1
|
Mamun MAA, Islam ARMT, Aktar MN, Uddin MN, Islam MS, Pal SC, Islam A, Bari ABMM, Idris AM, Senapathi V. Predicting groundwater phosphate levels in coastal multi-aquifers: A geostatistical and data-driven approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176024. [PMID: 39241889 DOI: 10.1016/j.scitotenv.2024.176024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The groundwater (GW) resource plays a central role in securing water supply in the coastal region of Bangladesh and therefore the future sustainability of this valuable resource is crucial for the area. However, there is limited research on the driving factors and prediction of phosphate concentration in groundwater. In this work, geostatistical modeling, self-organizing maps (SOM) and data-driven algorithms were combined to determine the driving factors and predict GW phosphate content in coastal multi-aquifers in southern Bangladesh. The SOM analysis identified three distinct spatial patterns: K+Na+pH, Ca2+Mg2+NO₃-, and HCO₃-SO₄2-PO43-F-. Four data-driven algorithms, including CatBoost, Gradient Boosting Machine (GBM), Long Short-Term Memory (LSTM), and Support Vector Regression (SVR) were used to predict phosphate concentration in GW using 380 samples and 15 prediction parameters. Forecasting accuracy was evaluated using RMSE, R2, RAE, CC, and MAE. Phosphate dissolution and saltwater intrusion, along with phosphorus fertilizers, increase PO43- content in GW. Using input parameters selected by multicollinearity and SOM, the CatBoost model showed exceptional performance in both training (RMSE = 0.002, MAE = 0.001, R2 = 0.999, RAE = 0.057, CC = 1.00) and testing (RMSE = 0.001, MAE = 0.002, R2 = 0.989, RAE = 0.057, CC = 0.998). Na+, K+, and Mg2+ significantly influenced prediction accuracy. The uncertainty study revealed a low standard error for the CatBoost model, indicating robustness and consistency. Semi-variogram models confirmed that the most influential attributes showed weak dependence, suggesting that agricultural runoff increases the heterogeneity of PO43- distribution in GW. These findings are crucial for developing conservation and strategic plans for sustainable utilization of coastal GW resources.
Collapse
Affiliation(s)
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mst Nazneen Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Nashir Uddin
- Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700014, India
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India.
| |
Collapse
|
2
|
Rahman MS, Reza AHMS, Sattar GS, Bakar Siddique MA, Akbor MA, Moniruzzaman M, Uddin MR, Shafiuzzaman SM. Mobilization mechanisms and spatial distribution of arsenic in groundwater of western Bangladesh: Evaluating water quality and health risk using EWQI and Monte Carlo simulation. CHEMOSPHERE 2024; 366:143453. [PMID: 39362382 DOI: 10.1016/j.chemosphere.2024.143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Arsenic (As) contamination in groundwater is emerging as a significant global concern, posing serious risks to the safety of drinking water and public health. To understand the release mechanisms, mobilization processes, spatial distribution, and probabilistic health risks of As in western Bangladesh, forty-seven samples were collected and analyzed using an atomic absorption spectrometer (AAS). The As concentrations in groundwater ranged from 1.97 to 697.4 μg L⁻1 (mean: 229.9), significantly exceeding recommended levels. The dominant hydrochemistry of As-enriched groundwater was Ca-Mg-HCO₃, with the primary sources of arsenic in groundwater being the dissolution of arsenic-bearing minerals in sediment and the recharge of aquifers from the Ganges River Basin. The assessment using the Entropy Water Quality Index revealed that the groundwater is unsuitable for drinking, with 89.36% (n = 42) of the samples surpassing the WHO's limit for arsenic. Rock-water interactions, including calcite dissolution and silicate weathering within the confined aquifer, predominantly influenced hydrochemical properties. The significant relationships among Fe, Mn, and As indicate that the reductive dissolution of FeOOH and/or MnOOH considerably contributes to the release of As from sediment into groundwater. Geochemical modeling analysis revealed that siderite and rhodochrosite precipitate into aquifer solids, suggesting a weak to moderate relationship among As, Fe, and Mn. The long residence time of groundwater, combined with the presence of a clayey aquitard, likely controls the mobilization of arsenic in the aquifer. For the first time, Monte Carlo simulations have been used in arsenic-prone areas to assess the severity of arsenic contamination in western Bangladesh. The analysis indicates that out of 100,000 people, 10 may develop cancer as a result of drinking arsenic-contaminated water, with children being more susceptible than adults.
Collapse
Affiliation(s)
- Md Shazzadur Rahman
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh; Institute of Environmental Science, University of Rajshahi, Rajshahi, 6205, Bangladesh; Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat, Bangladesh
| | - A H M Selim Reza
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Golam Shabbir Sattar
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Moniruzzaman
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Md Ripaj Uddin
- Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat, Bangladesh
| | - S M Shafiuzzaman
- Institute of Environmental Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
3
|
Wang SW, Pan SY, Kao YH, Kim H, Fan C. Evaluation of the dual-process approach for in-situ groundwater arsenic removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:129-143. [PMID: 35815372 DOI: 10.1080/09593330.2022.2100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
While the worldwide distribution of geogenic arsenic (As)-affected groundwater is highly overlapped with the areas with abundant groundwater, utilization of As-contained groundwater is an inevitable compromise in those areas where surface water is not enough for irrigation. Since the occurrence of As in groundwater is often accompanied by high iron (Fe) contents, the facilitation of As and Fe precipitation without adding additional oxidizers and adsorbents is considered an environmental-friendly approach to removing As in groundwater. In the present study, the oxidation/filtration dual-process with sprinkling height of 25 cm and 120 kg filter media efficiently increased the dissolved oxygen (DO) concentration (0.36-1.52 mg/L) and oxidation-reduction potential (ORP) (24-63 mV), which facilitated the formation of Fe oxides and As co-precipitation. The correlation of As removal efficiencies with their respective flow rates indicated that a decrease in groundwater Fe and an increase of Fe in sands and gravels filters as the flow rate increased evidenced the rapid oxidation of Fe to form the Fe hydroxides. In a 40-hour continuous aeration/filtration operation, As and Fe concentrations in groundwater were reduced by 79.5% and 64.88% within 40 hrs, respectively. The ease of filter replacement and cost-effectiveness in operation can be the major attractions and innovations for future field practices.
Collapse
Affiliation(s)
- Sheng-Wei Wang
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei, Taiwan
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Kao
- Science & Technology Policy Research and Information Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Hyunook Kim
- Department of Environmental Engineering, The University of Seoul, Seoul, South Korea
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Liu N, Gao R, Xiao S, Xue B. Visualizing the bibliometrics of biochar research for remediation of arsenic pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119513. [PMID: 37944320 DOI: 10.1016/j.jenvman.2023.119513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Arsenic-contamination of soil and water has always been a topic of considerable concern, and the potential of biochar for remediation of arsenic contamination has been widely recognized due to its advantages, including abundant sources, simple preparation, large surface area, significant pore size, and rich functional groups. To gain insights into the development trends in this field and provide suggestions for future research directions, scientometric analysis was conducted on articles sourced from the Web of Science core collection database by using the CiteSpace and VOSviewer software. In total, 637 bibliographic records, retrieved using the keywords "biochar" and "arsenic" were analyzed based on publication distribution over the years, contributing countries, keywords, authors, cited authors, publishing journals, and highly cited articles. Further, progress maps were generated from these data sets to assess the current research landscape. Results revealed a steady increase in annual publications since 2009, and China has the most publications. Notably, Daniel C. W. Tsang stood out as a representative author. The journal "Science of the Total Environment" published the most articles related to biochar and arsenic. "Adsorption" is the most frequently occurring keyword. The investigations of the impact and mechanism of biochar and modified biochar on inorganic arsenic removal from water and immobilization in soil have been identified as current research focal points. In order to realize the efficient and safe use of biochar, the future necessitates the implementation of advanced technology to conduct further comprehensive research. This study highlights the ongoing advancements in the research field on biochar and arsenic. Valuable insights are provided for future researchers and policymakers to guide their significant efforts toward addressing the issue of soil and water contamination caused by arsenic and exploring the potential of biochar for effective remediation strategies.
