied over sites, water types, seasons and sex. Ingestion route was more important than dermal contact route (10-6 to 10-4 μg/kg/day magnitude vs. 10-11 to 10-8 μg/kg/day magnitude). Macrolides also contributed mainly to health exposure risks to antibiotics through drinking-water, whose HRQ accounted for 46% to 67% of the total HRQs. Although the individual antibiotic and their combined effects contributed to acceptable health risks for human, the long-term exposure patterns to low-dose antibiotics in drinking-water should not be ignored.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaolian Dong
- Deqing County Center for Disease Prevention and Control, Huzhou, 550004, China
| | - Jinxin Zang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xinping Zhao
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Feng Jiang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lufang Jiang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chenglong Xiong
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Na Wang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China;.
| | - Chaowei Fu
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, 200032, China;.
| |
Collapse
|
27
|
Shao S, Zhang P, Chen Y, Zhao X. Enhanced tetracycline abatement by peracetic acid activation with sulfidation of nanoscale zerovalent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27779-4. [PMID: 37231132 DOI: 10.1007/s11356-023-27779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Iron-based heterogeneous catalysts due to the environmental friendliness have been widely studied for activation of peracetic acid (PAA) for abatement of organic contaminants in the water and wastewater treatment. However, the slow reduction from Fe(III) to Fe(II) of the iron-based catalysts as the rate-limiting step results in the low PAA activation efficiency. With regard to the excellent electron-donating capability of the reductive sulfur species, sulfidized nanoscale zerovalent iron is proposed for PAA activation (simplified as the S-nZVI/PAA process) and the tetracycline (TC) abatement efficacy and mechanism of this process are elucidated. The optimal sulfidation ratio (S/Fe) of S-nZVI is 0.07, which exhibits superior performance in PAA activation for TC abatement with the efficiency of 80-100% in the pH range of 4.0-10.0. The radical quenching experiments and oxygen release measurements confirm that acetyl(per)oxygen radicals (CH3C(O)OO•) are the main radical contributing to TC abatement. The influence of sulfidation on the crystalline structure, hydrophobicity, corrosion potential, and electron transfer resistance of S-nZVI is evaluated. The main sulfur species on the S-nZVI surface are identified as ferrous sulfide (FeS) and ferrous disulfide (FeS2). The analysis by X-ray photoelectron spectroscopy (XPS) and Fe(II) dissolution suggest that the reductive sulfur species can accelerate the conversion from Fe(III) to Fe(II). In summary, the S-nZVI/PAA process exhibits application prospects for the abatement of antibiotics in the aquatic environments.
Collapse
Affiliation(s)
- Shujing Shao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Pengyu Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yang Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
28
|
McCorquodale-Bauer K, Grosshans R, Zvomuya F, Cicek N. Critical review of phytoremediation for the removal of antibiotics and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161876. [PMID: 36716878 DOI: 10.1016/j.scitotenv.2023.161876] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics in wastewater are a growing environmental concern. Increased prescription and consumption rates have resulted in higher antibiotic wastewater concentration. Conventional wastewater treatment methods are often ineffective at antibiotic removal. Given the environmental risk of antibiotics and associated antibiotic resistant genes (ARGs), finding methods of improving antibiotic removal from wastewater is of great importance. Phytoremediation of antibiotics in wastewater, facilitated through constructed wetlands, has been explored in a growing number of studies. To assess the removal efficiency and treatment mechanisms of plants and microorganisms within constructed wetlands for specific antibiotics of major antibiotic classes, the present review paper considered and evaluated data from the most recent published research on the topics of bench scale hydroponic, lab and pilot scale constructed wetland, and full scale constructed wetland antibiotic remediation. Additionally, microbial and enzymatic antibiotic degradation, antibiotic-ARG correlation, and plant effect on ARGs were considered. It is concluded from the present review that plants readily uptake sulfonamide, macrolide, tetracycline, and fluoroquinolone antibiotics and that constructed wetlands are an effective applied phytoremediation strategy for the removal of antibiotics from wastewater through the mechanisms of microbial biodegradation, root sorption, plant uptake, translocation, and metabolization. More research is needed to better understand the effect of plants on microbial community and ARGs. This paper serves as a synthesis of information that will help guide future research and applied use of constructed wetlands in the field antibiotic phytoremediation and wastewater treatment.
Collapse
Affiliation(s)
- Kenton McCorquodale-Bauer
- Department of Biosystems Engineering, University of Manitoba, E2-376 Engineering and Information Technology Complex (EITC), 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada.
