1
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175015. [PMID: 39069186 DOI: 10.1016/j.scitotenv.2024.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Plants exert a profound influence on their rhizosphere microbiome through the secretion of root exudates, thereby imparting critical effects on their growth and overall health. The results unveil that japonica rice showcases a remarkable augmentation in its antioxidative stress mechanisms under Cd stress. This augmentation is characterized by the sequestration of heavy metal ions within the root system and the prodigious secretion of a spectrum of flavonoids, including Quercetin, Luteolin, Apigenin, Kaempferide, and Sakuranetin. These flavonoids operate as formidable guardians, shielding the plant from oxidative damage instigated by Cd-induced stress. Furthermore, the metagenomic analyses divulge the transformative potential of flavonoids, as they induce profound alterations in the composition and structural dynamics of plant rhizosphere microbial communities. These alterations manifest through the recruitment of plant growth-promoting bacteria, effectively engineering a conducive milieu for japonica rice. In addition, our symbiotic network analysis discerns that flavonoid compounds significantly improved the positive correlations among dominant species within the rhizosphere of japonica rice. This, in turn, bolsters the stability and intricacy of the microenvironmental ecological network. KEGG functional analyses reveal a notable upregulation in the expression of flavonoid functional genes, specifically cadA, cznA, nccC, and czrB, alongside an array of transporters, encompassing RND, ABC, MIT, and P-ATPase. These molecular orchestrations distinctly demarcated the rhizosphere microbiome of japonica rice, markedly enhancing its tolerance to Cd-induced stress. These findings not only shed light on the establishment of Cd-resistant bacterial consortia in rice but also herald a promising avenue for the precise modulation of plant rhizosphere microbiomes, thereby fortifying the safety and efficiency of crop production.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
2
|
Jiang Z, Wang J, Cao K, Liu Y, Wang B, Wang X, Wang Y, Jiang D, Cao B, Zhang Y. Foliar application of selenium and gibberellins reduce cadmium accumulation in soybean by regulating interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134868. [PMID: 38897119 DOI: 10.1016/j.jhazmat.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Both selenium (Se) and gibberellins (GA3) can alleviate cadmium (Cd) toxicity in plants. However, the application of Se and GA3 as foliar spray to against Cd stress on soybean and its related mechanisms have been poorly explored. Herein, this experiment evaluated the effects of Se and GA3 alone and combined application on soybean rhizosphere microenvironment, Cd accumulation and growth of soybean seedlings. The results revealed that both Se and GA3 can effectively decrease the accumulation of Cd in soybean seedlings. Foliar application of Se, GA3 and their combination reduced Cd contents in soybean seedlings respectively by 21.70 %, 27.53 % and 45.07 % when compared with the control treatment, suggest a synergistic effect of Se and GA3 in decreasing Cd accumulation. Se and GA3 also significantly increased diversity and abundance of the metabolites in rhizosphere, which consequently played an important role in shaping rhizosphere bacteria community and improve rhizosphere soil physicochemical properties of Cd contaminated soil, as well as decreased the Cd available forms contents but enhance the immobilized form levels. Overall, this study affords a novel approach on mitigating Cd accumulation in soybean seedlings which is attributed to Se and GA3 regulated interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiqin Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yiyan Liu
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoxin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuying Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Wu Y, Huang S, Tian W, Yang S, Shen W, Dong J. Endophytic Colletotrichum fructicola KL19 and Its Derived SeNPs Mitigate Cd-Stress-Associated Damages in Spinacia oleracea L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2359. [PMID: 39273843 PMCID: PMC11396860 DOI: 10.3390/plants13172359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The application of nanotechnology in agriculture has received much attention in order to improve crop yield, quality and food safety. In the present study, a Cd-tolerant endophytic fungus Colletotrichum fructicola KL19 was first ever reported to produce SeNPs, and the production conditions were optimized using the Box-Behnken design in the Response Surface Methodology (RSM-BBD), achieving a peak yield of 1.06 mM under optimal conditions of 2.62 g/20 mL biomass, 4.56 mM Na2SeO3, and pH 6.25. Following this, the properties of the biogenic SeNPs were elucidated by using TEM, DLS, and FTIR, in which the 144.8 nm spherical-shaped SeNPs were stabilized by different functional groups with a negative zeta potential of -18.3 mV. Furthermore, strain KL19 and SeNPs (0, 5, 10, 20 and 50 mg/L) were inoculated in the root zone of small-leaf spinach (Spinacia oleracea L.) seedlings grown in the soil with 33.74 mg/kg Cd under controlled conditions for seven weeks. Impressively, compared with Cd stress alone, the strain KL19 and 5 mg/L SeNPs treatments significantly (p < 0.05) exhibited a reduction in Cd contents (0.62 and 0.50 folds) within the aboveground parts of spinach plants and promoted plants' growth by improving the leaf count (0.92 and 1.36 folds), fresh weight (2.94 and 3.46 folds), root dry weight (4.00 and 5.60 folds) and root length (0.14 and 0.51 folds), boosting total chlorophyll synthesis (0.38 and 0.45 folds), enhancing antioxidant enzymes (SOD, POD) activities, and reducing the contents of reactive oxygen species (MDA, H2O2) in small-leaf spinach under Cd stress. Overall, this study revealed that utilizing endophytic fungus C. fructicola or its derived SeNPs could mitigate reactive oxygen species generation by enhancing antioxidant enzyme activity as well as diminish the absorption and accumulation of Cd in small-leaf spinach, promoting plant growth under Cd stress.