Collapse
Affiliation(s)
- Na Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ruili Gao
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Shuai Xiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Bin Xue
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Ullah Z, Zeng XC, Rashid A, Ghani J, Ali A, Shah M, Zainab R, Almutairi MH, Sayed AA, Aleya L. Integrated approach to hydrogeochemical appraisal of groundwater quality concerning arsenic contamination and its suitability analysis for drinking purposes using water quality index. Sci Rep 2023; 13:20455. [PMID: 37993472 PMCID: PMC10665467 DOI: 10.1038/s41598-023-40105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 08/04/2023] [Indexed: 11/24/2023] Open
Abstract
Arsenic (As), contamination in drinking groundwater resources is commonly environmental problem in many developing countries including Pakistan, with significant human health risk reports. In order to examine the groundwater quality concerning As contamination, its geochemical behavior along with physicochemical parameters, 42 samples were collected from community tube wells from District Bahawalpur, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and associated public health risk. The As concentration detected in groundwater samples varied from 0.12 to 104 µg/L with an average value of 34.7 µg/L. Among 42 groundwater samples, 27 samples were beyond the permitted limit of 10 µg/L recommended by World Health Organization (WHO), for drinking purposes. Statistical analysis result show that the groundwater cations values are in decreasing order such as: Na+ > Mg2+ > Ca2+ > K+, while anions were HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies result depict that the groundwater samples of the study area, 14 samples belong to CaHCO3 type, 5 samples belong to NaCl type, 20 samples belong to Mixed CaMgCl type, and 3 samples belong to CaCl2 type. It can be accredited due to weathering and recharge mechanism, evaporation processes, and reverse ion exchange. Gibbs diagram shows that rock water interaction controls the hydrochemistry of groundwater resources of the study area. Saturation Index (SI) result indicated the saturation of calcite, dolomite, gypsum, geothite, and hematite mineral due their positive SI values. The principal component analysis (PCA) results possess a total variability of 80.69% signifying the anthropogenic and geogenic source of contamination. The results of the exposure-health-risk-assessment method for measuring As reveal significant potential non-carcinogenic risk (HQ), exceeding the threshold level of (> 1) for children in the study area. Water quality assessment results shows that 24 samples were not suitable for drinking purposes.
Collapse
Affiliation(s)
- Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Junaid Ghani
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Asmat Ali
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University, Mardan, 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Rimsha Zainab
- Department of Botany, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, 25030, Besancon, France
| |
Collapse
|
6
|
Yang Y, Mei A, Gao S, Zhao D. Both natural and anthropogenic factors control surface water and groundwater chemistry and quality in the Ningtiaota coalfield of Ordos Basin, Northwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67227-67249. [PMID: 37103707 DOI: 10.1007/s11356-023-27147-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
An understanding of the vertical variations in hydrogeochemical processes in various aquifers and quality suitability assessment is crucial for the utilization of groundwater in the Ningtiaota coalfield of Ordos Basin, Northwestern China. Based on 39 water samples collected from surface water (SW), Quaternary pore water (QW), weathered fissure water (WW), and mine water (MW), we conducted self-organizing maps (SOM) algorithm, multivariate statistical analysis (MSA), and classical graphical methods to elucidate the mechanisms controlling the vertical spatial variations in SW and groundwater chemistry and conducted a health risk assessment. The findings indicated that the hydrogeochemical type showed a transition from the HCO3--Na+ type in SW to the HCO3--Ca2+ type in QW, then to the SO42--Mg2+ type in WW, and back to HCO3--Na+ type in MW. Water-rock interaction, silicate dissolution, and cation exchange were the main hydrogeochemical processes in the study area. Additionally, groundwater residence time and mining operations were critical external factors that affect water chemistry. Contrary to phreatic aquifers, confined aquifers featured greater circulation depth, water-rock interactions, and external interventions leading to worse quality and higher health risks. Water quality surrounding the coalfield was poor, causing it to be undrinkable, with excessive SO42-, arsenic (As), and F-, etc. Approximately 61.54% of SW, all of QW, 75% of WW, and 35.71% of MW can be used for irrigation.
Collapse
Affiliation(s)
- Yina Yang
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Aoshuang Mei
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing, 100083, China.
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Shuai Gao
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Di Zhao
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
7
|
Khan MU, Rai N. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2099-2115. [PMID: 35809199 DOI: 10.1007/s10653-022-01321-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The present study interprets the distribution and geochemical behavior of As in groundwaters of different regions along the floodplains of Ganga river (Varanasi, Ghazipur, Ballia), Ghaghara river (Lakhimpur Kheri, Gonda, Basti), and Rapti river (Balrampur, Shrawasti) in the middle Gangetic basin, India for risk assessment (non-carcinogenic and carcinogenic). The concentration of As in groundwaters of these floodplains ranged from 0.12 to 348 μg/L (mean 24 μg/L), with around ~ 37% of groundwater samples exceeding the WHO limit of 10 μg/L in drinking water. Highest As concentration (348 μg/L) was recorded in groundwater samples from Ballia (Ganga Floodplains), where 50% of the samples had As > 10 μg/L in groundwater. In the study area, a relatively higher mean concentration was recorded in deep wells (28.5 μg/L) compared to shallow wells (20 μg/L). Most of the high As-groundwaters were associated with the high Fe, bicarbonate and low nitrate and sulfate concentrations indicating the release of As via reductive dissolution of Fe oxyhydroxides. The saturation index values of the Fe minerals such as goethite, hematite, ferrihydrite, and siderite showed the oversaturation to near equilibrium in groundwater, suggesting that these mineral phases may act as source/sink of As in the aquifers of the study area. The health risk assessment results revealed that a large number of people in the study area were prone to carcinogenic and non-carcinogenic health risks due to daily consumption of As-polluted groundwater. The highest risks were estimated for the aquifers of Ganga floodplains, as indicated by their mean HQ (41.47) and CR (0.0142) values.
