1
|
Ayuso García B, Marchan A, Arrieta Ortubay E, Castillo Maza C, Romay Lema E, Lalueza A, Lumbreras C. In-hospital incidence of and risk factors for influenza-associated respiratory failure. Eur J Clin Invest 2022; 52:e13858. [PMID: 35997028 DOI: 10.1111/eci.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Respiratory failure (RF) is the most important complication of influenza virus infection. Its definition and incidence are heterogeneous in the literature. METHODS This systematic review and meta-analysis aim to determine the incidence of and risk factors for RF in patients hospitalized with influenza. Electronic databases were searched for articles on RF in patients hospitalized for influenza infection up to December 2021 regardless of their geographical location. Observational and experimental studies were considered for inclusion, excluding case series. The Newcastle-Ottawa and Johanna Briggs scales were used for quality assessment. A random-effects meta-analysis was performed, followed by subgroup analyses according to, among others, presence/absence of pneumonia, RF definition, serotype and time period. PRISMA guidelines were followed for this review. RESULTS Thirty-six studies were finally included in the meta-analysis. Overall, RF incidence was 24% (range 5%-85%, 95% confidence interval [95CI] 19%-31%). Significantly higher incidences of RF were found in patients with pneumonia (42%, 95CI 28%-57%, p = .006), when RF was defined as hypoxemia (58%, 95CI 31%-81%, p < .001), and during the 2009 pandemic (25%, 95CI 16%-36%) and postpandemic period (23%, 95CI 15%-34%, p = .01). No differences were found between human influenza serotypes. Assessment of risk factors associated with the development of RF was not possible due to their inconsistent and heterogeneous reporting. CONCLUSION Respiratory failure is frequent in hospitalized influenza patients, especially in patients with pneumonia and since the 2009 pandemic, although its definition and reporting widely vary in the literature. This complicates its characterization and comparison between cohorts and with other respiratory viruses.
Collapse
Affiliation(s)
- Blanca Ayuso García
- Department of Internal Medicine, University Hospital 12 de Octubre, Madrid, Spain
| | - Alvaro Marchan
- Department of Internal Medicine, University Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Eva Romay Lema
- Infectious Diseases Unit, University Hospital Lucus Augusti, Lugo, Spain
| | - Antonio Lalueza
- Department of Internal Medicine, University Hospital 12 de Octubre, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University, Madrid, Spain.,Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Lumbreras
- Department of Internal Medicine, University Hospital 12 de Octubre, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University, Madrid, Spain.,Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Infectious Diseases Unit, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
2
|
Root JJ. What Are the Transmission Mechanisms of Influenza A Viruses in Wild Mammals? J Infect Dis 2020; 221:169-171. [PMID: 30838414 DOI: 10.1093/infdis/jiz033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- J Jeffrey Root
- US Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado
| |
Collapse
|
3
|
A delicate balancing act: immunity and immunopathology in human H7N9 influenza virus infections. Curr Opin Infect Dis 2020; 32:191-195. [PMID: 30888978 DOI: 10.1097/qco.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW A delicate balance exists between a protective and detrimental immune response to an invading viral pathogen. Here, we review the latest advancements in our understanding of immunity and immunopathology during H7N9 influenza A virus (IAV) infections and its relevance to disease management and diagnosis. RECENT FINDINGS Recent studies have highlighted the role of specific leukocytes in the pathogenesis of H7N9 IAV infections and potential diagnostic role that host cytokine profiles can play in forecasting disease severity. Furthermore, alterations in diet have emerged as a possible preventive measure for severe IAV infections. SUMMARY The recent emergence and continued evolution of H7N9 IAVs have emphasized the threat that these avian viruses pose to human health. Understanding the role of the host immune response in both disease protection and pathogenesis is an essential first step in the creation of novel therapeutic and preventive measures for H7N9 IAV infections.