Collapse
Affiliation(s)
- Yingxia Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiru Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wei Tian
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shengyu Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenshu Shen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jinyan Dong
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Wang M, Li H, Dang F, Cheng B, Cheng C, Ge C, Zhou D. Common metabolism and transcription responses of low-cadmium-accumulative wheat (Triticum aestivum L.) cultivars sprayed with nano-selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174936. [PMID: 39047830 DOI: 10.1016/j.scitotenv.2024.174936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cadmium (Cd) contamination in soils threatens food security, while cultivating low-Cd-accumulative varieties, coupled with agro-nanotechnology, offers a potential solution to reduce Cd accumulation in crops. Herein, foliar application of selenium nanoparticles (SeNPs) was performed on seedlings of two low-Cd-accumulative wheat (Triticum aestivum L.) varieties grown in soil spiked with Cd at 3 mg/kg. Results showed that foliar application of SeNPs at 0.16 mg/plant (SeNPs-M) significantly decreased the Cd content in leaves of XN-979 and JM-22 by 46.4 and 40.8 %, and alleviated oxidative damage. The wheat leaves treated with SeNPs-M underwent significant metabolic and transcriptional reprogramming. On one hand, four specialized antioxidant metabolites such as L-Tyrosine, beta-N-acetylglucosamine, D-arabitol, and monolaurin in response to SeNPs in JM-22 and XN-979 is the one reason for the decrease of Cd in wheat leaves. Moreover, alleviation of stress-related kinases, hormones, and transcription factors through oxidative post-translational modification, subsequently regulates the expression of defense genes via Se-enhanced glutathione peroxidase. These findings indicate that combining low-Cd-accumulative cultivars with SeNPs spraying is an effective strategy to reduce Cd content in wheat and promote sustainable agricultural development.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, Jiangsu, PR China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, PR China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
5
|
Gong J, Wang C, Wang J, Yang Y, Kong X, Liu J, Tang M, Lou H, Wen Z, Yang S, Yi Y. Integrative study of transcriptome and microbiome to reveal the response of Rhododendron decorum to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116536. [PMID: 38833983 DOI: 10.1016/j.ecoenv.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The anomalies of cadmium (Cd) in karst region pose a severe threat to plant growth and development. In this study, the responses of Rhododendron decorum to Cd stress were investigated at physiological, molecular, and endophytic microbial levels, and the potential correlation among these responses was assessed. The Cd stress impeded R. decorum growth and led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as enhanced superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Cd stress increased the Cd (up to 80 times compared to the control), sodium (Na), aluminum (Al), and zinc (Zn) contents, while decreased the magnesium (Mg) and manganese (Mn) contents in R. decorum leaves. Transcriptome suggested that Cd significantly regulated the pathways including "protein repair", "hormone-mediated signaling pathway", and "ATP-binding cassette (ABC) transporters". Additionally, q-PCR analysis showed that Cd stress significantly up-regulated the expressions of ABCB19-like and pleiotropic drug resistance, while down-regulated the expressions of indole-3-acetic acid-amido synthetase and cytokinin dehydrogenase. The Cd stress influenced the composition of endophytic microbial communities in R. decorum leaves and enhanced the interspecific bacterial associations. Furthermore, the bacterial genera Achromobacter, Aureimonas and fungal genus Vishniacozyma exhibited a high degree of connectivity with other nodes in networks constructed by the metal element contents, differentially expressed genes (DEGs), and microbial communities, respectively. These findings provide a comprehensive insight into the response of R. decorum to Cd-induced stress, which might facilitate the breeding of the Cd-tolerant R. decorum.
Collapse
Affiliation(s)
- Jiyi Gong
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Chao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jianfeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Gansu Yasheng Agricultural Research Institute Co., Ltd., Lanzhou 730010, China
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Hezhen Lou
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China
| | - Zhirui Wen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Shengtian Yang
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
6
|
Di X, Jing R, Qin X, Liang X, Wang L, Xu Y, Sun Y, Huang Q. The role and transcriptomic mechanism of cell wall in the mutual antagonized effects between selenium nanoparticles and cadmium in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134549. [PMID: 38733789 DOI: 10.1016/j.jhazmat.2024.134549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Selenium nanoparticles (SeNPs) has been reported as a beneficial role in alleviating cadmium (Cd) toxicity in plant. However, underlying molecular mechanisms about SeNPs reducing Cd accumulation and alleviating Cd toxicity in wheat are not well understood. A hydroponic culture was performed to evaluate Cd and Se accumulation, cell wall components, oxidative stress and antioxidative system, and transcriptomic response of wheat seedlings after SeNPs addition under Cd stress. Results showed that SeNPs application notably reduced Cd concentration in root and in shoot by 56.9% and 37.3%, respectively. Additionally, SeNPs prompted Cd distribution in root cell wall by 54.7%, and increased lignin, pectin and hemicellulose contents by regulating cell wall biosynthesis and metabolism-related genes. Further, SeNPs alleviated oxidative stress caused by Cd in wheat through signal transduction pathways. We also observed that Cd addition reduced Se accumulation by downregulating the expression level of aquaporin 7. These results indicated that SeNPs alleviated Cd toxicity and reduced Cd accumulation in wheat, which were associated with the synergetic regulation of cell wall biosynthesis pathway, uptake transporters, and antioxidative system via signaling pathways.
Collapse
Affiliation(s)
- Xuerong Di
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Rui Jing
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xu Qin
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Lin Wang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
7
|
Shang H, Li C, Cai Z, Hao Y, Cao Y, Jia W, Han L, White JC, Ma C, Xing B. Biosynthesized Selenium Nanoparticles as an Effective Tool to Combat Soil Metal Stresses in Rice ( Oryza sativa L.). ACS NANO 2024. [PMID: 38952034 DOI: 10.1021/acsnano.4c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Nanotechnology has demonstrated significant potential to improve agricultural production and increase crop tolerance to abiotic stress including exposure to heavy metals. The present study investigated the mechanisms by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) alleviated cadmium (Cd)-induced toxicity to rice (Oryza sativa L.). AVGE Se NPs, chemically synthesized bare Se NPs, and NaSeO3 as an ionic control were applied to Cd-stressed rice seedlings via root exposure in both hydroponic and soil systems. Upon exposure to AVGE Se NPs at 15 mg Se/L, the fresh root biomass was significantly increased by 100.7% and 19.5% as compared to Cd control and conventional bare Se NPs. Transcriptional analyses highlighted that AVGE Se NPs activated stress signaling and defense related pathways, including glutathione metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction. Specifically, exposure to AVGE Se NPs upregulated the expression of genes associated with the gibberellic acid (GA) biosynthesis by and 4.79- and 3.29-fold as compared to the Cd-alone treatment and the untreated control, respectively. Importantly, AVGE Se NPs restored the composition of the endophyte community and recruit of beneficial species under Cd exposure; the relative abundance of Azospirillum was significantly increased in roots, shoots, and the rhizosphere soil by 0.73-, 4.58- and 0.37-fold, respectively, relative to the Cd-alone treatment. Collectively, these findings highlight the significant potential of AVGE Se NPs to enhance plant growth and to minimize the Cd-induced toxicity in rice and provide a promising nanoenabled strategy to enhance food safety upon crop cultivation in contaminated agricultural soils.