| | - Richard Grosshans
- International Institute for Sustainable Development (IISD), 111 Lombard Avenue, Suite 325, Winnipeg, MB R3B 0T4, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, 362 Ellis Building, Winnipeg, MB R3T 2N2, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, E2-376 Engineering and Information Technology Complex (EITC), 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
29
|
Yin L, Wang X, Li Y, Liu Z, Mei Q, Chen Z. Uptake of the Plant Agriculture-Used Antibiotics Oxytetracycline and Streptomycin by Cherry Radish─Effect on Plant Microbiome and the Potential Health Risk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4561-4570. [PMID: 36945880 DOI: 10.1021/acs.jafc.3c01052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antibiotics are used to control certain bacterial diseases in plant agriculture. Understanding antibiotic uptake by edible vegetables after application and associated risks on plant microbiome and human health is critical. In this study, oxytetracycline and streptomycin, the two most commonly used antibiotics in plant agriculture, were applied to cherry radish via continuous soil drenching to study their translocations into plant tissues, influence on radish microbiome, and the potential health risk to mice. The results demonstrated that oxytetracycline induced hormesis in radish plants and both antibiotics were translocated into the leaves, fruits, and roots of radishes from the soil, with significantly higher plant uptake of streptomycin than oxytetracycline. Interestingly, the proportion of culturable oxytetracycline or streptomycin-resistant bacteria in the antibiotic-accumulated radish tissues was significantly higher than that in the antibiotic-free radish tissues, although both bacterial and fungal communities in different radish tissues were not affected by the accumulated antibiotics, demonstrating that antibiotic application could enrich antibiotic resistance in the plant microbiome. Feeding mice with antibiotics-accumulated radish tissues did not show significant effects on the weight and blood glucose levels of mice. Overall, this study provides important insights into the risk of using antibiotics in plant agriculture.
Collapse
Affiliation(s)
- Lichun Yin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xingshuo Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yangyang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Ziyin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Qinyuan Mei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Chu L, Su D, Wang H, Aili D, Yimingniyazi B, Jiang Q, Dai J. Association between Antibiotic Exposure and Type 2 Diabetes Mellitus in Middle-Aged and Older Adults. Nutrients 2023; 15:nu15051290. [PMID: 36904289 PMCID: PMC10005743 DOI: 10.3390/nu15051290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Although previous studies have shown an association between clinically used antibiotics and type 2 diabetes, the relationship between antibiotic exposure from food and drinking water and type 2 diabetes in middle-aged and older adults is unclear. OBJECTIVE This study was aimed at exploring the relationship between antibiotic exposures from different sources and type 2 diabetes in middle-aged and older people, through urinary antibiotic biomonitoring. METHODS A total of 525 adults who were 45-75 years of age were recruited from Xinjiang in 2019. The total urinary concentrations of 18 antibiotics in five classes (tetracyclines, fluoroquinolones, macrolides, sulfonamides and chloramphenicol) commonly used in daily life were measured via isotope dilution ultraperformance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. The antibiotics included four human antibiotics, four veterinary antibiotics and ten preferred veterinary antibiotics. The hazard quotient (HQ) of each antibiotic and the hazard index (HI) based on the mode of antibiotic use and effect endpoint classification were also calculated. Type 2 diabetes was defined on the basis of international levels. RESULTS The overall detection rate of the 18 antibiotics in middle-aged and older adults was 51.0%. The concentration, daily exposure dose, HQ, and HI were relatively high in participants with type 2 diabetes. After model adjustment for covariates, participants with HI > 1 for microbial effects (OR = 3.442, 95%CI: 1.423-8.327), HI > 1 for preferred veterinary antibiotic use (OR = 3.348, 95%CI: 1.386-8.083), HQ > 1 for norfloxacin (OR = 10.511, 96%CI: 1.571-70.344) and HQ > 1 for ciprofloxacin (OR = 6.565, 95%CI: 1.676-25.715) had a higher risk of developing type 2 diabetes mellitus. CONCLUSIONS Certain antibiotic exposures, mainly those from sources associated with food and drinking water, generate health risks and are associated with type 2 diabetes in middle-aged and older adults. Because of this study's cross-sectional design, additional prospective studies and experimental studies are needed to validate these findings.
Collapse
Affiliation(s)
- Lei Chu
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Deqi Su
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dilihumaer Aili
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Bahegu Yimingniyazi
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
- Correspondence:
| |
Collapse
|
31
|
Chen WL, Yu SY, Liu SY, Lin SC, Lee TH. Using HRMS fingerprinting to explore micropollutant contamination in soil and vegetables caused by swine wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160830. [PMID: 36526190 DOI: 10.1016/j.scitotenv.2022.160830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Livestock wastewater has been reused for agricultural irrigation to save water and fertilise the soil. However, micropollutants excreted by livestock animals may contaminate the soil and crops through livestock wastewater irrigation. This study employed high-resolution mass spectrometry (HRMS) to facilitate broad-scope suspect screening of soil and vegetables and identify changes in micropollutant fingerprints caused by swine wastewater irrigation. Field trials were performed to simulate the practical cultivation of small leafy vegetables. Soil and pak choi were irrigated with groundwater, a reasonable amount of swine wastewater, and excessive swine wastewater (three times the reasonable amount) and were sampled at three time points. The samples were extracted using organic solvents and analysed with a liquid chromatography-quadrupole-time-of-flight HRMS system. The molecular features were compared to over 3000 micropollutants in commercial libraries. The relative concentrations of suspect micropollutants among the irrigation groups were compared using multivariate and univariate analyses. The marker micropollutants that increased with swine wastewater irrigation were rigorously identified based on the MS/MS spectra. Fifty-three micropollutants were frequently found in the soil (n = 54) and 36 in the pak choi (n = 53). Partial least squares discriminant analysis (PLS-DA) models revealed significant differences in the micropollutant fingerprints in the soil among the three irrigation groups, but not in the pak choi. Eight micropollutants with variable importance in projection scores above 1.0 in the PLS-DA model and significantly higher relative concentrations (p < 0.05) in the soil irrigated with swine wastewater were confirmed as markers. Besides veterinary drugs and their metabolites, cinnamic acid and phenylalanine were the markers relevant to swine feed that were not previously reported. Nevertheless, accumulations of micropollutants in the soil or contamination of the pak choi due to swine wastewater irrigation were not found under the trial conditions.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan; Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taiwan.