Collapse
|
4
|
Ye C, Zhang S, Zhang X, Cai H, Gu J, Lian J, Lu Y, Jia H, Hu J, Jin C, Yu G, Zhang Y, Sheng J, Yang Y. Impact of comorbidities on patients with COVID-19: A large retrospective study in Zhejiang, China. J Med Virol 2020; 92:2821-2829. [PMID: 32543710 PMCID: PMC7323387 DOI: 10.1002/jmv.26183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/26/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) has become a serious public health problem worldwide. Here, we stratified COVID‐19 patients based on their comorbidities to assess their risk of serious adverse outcomes. We collected 856 hospitalized cases diagnosed with COVID‐19 from 17 January to 7 February 2020, in Zhejiang Province, and analyzed their comorbidities and composite endpoint (including admission to intensive care unit owing to disease progression, shock, invasive ventilation, and death) to determine the relationship between comorbidities and adverse outcomes. The median age of patients was 46 (36‐56) years; 439 (51.3%) were men, 242 (28.3%) had comorbidities, and 152 (17.8%) had two or more comorbidities. The most common comorbidity was hypertension (142 [16.6%]), followed by diabetes (64 [7.5%]). Of the 856 patients, there are 154 (18.0%) severe cases. Thirty‐two (3.7%) reached composite endpoints, of which 22 (9.1%) were from the comorbidity group and 10 (1.6%) from the non‐comorbidity group (P < .001). After adjusting for age and gender status, the risk of reaching the composite endpoint was higher in the group with comorbidity than in that without comorbidity (hazard ratio [HR] 3.04, 95% confidence interval [CI]: 1.40‐6.60). HR values for patients with one, two, and three or more comorbidities were 1.61 (95% CI: 0.44‐5.91), 3.44 (95% CI: 1.31‐9.08), and 6.90 (95% CI: 2.69‐17.69), respectively. COVID‐19 patients with comorbidities had worse clinical outcomes as compared with those without any comorbidity. The higher the number of comorbidities, the greater was the risk of serious adverse outcomes. COVID‐19 has be a great threat to world health. We aimed to investigate clinical features of patients with comorbidities and reveal the relationship between comorbidities and serious adverse outcomes of COVID‐19. Patients with comorbidities were more likely to have imaging abnormalities and clinical manifestations, including hemoptysis, diarrhea, and shortness of breath. the risk of reaching adverse outcomes was also higher than that with non‐comorbidity. The higher the number of comorbidities, the greater was the risk of serious adverse outcomes.
Collapse
Affiliation(s)
- Chanyuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shanyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jueqing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Shinde T, Hansbro PM, Sohal SS, Dingle P, Eri R, Stanley R. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bioactives. Microorganisms 2020; 8:E921. [PMID: 32570850 PMCID: PMC7355654 DOI: 10.3390/microorganisms8060921] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Viral respiratory infections (VRIs) can spread quickly and cause enormous morbidity and mortality worldwide. These events pose serious threats to public health due to time lags in developing vaccines to activate the acquired immune system. The high variability of people's symptomatic responses to viral infections, as illustrated in the current COVID-19 pandemic, indicates the potential to moderate the severity of morbidity from VRIs. Growing evidence supports roles for probiotic bacteria (PB) and prebiotic dietary fiber (DF) and other plant nutritional bioactives in modulating immune functions. While human studies help to understand the epidemiology and immunopathology of VRIs, the chaotic nature of viral transmissions makes it difficult to undertake mechanistic study where the pre-conditioning of the metabolic and immune system could be beneficial. However, recent experimental studies have significantly enhanced our understanding of how PB and DF, along with plant bioactives, can significantly modulate innate and acquired immunity responses to VRIs. Synbiotic combinations of PB and DF potentiate increased benefits primarily through augmenting the production of short-chain fatty acids (SCFAs) such as butyrate. These and specific plant polyphenolics help to regulate immune responses to both restrain VRIs and temper the neutrophil response that can lead to acute respiratory distress syndrome (ARDS). This review highlights the current understanding of the potential impact of targeted nutritional strategies in setting a balanced immune tone for viral clearance and reinforcing homeostasis. This knowledge may guide the development of public health tactics and the application of functional foods with PB and DF components as a nutritional approach to support countering VRI morbidity.
Collapse
Affiliation(s)
- Tanvi Shinde
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo, NSW 2007, Australia;
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Peter Dingle
- Dingle Wellness, South Fremantle, WA 6162, Australia;
| | - Rajaraman Eri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Roger Stanley
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| |
Collapse
|
6
|
Chen Y, Cheng J, Xu Z, Hu W, Lu J. Live poultry market closure and avian influenza A (H7N9) infection in cities of China, 2013-2017: an ecological study. BMC Infect Dis 2020; 20:369. [PMID: 32448137 PMCID: PMC7245998 DOI: 10.1186/s12879-020-05091-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023] Open
Abstract
Background Previous studies have proven that the closure of live poultry markets (LPMs) was an effective intervention to reduce human risk of avian influenza A (H7N9) infection, but evidence is limited on the impact of scale and duration of LPMs closure on the transmission of H7N9. Method Five cities (i.e., Shanghai, Suzhou, Shenzhen, Guangzhou and Hangzhou) with the largest number of H7N9 cases in mainland China from 2013 to 2017 were selected in this study. Data on laboratory-confirmed H7N9 human cases in those five cities were obtained from the Chinese National Influenza Centre. The detailed information of LPMs closure (i.e., area and duration) was obtained from the Ministry of Agriculture. We used a generalized linear model with a Poisson link to estimate the effect of LPMs closure, reported as relative risk reduction (RRR). We used classification and regression trees (CARTs) model to select and quantify the dominant factor of H7N9 infection. Results All five cities implemented the LPMs closure, and the risk of H7N9 infection decreased significantly after LPMs closure with RRR ranging from 0.80 to 0.93. Respectively, a long-term LPMs closure for 10–13 weeks elicited a sustained and highly significant risk reduction of H7N9 infection (RRR = 0.98). Short-time LPMs closure with 2 weeks in every epidemic did not reduce the risk of H7N9 infection (p > 0.05). Partially closed LPMs in some suburbs contributed only 35% for reduction rate (RRR = 0.35). Shenzhen implemented partial closure for first 3 epidemics (p > 0.05) and all closure in the latest 2 epidemic waves (RRR = 0.64). Conclusion Our findings suggest that LPMs all closure in whole city can be a highly effective measure comparing with partial closure (i.e. only urban closure, suburb and rural remain open). Extend the duration of closure and consider permanently closing the LPMs will help improve the control effect. The effect of LPMs closure seems greater than that of meteorology on H7N9 transmission.