Collapse
Affiliation(s)
- Heping Shang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zeyu Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Bai Y, Zheng X, Ma J, Liu H, Zeng H, Zhang F, Wang J, Song K. Multiple Perspectives of Study on the Potential of Bacillus amyloliquefaciens JB20221020 for Alleviating Nutrient Stress in Lettuce. Curr Microbiol 2024; 81:228. [PMID: 38890167 DOI: 10.1007/s00284-024-03752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.
Collapse
Affiliation(s)
- Yinshuang Bai
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- College of Life Sciences, Yangtze University, Jingzhou, 434025, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Juan Ma
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
| | - Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fujian Zhang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China.
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China.
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
9
|
Sun P, Ge G, Sun L, Du S, Liu Y, Yan X, Zhang J, Zhang Y, Wang Z, Jia Y. Effects of selenium enrichment on fermentation characteristics, selenium content and microbial community of alfalfa silage. BMC PLANT BIOLOGY 2024; 24:555. [PMID: 38877393 PMCID: PMC11177373 DOI: 10.1186/s12870-024-05268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.
Collapse
Affiliation(s)
- Pengbo Sun
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yichao Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingquan Yan
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiawei Zhang
- Ordos Institute of Forestry and Grassland Science, Ordos, China
| | - Yuhan Zhang
- Forestry and Grassland Work Station of Inner Mongolia, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China.
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China.
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China.
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China.
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
10
|
Hussain B, Yin X, Lin Q, Hamid Y, Usman M, Hashmi MLUR, Lu M, Imran Taqi M, He Z, Yang XE. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in-vivo bioavailability assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124356. [PMID: 38866319 DOI: 10.1016/j.envpol.2024.124356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The contamination of paddy fields by cadmium and lead is a major issue in China. The consumption of rice grown in heavy metals contaminated areas poses severe health risks to humans, where bioavailability and bioaccessibility remains the critical factor for risk determination. Selenium nanoparticles (Se-NPs) can mitigate the toxicity of heavy metals in plants. However, there exists limited information regarding the role of Se-NPs in dictating cadmium (Cd) toxicity in rice for human consumption. Moreover, the impact of Se-NPs under simultaneous field and laboratory controlled conditions is rarely documented. To address this knowledge gap, a field experiment was conducted followed by laboratory scale bioavailability assays. Foliar application of Se-NPs and selenite (at 5, 10 mg L-1) was performed to assess their efficiency in lowering Cd accumulation, promoting Se biofortification in rice grains, and evaluating Cd exposure risk from contaminated rice. Obtained results indicate that foliar treatments significantly reduced the heavy metal accumulation in rice grains. Specifically, Se-NP 10 mg L-1 demonstrated higher efficiency, reducing Cd and Pb by 56 and 32 % respectively. However, inconsistent trends for bioavailable Cd (0.03 mg kg-1) and bioaccessible (0.04 mg kg-1) were observed while simulated human rice intake. Furthermore, the foliage application of Se-NPs and selenite improved rice quality by elevating Se, Zn, Fe, and protein levels, while lowering phytic acid content in rice grains. In summary, this study suggests the promising potential of foliage spraying of Se-NPs in lowering the health risks associated with consuming Cd-contaminated rice.
Collapse
Affiliation(s)
- Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Rural Construction Center of Quzhou, Quzhou, 324003, Zhejiang, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Usman
- Université de Rennes, Ecole National e Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Laeeq-Ur-Rehman Hashmi
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Min Lu
- State Key Laboratory of Nutrient Use and Management, Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Muhammad Imran Taqi
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, 40100 Sargodha, Pakistan
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| | - Xiao E Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Chen X, Ran Z, Li R, Duan W, Song Z, Fang L, Guo L, Zhou J. Biochar reduces the cadmium content of Panax quinquefolium L. by improving rhizosphere microecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170005. [PMID: 38232852 DOI: 10.1016/j.scitotenv.2024.170005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Cadmium (Cd) accumulation in American ginseng (Panax quinquefolium L.) can negatively impact its yield and safety. Our previous study found that biochar could reduce cadmium content of P. quinquefolius, however, the mechanism was yet to be elucidated. In the present study, we tested four treatments in order to reveal the mechanism by which this phenomenon occurs: control, Cd, Cd + biochar and biochar. The results showed that the following responses were induced by the addition of biochar under Cd stress. Firstly, the soil physicochemical properties were improved, this is especially true for the soil pH value and soil organic matter content, which were increased by 20.42 % and 15.57 %, respectively. Secondly, the relative abundances of several beneficial microorganism phyla; such as Proteobacteria, Bacteroidota and Actinobacteria; were increased by 10.69 %, 20.11 % and 60.86 %, respectively. Thirdly, treatment with biochar reduced the Cd content by increasing cadmium-chelated metabolites within the soil (e.g., naringenin, caffeic acid, and valine) and increasing detoxification substances in plants (e.g., malic acid, flavonoids, and fumaric acid). Changes in these metabolites were significantly correlated with rhizosphere microecology. In summary, biochar treatment reduced the Cd content in seedlings by improving the soil properties, rhizosphere community, soil metabolites, and plant metabolites.
Collapse
Affiliation(s)
- Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Zhifang Ran
- Shandong Academy of Chinese Medicine, Jinan 250014, PR China
| | - Rui Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Zhengjian Song
- Weihai (Wendeng) Authentic Ginseng Industry Development Co., Ltd., Wendeng 264407, PR China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China; Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi 273399, PR China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng 100700, PR China.