Collapse
Affiliation(s)
- M U Khan
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand, 247 667, India
| | - N Rai
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
8
|
Iqbal Z, Imran M, Rahman G, Miandad M, Shahid M, Murtaza B. Spatial distribution, health risk assessment, and public perception of groundwater in Bahawalnagar, Punjab, Pakistan: a multivariate analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:381-391. [PMID: 35067763 DOI: 10.1007/s10653-021-01182-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The current study investigated the hydrogeochemical behavior of groundwater quality attributes including arsenic (As) and their associated health risks in unexplored groundwater aquifers of Bahawalnagar, Punjab, Pakistan. The groundwater samples were collected from 40 colonies of Bahawalnagar city from electric/hand pumps, tube wells and turbines installed at varying depth (20 to > 100 m). The groundwater possessed the highest concentrations of PO4 (0.5 mg/L), HCO3 (425 mg/L), Cl (623 mg/L), NO3 (136.68 mg/L) and SO4 (749.7 mg/L) concentrations. There was no difference in concentration of As in shallow and deep aquifers. Interestingly, none of the water samples showed As concentration higher than the WHO limit of 10 µg/L for drinking water with groundwater As concentration spanning from 2.5 to 7.9 µg/L. The HQ values for As were less than 1 and there was no apparent non-carcinogenic risk from the long-term consumption of As contaminated water. The questionnaire survey indicated that 82% respondents believe that drinking water quality affects human health and 55% of respondents considered that groundwater in the area is not suitable for drinking. Survey results revealed that 29.11, 22.78, 17.08, 15.19, 7.59, 5.06 and 3.16% respondents/family members suffered from hepatitis, skin problems, diabetes, tuberculosis, kidney disorders, muscular weakness and gastro, respectively. However, the data cannot be correlated with As contamination and disease burden in the local community and it can be anticipated that the groundwater may contain other potentially toxic ions that are deteriorating the water quality and compromising human health. The hydrogeochemical analysis revealed Na-Cl/SO4, K-SO4 type of groundwater suggesting the potential role of sulfate containing minerals in releasing As in the groundwater aquifers.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Geography, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghani Rahman
- Department of Geography, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Miandad
- Department of Geography, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| |
Collapse
|
9
|
Hussain MM, Bibi I, Ali F, Saqib ZA, Shahid M, Niazi NK, Hussain K, Shaheen SM, Wang H, Shakil Q, Rinklebe J. The role of various ameliorants on geochemical arsenic distribution and CO 2-carbon efflux under paddy soil conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:507-523. [PMID: 35022880 DOI: 10.1007/s10653-021-01196-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Climate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO2-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.4%) < biogas slurry (6%) < cow dung (9%), and < biochar (20%). However, in the sandy clay loam soil exchangeable soil As pool was found to be maximum with farmyard manure followed by biogas slurry, biochar and cow dung (17%, 14%, 13% and 7%, respectively). Interestingly, in the sandy clay loam soil the percentage As distribution in organic fraction was: biochar (38%) > cow dung (33%) > biogas slurry (23%) > sugarcane bagasse (22%) > farmyard manure (21%) that was higher compared to the clay loam soil (< 6% for all the amendments). In addition to the highest As immobilization by biochar in sandy clay loam soil, it also led to the lowest CO2-carbon efflux (1470 CO2-C mg kg-1) among all the organic/inorganic amendments. Overall, the current study advances our understanding on the pivotal role of organic amendments, notably biochar, in immobilizing As under paddy soil conditions with low (CO2) carbon loss, albeit it is dependent on soil and ameliorant types.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane - QLD, 4110, Australia
- Department of Agriculture and Fisheries, Mareeba, 4880, QLD, Australia
| | - Zulfiqar Ahmad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Khalid Hussain
- Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Sabry M Shaheen
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Faculty of Agriculture, Department of Soil and Water Sciences, University of Kafrelsheikh, Kafr El-Sheikh, 33516, Egypt
- Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, King Abdulaziz University, Jiddah, 21589, Saudi Arabia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, Guangdong, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Qamar Shakil
- Fodder Research Sub-Station, Ayub Agricultural Research Institute, Faisalabad, 38000, Pakistan
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
10
|
Yu X, LeMonte JJ, Li J, Stuckey JW, Sparks DL, Cargill JG, Russoniello CJ, Michael HA. Hydrologic Control on Arsenic Cycling at the Groundwater-Surface Water Interface of a Tidal Channel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:222-230. [PMID: 36534790 DOI: 10.1021/acs.est.2c05930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Historical industrial activities have resulted in soil contamination at sites globally. Many of these sites are located along coastlines, making them vulnerable to hydrologic and biogeochemical alterations due to climate change and sea-level rise. However, the impact of hydrologic dynamics on contaminant mobility in tidal environments has not been well studied. Here, we collected data from pressure transducers in wells, multi-level redox sensors, and porewater samplers at an As-contaminated site adjacent to a freshwater tidal channel. Results indicate that sharp redox gradients exist and that redox conditions vary on tidal to seasonal timescales due to sub-daily water level fluctuations in the channel and seasonal groundwater-surface water interactions. The As and Fe2+ concentrations decreased during seasonal periods of net discharge to the channel. The seasonal changes were greater than tidal variations in both Eh and As concentrations, indicating that impacts of the seasonal mechanism are stronger than those of sub-daily water table fluctuations. A conceptual model describing tidal and seasonal hydro-biogeochemical coupling is presented. These findings have broad implications for understanding the impacts of sea-level rise on the mobility of natural and anthropogenic coastal solutes.
Collapse
Affiliation(s)
- Xuan Yu
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai519082, China
| | - Joshua J LeMonte
- Department of Geological Sciences, Brigham Young University, Provo, Utah84602, United States
| | - Junxia Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan430074, China
| | - Jason W Stuckey
- Department of Natural Sciences and Environmental Science Program, Multnomah University, Portland, Oregon97220, United States
| | - Donald L Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware19716, United States
| | - John G Cargill
- Department of Natural Resources and Environmental Control, New Castle, Delaware19720, United States
| | | | - Holly A Michael
- Department of Earth Sciences and Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware19716, United States
| |
Collapse
|
11
|
Shen H, Rao W, Tan H, Guo H, Ta W, Zhang X. Controlling factors and health risks of groundwater chemistry in a typical alpine watershed based on machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158737. [PMID: 36108860 DOI: 10.1016/j.scitotenv.2022.158737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is a key water resource in alpine watersheds, but its quality is deteriorating due to human activities. The Golmud River watershed is a representative alpine watershed in Northwest China, and it was chosen to explore groundwater chemistry, associated controlling factors, source contributions, and potential health risks. The analysis includes the use of a self-organizing map (SOM), positive matrix factorization (PMF), ionic ratios, and a Monte Carlo simulation. The content of total dissolved solids in phreatic water was higher in the dry season and increased from the mountainous zone to the fine-soil plain-overflowing zone. Additionally, the water type varied from HCO3- to Cl- types whereas confined groundwater was chemically stable and of a HCO3- type. The SOM results showed a visual correlation between the ions in groundwater. The combination of SOM, PMF, and ionic ratios identified water-rock action as a dominant factor of groundwater chemistry. It was also found that Clusters I and III were mainly influenced by silicate weathering (a total contribution of 38.4 %), whereas evaporation was dominant in Cluster VI (a contribution of 32.5 %). Anthropogenic pollution was mainly associated with clusters V and IV and was related to industrial and agricultural activities during the snowmelt and wet seasons, and fluorine deposition formed by residential coal heating during the dry season (contributions of 1.4 % and 23.8 % in Clusters V and IV, respectively). The sudden increases in B3+ and Li+ in Cluster II were due to inputs from small tributaries (a contribution of 3.9 %). The probabilistic health risk assessment showed that fluoride posed a greater non-carcinogenic risk to human health than Sr2+, B3+, and NO3-, and its potential threat to children was more significant during the dry season than in other seasons. It is necessary for local governments to establish urgent fluoride emission control policies within the Golmud River watershed.