Collapse
Affiliation(s)
- Ying Chen
- School of Public Health, Key Laboratory of Tropical Diseases Control of Ministry of Education, One Health Center of Excellence for Research &Training, Sun Yat-sen University, Guangzhou, China.,School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jiahai Lu
- School of Public Health, Key Laboratory of Tropical Diseases Control of Ministry of Education, One Health Center of Excellence for Research &Training, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Martinez L, Cheng W, Wang X, Ling F, Mu L, Li C, Huo X, Ebell MH, Huang H, Zhu L, Li C, Chen E, Handel A, Shen Y. A Risk Classification Model to Predict Mortality Among Laboratory-Confirmed Avian Influenza A H7N9 Patients: A Population-Based Observational Cohort Study. J Infect Dis 2020; 220:1780-1789. [PMID: 31622983 DOI: 10.1093/infdis/jiz328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Avian influenza A H7N9 (A/H7N9) is characterized by rapid progressive pneumonia and respiratory failure. Mortality among laboratory-confirmed cases is above 30%; however, the clinical course of disease is variable and patients at high risk for death are not well characterized. METHODS We obtained demographic, clinical, and laboratory information on all A/H7N9 patients in Zhejiang province from China Centers for Disease Control and Prevention electronic databases. Risk factors for death were identified using logistic regression and a risk score was created using regression coefficients from multivariable models. We externally validated this score in an independent cohort from Jiangsu province. RESULTS Among 305 A/H7N9 patients, 115 (37.7%) died. Four independent predictors of death were identified: older age, diabetes, bilateral lung infection, and neutrophil percentage. We constructed a score with 0-13 points. Mortality rates in low- (0-3), medium- (4-6), and high-risk (7-13) groups were 4.6%, 32.1%, and 62.7% (Ptrend < .0001). In a validation cohort of 111 A/H7N9 patients, 61 (55%) died. Mortality rates in low-, medium-, and high-risk groups were 35.5%, 55.8, and 67.4% (Ptrend = .0063). CONCLUSIONS We developed and validated a simple-to-use, predictive risk score for clinical use, identifying patients at high mortality risk.
Collapse
Affiliation(s)
- Leonardo Martinez
- Department of Epidemiology and Biostatistics, College of Public Health, Athens.,Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, California
| | - Wei Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaoxiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Ling
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lan Mu
- Department of Geography, University of Georgia, Athens
| | - Changwei Li
- Department of Epidemiology and Biostatistics, College of Public Health, Athens
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Mark H Ebell
- Department of Epidemiology and Biostatistics, College of Public Health, Athens
| | - Haodi Huang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Limei Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chao Li
- Department of Epidemiology and Biostatistics, College of Public Health, Athens
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, Athens
| | - Ye Shen
- Department of Epidemiology and Biostatistics, College of Public Health, Athens
| |
Collapse
|
8
|
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. THE LANCET. INFECTIOUS DISEASES 2020; 20:425-434. [PMID: 32105637 PMCID: PMC7159053 DOI: 10.1016/s1473-3099(20)30086-4] [Citation(s) in RCA: 2286] [Impact Index Per Article: 457.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND A cluster of patients with coronavirus disease 2019 (COVID-19) pneumonia caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were successively reported in Wuhan, China. We aimed to describe the CT findings across different timepoints throughout the disease course. METHODS Patients with COVID-19 pneumonia (confirmed by next-generation sequencing or RT-PCR) who were admitted to one of two hospitals in Wuhan and who underwent serial chest CT scans were retrospectively enrolled. Patients were grouped on the basis of the interval between symptom onset and the first CT scan: group 1 (subclinical patients; scans done before symptom onset), group 2 (scans done ≤1 week after symptom onset), group 3 (>1 week to 2 weeks), and group 4 (>2 weeks to 3 weeks). Imaging features and their distribution were analysed and compared across the four groups. FINDINGS 81 patients admitted to hospital between Dec 20, 2019, and Jan 23, 2020, were retrospectively enrolled. The cohort included 42 (52%) men and 39 (48%) women, and the mean age was 49·5 years (SD 11·0). The mean number of involved lung segments was 10·5 (SD 6·4) overall, 2·8 (3·3) in group 1, 11·1 (5·4) in group 2, 13·0 (5·7) in group 3, and 12·1 (5·9) in group 4. The predominant pattern of abnormality observed was bilateral (64 [79%] patients), peripheral (44 [54%]), ill-defined (66 [81%]), and ground-glass opacification (53 [65%]), mainly involving the right lower lobes (225 [27%] of 849 affected segments). In group 1 (n=15), the predominant pattern was unilateral (nine [60%]) and multifocal (eight [53%]) ground-glass opacities (14 [93%]). Lesions quickly evolved to bilateral (19 [90%]), diffuse (11 [52%]) ground-glass opacity predominance (17 [81%]) in group 2 (n=21). Thereafter, the prevalence of ground-glass opacities continued to decrease (17 [57%] of 30 patients in group 3, and five [33%] of 15 in group 4), and consolidation and mixed patterns became more frequent (12 [40%] in group 3, eight [53%] in group 4). INTERPRETATION COVID-19 pneumonia manifests with chest CT imaging abnormalities, even in asymptomatic patients, with rapid evolution from focal unilateral to diffuse bilateral ground-glass opacities that progressed to or co-existed with consolidations within 1-3 weeks. Combining assessment of imaging features with clinical and laboratory findings could facilitate early diagnosis of COVID-19 pneumonia. FUNDING None.