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China; Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi 273399, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng 100700, PR China.
| |
Collapse
|
12
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
13
|
Zhou C, Miao P, Dong Q, Li D, Pan C. Multiomics Explore the Detoxification Mechanism of Nanoselenium and Melatonin on Bensulfuron Methyl in Wheat Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3958-3972. [PMID: 38363203 DOI: 10.1021/acs.jafc.3c08429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Combining nanoselenium (nano-Se) and melatonin (MT) was more effective than treatment alone against abiotic stress. However, their combined application mitigated the toxic effects of bensulfuron methyl, and enhanced wheat growth and metabolism has not been studied. Metabolomics and proteomics revealed that combining nano-Se and MT markedly activated phenylpropanoid biosynthesis pathways, elevating the flavonoid (quercetin by 33.5 and 39.8%) and phenolic acid (vanillic acid by 38.8 and 48.7%) levels in leaves and roots of wheat plants. Interstingly, beneficial rhizosphere bacteria in their combination increased (Oxalobacteraceae, Nocardioidaceae, and Xanthomonadaceae), which positively correlated with the enhancement of soil urease and fluorescein diacetate enzyme activity (27.0 and 26.9%) and the allelopathic substance levels. To summarize, nano-Se and MT mitigate the adverse effects of bensulfuron methyl by facilitating interactions between the phenylpropane metabolism of the plant and the beneficial microbial community. The findings provide a theoretical basis for using nano-Se and MT to remediate herbicide-contaminated soil.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| |
Collapse
|
14
|
Cheng B, Zhang J, Wang C, Li J, Chen F, Cao X, Yue L, Wang Z. Selenium nanomaterials alleviate Brassica chinensis L cadmium stress: Reducing accumulation, regulating microorganisms and activating glutathione metabolism. CHEMOSPHERE 2023; 344:140320. [PMID: 37775052 DOI: 10.1016/j.chemosphere.2023.140320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Agricultural heavy metal contamination can cause significant crop damage, highlighting the urgent need to mitigate its negative effects. Under Cd2+ stress, selenium nanomaterials (Se NMs, 2 mg kg-1) can significantly improve Brassica chinensis L. root growth and vigor, enhance photosynthesis (31.4%), and increase biomass. Se NMs treatment also reduces Brassica chinensis L root and shoot Cd concentration by 67.2 and 72.9%, respectively. This reduction is mainly due to the gene expression of Cd2+ absorption (BcITR1 and BcHMA2) which was down-regulated 51.9 and 67.0% by Se NMs, respectively. Meanwhile, Se NMs can increase the abundance of Cd-resistant microorganisms (Gemmatimonas, RB41, Haliangium, Gaiella, and Steroidobacter) in rhizosphere soil while also reducing Cd migration from soil to plants. Additionally, Se NMs also contribute to reducing ROS accumulation by improving the oxidation-reduction process between GSH and GSSG through enhancing γ-ECS (15.6%), GPx (50.2%) and GR (97.3%) activity. Remarkably, crop Se content can reach 50.8 μg/100 g, which fully meets the standards of Se-rich vegetables. These findings demonstrate the potential of Se NMs in relieving heavy metal stress, while simultaneously increasing crop Se content, making it a promising technology for sustainable agricultural production.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiangshan Zhang
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
15
|
Wang M, Mu C, Li Y, Wang Y, Ma W, Ge C, Cheng C, Shi G, Li H, Zhou D. Foliar application of selenium nanoparticles alleviates cadmium toxicity in maize (Zea mays L.) seedlings: Evidence on antioxidant, gene expression, and metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165521. [PMID: 37467994 DOI: 10.1016/j.scitotenv.2023.165521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
The molecular and metabolic mechanisms of foliar selenium (Se) nanoparticles (SeNPs) application in mitigating cadmium (Cd) toxicity in crops have not been well studied. Herein, hydroponically cultured maize seedlings were exposed to Cd (20 μM) and treated without and with foliar SeNPs application. Effects of SeNPs on Cd transporter genes and plant metabolism were also explored. Results showed that compared to control plants without Cd exposure, Cd exposure decreased shoot height (16.8 %), root length (17.7 %), and fresh weight of root (24.2 %), stem (28.8 %), and foliar-applied leaves (Se-leaves) (15.0 %) via oxidative damage. Compared to Cd exposure alone, foliar SeNPs application at 20 mg/L (0.25 mg/plant) significantly alleviated the Cd toxicity by promoting photosynthesis and antioxidant capacity and fixing Cd in cell wall. Meanwhile, the mineral concentration of Ca (26.0 %), Fe (55.4 %), Mg (27.0 %), Na (28.6 %), and Zn (10.1 %) in Se-leaves was improved via foliar SeNPs application at 20 mg/L. QRT-PCR analysis further revealed that down- and up-regulation of the expression of ZmHMA2 and ZmHMA3 gene in Se-leaves contributed to reduced translocation of Cd in plants and enhanced Cd sequestration in the vacuole, respectively. Metabolomic results further indicated that metabolic pathways including carbohydrate metabolism, membrane transport, translation, amino acid metabolism, and energy metabolism were significantly affected by foliar SeNPs application. In conclusion, foliar SeNPs application at 20 mg/L could be a prospective strategy to mitigate Cd toxicity in maize.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Chunyi Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Yuliang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Yixuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Wenyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Gaoling Shi
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
16
|
Yu H, Miao P, Li D, Wu Y, Zhou C, Pan C. Improving red pitaya fruit quality by nano-selenium biofortification to enhance phenylpropanoid and betalain biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115653. [PMID: 37948939 DOI: 10.1016/j.ecoenv.2023.115653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Red pitaya, the representative tropical and subtropical fruit, is vulnerable to quality deterioration due to climate or agronomic measures. Nano-selenium (Nano-Se) has shown positive effects on crop biofortification in favour of reversing this situation. In this study, Se could be enriched efficiently in red pitayas via root and foliar application by Nano-Se, which induced higher phenolic acids (16.9-94.2%), total phenols (15.7%), total flavonoids (29.5%) and betacyanins (34.1%) accumulation in flesh. Richer antioxidative features including activities of SOD (25.2%), CAT (33.8%), POD (77.2%), and levels of AsA (25.7%) and DPPH (14.7%) were obtained in Nano-Se-treated pitayas as well as in their 4-8 days shelf-life. The non-targeted metabolomics indicated a boost in amino acids, resulting in the stimulation of phenylpropanoid and betalain biosynthesis. In conclusion, the mechanism of Nano-Se biofortification for red pitaya might be fortifying pigment, as well as the enzymatic and non-enzymatic antioxidant substances formation by regulating primary and secondary metabolism facilitated by Se accumulation.