| | - Sih-Yi Yu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan
| | - Shu-Yen Liu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan
| | - Sheng-Chi Lin
- Hydrotech Research Institute, National Taiwan University, Taiwan
| | - Tsung-Han Lee
- National Taiwan University Plant Teaching Hospital, Taiwan
| |
Collapse
|
32
|
Li Y, Liu H, Xing W, Wang J, Fan H. Effects of irrigation water quality on the presence of pharmaceutical and personal care products in topsoil and vegetables in greenhouses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13726-13738. [PMID: 36136194 DOI: 10.1007/s11356-022-22753-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment has harmful effects on humans and the ecosystem. Reclaimed water irrigation may introduce PPCPs into the agricultural system. Here, a greenhouse experiment investigated the impact of reclaimed water irrigation on PPCP levels in the edible parts of vegetables and topsoil in the North China Plain in 2015 and 2016. Three treatment protocols were applied to each vegetable: irrigation with reclaimed water, irrigation with groundwater, and mixed irrigation with groundwater and reclaimed water (1:1, v/v). The total concentrations of 10 PPCPs in the topsoil (0-20 cm deep) and vegetables were 4.06-19.0 and 2.33-189 μg/kg, respectively. Among the target PPCPs, acetyl-sulfamethoxazole (AC-SMX) had the highest concentration in both soil and vegetables (0.23-10.8 and 1.56-116 μg/kg, respectively). The total concentration of the 10 PPCPs among cabbage, cauliflower, carrot, and cucumber were 13.1-28.1, 10.3-28.3, 2.33-4.04, and 110-189 μg/kg, respectively. The total hazard quotients for the mixture of target PPCPs across all vegetables were 0.0007 and 0.0003 for toddlers and adults, respectively. Compared with groundwater irrigation, reclaimed water irrigation did not evidently affect the vegetable yields, soil-vegetable PPCP concentrations, and BCFs. In this study, we found no potential hazard to human health when people consumed vegetables grown using reclaimed water irrigation.
Collapse
Affiliation(s)
- Yan Li
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Honglu Liu
- Beijing Water Science and Technology Institute, Beijing, 100048, China.
- Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing, 100048, China.
| | - Weimin Xing
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Juan Wang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Haiyan Fan
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| |
Collapse
|
33
|
Geng J, Liu X, Wang J, Li S. Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158616. [PMID: 36089029 DOI: 10.1016/j.scitotenv.2022.158616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The extensive occurrence of antibiotics in farmland soil might threaten food safety. The bioaccumulation potential of antibiotics in edible vegetables and crops grown under realistic farming scenarios was reviewed and the human health risk was assessed. A total of 51 antibiotics were documented in 37 species of daily consumed crops. Among different classes of antibiotics, tetracyclines (TCs) exhibited higher residue levels in plants than quinolones (QNs), sulfonamides (SAs), and macrolides (MLs), with median values ranging from 5.10 to 15.4 μg/kg dry weight. The favored accumulation of TCs in plants was probably linked to their relatively higher residual concentrations in soils and greater bioconcentration factors. Compared with the plants grown in open field, accumulation of antibiotics was higher in plant grown under greenhouse condition, probably due to the higher residue levels of antibiotics in the greenhouse soil with intensive application of manure. Cocktails of antibiotics were investigated in potato, corn, carrot, tomato, lettuce, and wheat. Among them, corn exhibited relatively high median concentrations of antibiotics (0.400-203 μg/kg dry weight). Antibiotics tended to accumulate in plant root and their concentrations in fruit were generally low. Risk assessment revealed that human health risk was under the alert line through the daily consumption of antibiotic contaminated vegetables and food crops.