Collapse
Affiliation(s)
- Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Xiaoyu Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Nanchuan Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Yukun Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Jin Gu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Yanqing Fan
- Department of Radiology, Wuhan Jinyintan Hospital, Wuhan, Hubei, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Wu X, Xiao L, Li L. Research progress on human infection with avian influenza H7N9. Front Med 2020; 14:8-20. [PMID: 31989396 PMCID: PMC7101792 DOI: 10.1007/s11684-020-0739-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2–6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.
Collapse
Affiliation(s)
- Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Clinical indices and mortality of hospitalized avian influenza A (H7N9) patients in Guangdong, China. Chin Med J (Engl) 2019; 132:302-310. [PMID: 30681496 PMCID: PMC6595816 DOI: 10.1097/cm9.0000000000000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Six epidemic waves of human infection with avian influenza A (H7N9) virus have emerged in China with high mortality. However, study on quantitative relationship between clinical indices in ill persons and H7N9 outcome (fatal and non-fatal) is still unclear. A retrospective cohort study was conducted to collect laboratory-confirmed cases with H7N9 viral infection from 2013 to 2015 in 23 hospitals across 13 cities in Guangdong Province, China. Methods: Multivariable logistic regression model and classification tree model analyses were used to detect the threshold of selected clinical indices and risk factors for H7N9 death. The receiver operating characteristic curve (ROC) and analyses were used to compare survival and death distributions and differences between indices. A total of 143 cases with 90 survivors and 53 deaths were investigated. Results: Average age (Odds Ratio (OR) = 1.036, 95% Confidence Interval (CI) = 1.016–1.057), interval days between dates of onset and confirmation (OR = 1.078, 95% CI = 1.004–1.157), interval days between onset and oseltamivir treatment (OR = 5.923, 95% CI = 1.877–18.687), body temperature (BT) (OR = 3.612, 95% CI = 1.914–6.815), white blood cell count (WBC) (OR = 1.212, 95% CI = 1.092–1.346) were significantly associated with H7N9 death after adjusting for confounders. The chance of death from H7N9 infection was 80.0% if BT was over 38.1 °C, and chance of death is 67.4% if WBC count was higher than 9.5 (109/L). Only 27.1% of patients who began oseltamivir treatment less than 9.5 days after disease onset died, compared to 68.8% of those who started treatment more than 15.5 days after onset. Conclusions: The intervals between date of onset and confirmation of diagnosis, between date of onset to oseltamivir treatment, age, BT and WBC are found to be the best predictors of H7N9 mortality.
Collapse
|
11
|
Zhang W, Zhao K, Jin J, He J, Zhou W, Wu J, Tang R, Ma W, Ding C, Liu W, Zhang L, Gao R. A hospital cluster combined with a family cluster of avian influenza H7N9 infection in Anhui Province, China. J Infect 2019; 79:49-55. [PMID: 31100362 PMCID: PMC7112695 DOI: 10.1016/j.jinf.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 05/10/2019] [Indexed: 12/09/2022]
Abstract
We reported a hospital cluster combined with family cluster of H7N9 infection. A poultry farm was the initially infectious source of the H7N9 virus infection. Airborne transmission may result in the hospital cluster.
Objectives To identify human-to-human transmission of H7N9 avian influenza virus, we investigated a hospital cluster combined with family cluster in this study. Methods We obtained and analyzed clinical, epidemiological and virological data from the three patients. RT-PCR, viral culture and sequencing were conducted for determination of causative pathogen. Results The index case presented developed pneumonia with fever after exposure to chicken in a poultry farm. Case A presented pneumonia with high fever on day 3 after she shared a hospital room with the index case. Case B, the father of the index case, presented pneumonia with high fever on day 15 after he took care of the index case. H7N9 virus circulated in the local farm to which the index case was exposed. Full genomic sequence of virus showed 99.8–100% identity shared between the index case and case A or case B. Compared to the earliest virus of Anhui, a total of 29 amino acid variation sites were observed in the 8 segments. Conclusions A hospital cluster combined with family cluster of H7N9 avian influenza infection was identified. Air transmission resulted in the hospital cluster possibly. A poultry farm was the initially infectious source of the cluster.