Collapse
Affiliation(s)
- Huan Yu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Peijuan Miao
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yangliu Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Chunran Zhou
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Canping Pan
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China.
| |
Collapse
|
17
|
Li D, Zhou C, Wang S, Hu Z, Xie J, Pan C, Sun R. Imidacloprid-induced stress affects the growth of pepper plants by disrupting rhizosphere-plant microbial and metabolite composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165395. [PMID: 37437628 DOI: 10.1016/j.scitotenv.2023.165395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Overusing imidacloprid (IMI) has been found to impede secondary metabolism and hinder plant growth. The impact of IMI stress on the interaction between metabolites, rhizosphere, and plant-microbe dispersion through various pathways in pepper plants has not been extensively studied. This study investigated the effects of IMI on plant signaling components, secondary metabolic pathways, and microbial communities in the rhizosphere and phyllosphere. Here, the distribution of IMI and its metabolites (6-chloronicotinic acid, IMI-desnitro, 5-hydroxy-IMI, IMI-urea, and IMI-olefin) was primarily observed in the pepper plant leaves. A rise in IMI concentration had a more significant inhibitive effect on the metabolism of pepper leaves than on pepper roots. The findings of non-target metabolomics indicated that IMI exposure primarily suppresses secondary metabolism in pepper plants, encompassing flavones, phenolic acids, and phytohormones. Notably, the IMI treatment disrupted the equilibrium between plants and microbes by decreasing the population of microorganisms such as Vicinamibacteria, Verrucomicrobiae, Gemmatimonadetes, and Gammaproteobacteria in the phyllosphere, as well as Vicinamibacteria, Gemmatimonadetes, Gammaproteobacteria, and Alphaproteobacteria in the rhizosphere of pepper plants. The study demonstrates that overexposure to IMI harms microbial composition and metabolite distribution in the rhizosphere soil and pepper seedlings, inhibiting plant growth.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China Yuanmingyuan West Road 2, Beijing 100193, PR China.
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
18
|
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interplay between nano-enabled agrochemicals and the plant-associated microbiome. TRENDS IN PLANT SCIENCE 2023; 28:1310-1325. [PMID: 37453924 DOI: 10.1016/j.tplants.2023.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
The plant-associated microbiome is known to be a critical component for crop growth, nutrient acquisition, resistance to pathogens, and abiotic stress tolerance. Conventional approaches have been attempted to manipulate the plant-soil microbiome to improve plant performance; however, several issues have arisen, such as collateral negative impacts on microbiota composition. The lack of reliability and robustness of conventional techniques warrants efforts to develop novel alternative strategies. Nano-enabled approaches have emerged as promising platforms for enhancing agricultural sustainability and global food security. Specifically, the use of engineered nanomaterials (ENMs) as nanoscale agrochemicals has great potential to modulate the plant-associated microbiome. We review the dynamic interplay between nano-agrochemicals and the plant-associated microbiome for the safe development and use of nano-enabled microbiome engineering.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Yan J, Wu X, Li T, Fan W, Abbas M, Qin M, Li R, Liu Z, Liu P. Effect and mechanism of nano-materials on plant resistance to cadmium toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115576. [PMID: 37837699 DOI: 10.1016/j.ecoenv.2023.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Cadmium (Cd), one of the most toxic heavy metals, has been extensively studied by environmental scientists because of its detrimental effects on plants, animals, and humans. Increased industrial activity has led to environmental contamination with Cd. Cadmium can enter the food chain and pose a potential human health risk. Therefore, reducing the accumulation of Cd in plant species and enhancing their detoxification abilities are crucial for remediating heavy metal pollution in contaminated areas. One innovative technique is nano-phytoremediation, which employs nanomaterials ranging from 1 to 100 nm in size to mitigate the accumulation and detrimental effects of Cd on plants. Although extensive research has been conducted on using nanomaterials to mitigate Cd toxicity in plants, it is important to note that the mechanism of action varies depending on factors such as plant species, level of Cd concentration, and type of nanomaterials employed. This review aimed to consolidate and organize existing data, providing a comprehensive overview of the effects and mechanisms of nanomaterials in enhancing plant resistance to Cd. In particular, its deep excavation the mechanisms of detoxification heavy metals of nanomaterials by plants, including regulating Cd uptake and distribution, enhancing antioxidant capacity, regulating gene expression, and regulating physiological metabolism. In addition, this study provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China.
| |
Collapse
|
20
|
Gu D, You J, Xiao Q, Yu X, Zhao Y. Comprehensive understanding of the regulatory mechanism by which selenium nanoparticles boost CO 2 fixation and cadmium tolerance in lipid-producing green algae under recycled medium. WATER RESEARCH 2023; 245:120556. [PMID: 37683524 DOI: 10.1016/j.watres.2023.120556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Recycled medium plus cadmium is a promising technique for reducing the cultivation cost and enhancing the yield of microalgae lipids. However, oxidative stress and cadmium toxicity significantly hinder the resulting photosynthetic efficiency, cell growth and cell activity. Herein, selenium nanoparticles (SeNPs) were used to increase the total biomass, biolipid productivity, and tolerance to cadmium. Wide-ranging analyses of photosynthesis, energy yield, fatty acid profiles, cellular ultrastructure, and oxidative stress biomarkers were conducted to examine the function of SeNPs in CO2 fixation and cadmium resistance in Ankistrodesmus sp. EHY. The application of 15 μM cadmium and 2 mg L-1 SeNPs further enhanced the algal biomass productivity and lipid productivity to 500.64 mg L-1 d-1 and 301.14 mg L-1 d-1, respectively. Moreover, the rates of CO2 fixation, chlorophyll synthesis and total nitrogen removal were similarly increased by the application of SeNPs. Exogenous SeNPs strengthened cell growth and cadmium tolerance by upregulating photosynthesis, the TCA cycle and the antioxidant system, reducing the uptake and translocation of cadmium, and decreasing the levels of reactive oxidative stress (ROS), extracellular polymeric substances (EPSs) and cellular Cd2+ level in EHY under recycled medium and cadmium stress conditions. Additionally, a maximum energy yield of 127.40 KJ L-1 and a lipid content of 60.15% were achieved in the presence of both SeNPs and cadmium stress. This study may inspire the efficient disposal of recycled medium and biolipid production while also filling the knowledge gaps regarding the mechanisms of SeNP functions in carbon fixation and cadmium tolerance in microalgae.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, China.