Collapse
Affiliation(s)
- Huigui Shen
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Wenbo Rao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| | - Hongbing Tan
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Hongye Guo
- Qinghai Hydrogeology and Engineering Geology and Environgeology Survey Institute, Xining 810008, China
| | - Wanquan Ta
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
| | - Xiying Zhang
- Qinghai Institute of Salt Lakes, CAS, Xining 810008, China
| |
Collapse
|
12
|
Ullah Z, Rashid A, Ghani J, Talib MA, Shahab A, Lun L. Arsenic Contamination, Water Toxicity, Source Apportionment, and Potential Health Risk in Groundwater of Jhelum Basin, Punjab, Pakistan. Biol Trace Elem Res 2023; 201:514-524. [PMID: 35171408 DOI: 10.1007/s12011-022-03139-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023]
Abstract
Potable groundwater (GW) contamination through arsenic (As) is a commonly reported environmental issue in Pakistan. In order to examine the groundwater quality for As contamination, its geochemical behavior, and other physicochemical parameters, 69 samples from various groundwater sources were collected from the mining area of Pind Dadan Khan, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and linked public health risk. Arsenic detected in the groundwater samples varied from 0.5 to 100 µg/L, with an average value of 21.38 µg/L. Forty-two samples were beyond the acceptable limit of 10 µg/L of the WHO for drinking purposes. The statistical summary showed that the groundwater cation concentration was in decreasing order such as Na+ > Ca2+ > Mg2+ > K+, while anions were as follows: HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies results depicted that groundwater samples belong to CaHCO3 type. Rock-water interactions control the hydrochemistry of groundwater. Saturation indices' results indicated the saturation of the groundwater sources for CO3 minerals due to their positive SI values. Such minerals include aragonite, calcite, dolomite, and fluorite. The principal component analysis (PCA) findings possess a total variability of 77.36% suggesting the anthropogenic and geogenic contributing sources of contaminant. The results of the Exposure-health-risk-assessment model for measuring As reveal significant potential carcinogenic risk exceeding the threshold level (value > 10-4) and HQ level (value > 1.0).
Collapse
Affiliation(s)
- Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Junaid Ghani
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Muhammad Afnan Talib
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
13
|
Masood Ul Hasan I, Javed H, Hussain MM, Shakoor MB, Bibi I, Shahid M, Xu N, Wei Q, Qiao J, Niazi NK. Biochar/nano-zerovalent zinc-based materials for arsenic removal from contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1155-1164. [PMID: 36355569 DOI: 10.1080/15226514.2022.2140778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.2. Freundlich model provided the best fit (R2 = up to 0.98) for As(III) and As(V) sorption data of all the sorbents, notably for nZVZn. The pseudo-second order model well-described kinetics of As(III) and As(V) (R2 = 0.99) sorption on all the sorbents. The desorption experiments demonstrated that the As removal efficiency, up to the third sorption/desorption cycle, was in the order of nZVZn ∼ BC/HA-alginate (88%) > BC/nZVZn (84%). The Fourier transform infrared spectroscopy depicted that the -OH, -COOH, Zn-O and Zn-OH surface functional groups were responsible for the sorption of As(III) or As(V) on the sorbents investigated here. This study highlights that removal of As species from water by BC/nZVZn composite can be compared with nZVZn, suggesting that integrating BC with nZVZn could efficiently remove As from As-contaminated drinking water.
Collapse
Affiliation(s)
- Israr Masood Ul Hasan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Haram Javed
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Qunshan Wei
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
14
|
Bibi I, Niazi NK, Shahid M, Ali F, Masood Ul Hasan I, Rahman MM, Younas F, Hussain MM, Mehmood T, Shaheen SM, Naidu R, Rinklebe J. Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119492. [PMID: 35597483 DOI: 10.1016/j.envpol.2022.119492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) contamination of agricultural soils requires suitable criteria for regulating their toxicity limits in soil and food crops, which depends on their potential ecological risk spanning regional to global scales. However, no comprehensive study is available that links TE concentrations in paddy soil with ecological and human health risks in less developed regions like Pakistan. Here we evaluated the data set to establish standard guidelines for defining the hazard levels of various potentially toxic TEs (such as As, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se, Zn) in agricultural paddy soils of Punjab, Pakistan. In total, 100 topsoils (at 0-15 cm depth) and 204 rice plant (shoot and grain) samples were collected from five ecological zones of Punjab (Gujranwala, Hafizabad, Vehari, Mailsi, and Burewala), representing the major rice growing regions in Pakistan. The degree of contamination (Cd) and potential ecological risk index (PERI) established from ecological risk models were substantially higher in 100% and 97% of samples, respectively. The positive matrix factorization (PMF) model revealed that the elevated TEs concentration, notably Cd, As, Cr, Ni, and Pb, in the agricultural paddy soil was attributed to the anthropogenic activities and groundwater irrigation. Moreover, the concentration of these TEs in rice grains was higher than the FAO/WHO's safe limits. This study provided a baseline, albeit critical knowledge, on the impact of TE-allied ecological and human health risks in the paddy soil-rice system in Pakistan; and it opens new avenues for setting TEs guidelines in agro-ecological zones globally, especially in underdeveloped regions.
Collapse
Affiliation(s)
- Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia; Department of Agriculture and Fisheries, Mareeba, 4880, QLD, Australia.
| | - Israr Masood Ul Hasan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Fazila Younas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
15
|
Shahid M, Khalid S, Bibi I, Khalid S, Masood N, Qaisrani SA, Niazi NK, Dumat C. Arsenic-induced oxidative stress in Brassica oleracea: Multivariate and literature data analyses of physiological parameters, applied levels and plant organ type. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1827-1839. [PMID: 34524606 DOI: 10.1007/s10653-021-01093-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Plant redox homeostasis governs the uptake, toxicity and tolerance mechanism of toxic trace elements and thereby elucidates the remediation potential of a plant. Moreover, plant toxicity/tolerance mechanisms control the trace element compartmentation in edible and non-edible plant organs as well as the associated health hazards. Therefore, it is imperative to unravel the cellular mechanism involved in trace element toxicity and tolerance. The present study investigated the toxicity and tolerance/detoxification mechanisms of four levels of arsenic (As(III): 0, 5, 25 and 125 µM) in Brassica oleracea under hydroponic cultivation. Increasing As levels significantly decreased the pigment contents (up to 68%) of B. oleracea. Plants under As stress showed an increase in H2O2 contents (up to 32%) in roots while a decrease (up to 72%) in leaves because As is mostly retained in plant roots, while less is translocated toward the shoot, as evident from the literature. Arsenic treatments caused lipid peroxidation both in the root and leaf cells. Against As-induced oxidative stress, B. oleracea plants mediated an increase in the activities of peroxidase and catalase. Contradictory, the ascorbate peroxidase and superoxide dismutase activities slightly decreased in the As-stressed plants. In conclusion and as evident from the literature data analysis, As exposure (especially high level, 125 µM) caused pigment toxicity and oxidative burst in B. oleracea. The ability of B. oleracea to tolerate As-induced toxicity greatly varied with applied treatment levels (As-125 being more toxic than lower levels), plant organ type (more toxicity in leaves than roots) and physiological response parameter (pigment contents more sensitive than other response variables). Moreover, the multivariate statistical analysis appeared to be a useful method to estimate plant response under stress and trace significant trends in the data set.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Samina Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Nasir Masood
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A, 31058cedex 9, Toulouse, France
- Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France
| |
Collapse
|
16
|
One-Step Biodiesel Production from Waste Cooking Oil Using CaO Promoted Activated Carbon Catalyst from Prunus persica Seeds. Catalysts 2022. [DOI: 10.3390/catal12060592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years, the scope for replacing fossil fuels has been appealing to the world, owing to limited conventional fuels, crude oil price volatility, and greenhouse gas emission concerns. In this regard, this article demonstrates the preparation of a novel solid base catalyst for the transesterification of waste cooking oil. A calcium-loaded activated carbon catalyst was prepared through pyrolysis of peach shell followed by chemical activation with KOH and then calcium loading through the wet impregnation method. The prepared catalyst showed the best performance with 20% calcium loading and 650 °C of calcination temperature. The catalyst’s physicochemical, structural, and textural properties were examined using XRD, FTIR, SEM, EDX, and BET analysis. The catalyst showed a maximum yield of 96% at optimized conditions, i.e., 65 °C temperature, oil to methanol ratio 1:8, 5 wt% catalyst concentration, and a 160 min reaction time. Additionally, it illustrated high recyclability up to 10 cycles with negligible leaching of Ca+2 ions. The high activity of the catalyst was due to the presence of calcium ions on the activated carbon support. Physio–chemical properties and GC-MS analysis of prepared biodiesel determined that all attributes were within the biodiesel standard tolerances set by ASTM D6751 and EN 14214. Therefore, all the innovations mentioned above concluded that catalyst generated from peach shell biochar is a promising candidate for biodiesel production, ultimately resulting in solid and liquid waste management.