Collapse
Affiliation(s)
- Wenyan Zhang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Kefu Zhao
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jing Jin
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Heifei, Anhui Province, 230601, China
| | - Wei Zhou
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jinju Wu
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Renshu Tang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Wenbo Ma
- Lujiang County People's Hospital, Heifei, Anhui Province, 231501, China
| | - Caiyu Ding
- The Second Hospital of Anhui Medical University, Heifei, Anhui Province, 230601, China
| | - Wei Liu
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Lei Zhang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Medical Virology and Viral Diseases, National Health Commission of People's Republic of China, Beijing, 102206, China.
| |
Collapse
|
12
|
Chen L, Ruan F, Sun Y, Chen H, Liu M, Zhou J, Qin K. Establishment of sandwich ELISA for detecting the H7 subtype influenza A virus. J Med Virol 2019; 91:1168-1171. [PMID: 30680746 DOI: 10.1002/jmv.25408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/25/2022]
Abstract
Avian H7N9 subtype influenza virus infects human with high case-fatality rate since it emerged in 2013. Although the vaccination has been rapidly used in poultry due to the emergence of highly pathogenic strain, this virus remains prevalent in this region. Thus, rapid diagnosis both in poultry and human clinic is critically important for the control and prevention of H7N9 infection. In this study, a batch of H7 subtype-specific monoclonal antibodies (mAbs) were developed and a pair of mAb, 2B6, and 5E9 were used to establish a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) to quantify H7 protein and detect influenza A virus baring H7 subtype HA. The lowest detection limit for the recombinant H7 protein was 10 ng/mL and 0.5 HAU/50 μL of A/Guangdong/17SF003/2016(H7N9), 2 HAU/50 μL of A/Netherlands/219/2003(H7N7) and A/Anhui/1/2013(H7N9) for live virus, respectively. The ELISA could not only detect the prevailing H7N9 virus, but also antigenic drift H7 subtype viruses, showing excellent sensitivity and high specificity. Hence, it could serve as a valuable approach to diagnose H7 subtype virus which showed great potential to cause pandemic, as well as antigen quantification.
Collapse
Affiliation(s)
- Lingling Chen
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Feier Ruan
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Ying Sun
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
| | - Haiying Chen
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Mingbin Liu
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
| | - Kun Qin
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
| |
Collapse
|
13
|
Affiliation(s)
- Jennifer E Schuster
- Department of Pediatrics, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - John V Williams
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 9122 Rangos Research Building, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
14
|
Cheng Q, Zhao G, Xie L, Wang X. Impacts of age and gender at the risk of underlying medical conditions and death in patients with avian influenza A (H7N9): a meta-analysis study. Ther Clin Risk Manag 2018; 14:1615-1626. [PMID: 30233197 PMCID: PMC6132488 DOI: 10.2147/tcrm.s173834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of our study was to conduct a series of analyses that examined the impacts of age and gender at the risk of underlying medical conditions (UMCs) and death in patients with influenza A (H7N9). Methods We began by searching for potentially relevant articles in English or Chinese before February 28, 2018. Additionally, we reviewed our own files and reference lists of articles identified by this search. Results The association between death and UMCs was significant in H7N9 patients, with an OR of 1.49 (95% CI: 1.24–1.78). Subgroup analyses showed that having two or more UMCs of any type (OR: 2.24; P=0.044), chronic respiratory diseases (OR: 1.81; P=0.032), and chronic cardiovascular disease (OR: 1.63; P=0.013) had an association with increased fatality in H7N9 patients. Age (60 years or older) [adjusted OR (AOR): 1.86; P=0.032] and gender (male: AOR: 1.68, P=0.006; female: AOR: 1.88, P=0.044) were significantly associated with death in H7N9 patients with UMCs compared to H7N9 patients without any UMC. Stratification analyses found statistically significant increased death in H7N9 patients with UMCs who were 60 years of age and older (AOR: 2.72; P<0.001) and gender (male; AOR=1.64; P=0.033), compared to H7N9 patients without these respective conditions. Conclusion Impacts of age are substantial and significant at the risk of UMCs and death in H7N9 patients. This analysis did not find a significant difference in gender comparisons. Efforts should particularly focus on reducing fatality rates in patients with combined risks from UMCs and other significant impact factor such as age (60 years or older).