| |
Collapse
|
21
|
Jin J, Wang C, Liu R, Gong J, Wang J, Niu X, Zheng R, Tang Z, Malik K, Li C. Soil microbial community compositions and metabolite profiles of Achnatherum inebrians affect phytoremediation potential in Cd contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132280. [PMID: 37591168 DOI: 10.1016/j.jhazmat.2023.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Cadmium (Cd) contamination poses serious risks to soil ecosystems and human health. Herein, the effect of two drunken horse grasses (Achnatherum inebrians) including endophytes Epichloë gansuensis infected (E+ ) and uninfected (E-) on the phytoremediation of Cd-contaminated soils were analyzed by coupling high-throughput sequencing and soil metabolomics. The results showed that the high-risk soil Cd decreased and the medium- and low-risk Cd fraction increased to varying degrees after planting E+ and E- plants in the soil. Meanwhile, total Cd content decreased by 19.7 % and 35.1 % in E+ and E- A. inebrians-planted soils, respectively. Principal coordinate analysis revealed a significant impact of E+ and E- plants on the soil microbial community. Most stress-tolerant and gram-positive functional bacterial taxa were enriched to stabilize Cd(II) in E+ planted soil. Several beneficial fungal groups related to saprotroph and symbiotroph were enriched to absorb Cd(II) in E- soil. Soil metabolomic analysis showed that the introduction of A. inebrians could weaken the threat of CdCl2 to soil microbe metabolism and improve soil quality, which in turn promoted plant growth and improved phytoremediation efficiency in Cd-contaminated soil. In conclusion, A. inebrians plants alleviate soil Cd pollution by regulating soil microbial metabolism and microbial community structure. These results provide valuable information for an in-depth understanding of the phytoremediation mechanisms of A. inebrians.
Collapse
Affiliation(s)
- Jie Jin
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Ronggui Liu
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-ecosystems, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China.
| | - Xueli Niu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Rong Zheng
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Zhonglong Tang
- Linxia Academy of Agricultural Sciences, Linxia 731100, China
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - ChunJie Li
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Dong Q, Li D, Wu Y, Zhou C, Lin Y, Miao P, Li J, Pan C. Exogenous nanoselenium alleviates imidacloprid-induced oxidative stress toxicity by improving phenylpropanoid metabolism and antioxidant defense system in Perilla frutescens (L.) Britt. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154095. [PMID: 37741053 DOI: 10.1016/j.jplph.2023.154095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Few studies have been conducted to investigate the impact of pesticides on the secondary metabolism of traditional Chinese medicine and strategies to mitigate the toxicity of pesticide-induced oxidative stress. The current study focuses on evaluating the potential impacts of nano selenium (NSe) and imidacloprid (IMI) on the quality, physiological biochemistry, and secondary metabolites in Perilla frutescens (L.) Britt. (P. frutescens). The study utilized metabolome analysis to explore the toxicity mechanism of IMI. The study noted that IMI-induced stress could emerge with detrimental effects by targeting the destruction of the phenylpropanoid biosynthesis pathway. IMI-induced phenylpropanoid metabolism disorder resulted in an 8%, 17%, 25%, 10%, 65%, and 29% reduction in phenylalanine, coniferyl aldehyde, ferulic acid, cafestol, p-coumaraldehyde, and p-coumaric acid levels, respectively. Under the treatment of exogenous NSe, the levels of these metabolites were increased by 16%, 32%, 22%, 22%, 92%, and 29%, respectively. The application of exogenous NSe increased the levels of these metabolites and improved the biochemical disorder and quality of P. frutescens leaves by optimizing the phenylpropanoid metabolic pathway and enhancing the antioxidant system. Overall, the results suggest that foliar application of NSe could alleviate the oxidative stress toxicity induced by IMI and improve the quality of P. frutescens.
Collapse
Affiliation(s)
- Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control (China Agricultural University), China.
| |
Collapse
|
23
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
24
|
Zhou C, Zhang J, Miao P, Dong Q, Lin Y, Li D, Pan C. Novel Finding on How Melatonin and Nanoselenium Alleviate 2,4-D Butylate Stress in Wheat Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12943-12957. [PMID: 37622422 DOI: 10.1021/acs.jafc.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nanoselenium (nano-Se) or melatonin (MT) foliar spray reduces pesticide stress by stimulating plant secondary metabolism and antioxidant capacity. However, the effects of nano-Se and MT biofortification on the interaction between plant secondary metabolic pathways and rhizosphere microbes in mitigating 2,4-D butyrate stress remain unknown. Compared to nano-Se or MT treatment alone, nano-Se and MT combined application increased the antioxidant enzyme activities and decreased the MDA (25.0%) and H2O2 (39.3%) contents with 2,4-D butylate exposure. Importantly, they enhance the soil enzymes (S-FDA by 53.1%), allelochemicals (luteolin by 164.1% and tricin by 147.3%), as well as plant secondary metabolites (JA by 63.3% and 193.3% in leaves and roots) levels. It also improved the beneficial microbial abundance of Comamonadaceae, Sphingomonadaceae, and Rhodobacteraceae in the rhizosphere soil. In conclusion, nano-Se and MT alleviate 2,4-D butylate stress in wheat plants by enabling the interaction between rhizosphere microorganisms, allelopathic substances, and secondary metabolites.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| |
Collapse
|
25
|
Mao H, Zhao W, Yang X, Sheng L, Zhu S. Recruitment and metabolomics between Canna indica and rhizosphere bacteria under Cr stress. Front Microbiol 2023; 14:1187982. [PMID: 37655347 PMCID: PMC10465350 DOI: 10.3389/fmicb.2023.1187982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
It is of positive significance to explore the mechanism of antioxidant and metabolic response of Canna indica under Cr stress mediated by rhizosphere niche. However, the mechanisms of recruitment and interaction of rhizosphere microorganisms in plants still need to be fully understood. This study combined physiology, microbiology, and metabolomics, revealing the interaction between C. indica and rhizosphere microorganisms under Cr stress. The results showed that Cr stress increased the content of malondialdehyde (MDA) and oxygen-free radicals (ROS) in plants. At the same time, the activities of antioxidant enzymes (SOD, POD, and APX) and the contents of glutathione (GSH) and soluble sugar were increased. In addition, Cr stress decreased the α diversity index of C. indica rhizosphere bacterial community and changed its community structure. The dominant bacteria, namely, Actinobacteriota, Proteobacteria, and Chloroflexi accounted for 75.16% of the total sequence. At the same time, with the extension of stress time, the colonization amount of rhizosphere-dominant bacteria increased significantly, and the metabolites secreted by roots were associated with the formation characteristics of Proteobacteria, Actinobacteria, Bacteroidetes, and other specific bacteria. Five critical metabolic pathways were identified by metabolome analysis, involving 79 differentially expressed metabolites, which were divided into 15 categories, mainly including lipids, terpenoids, and flavonoids. In conclusion, this study revealed the recruitment and interaction response mechanism between C. indica and rhizosphere bacteria under Cr stress through multi-omics methods, providing the theoretical basis for the remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | - Sixi Zhu
- The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
26
|
Song J, Yu S, Yang R, Xiao J, Liu J. Opportunities for the use of selenium nanoparticles in agriculture. NANOIMPACT 2023; 31:100478. [PMID: 37499754 DOI: 10.1016/j.impact.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Due to the growing number of the world's population, there is an urgent need for high-quality food to meet global food security. Traditional fertilizers and pesticides face the problems of low utilization efficiency and possible hazards to non-target organisms. Selenium (Se) is an essential trace element for animals and humans. As a result, Se nanoparticles (SeNPs) have aroused intense interest and found opportunities in agricultural use. Herein, we summarized representative studies on the potential application of SeNPs in agriculture, including mitigating biotic and abiotic stresses in plants, promoting seed germination and plant growth, and improving Se contents and nutritional values in crops, and the underlying mechanisms were also discussed. Finally, future directions are highlighted to get a deep insight into this field.