Collapse
|
17
|
Fu Y, Cao W, Pan D, Ren Y. Changes of groundwater arsenic risk in different seasons in Hetao Basin based on machine learning model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153058. [PMID: 35031360 DOI: 10.1016/j.scitotenv.2022.153058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Arsenic pollution of shallow groundwater is serious in Hetao Basin. At present, there are few studies on the seasonal variation and mechanism of high As groundwater. In order to master the risk difference and influence mechanism of high As groundwater in different seasons, we collected 506 shallow groundwater samples in the Hetao Basin, and used climatic factors, topographic factors, and others (influence of irrigation channels, vegetation index) that are closely distributed with As in groundwater to establish a high-precision random forest model of high As groundwater in the Hetao Basin in summer. We used climate factors as dynamic predictors to predict the distribution of high As risks in winter and established human health risk zones in the Hetao Basin. The results show that from winter to summer, the probability of high As in high risk areas further increases with the influence of factors such as temperature increase, rainfall increase, and enhanced evapotranspiration, while the probability of high As in low risk areas is the opposite and shows a downward trend. The areas with increased probability of high human health risks and stable areas are mainly distributed along the drainage canals and concentrated in the middle of the basin. From winter to summer, as the local residents' demand for groundwater increases, the probability of high As has increased and stabilized in high risk areas. The number of threatened populations reached 246,000 and 108,000, respectively. Therefore, we need to focus on them. The results of this research explored the changing trend and mechanism of high As groundwater risks under the influence of climate, further enriching the regional high As groundwater research system, and can also be provided as a reference for similar research in other regions.
Collapse
Affiliation(s)
- Yu Fu
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China; North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China; North China University of Water Resources and Electric Power, Zhengzhou 450011, China; Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang, 050061, China.
| | - Deng Pan
- Institute of Natural Resource Monitoring of Henan Province, Zhengzhou 450016, PR China
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China; Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang, 050061, China
| |
Collapse
|
18
|
Mensah AK, Marschner B, Shaheen SM, Rinklebe J. Biochar, compost, iron oxide, manure, and inorganic fertilizer affect bioavailability of arsenic and improve soil quality of an abandoned arsenic-contaminated gold mine spoil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113358. [PMID: 35255247 DOI: 10.1016/j.ecoenv.2022.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/24/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) contaminated mining spoils pose health threats to environmental resources and humans, and thus, mitigating this potential risk is worth investigating. Here, we studied the impacts of biochar, compost, iron oxide, manure, and inorganic fertilizer on the non-specifically (readily bioavailable)- and specifically- sorbed As and soil quality improvement of an abandoned mine spoil highly contaminated with As (total As = 1807 mg/kg). Compost, iron oxide, manure, and biochar were each applied at 0.5%, 2%, and 5% (w/w) to the contaminated soil; and NPK fertilizer at 0.1, 0.2, and 5.0 g/kg. The non-specifically (readily bioavailable)- and specifically- sorbed As were extracted sequentially and available P, total C and N, dissolved organic carbon, soil soluble anions, and exchangeable cations were extracted after 1- and 28-day incubation. Compost, manure, and biochar at 5% improved the total C and N and exchangeable K+, Mg2+ and Na+. However, manure, compost, and iron oxide at 5% reduced available P from 118.5 to 60.3, 12.6, and 7.1 mg/kg, respectively. As compared to the untreated soil, the addition of iron oxide doses reduced the readily bioavailable As by 93%; while compost, manure, inorganic fertilizers, and biochar increased it by 106-332%, 24-315%, 19-398%, and 28-47%, respectively, with a significantly higher impact for the 5% doses. Furthermore, compost reduced specifically-sorbed As content (14-37%), but the other amendments did not significantly affect it. The impacts of the amendments on the readily bioavailable As was stronger than on specifically-sorbed As; but these were not affected by the incubation period. Arsenic bioavailability in our soil increased with increasing the soil pH and the contents of Cl-, DOC, and exchangeable K+ and Na+. We conclude that iron-rich materials can be used to reduce As bioavailability and to mitigate the associated environmental and human health risk in such mining spoils. However, the carbon-, and P-rich and alkaline materials increased the bioavailability of As, which indicates that these amendments may increase the risk of As, but can be used to enhance phytoextraction efficiency of As in the gold mining spoil.
Collapse
Affiliation(s)
- Albert Kobina Mensah
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universitaet Bochum, Universitaet Strasse 150, 44801 Bochum, Germany.
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universitaet Bochum, Universitaet Strasse 150, 44801 Bochum, Germany.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
19
|
Usman M, Murtaza B, Natasha N, Imran M, Abbas G, Amjad M, Shahid M, Ibrahim SM, Owens G, Murtaza G. Multivariate analysis of accumulation and critical risk analysis of potentially hazardous elements in forage crops. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:139. [PMID: 35112276 DOI: 10.1007/s10661-022-09799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Potentially hazardous element (PHE) contamination of aquifers is an issue of global concern, as this not only affects soil and plants but also exerts a negative impact on livestock. The current study assessed the extent of PHE (cadmium, copper, nickel, and lead) contamination of groundwater, soil, and forage crops in Shorkot, Punjab, Pakistan. Low concentrations of PHEs, particularly Cd and Cu, were found in drinking water which remained below detection limits. The concentrations of Ni and Pb in water samples were 0.1 and 0.06 mg L-1, respectively. Calculated risk indices showed that there was a high carcinogenic and non-carcinogenic risk to livestock (sheep and cow/buffalo) from the ingestion of Ni- and Pb-contaminated water. Soil irrigation with contaminated water resulted in PHE accumulation (Cd: 0.4 mg kg-1, Cu: 16.8 mg kg-1, Ni: 17.6 mg kg-1, Pb: 7.7 mg kg-1) in soil and transfer to forage crops. The potential impact of PHE contamination of the groundwater on fodder plants was estimated for animal health by calculating the average daily dose (ADD), the hazard quotient (HQ), and the cancer risk (CR). While none of the PHEs in forage plants showed any carcinogenic or non-carcinogenic risk to livestock, a high exposure risk occurred from contaminated water (HQ: 12.9, CR: 0.02). This study provides baseline data for future research on the risks of PHE accumulation in livestock and their food products. Moreover, future research is warranted to fully understand the transfer of PHEs from livestock products to humans.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan.