Collapse
Affiliation(s)
- Qinglin Cheng
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China, .,Department of Adolescents and Children Health, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Gang Zhao
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China,
| | - Li Xie
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China,
| | - Xuchu Wang
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China,
| |
Collapse
|
15
|
Shimasaki N, Nojima Y, Sakakibara M, Kikuno R, Iizuka C, Okaue A, Okuda S, Shinohara K. Advanced Analysis to Distinguish between Physical Decrease and Inactivation of Viable Phages in Aerosol by Quantitating Phage-Specific Particles. Biocontrol Sci 2018; 23:7-15. [PMID: 29576594 DOI: 10.4265/bio.23.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Recent studies have investigated the efficacy of air-cleaning products against pathogens in the air. A standard method to evaluate the reduction in airborne viruses caused by an air cleaner has been established using a safe bacteriophage instead of pathogenic viruses; the reduction in airborne viruses is determined by counting the number of viable airborne phages by culture, after operating the air cleaner. The reduction in the number of viable airborne phages could be because of "physical decrease" or "inactivation". Therefore, to understand the mechanism of reduction correctly, an analysis is required to distinguish between physical decrease and inactivation. The purpose of this study was to design an analysis to distinguish between the physical decrease and inactivation of viable phi-X174 phages in aerosols. We established a suitable polymerase chain reaction (PCR) system by selecting an appropriate primer-probe set for PCR and validating the sensitivity, linearity, and specificity of the primer-probe set to robustly quantify phi-X174-specific airborne particles. Using this quantitative PCR system and culture assay, we performed a behavior analysis of the phage aerosol in a small chamber (1 m3) at different levels of humidity, as humidity is known to affect the number of viable airborne phages. The results revealed that the reduction in the number of viable airborne phages was caused not only by physical decrease but also by inactivation under particular levels of humidity. Our study could provide an advanced analysis to differentiate between the physical decrease and inactivation of viable airborne phages.
Collapse
Affiliation(s)
| | | | | | | | | | - Akira Okaue
- Kitasato Research Center for Environmental Science
| | - Shunji Okuda
- former Kitasato Research Center for Environmental Science
| | | |
Collapse
|
16
|
The Impacts on Health, Society, and Economy of SARS and H7N9 Outbreaks in China: A Case Comparison Study. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2018; 2018:2710185. [PMID: 30050581 PMCID: PMC6046118 DOI: 10.1155/2018/2710185] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022]
Abstract
Background Epidemics such as SARS and H7N9 have caused huge negative impacts on population health and the economy in China. Aims This article discusses the impacts of SARS in 2003 and H7N9 in 2013 in China, in order to provide a better understanding to government and practitioners of why improving management of response to infectious disease outbreaks is so critical for a country's economy, its society, and its place in the global community. Methods To provide the results of an analysis of impacts of SARS and H7N9 based on feedback from documents, informants, and focus groups on events during the SARS and H7N9 outbreaks. Results Both outbreaks of SARS and H7N9 have had an impact on China, causing significant negative impacts on health, the economy, and even national and even international security. Conclusions Both SARS coronavirus and H7N9 viruses presented a global epidemic threat, but the social and economic impacts of H7N9 were not as serious as in the case of SARS because the response to H7N9 was more effective.
Collapse
|
17
|
Wang J, Su N, Dong Z, Liu C, Cui P, Huang JA, Chen C, Zhu Y, Chen L. The fifth influenza A(H7N9) epidemic: A family cluster of infection in Suzhou city of China, 2016. Int J Infect Dis 2018; 74:128-135. [PMID: 29738825 DOI: 10.1016/j.ijid.2018.04.4322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Influenza A(H7N9) virus is known for its high pathogenicity in human. A family cluster of influenza A(H7N9) virus infection was identified in Suzhou, China. This study aimed to investigate the possibility of human-to-human transmission of the virus and examine the virologic features of this family cluster. METHODS The clinical and epidemiologic data of two patients in the family cluster of influenza A(H7N9) virus infection were collected. Viral RNA in samples derived from the two patients, their close contacts, and the environments with likely influenza A(H7N9) virus transmission were tested by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay. Hemagglutination inhibition (HI) assay was used to detect virus-specific antibodies. Genetic sequencing and phylogenetic analysis were also performed. RESULTS The index patient (Case 1), a 66-year old man, was virologically diagnosed with influenza A(H7N9) virus infection 12days after experiencing influenza-like symptoms, then died of multi-organ failure. His 39-year old daughter (Case 2), denying any other exposure to influenza A(H7N9) virus, became infected with influenza A(H7N9) virus following taking care of her father during his illness. Sequencing viral genomes isolated from the two patients showed nearly identical nucleotide sequence, and genetically resembled the viral genome isolated from a chicken in the wet market where the index patient once visited. All three influenza A(H7N9) viruses shared S138A, G186V, Q226L mutations in HA (H3) protein and a single basic amino acid (PEIPKGR↓G) at the cleavage site. CONCLUSIONS Human-to-human transmission of influenza A(H7N9) virus most likely occurred in this household. The three-amino-acid mutations in HA protein were discovered in this study, which might have increased the binding affinity of influenza A(H7N9) virus to the receptor on trachea epithelial cells to facilitate viral transmission among humans.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Nan Su
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Cheng Liu
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Pengwei Cui
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Cheng Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Yehan Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Liling Chen
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| |
Collapse
|
18
|
A Comparison of China's Risk Communication in Response to SARS and H7N9 Using Principles Drawn From International Practice. Disaster Med Public Health Prep 2017; 12:587-598. [PMID: 28974284 DOI: 10.1017/dmp.2017.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND China's emergency management of severe acute respiratory syndrome (SARS) was heavily criticized, whereas the H7N9 response was praised by the international community.AimsThe aims of this study were to examine and compare the strengths and weaknesses of risk communication conducted in response to SARS and H7N9 and their associated social impacts on affected communities in China. METHOD A qualitative comparative case study approach was employed in the present study, using a set of 8 risk communication principles selected from international literature to suit the Chinese context for the comparative analysis of emergency responses of SARS and H7N9. RESULTS The study found significant differences in the risk communication conducted in the 2 cases. The SARS outbreak fully exposed China's lack of experience in public health risk communication. By contrast, the Chinese government's risk communication strategies had improved significantly during the H7N9 outbreak.DiscussionTrust is the basis for communication. Maintaining an open and honest attitude and actively engaging stakeholders to address their risk information needs will serve to build trust and facilitate multi-sector collaborations in dealing with a public health crisis. CONCLUSIONS From SARS to H7N9, risk communication practices in China greatly improved, which, in turn, lessened adverse social impacts and improved outcomes in emergency management of public health crises. (Disaster Med Public Health Preparedness. 2018;12:587-598).