Collapse
Affiliation(s)
- Jiangyun Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| |
Collapse
|
27
|
Qian F, Su X, Zhang Y, Bao Y. Variance of soil bacterial community and metabolic profile in the rhizosphere vs. non-rhizosphere of native plant Rumex acetosa L. from a Sb/As co-contaminated area in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131681. [PMID: 37245371 DOI: 10.1016/j.jhazmat.2023.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Heavy metals (HMs) contamination poses a serious threat to soil health. However, the rhizosphere effect of native pioneer plants on the soil ecosystem remains unclear. Herein, how the rhizosphere (Rumex acetosa L.) influenced the process of HMs threatening soil micro-ecology was investigated by coupling various fractions of HMs, soil microorganisms and soil metabolism. The rhizosphere effect alleviated the HMs' stress by absorbing and reducing HMs' direct bioavailability, and the accumulation of ammonium nitrogen increased in the rhizosphere soil. Meanwhile, severe HMs contamination covered the rhizosphere effect on the richness, diversity, structure and predicted function pathways of soil bacterial community, but the relative abundance of Gemmatimonadota decreased and Verrucomicrobiota increased. The content of total HMs and physicochemical properties played a more important role than rhizosphere effect in shaping soil bacterial community. Furthermore, As was observed to have a more significant impact compared to Sb. Moreover, plant roots improved the stability of bacterial co-occurrence network, and significantly changed the critical genera. The process influenced bacterial life activity and nutrient cycling in soil, and the conclusion was further supported by the significant difference in metabolic profiles. This study illustrated that in Sb/As co-contaminated area, rhizosphere effect significantly changed soil HMs content and fraction, soil properties, and microbial community and metabolic profiles.
Collapse
Affiliation(s)
- Fanghan Qian
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Xiangmiao Su
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Yanyu Bao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| |
Collapse
|
28
|
Zhang T, Qi M, Wu Q, Xiang P, Tang D, Li Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr 2023; 10:1183487. [PMID: 37260518 PMCID: PMC10227571 DOI: 10.3389/fnut.2023.1183487] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Selenium is an essential trace element for the human body, with the chemical and physical characteristics of both metals and nonmetals. Selenium has bioactivities related to the immune system, antioxidation, anti-virus, and anti-cancer. At the same time, it also plays a role in reducing and alleviating the toxicity of heavy metals. Compared with inorganic selenium, organic selenium is less toxic and has greater bioavailability. Selenium nanoparticles (SeNPs) have the advantages of high absorption rate, high biological activity, and low toxicity, and can be directly absorbed by the human body and converted to organic selenium. Selenium nanoparticles have gradually replaced the traditional selenium supplement and has broad prospects in the food and medical industries. In this paper, the chemical, physical, and biological methods for the synthesis of selenium nanoparticles are reviewed, and the microbial synthesis methods of selenium nanoparticles, the effects of selenium nanoparticles on crop growth, and the antibacterial, antioxidant, anticancer, and anti-tumor effects of selenium nanoparticles are also systematically summarized. In addition, we evaluate the application of selenium nanoparticles in selenium nutrition enhancement, providing support for the application of selenium nanoparticles in animals, plants, and humans.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Meng Qi
- Ankang R&D Center for Se-enriched Products, Ankang, Shaanxi, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, Shaanxi, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dejian Tang
- Ankang R&D Center for Se-enriched Products, Ankang, Shaanxi, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, Shaanxi, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Wang Y, Wang X, Ai F, Du W, Yin Y, Guo H. Climatic CO 2 level-driven changes in the bioavailability, accumulation, and health risks of Cd and Pb in paddy soil-rice systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121396. [PMID: 36871748 DOI: 10.1016/j.envpol.2023.121396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Rising atmospheric carbon dioxide (CO2) and soil heavy metal pollution, which affects safe rice production and soil ecosystem stability, have caused widespread concern. In this study, we evaluated the effects of elevated CO2 on Cd and Pb accumulation in rice plants (Oryza sativa L.), Cd and Pb bioavailability, and soil bacterial communities in Cd-Pb co-contaminated paddy soils via rice pot experiments. We showed that elevated CO2 accelerates the accumulation of Cd and Pb in rice grains by 48.4-75.4% and 20.5-39.1%, respectively. Elevated CO2 levels decreased soil pH value by 0.2 units, which increased Cd and Pb bioavailability in soil but inhibited iron plaque formation on rice roots, ultimately promoting Cd and Pb uptake. 16S rRNA sequencing analysis revealed that elevated CO2 increased the relative abundance of certain soil bacteria (e.g., Acidobacteria, Alphaproteobacteria, Holophagae, and Burkholderiaceae). A health risk assessment showed that elevated CO2 markedly increased the total carcinogenic risk values for children, adult males, and adult females by 75.3% (P < 0.05), 65.6% (P < 0.05), and 71.1% (P < 0.05), respectively. These results demonstrate the serious performance of elevated CO2 levels in accelerating the bioavailability and accumulation of Cd and Pb in paddy soil-rice ecosystems, with particular risks for future safe rice production.