Collapse
Affiliation(s)
- Jiagen Geng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Yantai Institute of China Agriculture University, Yantai 264670, China.
| |
Collapse
|
34
|
Antibiotic residues in chicken meat in China: Occurrence and cumulative health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Matamoros V, Casas ME, Pastor E, Tadić Đ, Cañameras N, Carazo N, Bayona JM. Effects of tetracycline, sulfonamide, fluoroquinolone, and lincosamide load in pig slurry on lettuce: Agricultural and human health implications. ENVIRONMENTAL RESEARCH 2022; 215:114237. [PMID: 36084673 DOI: 10.1016/j.envres.2022.114237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The application of pig slurry as fertilizer in agriculture provides nutrients, but it can also contain veterinary medicines, including antibiotic residues (ABs), which can have an ecotoxicological impact on agroecosystems. Furthermore, uptake, translocation, and accumulation of ABs in crops can mobilize them throughout the food chain. This greenhouse study aims to assess AB uptake from soil fertilized with pig slurry and its phenotypical effects on Lactuca sativa L. The plants were cropped in loamy clay soil dosed at 140 kg total N/ha and containing antibiotics (lincomycin, sulfadiazine, oxytetracycline, and enrofloxacin) at different concentration levels (0, 0.05, 0.5, 5, 50, and 500 mg/kg fresh weight, fw). Whereas sulfadiazine (11.8 ng/g fw) was detected in lettuce leaves at the intermediate doses (0.5 mg/kg), lincomycin and its transformation products (hydroxy/sulfate) were only detected at the 50 mg/kg fw dose. In addition, increased AB doses in the pig slurry resulted in decreased lettuce fresh weight and lipid and carbohydrate content and became lethal to lettuce at the highest AB concentrations (500 mg/kg fw). Nevertheless, even at higher doses, the AB content in lettuce following pig-slurry fertilization did not pose any direct significant human health risk (total hazard quotient<0.01). However, the promotion of antimicrobial resistance in humans due to the intake of these vegetables cannot be ruled out.
Collapse
Affiliation(s)
- V Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | - M Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - E Pastor
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Đ Tadić
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - N Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
36
|
Kunene P, Mahlambi P. Assessment of antiretroviral drugs in vegetables: Evaluation of microwave‐assisted extraction performance with and without solid‐phase extraction cleanup. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Philisiwe Kunene
- Department of Chemistry University of KwaZulu‐Natal Pietermaritzburg South Africa
| | - Precious Mahlambi
- Department of Chemistry University of KwaZulu‐Natal Pietermaritzburg South Africa
| |
Collapse
|
37
|
Sanz C, Casadoi M, Tadic Đ, Pastor-López EJ, Navarro-Martin L, Parera J, Tugues J, Ortiz CA, Bayona JM, Piña B. Impact of organic soil amendments in antibiotic levels, antibiotic resistance gene loads, and microbiome composition in corn fields and crops. ENVIRONMENTAL RESEARCH 2022; 214:113760. [PMID: 35753374 DOI: 10.1016/j.envres.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The potential spreading of antibiotic resistance genes (ARG) into agricultural fields and crops represent a fundamental limitation on the use of organic fertilization in food production systems. We present here a study of the effect of spreading four types of organic soil amendments (raw pig slurry, liquid and solid fractions, and a digested derivative) on demonstrative plots in two consecutive productive cycles of corn harvest (Zea mays), using a mineral fertilizer as a control, following the application of organic amendments at 32-62 T per ha (150 kg total N/ha) and allowing 5-8 months between fertilization and harvest. A combination of qPCR and high-throughput 16S rDNA sequencing methods showed a small, but significant impact of the fertilizers in both ARG loads and microbiomes in soil samples, particularly after the second harvesting cycle. The slurry solid fraction showed the largest impact on both ARG loads and microbiome variation, whereas its digestion derivatives showed a much smaller impact. Soil samples with the highest ARG loads also presented increased levels of tetracyclines, indicating a potential dual hazard by ARG and antibiotic residues linked to some organic amendments. Unlike soils, no accumulation of ARG or antibiotics was observed in corn leaves (used as fodder) or grains, and no grain sample reached detection limits for neither parameter. These results support the use of organic soil amendments in corn crops, while proposing the reduction of the loads of ARGs and antibiotics from the fertilizers to greatly reduce their potential risk.
Collapse
Affiliation(s)
- Claudia Sanz
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain
| | - Marta Casadoi
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain
| | - Đorde Tadic
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain
| | | | | | - Joan Parera
- DACC, Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Gran Via de les Corts Catalanes, 612-614, E-08007, Barcelona, Spain
| | - Jordi Tugues
- DACC, Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Gran Via de les Corts Catalanes, 612-614, E-08007, Barcelona, Spain
| | - Carlos A Ortiz
- DACC, Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Gran Via de les Corts Catalanes, 612-614, E-08007, Barcelona, Spain
| | | | - Benjamin Piña
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain.