Collapse
|
19
|
Ma W, Huang H, Chen J, Xu K, Dai Q, Yu H, Deng F, Qi X, Wang S, Hong J, Bao C, Huo X, Zhou M. Predictors for fatal human infections with avian H7N9 influenza, evidence from four epidemic waves in Jiangsu Province, Eastern China, 2013-2016. Influenza Other Respir Viruses 2017; 11:418-424. [PMID: 28675634 PMCID: PMC5596522 DOI: 10.1111/irv.12461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 01/13/2023] Open
Abstract
Background Four epidemic waves of human infection with H7N9 have been recorded in China up to 1 June 2016, including in Jiangsu Province. However, few studies have investigated the differences in patients' characteristics among the four epidemic waves, and the analyses of factors associated with fatal infection lacked statistical power in previous studies due to limited sample size. Methods All laboratory‐confirmed A(H7N9) patients in Jiangsu province were analysed. Patients' characteristics were compared across four waves and between survivors and those who died. Multivariate analyses were used to identify independent predictors of death. Results Significant differences were found in the lengths of several time intervals (from onset of disease to laboratory confirmation, to onset of ARDS and respiratory failure, and to death) and in the development of heart failure. The proportions of overweight patients and rural patients increased significantly across the four waves. Administration of glucocorticoids and double‐dose neuraminidase inhibitors became the norm. Predictors of death included complications such as ARDS, heart failure and septic shock, administration of glucocorticoids, and disease duration. Conclusion Characteristics of H7N9 patients and clinical treatment options changed over time. Particular complications and the use of particular treatment, along with disease duration, could help clinicians predict the outcome of H7N9 infections.
Collapse
Affiliation(s)
- Wang Ma
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haodi Huang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jian Chen
- School of Public Health, Wannan Medical College, Wannan, China
| | - Ke Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qigang Dai
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Huiyan Yu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Fei Deng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Shenjiao Wang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jie Hong
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Minghao Zhou
- School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
20
|
Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030263. [PMID: 28273867 PMCID: PMC5369099 DOI: 10.3390/ijerph14030263] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/20/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.
Collapse
|
21
|
Wang J, Xu H, Yang X, Zhao D, Liu S, Sun X, Huang JA, Guo Q. Cardiac complications associated with the influenza viruses A subtype H7N9 or pandemic H1N1 in critically ill patients under intensive care. Braz J Infect Dis 2016; 21:12-18. [PMID: 27912070 PMCID: PMC9425542 DOI: 10.1016/j.bjid.2016.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The clinical presentations and disease courses of patients hospitalized with either influenza A virus subtype H7N9 (H7N9) or 2009 pandemic H1N1 influenza virus were compared in a recent report, but associated cardiac complications remain unclear. The present retrospective study investigated whether cardiac complications in critically ill patients with H7N9 infections differed from those infected with the pandemic H1N1 influenza virus strain. METHODS Suspect cases were confirmed by reverse transcription polymerase chain reaction assays with specific confirmation of the pandemic H1N1 strain at the Centers for Disease Control and Prevention. Comparisons were conducted at the individual-level data of critically ill patients hospitalized with H7N9 (n=24) or pandemic H1N1 influenza virus (n=22) infections in Suzhou, China. Changes in cardiac biochemical markers, echocardiography, and electrocardiography during hospitalization in the intensive care unit were considered signs of cardiac complications. RESULTS The following findings were more common among the H7N9 group relative to the pandemic H1N1 influenza virus group: greater tricuspid regurgitation pressure gradient, sinus tachycardia (heartbeat≥130bpm), ST segment depression, right ventricular dysfunction, and elevated cardiac biochemical markers. Pericardial effusion was more often found among pandemic H1N1 influenza virus patients than in the H7N9 group. In both groups, most of the cardiac complications were detected from day 6 to 14 after the onset of influenza symptoms. Those who developed cardiac complications were especially vulnerable during the first four days after initiation of mechanical ventilation. Cardiac complications were reversible in the vast majority of discharged H7N9 patients. CONCLUSIONS Critically ill hospitalized H7N9 patients experienced a higher rate of cardiac complications than did patients with 2009 pandemic H1N1 influenza virus infections, with the exception of pericardial effusion. This study may help in the prevention, identification, and treatment of influenza-induced cardiac complications in both pandemic H1N1 influenza virus and H7N9 infections.