Collapse
Affiliation(s)
- Yabo Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
31
|
Li L, Wang S, Wu S, Rao S, Li L, Cheng S, Cheng H. Morphological and Physiological Indicators and Transcriptome Analyses Reveal the Mechanism of Selenium Multilevel Mitigation of Cadmium Damage in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12081583. [PMID: 37111807 PMCID: PMC10141491 DOI: 10.3390/plants12081583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
32
|
Zhou C, Luo L, Miao P, Dong Q, Cheng H, Wang Y, Li D, Pan C. A novel perspective to investigate how nanoselenium and melatonin lengthen the cut carnation vase shelf. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:982-992. [PMID: 36893613 DOI: 10.1016/j.plaphy.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Nano-selenium (nano-Se) and melatonin (MT) applications confirmed to boost plant growth and resistance. The mechanism of various ratios of nano-Se and MT foliar application postpone the senescence of fresh cut carnation flowers and improve vase life remains unclear. In this study, a combined effect with nano-Se (nano-Se5, 5 mg/L) and MT(MT1, 1 mg/L) was preferable to the control, nano-Se, and MT treatment alone when it came to delaying flower senescence. They enhance the antioxidant ability of carnation flowers by lowering MDA and H2O2 levels, raising SOD and POD concentrations, and lowering procyanidins biosynthesis (catechins and epicatechin). Inducing the biosynthesis of hormonal compounds (salicylic acid, jasmonic acid, and abscisic acid), their combination also boosted the growth of carnations. Biofortification with nano-Se and MT substantially increased the amounts of key lignin biosynthesis pathway metabolites (L-phenylalanine, p-hydroxycinnamic acid, p-coumaric acid, perillyl alcohol, p-Coumaryl alcohol, and cinnamic acid), which may increase stem cellular thickness and facilitate water absorption and transmission. The study hypothesizes that nano-Se and MT synergistic applications act as a new efficient non-toxic preservative to extend the vase life and improve the decorative value of carnations.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Luna Luo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Yuwei Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan, 570228, PR China.
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China.
| |
Collapse
|
33
|
Guo Q, Ye J, Zeng J, Chen L, Korpelainen H, Li C. Selenium species transforming along soil-plant continuum and their beneficial roles for horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhac270. [PMID: 36789256 PMCID: PMC9923214 DOI: 10.1093/hr/uhac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/01/2022] [Indexed: 05/15/2023]
Abstract
Selenium (Se) acquirement from daily diet can help reduce the risk of many diseases. The edible parts of crop plants are the main source of dietary Se, while the Se content in crops is determined by Se bioavailability in soil. We summarize recent research on the biogeochemical cycle of Se driven by specific microorganisms and emphasize the oxidizing process in the Se cycle. Moreover, we discuss how plant root exudates and rhizosphere microorganisms affect soil Se availability. Finally, we cover beneficial microorganisms, including endophytes, that promote crop quality and improve crop tolerance to environmental stresses. Se availability to plants depends on the balance between adsorption and desorption, reduction, methylation and oxidation, which are determined by interactions among soil properties, microbial communities and plants. Reduction and methylation processes governed by bacteria or fungi lead to declined Se availability, while Se oxidation regulated by Se-oxidizing microorganisms increases Se availability to plants. Despite a much lower rate of Se oxidization compared to reduction and methylation, the potential roles of microbial communities in increasing Se bioavailability are probably largely underestimated. Enhancing Se oxidation and Se desorption are crucial for the promotion of Se bioavailability and uptake, particularly in Se-deficient soils. Beneficial roles of Se are reported in terms of improved crop growth and quality, and enhanced protection against fungal diseases and abiotic stress through improved photosynthetic traits, increased sugar and amino acid contents, and promoted defense systems. Understanding Se transformation along the plant-soil continuum is crucial for agricultural production and even for human health.
Collapse
Affiliation(s)
- Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhui Ye
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianming Zeng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Li D, Zhou C, Li JQ, Dong Q, Miao P, Lin Y, Cheng H, Wang Y, Luo L, Pan C. Metabolomic analysis on the mechanism of nanoselenium alleviating cadmium stress and improving the pepper nutritional value. J Nanobiotechnology 2022; 20:523. [PMID: 36496437 PMCID: PMC9741789 DOI: 10.1186/s12951-022-01739-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) maintains soil-plant homeostasis in the rhizosphere and regulates signaling molecules to mitigate cadmium (Cd) toxicity. However, there has been no systematic investigation of the effects of nano-selenium (nano-Se) on the regulation of non-target metabolites and nutritional components in pepper plants under Cd stress. This study investigated the effects of Cd-contaminated soil stress and nano-Se (1, 5, and 20 mg/L) on the metabolic mechanism, fruit nutritional quality, and volatile organic compounds (VOCs) composition of pepper plants. The screening of differential metabolites in roots and fruit showed that most were involved in amino acid metabolism and capsaicin production. Amino acids in roots (Pro, Trp, Arg, and Gln) and fruits (Phe, Glu, Pro, Arg, Trp, and Gln) were dramatically elevated by nano-Se biofortification. The expression of genes of the phenylpropane-branched fatty acid pathway (BCAT, Fat, AT3, HCT, and Kas) was induced by nano-Se (5 mg/L), increasing the levels of capsaicin (29.6%), nordihydrocapsaicin (44.2%), and dihydrocapsaicin (45.3%). VOCs (amyl alcohol, linalool oxide, E-2-heptaldehyde, 2-hexenal, ethyl crotonate, and 2-butanone) related to crop resistance and quality were markedly increased in correspondence with the nano-Se concentration. Therefore, nano-Se can improve the health of pepper plants by regulating the capsaicin metabolic pathway and modulating both amino acid and VOC contents.
Collapse
Affiliation(s)
- Dong Li
- grid.428986.90000 0001 0373 6302Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou, Hainan 570228 People’s Republic of China
| | - Chunran Zhou
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Jia-Qi Li
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China ,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311 China
| | - Qinyong Dong
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China ,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311 China
| | - Peijuan Miao
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Yongxi Lin
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Haiyan Cheng
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Yuwei Wang
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Luna Luo
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Canping Pan
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
35
|
Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. PLANTS 2022; 11:plants11182392. [PMID: 36145792 PMCID: PMC9504293 DOI: 10.3390/plants11182392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil’s productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle–plant–microbe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work.
Collapse
|