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| |
Collapse
|
20
|
Mustafa Shah G, Imran M, Aiman U, Mohsin Iqbal M, Akram M, Javeed HMR, Waqar A, Rabbani F. Efficient sequestration of lead from aqueous systems by peanut shells and compost: evidence from fixed bed column and batch scale studies. PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lead (Pb) is a pervasive contaminant and poses a serious threat to living beings. The present study aims at batch and fixed bed column scale potential of commercial compost (CCB) and peanut shells biosorbents (PSB) for the sequestration of Pb from contaminated aqueous systems. The PSB and CCB were characterized with FTIR, SEM and Brunauer Emmett-Teller (BET) to get insight of the adsorption behavior of both materials. Fixed bed column scale experiments were performed at steady state flow (2.5 and 5.0 mL/min), initial Pb concentrations (25 and 50 mg/L) and dosage of each adsorbent (3.0 and 6.0 g/column). Columns packed (15.9 cm2) with PSB and CCB have revealed excellent adsorption of Pb with PSB as compared with CCB. The total volume of injected contaminated water was 1,500 mL and 3,000 mL at 2.5 and 5.0 mL/min, respectively while total bed volume number was 157. A series of batch experiments with CCB and PSB was conducted at adsorbent dosage (1.25–5.0 g/L), initial Pb level (25–100 mg/L), interaction time (0–180 min) and solution pH (4–10) at room temperature. Batch scale results revealed that PSB removed 92% Pb from water at 25 mg Pb/L concentration as compared with CCB (79%). The presence of competing ions in groundwater showed less Pb removal as compared with synthetic water. The experimental data were simulated with equilibrium isothermal models: Langmuir, Freundlich, and kinetic models: pseudo first order, pseudo second order and intra-particle diffusion. The Freundlich and pseudo second order models better described the equilibrium and kinetic experimental data, respectively with maximum sorption of 42.5 mg/g by PSB which is also evident from FTIR functional groups and SEM results. While equilibrium sorption of Pb onto CCB was equally explained by Freundlich and Langmuir models. These findings indicate that PSB could be an active and ecofriendly biosorbent for the sequestration of metals from contaminated aqueous systems.
Collapse
|
21
|
Hydrogeochemical Investigation of Elevated Arsenic Based on Entropy Modeling, in the Aquifers of District Sanghar, Sindh, Pakistan. WATER 2021. [DOI: 10.3390/w13233477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arsenic (As) contamination in drinking groundwater is a common environmental problem in Pakistan. Therefore, sixty-one groundwater samples were collected from various groundwater sources in District Sanghar, Sindh province, Pakistan, to understand the geochemical behavior of elevated As in groundwater. Statistical summary showed the cations and anions abundance in decreasing order of Na+ > Ca2+ > Mg2+ > K+, and HCO3− > Cl− > SO42− > NO3−. Arsenic was found with low to high concentration levels ranging from 5 µg to 25 µg/L with a mean value of 12.9 µg/L. A major water type of groundwater samples was mixed with NaCl and CaHCO3 type, interpreting the hydrochemical behavior of rock–water interaction. Principal component analysis (PCA) showed the mixed anthropogenic and natural sources of contamination in the study area. Moreover, rock weathering and exchange of ions controlled the hydrochemistry. Chloro-alkaline indices revealed the dominance of the reverse ion exchange mechanism in the region. The entropy water quality index (EWQI) exposed that 17 samples represent poor water, and 11 samples are not suitable for drinking.
Collapse
|
22
|
Bibi I, Hussain K, Amen R, Hasan IMU, Shahid M, Bashir S, Niazi NK, Mehmood T, Asghar HN, Nawaz MF, Hussain MM, Ali W. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5037-5051. [PMID: 33811285 DOI: 10.1007/s10653-021-00902-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg-1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.
Collapse
Affiliation(s)
- Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Khalid Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Rabia Amen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Israr Masood Ul Hasan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Tariq Mehmood
- College of Environment, Hohai University Nanjing, Nanjing, 210098, China
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
23
|
Ahmad S, Imran M, Murtaza B, Arshad M, Nawaz R, Waheed A, Hammad HM, Naeem MA, Shahid M, Niazi NK. Hydrogeochemical and health risk investigation of potentially toxic elements in groundwater along River Sutlej floodplain in Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5195-5209. [PMID: 34009496 DOI: 10.1007/s10653-021-00941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Understanding groundwater quality and hydrogeochemical behavior is important because consumption of the potentially toxic elements (PTEs)-contaminated drinking water may induce several health problems for humans and animals. In the current study, we examined the potential groundwater contamination with various PTEs (arsenic, As; cadmium, Cd; copper, Cu; manganese; Mn) and the PTEs-induced health risk. Groundwater (n = 111) was characterized for total As, Cd, Cu, and Mn concentrations and other water quality attributes along the River Sutlej floodplain of Punjab, Pakistan. Results revealed that groundwater, which is used for drinking purpose, contained high concentrations of As and Cd (mean As: 33 µg/L, mean Cd: 3 µg/L), exceeding 100% and 32% than the World Health Organization's safe limits (10 and 3 µg/L, respectively) in drinking water. The other water quality attributes (i.e., EC, HCO3, Cl and SO4) were also found above their safe limits in most of the wells. Hydrogeochemical data showed that groundwater was dominated with Na-SO4, Na-Cl, Ca/Mg-CO3 type saline water. The hazard quotient and cancer risk indices values calculated for As and Cd indicated potential threat (carcinogenic risk > 0.0001 and non-carcinogenic risk > 1.0) of drinking groundwater in the study area. This study shows that the groundwater along River Sutlej floodplain poses a health threat to the communities relying on it for drinking and irrigation due to high concentrations of As and Cd in water. Moreover, it is important to monitor groundwater quality in the adjacent areas along River Sutlej floodplain and initiate suitable mitigation and remediation programs for the safety of people's health in Punjab, Pakistan.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Arshad
- Department of Agriculture & Food Technology, Faculty of Life Sciences, Karakoram International University, Gilgit, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdul Waheed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Hafiz Mohkum Hammad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| |
Collapse
|
24
|
Bibi I, Hussain K, Amen R, Hasan IMU, Shahid M, Bashir S, Niazi NK, Mehmood T, Asghar HN, Nawaz MF, Hussain MM, Ali W. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5037-5051. [PMID: 33811285 DOI: 10.1007/s10653-021-00902-5/tables/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
Arsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg-1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.