| |
Collapse
|
38
|
Li M, Chen Y, Feng Y, Li X, Ye L, Jiang J. Ecological Responses of Maize Rhizosphere to Antibiotics Entering the Agricultural System in an Area with High Arsenicals Geological Background. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13559. [PMID: 36294139 PMCID: PMC9603512 DOI: 10.3390/ijerph192013559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal(loid)s can promote the spread and enrichment of antibiotic resistance in the environmental ecosystem through a co-selection effect. Little is known about the ecological effects of entering antibiotics into the environment with long-term metal(loid)s' resistance profiles. Here, cow manure containing oxytetracycline (OTC) or sulfadiazine (SA) at four concentrations (0 (as control), 1, 10, and 100 mg/kg) was loaded to a maize cropping system in an area with high a arsenicals geological background. Results showed that exogenous antibiotics entering significantly changed the nutrient conditions, such as the concentration of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the maize rhizosphere soil, while total arsenic and metals did not display any differences in antibiotic treatments compared with control. Antibiotics exposure significantly influenced nitrate and nitrite reductase activities to reflect the inhibition of denitrification rates but did not affect the soil urease and acid phosphatase activities. OTC treatment also did not change soil dehydrogenase activities, while SA treatment posed promotion effects, showing a tendency to increase with exposure concentration. Both the tested antibiotics (OTC and SA) decreased the concentration of arsenite and arsenate in rhizosphere soil, but the inhibition effects of the former were higher than that of the latter. Moreover, antibiotic treatment impacted arsenite and arsenate levels in maize root tissue, with positive effects on arsenite and negative effects on arsenate. As a result, both OTC and SA treatments significantly increased bioconcentration factors and showed a tendency to first increase and then decrease with increasing concentration. In addition, the treatments decreased translocation capacity of arsenic from roots to shoots and showed a tendency to increase translocation factors with increasing concentration. Microbial communities with arsenic-resistance profiles may also be resistant to antibiotics entering.
Collapse
Affiliation(s)
- Mengli Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiaofeng Li
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Lili Ye
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Jinping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
39
|
Wu S, Hua P, Gui D, Zhang J, Ying G, Krebs P. Occurrences, transport drivers, and risk assessments of antibiotics in typical oasis surface and groundwater. WATER RESEARCH 2022; 225:119138. [PMID: 36191526 DOI: 10.1016/j.watres.2022.119138] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Intensive use of antibiotics affects biogeochemical cycles and stimulates the evolution of antibiotic resistance, thus threatening global health and social development. The spatiotemporal distributions of antibiotics in single aqueous matrices have been widely documented; however, their occurrence in surface-groundwater systems has received less attention, especially in arid regions that usually have fragile ecosystems. Therefore, we investigated the occurrence of thirty-one antibiotics in the surface water and adjacent groundwater in the Xinjiang Uygur Autonomous Region, China. The results showed that the total concentrations of detected antibiotics varied from 17.37 to 84.09 ng L-1 and from 16.38 to 277.41 ng L-1 in surface and groundwater, respectively. The median concentration of antibiotics showed the pattern of norfloxacin (4.86 ng L-1) > ciprofloxacin (3.93 ng L-1) > pefloxacin (3.39 ng L-1) in surface water; whereas in groundwater, this was in the order of pefloxacin (6.30 ng L-1) > norfloxacin (4.33 ng L-1) > ciprofloxacin (2.68 ng L-1). Heatmap analysis indicated that vertical infiltration had limited effects on antibiotic exchange in surface-ground water systems because of the high potential evaporation and low water storage. Redundancy analysis suggested that the oxidation-reduction potential (p < 0.01) and dissolved oxygen (p < 0.05) jointly affected the distribution of antibiotics in surface water. Ecological risk assessment showed that antibiotics in 98.9% of surface water and 99.1% of groundwater did not pose significant risks to aquatic species. The findings of this study will help develop effective mitigation strategies for antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Shixue Wu
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China.
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Jin Zhang
- Yangtze Institute for Conservation and Development, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 210098 Nanjing, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
40
|
Ben Mordechay E, Sinai T, Berman T, Dichtiar R, Keinan-Boker L, Tarchitzky J, Maor Y, Mordehay V, Manor O, Chefetz B. Wastewater-derived organic contaminants in fresh produce: Dietary exposure and human health concerns. WATER RESEARCH 2022; 223:118986. [PMID: 35988339 DOI: 10.1016/j.watres.2022.118986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Irrigation with reclaimed wastewater is a growing practice aimed at conserving freshwater sources, especially in arid and semiarid regions. Despite the apparent advantages to water management, the practice of irrigation with reclaimed wastewater exposes the agroenvironment to contaminants of emerging concern (CECs). In this report, we estimated the unintentional dietary exposure of the Israeli population (2808 participants) to CECs from consumption of produce irrigated with reclaimed wastewater using detailed dietary data obtained from a National Health and Nutrition Survey (Rav Mabat adults; 2014-2016). Human health risk analyses were conducted based on acceptable daily intake (ADI) and threshold of toxicological concern (TTC) approaches. The highest unintentional exposure to wastewater-borne CECs was found to occur through the consumption of leafy vegetables. All analyzed CECs exhibited hazard quotients <1 for the mean- and high-exposure scenarios, indicating no human health concerns. However, for the extreme exposure scenario, the anticonvulsant agents lamotrigine and carbamazepine, and the carbamazepine metabolite epoxide-carbamazepine exhibited the highest exposure levels of 29,100, 27,200, and 19,500 ng/person (70 kg) per day, respectively. These exposure levels exceeded the TTC of lamotrigine and the metabolite epoxide-carbamazepine, and the ADI of carbamazepine, resulting in hazard quotients of 2.8, 1.1, and 1.9, respectively. According to the extreme estimated scenario, consumption of produce irrigated with reclaimed wastewater (leafy vegetables in particular) may pose a threat to human health. Minimizing irrigation of leafy vegetables using reclaimed wastewater and/or improving the quality of the reclaimed wastewater using an advanced treatment would significantly reduce human dietary exposure to CECs.