Collapse
Affiliation(s)
- Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Khalid Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Rabia Amen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Israr Masood Ul Hasan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Tariq Mehmood
- College of Environment, Hohai University Nanjing, Nanjing, 210098, China
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
25
|
Fu D, Kurniawan TA, Li H, Wang H, Wang Y, Li Q. Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118062. [PMID: 34482246 DOI: 10.1016/j.envpol.2021.118062] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
A highly efficient, eco-friendly and relatively low-cost catalyst is necessary to tackle bottlenecks in the treatment of industrial wastewater laden with heavy metals and antibiotic such as livestock farm and biogas liquids. This study investigated co-oxidative removal of arsenite (As(III)) and tetracycline (TC) by iron nanoparticles (Fe NP)-impregnated carbons based on heterogeneous Fenton-like reactions. The composites included Fe NP@biochar (BC), Fe NP@hydrochar (HC), and Fe NP@HC-derived pyrolysis char (HDPC). The functions of N and S atoms and the loading mass of the Fe NP in the Fe NP@BC in heterogeneous Fenton-like reactions were studied. To sustain its cost-effectiveness, the spent Fe NP@BC was regenerated using NaOH. Among the composites, the Fe NP@BC achieved an almost complete removal of As(III) and TC under optimized conditions (1.0 g/L of dose; 10 mM H2O2; pH 6; 4 h of reaction; As(III): 50 μM; TC: 50 μM). The co-oxidative removal of As(III) and TC by the Fe NP@ BC was controlled by the synergistic interactions between the Fe NPs and the active N and S sites of the BC for generating reactive oxygen species (ROS). After four consecutive regeneration cycles, about 61 and 95% of As(III) and TC removal were attained. This implies that the spent carbocatalyst still has reasonable catalytic activities for reuse. Overall, this suggests that adding technological values to unused biochar as a carbocatalyst like Fe NP@BC was promising for co-oxidative removal of As(III) and TC from contaminated water.
Collapse
Affiliation(s)
- Dun Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China
| | - Tonni Agustiono Kurniawan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Heng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China.
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China; College of Food and Biology Engineering, Jimei University, Xiamen, 361021, Fujian, PR China
| |
Collapse
|
26
|
Hussain MM, Bibi I, Niazi NK, Nawaz MF, Rinklebe J. Impact of organic and inorganic amendments on arsenic accumulation by rice genotypes under paddy soil conditions: A pilot-scale investigation to assess health risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126620. [PMID: 34329086 DOI: 10.1016/j.jhazmat.2021.126620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the distinct effects of organic (farmyard manure (FYM), cow dung (CD), biogas slurry (BGS), sugarcane bagasse (SCB)) and inorganic (gypsum and lignite) amendments on arsenic (As) accumulation by two rice genotypes, Kainat (fine) and Basmati-385 (coarse), under As stress. Results showed that shoot As concentration was ~2-time greater in Kainat compared to Basmati-385 (3.1-28 vs. 1.7-16 mg kg-1 DW, respectively), with the minimum shoot As content observed with CD and SCB. In contrast to gypsum and lignite, grain As concentration was significantly reduced with CD and SCB for Kainat (0.29 and 0.24 mg kg-1 DW) and Basmati-385 (0.04 and 0.09 mg kg-1 DW). Data indicated that the CD and SCB also improved chlorophyll a and b contents, reduced lipid peroxidation and hydrogen peroxide production in both rice genotypes. Significantly, the CD and SCB decreased grain As concentration below the FAO safe As limit in rice grain (0.2 mg kg-1 DW), especially in coarse rice genotype (Basmati-385), resulting in negligible As-induced human health risk. This study highlights the significance of amendments and rice genotypes controlling As accumulation in rice grain, which should be considered prior to As remediation program of paddy soils for limiting exposure of humans to As via rice grain.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Farrakh Nawaz
- Department of Forestry & Range Management, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
27
|
Ishfaq M, Wakeel A, Shahzad MN, Kiran A, Li X. Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in east-central Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4219-4233. [PMID: 33830390 DOI: 10.1007/s10653-021-00912-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Micronutrients deficiency in soil-plant and human is well-addressed; however, little is known about their spatial distribution, magnitude of deficiency and biological nexus. Zinc deficiency (ZnD) and iron-deficiency anemia (FeD) are two serious nutritional concerns which are negatively affecting human health. Herein, a survey-based case study was conducted in major wheat-based cropping system of east-central Pakistan. Soil and grain samples were collected from 125 field-grown wheat from 25 distinct sites/villages and GPS coordinates were taken for mapping. The collected samples were tags according to the names of 25 sites, i.e., UCs (union councils; an administrative unit). The quantified amount of zinc (Zn) or iron (Fe) in soil-wheat grains was compared with their recommended concentrations (RCZn, RCFe) for human nutrition. Additionally, clinical features of ZnD and FeD were diagnosed among local farmers who used to consume these grains, throughout the year, cultivated on their farm, and quantified their deficiency prevalence (ZnDP, FeDP). Results revealed, the collected 64% (0.54 to 5.25 mg kg-1) soils, and 96% (1.4 to 31 mg kg-1) grain samples are Zn-deficient (RCZn) along with ZnDP recorded among 68% of population. Meanwhile, FeD is quantified in 76% (1.86 to 15 mg kg-1) soil, 72% grain (2.1 to 134 mg kg-1) samples, and FeDP is found among 84% of studied population. A strong and positive correlation is developed in the Zn-or FeDP with their deficiencies in soil and grain by plotting multivariate analysis. In line with spatial distribution pattern, the UCs, namely, 141, 151, 159 and 132 are quantified severe deficient in Zn and Fe, and others are marginal or approaching to deficient level. Our findings rationalize the biological nexus of Zn and Fe, and accordingly, draw attention in the biofortification of staple crop as a win-win approach to combat the rising malnutrition concerns.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Department of Plant Nutrition, The Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Nadeem Shahzad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aysha Kiran
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Xuexian Li
- Department of Plant Nutrition, The Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Zhang Y, Dai Y, Wang Y, Huang X, Xiao Y, Pei Q. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147186. [PMID: 34088052 DOI: 10.1016/j.scitotenv.2021.147186] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Assessments for groundwater quality and potential health risk are significant for better utilization and exploitation. In the present study, seventy groundwater samples were collected from domestic tube wells and public water-supply wells in the Nanchong area, southwestern China. The integration of statistical analysis, ion correlation, geomodelling analysis, entropy water quality index and health risks assessment were compiled in this study. Statistical analysis indicated the cations followed the concentration order as Ca2+ > Na+ > Mg2+ > K+, while anions' concentrations were HCO3- > SO42- > Cl- > NO3- > F- based on Box and Whisker plot. Piper triangle diagram proposed the hydrochemical type was characterized as Ca-HCO3. Correlations of ions and geomodelling revealed the concentrations of major ions were mainly determined by calcite dissolution and ion exchange process and NO3- concentrations were controlled by agriculture activities. Entropy water quality index computation demonstrated that 96% of groundwater samples possessed the EWQI values of 29-95, and thus were suitable for drinking purpose. The HITotal values for 66% groundwater samples exceeded the acceptable limit for non-carcinogenic risk (HI =1) for infants, followed by 41% for children, 37% for adult males, and 30% for adult females. The non-carcinogenic human health risk of different population groups followed the order of infants > children > adult males > adult females. In future, targeted measures for human health risks of NO3- will focus on the improvements for agricultural activities, including reducing the use of nitrogenous fertilizer, changing irrigation pattern, etc. Our study provides the vital knowledge for groundwater management in the Nanchong and development of the Cheng -Yu Economic Circle.
Collapse
Affiliation(s)
- Yunhui Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
| | - Yongsheng Dai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Ying Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China.
| | - Xun Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yong Xiao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qiuming Pei
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
29
|
Shahid M, Khalid S, Niazi NK, Murtaza B, Ahmad N, Farooq A, Zakir A, Imran M, Abbas G. Health risks of arsenic buildup in soil and food crops after wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145266. [PMID: 33578156 DOI: 10.1016/j.scitotenv.2021.145266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Despite considerable research of arsenic (As) level in ground/drinking water of Pakistan, scarce data is available regarding irrigation water contamination by As and associated health risks. The municipal wastewater is routinely applied for soil irrigation in peri-urban agriculture of the country. Since the wastewater composition/contamination and its allied consequences greatly vary in different areas, therefore, it is imperative to check the possible health risks in areas where untreated wastewater is being applied for food crop production. This study analyzed potential health hazards of As-buildup in soil and food plants irrigated with municipal wastewater growing under natural conditions. Sixteen wastewater irrigation locations were selected in District Vehari. From these sites, a total of 16 wastewater samples, 108 soil samples and 65 plant samples were collected for As analysis. Total As contents in wastewater (5.3-63.6 μg/L), soil (1.4-19.6 mg/kg) and plants (0-6.5 mg/kg) greatly varied with sampling location, soil depths and plant type. Based on total As contents in edible tissues, risk assessment parameters, especially cancer risk factor, showed possible health risks (> 0.0001) for wheat crops for children while no risks for other food crops. The use of multiple and diversified food crops is recommended in the study area to minimize the possible risk of As exposure and poisoning. The study also anticipates some future viewpoints considering the on-ground situation of wastewater use, possible exposure of metal(loid)s to human and associated health concerns at local and global scale.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, 4350 Queensland, Australia
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Naveed Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Amjad Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ali Zakir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| |
Collapse
|
30
|
Abbas Z, Imran M, Natasha N, Murtaza B, Amjad M, Shah NS, Khan ZUH, Ahmad I, Ahmad S. Distribution and health risk assessment of trace elements in ground/surface water of Kot Addu, Punjab, Pakistan: a multivariate analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:351. [PMID: 34021412 DOI: 10.1007/s10661-021-09150-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Water is a key component for living beings to sustain life and for socio-economic development. Anthropogenic activities contribute significantly to ground/surface water contamination particularly with trace elements. The present study was designed to evaluate distribution and health risk assessment of trace elements in ground/surface water of the previously unexplored area, Tehsil Kot Addu, Southern-Punjab, Pakistan. Ground/surface water samples (n = 120) were collected from rural and urban areas of Kot Addu. The samples were analyzed for physicochemical characteristics: total dissolved solids (TDS), pH, and EC (electrical conductivity), cations, anions, and trace elements particularly arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn). All of the water characteristics were evaluated based on the water quality standards set by World Health Organization (WHO). Results revealed the suitability of water for drinking purpose with respect to physicochemical attributes. However, the alarming levels of trace elements especially As, Cd, and Pb make it unfit for drinking purpose. Noticeably, 23, 96, and 98% of water samples showed As, Cd, and Pb concentrations higher than the permissible limits. Overall, the estimated carcinogenic and non-carcinogenic risk to the exposed community was higher than the safety level of USEPA, suggesting the probability of cancer and other diseases through long-term exposure via ingestion routes. Therefore, this study demonstrated an urgent need for water filtration/purification techniques, and some quality control measures are warranted to protect the health of the exposed community in Tehsil Kot Addu.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| | - Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| |
Collapse
|
31
|
Sun Y, Sun J, Nghiem AA, Bostick BC, Ellis T, Han L, Li Z, Liu S, Han S, Zhang M, Xia Y, Zheng Y. Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124615. [PMID: 33310320 PMCID: PMC7937834 DOI: 10.1016/j.jhazmat.2020.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 05/10/2023]
Abstract
Sediment in fluvial-deltaic plains with high-As groundwater is heterogenous but its characterization of As and Fe oxidation states lacks resolution, and is rarely attempted for aqueous and solid phases simultaneously. Here, we pair high-resolution (> 1 sample/meter) Fe extended fine-structure spectroscopy (EXAFS, n = 40) and As X-ray absorption near-edge spectroscopy (XANES, n = 49) with groundwater composition and metagenomics measurements for two sediment cores and their associated wells (n = 8) from the Yinchuan Plain in northwest China. At shallower depths, nitrate and Mn/Fe reducing sediment zones are fine textured, contain 9.6 ± 5.6 mg kg-1 of As(V) and 2.3 ± 2.7 mg kg-1 of As(III) with 9.1 ± 8.1 g kg-1 of Fe(III) (hydr)oxides, with bacterial genera capable of As and Fe reduction identified. In four deeper 10-m sections, sulfate-reducing sediments are coarser and contain 2.6 ± 1.3 mg kg-1 of As(V) and 1.1 ± 1.0 mg kg-1 of As(III) with 3.2 ± 2.6 g kg-1 of Fe(III) (hydr)oxides, even though groundwater As concentrations can exceed 200 μg/L, mostly as As(III). Super-enrichment of sediment As (42-133 mg kg-1, n = 7) at shallower depth is due to redox trapping during past groundwater discharge. Active As and Fe reduction is supported by the contrast between the As(III)-dominated groundwater and the As(V)-dominated sediment, and by the decreasing sediment As(V) and Fe(III) (hydr)oxides concentrations with depth.
Collapse
Affiliation(s)
- Yuqin Sun
- College of Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Athena A Nghiem
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Benjamin C Bostick
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Long Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songlin Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuangbao Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
32
|
Mehmood T, Liu C, Niazi NK, Gaurav GK, Ashraf A, Bibi I. Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using Zea mays L. in contrasting textured soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:899-910. [PMID: 33395533 DOI: 10.1080/15226514.2020.1865267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) is considered as a potential energy-yielding crop which may respond to compost application for arsenic (As) phytoremediation depending on soil type and compost application levels in soil. Here, we explored compost-mediated As phytoremediation potential of maize in the two different textured soils (sandy loam soil and clay loam soil) at varying As (0-120 mg kg-1) and compost (0-2.5%) levels under glasshouse conditions. Results revealed that in the absence of compost maize plants grown at different soil As levels (0-120 mg kg-1) accumulated 1.20-1.71 times more As from sandy loam soil than that of clay loam soil. The compost addition in soil at all levels, with 120 mg kg-1 As enhanced As accumulation in maize plants in the clay loam soil by 13%, while it reduced As phyto-uptake by 27% in sandy loam soil. This may be due to an increase in phosphate-extractable (bioavailable) soil As content from 2.7 to 3.8 mg kg-1 in clay loam soil. The estimated daily intake (EDI) of As (0.03-0.15 μg g-1 of body weight day-1) was above the US EPA's standard value. Arsenic phytoremediation potential of the maize plants was found to be economical for sandy loam soil with 1% compost level and for clay loam soil at 2.5% compost level, suggesting soil type specific dose dependence of compost for As phytoremediation programs. Novelty statement: To our knowledge, the role of compost in economic feasibility of energy crops at contaminated soils in general, and in the growing of maize at As-contaminated soil in particular, has not been addressed, so far. Moreover, it is the first time to evaluate environmental and health risk of compost-mediated As phytoremediation in different soil types.This study provided new insights of economic evaluation and risk assessment in the phytoremediation and mechanisms of compost in biomass production of energy crop at different As concentration. These aspects in phytoremediation studies are imperative to understand for developing safe, cost-effective and soil specific remediation strategies.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Anam Ashraf
- School of Environment, Tsinghua University, Beijing, China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|