Collapse
Affiliation(s)
- Evyatar Ben Mordechay
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel; Phytor Lab for Drug Development, Hadassah Medical Center Hebrew University Biotechnology Park (JBP), Ein Kerem Campus, Jerusalem 91120, Israel
| | - Tali Sinai
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel; Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem, Israel
| | - Rita Dichtiar
- Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel; School of Public Health, University of Haifa, Haifa, Israel
| | - Jorge Tarchitzky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Yehoshua Maor
- Phytor Lab for Drug Development, Hadassah Medical Center Hebrew University Biotechnology Park (JBP), Ein Kerem Campus, Jerusalem 91120, Israel
| | - Vered Mordehay
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Orly Manor
- School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Benny Chefetz
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
41
|
Matamoros V, Casas ME, Mansilla S, Tadić Đ, Cañameras N, Carazo N, Portugal J, Piña B, Díez S, Bayona JM. Occurrence of antibiotics in Lettuce (Lactuca sativa L.) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: Crop and human health implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129044. [PMID: 35525220 DOI: 10.1016/j.jhazmat.2022.129044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have demonstrated the crop uptake of antibiotics (ABs) from soils treated with AB-carrying fertilisers. However, there is a lack of plot-scale studies linking their effects at the agronomic and metabolomic/transcriptomic level to their impact on human health. This paper assesses the plant uptake of 23 ABs following two productive cycles of lettuce and radish cropped with sewage sludge, pig slurry, the organic fraction of municipal solid waste, or chemical fertilisation under plot-scale conditions (32 plots spanning 3-10 m2 each). AB uptake by plants depended on both the vegetable and the AB class and was higher in radish than in lettuce edible parts. Levels ranged from undetectable to up to 76 ng/g (fresh weight). Repetitive organic fertilisation resulted in an increase in the concentration of ABs in lettuce leaves, but not in radish roots. Significant metabolomic and transcriptomic changes were observed following soil fertilisation. Nevertheless, a human health risk assessment indicates that the occurrence of ABs in lettuce or radish edible parts does not pose any risk. To our knowledge, this is the first holistic plot-scale study demonstrating that the use of organic fertilisers containing ABs is safe for crop security and human health.
Collapse
Affiliation(s)
- V Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain.
| | - M Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - S Mansilla
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - Đ Tadić
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Cañameras
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Carazo
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J Portugal
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - B Piña
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - S Díez
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| |
Collapse
|
42
|
Wu J, Zhang Y, Huang M, Zou Z, Guo S, Wang J, Zou J. Sulfonamide antibiotics alter gaseous nitrogen emissions in the soil-plant system: A mesocosm experiment and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154230. [PMID: 35271923 DOI: 10.1016/j.scitotenv.2022.154230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/28/2023]
Abstract
Veterinary antibiotics are widely used in many countries worldwide to treat diseases and protect the health of animals. However, the effects of sulfonamide antibiotics introduced via manure and wastewater irrigation on nitrogen (N) loss in the soil-plant system remain poorly understood. Here, we conducted a pot experiment to assess the effects of sulfamethazine (SMZ) and its degradation product (2-amino-4,6-dimethylpyrimidine, ADPD) at four concentration gradients (i.e., 0, 1, 10, 100 mg kg-1) on nitrous oxide (N2O) and ammonia (NH3) emissions, and the abundances of N-cycling functional genes and sulfonamide resistance genes. We also collated 350 observations from 62 published papers and performed a meta-analysis of antibiotic addition effects on N2O emission and soil net nitrification and denitrification. Antibiotics additions showed an inhibitory effect on N2O emissions, which accords with the trend of our meta-analysis showing a significant decrease of 32%. The decreased N2O emissions were attributed to the significant reduction in the abundances of total bacterial communities, ammonia oxidizers, and nir-type denitrifiers and to the resultant changes in soil inorganic N. N2O emissions did not differ between non-environmentally relevant concentrations for SMZ but lowered with increasing ADPD concentrations. This discrepancy can be explained by differential responses of the gene abundances of ammonia oxidizers and nirK-type denitrifiers and the development of antibiotic resistance genes in the highest concentration following antibiotic additions. Antibiotic additions increased soil NH3 volatilization but did not affect vegetable yield. Therefore, these findings provide insight into how the prevalence of antibiotics in soils could alter the N-cycling process and associated gas emissions, with implications for understanding the ecological risks of antibiotics in agriculture.
Collapse
Affiliation(s)
- Jie Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihe Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Huang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziheng Zou
- School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Shumin Guo
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
44
|
Tran TTT, Do MN, Dang TNH, Tran QH, Le VT, Dao AQ, Vasseghian Y. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques. ENVIRONMENTAL RESEARCH 2022; 208:112744. [PMID: 35065928 DOI: 10.1016/j.envres.2022.112744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics might build up into the human body by foodstuff metabolism, posing a serious threat to human health and safety. Establishing simple and sensitive technology for quick antibiotic evaluation is thus extremely important. Nanomaterials (or NMTs) with the advantage of possessing merits such as remarkable optical, thermal, mechanical, and electrical capabilities have been highlighted as a piece of the best promising materials for rising new paths in the creation of the future generation biosensors. This paper presents the most recent advances in the use of graphene NMTs-based biosensors to determine antibiotics. Gr-NMTs (or graphene nanomaterials) have been used in the development of a biosensor for the electrochemical signal-transducing process. The rising issues and potential chances of this field are contained to give a plan for forthcoming research orientations. As a result, this review provides a comprehensive evaluation of the nanostructured electrochemical sensing approach for antibiotic residues in various systems. In this review, various electrochemical techniques such as CV, DPV, Stripping, EIS, LSV, chronoamperometry, SWV were employed to determine antibiotics. Additionally, this also demonstrates how graphene nanomaterials are employed to detect antibiotics.
Collapse
Affiliation(s)
- Thanh Tam Toan Tran
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Mai Nguyen Do
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Thi Ngoc Hoa Dang
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Quang Huy Tran
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
45
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|
46
|
Sanz C, Casado M, Navarro-Martin L, Cañameras N, Carazo N, Matamoros V, Bayona JM, Piña B. Implications of the use of organic fertilizers for antibiotic resistance gene distribution in agricultural soils and fresh food products. A plot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151973. [PMID: 34843769 DOI: 10.1016/j.scitotenv.2021.151973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In order to help designing agricultural practices that minimize the spread of ARG, we fertilized, sown, and harvested lettuces and radish plants in experimental land plots for two consecutive agricultural cycles using four types of fertilizers: mineral fertilization, sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) identified a small, but significant overlap (<10%) between soil's and fertilizer microbiomes. Clinically relevant ARG were found in higher loads (up to 100 fold) in fertilized soils than in the initial soil, particularly in those treated with organic fertilizers, and their loads grossly correlated to the amount of antibiotic residues found in the corresponding fertilizer. Similarly, low, but measurable ARG loads were found in lettuce (tetM, sul1) and radish (sul1), corresponding the lowest values to samples collected from minerally fertilized fields. Comparison of soil samples collected along the total period of the experiment indicated a relatively year-round stability of soil microbiomes in amended soils, whereas ARG loads appeared as unstable and transient. The results indicate that ARG loads in soils and foodstuffs were likely linked to the contribution of bacteria from organic fertilizer to the soil microbiomes, suggesting that an adequate waste management and good pharmacological and veterinarian practices may significantly reduce the presence of these ARGs in agricultural soils and plant products.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Laia Navarro-Martin
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Núria Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels 08860, Spain
| | - Núria Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels 08860, Spain
| | - Victor Matamoros
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Josep Maria Bayona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| |
Collapse
|
47
|
Tadić Đ, Gramblicka M, Mistrik R, Bayona JM. Systematic identification of trimethoprim metabolites in lettuce. Anal Bioanal Chem 2022; 414:3121-3135. [PMID: 35141763 PMCID: PMC8934764 DOI: 10.1007/s00216-022-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Antibiotics are some of the most widely used drugs. Their release in the environment is of great concern since their consumption is a major factor for antibiotic resistance, one of the most important threats to human health. Their occurrence and fate in agricultural systems have been extensively investigated in recent years. Yet whilst their biotic and abiotic degradation pathways have been thoroughly researched, their biotransformation pathways in plants are less understood, such as in case of trimethoprim. Although trimethoprim has been reported in the environment, its fate in higher plants still remains unknown. A bench-scale experiment was performed and 30 trimethoprim metabolites were identified in lettuce (Lactuca sativa L.), of which 5 belong to phase I and 25 to phase II. Data mining yielded a list of 1018 ions as possible metabolite candidates, which was filtered to a final list of 87 candidates. Molecular structures were assigned for 19 compounds, including 14 TMP metabolites reported for the first time. Alongside well-known biotransformation pathways in plants, additional novel pathways were suggested, namely, conjugation with sesquiterpene lactones, and abscisic acid as a part of phase II of plant metabolism. The results obtained offer insight into the variety of phase II conjugates and may serve as a guideline for studying the metabolization of other chemicals that share a similar molecular structure or functional groups with trimethoprim. Finally, the toxicity and potential contribution of the identified metabolites to the selective pressure on antibiotic resistance genes and bacterial communities via residual antimicrobial activity were evaluated.
Collapse
Affiliation(s)
- Đorđe Tadić
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Michal Gramblicka
- HighChem Ltd., Leškova 11, 811 04, Bratislava, Slovakia
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | | | - Josep Maria Bayona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
48
|
Yu X, Chen J, Liu X, Sun Y, He H. The mechanism of uptake and translocation of antibiotics by pak choi (Brassica rapa subsp. chinensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151748. [PMID: 34848269 DOI: 10.1016/j.scitotenv.2021.151748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic uptake by vegetables from the environment is one pathway in which humans are exposed to antibiotics through the food chain and can pose potential risks to human health. Therefore, understanding the mechanism of how antibiotics enter vegetables will contribute to developing effective measures to reduce antibiotic contamination in crops. In this study, a series of hydroponic experiments were conducted to investigate the uptake and translocation of six antibiotics in pak choi. The results showed the accumulation capacity of fluoroquinolones was significantly higher than that of tetracycline and sulfamethoxypyridazine. The antibiotic uptake kinetics in roots were well described by the Michaelis-Menten equation. The results for the metabolic inhibitor, aquaporin inhibitor, and transpiration inhibitor showed that the uptake processes for ofloxacin, norfloxacin, and enrofloxacin were energy-dependent, those for sulfamethoxypyridazine and ciprofloxacin were aquaporin-dependent, and that for tetracycline was energy- and aquaporin-dependent. Antibiotic translocation was associated with water transport through xylem vessels, which could be controlled by aquaporin activities and transpiration. Roots were the main accumulator of antibiotics, and the degradation percentages of tetracycline, norfloxacin, enrofloxacin, and ofloxacin by Pak choi were 0-14.48% within 72 h. Overall, our findings provide a better understanding of the transfer of antibiotics from the environment to vegetables, which will be of great significance for developing optimal management practices to mitigate antibiotic contamination in vegetables and ensuring food safety.
Collapse
Affiliation(s)
- Xiaolu Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, Beijing 100029, China; Environmental Factors Risk Assessment Laboratory of agricultural products Quality and safety of Ministry of Agriculture, Beijing 100029, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Hongju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
49
|
Zhao F, Yang L, Li G, Fang L, Yu X, Tang YT, Li M, Chen L. Veterinary antibiotics can reduce crop yields by modifying soil bacterial community and earthworm population in agro-ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152056. [PMID: 34861298 DOI: 10.1016/j.scitotenv.2021.152056] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Veterinary antibiotics are intensively and widely used in animal farming to treat or prevent diseases, as well as improve growth rate and feed efficiency. Animal manure is an important reservoir of veterinary antibiotics due to their high excretion rates, and thus manure application has been a critical source of veterinary antibiotics in agro-ecosystems. However, how veterinary antibiotics affect agroecosystem functions is still unclearly understood. In this study, we evaluated the effects of veterinary antibiotics on soil bacteria and earthworms in agricultural land with long-term manure application. The potential mechanisms of antibiotic-induced changes in crop yields were also revealed. The results showed that the increasing prevalence of veterinary antibiotics in agro-ecosystems inhibited earthworm abundance and bacterial diversity, and then decreased the bioavailability of soil nutrients. Furthermore, high-dose exposure to veterinary antibiotics improved the abundance of plant pathogenic bacteria. Analysis indicated that veterinary antibiotics played an important underlying role in driving the negative effects on peanut grain yields via disturbing microbe- and earthworm-mediated soil available nutrient contents. The direct toxicity effects of antibiotics on peanut relative yields were stronger than their indirect mediating effects. Additionally, the tradeoffs between antibiotics and agroecosystem functions increased at low exposure levels and then decreased at high exposure levels, which indicated the effects of antibiotics on agroecosystem functions were dose-dependent, except for earthworm biomass. Antibiotic contamination which will impose threats to agricultural sustainability was highlighted and should be paid more attention.
Collapse
Affiliation(s)
- Fangkai Zhao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Yu-Ting Tang
- School of Geographical Sciences, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Xue C, Zheng C, Zhao Q, Sun S. Occurrence of antibiotics and antibiotic resistance genes in cultured prawns from rice-prawn co-culture and prawn monoculture systems in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150307. [PMID: 34560447 DOI: 10.1016/j.scitotenv.2021.150307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in the aquatic environment have raised great concerns, as the deleterious effects of residual antibiotics and the emergence of ARGs are challenges to aquaculture. This study analyzed feed, water, sediment and prawns' tissues from six culture ponds (integrated culture: rice-prawn pond; monoculture: prawn pond) in Tianjin, Northeast China. Eighteen types of antibiotics were detected in all ponds, which conferring to four classes of antibiotics including sulfonamides, tetracyclines, fluoroquinolones, macrolides. The mean log bioaccumulation factor (BAF) values for five antibiotics were analyzed in the hepatopancreas, muscle, and plasma, and we found the maximum Log BAF (1.45) for enrofloxacin in prawn plasma. Correlation analysis of antibiotic concentrations between the plasma and the other two tissues indicated that enrofloxacin, norfloxacin, and erythromycin levels in the hepatopancreas and muscle can be predicted by their plasma concentrations. We also conducted a hazard quotient analysis and found that the risk to human health of eating antibiotic-exposed prawns from the two types of aquaculture method was relatively low. Compared with monoculture, rice-prawn co-culture could significantly decrease the abundance of ARGs; additionally, significant correlations were detected among ARGs, antibiotics, and non-antibiotic environmental factors (e.g., total nitrogen, total ammonia nitrogen, and chemical oxygen demand) in prawn. The present study indicated that the rice-prawn co-culture system is more effective than monoculture for mitigating the bioaccumulation of antibiotics and the occurrence of ARGs in prawn.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Cheng Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Qianqian Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|