Collapse
Affiliation(s)
- Jiajia Wang
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Hua Xu
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Xinjing Yang
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Daguo Zhao
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Shenglan Liu
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Xue Sun
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Jian-An Huang
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China
| | - Qiang Guo
- The First Affiliated Hospital of Soochow University, Department of Medicine, Respiratory, Emergency and Critical Care Medicine, Suzhou, China.
| |
Collapse
|
22
|
Differences in the Epidemiology of Childhood Infections with Avian Influenza A H7N9 and H5N1 Viruses. PLoS One 2016; 11:e0161925. [PMID: 27695069 PMCID: PMC5047462 DOI: 10.1371/journal.pone.0161925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022] Open
Abstract
The difference between childhood infections with avian influenza viruses A(H5N1) and A(H7N9) remains an unresolved but critically important question. We compared the epidemiological characteristics of 244 H5N1 and 41 H7N9 childhood cases (<15 years old), as well as the childhood cluster cases of the two viruses. Our findings revealed a higher proportion of H5N1 than H7N9 childhood infections (31.1% vs. 6.4%, p = 0.000). However, the two groups did not differ significantly in age (median age: 5.0 vs. 5.5 y, p = 0.0651). The proportion of clustered cases was significantly greater among children infected with H5N1 than among children infected with H7N9 [46.7% (71/152) vs. 23.6% (13/55), p = 0.005], and most of the childhood cases were identified as secondary cases [46.4% (45/97) vs. 33.3% (10/30), p = 0.000]. Mild status accounted for 79.49% and 22.66%, severe status for 17.95% and 2.34%, and fatal cases for 2.56% and 75.00% of the H7N9 and H5N1 childhood infection cases (all p<0.05), respectively. The fatality rates for the total, index and secondary childhood cluster cases were 52.86% (37/70), 88.5% (23/26) and 33.33% (15/45), respectively, in the H5N1 group, whereas no fatal H7N9 childhood cluster cases were identified. In conclusion, lower severity and greater transmission were found in the H7N9 childhood cases than in the H5N1 childhood cases.
Collapse
|
23
|
Wang H, Xiao X, Lu J, Chen Z, Li K, Liu H, Luo L, Wang M, Yang Z. Factors associated with clinical outcome in 25 patients with avian influenza A (H7N9) infection in Guangzhou, China. BMC Infect Dis 2016; 16:534. [PMID: 27716101 PMCID: PMC5048464 DOI: 10.1186/s12879-016-1840-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Guangzhou reported its first laboratory-confirmed case of influenza A (H7N9) on January 10, 2014. A total of 25 cases were reported from the first wave of the epidemic until April 8, 2014. The fatality rate was much higher than in previous reports. The objective of the current work was to describe the clinical and epidemiological characteristics of A (H7N9) patients in Guangzhou and explore possible reasons for the high fatality rate. METHODS Clinical and epidemiological information regarding A (H7N9) cases in Guangzhou was collected through review of medical records and field research. Data regarding clinical and laboratory features, treatment, and outcomes were extracted. RESULTS Of the 25 patients, 84 % (21/25) had one or more underlying diseases. Fifteen patients (60.0 %) developed moderate to severe acute respiratory distress syndrome (ARDS), and 14 (56 %) died of the ARDS or multiorgan failure. Patients with longer delay between onset of illness and initiation of oseltamivir treatment were more likely to develop ARDS. Elevated C-creative protein, aspartate aminotransferase, creatine kinase, and lymphocytopenia predicted a higher risk of developing ARDS. CONCLUSIONS The presence of underlying diseases and clinical complications predicted poor clinical outcome. Early oseltamivir treatment was associated with a reduced risk of developing ARDS.
Collapse
Affiliation(s)
- Hui Wang
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - XinCai Xiao
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - Jianyun Lu
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - Zongqiu Chen
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - Kuibiao Li
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - Hui Liu
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - Lei Luo
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - Ming Wang
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China
| | - ZhiCong Yang
- Guangzhou Centre for Disease Control and Prevention, No. 1, Qide Rd, Jiahe, Baiyun, Guangzhou, 510440, China.
| |
Collapse
|
24
|
Zhang Q, Xiao C, Wang W, Qian M, Xu J, Yang H. Chromatography column comparison and rapid pretreatment for the simultaneous analysis of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine in chicken muscle by ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci 2016; 39:3998-4010. [DOI: 10.1002/jssc.201600490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Qiaoyan Zhang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Chaogeng Xiao
- Institute of Food Sciences; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Wei Wang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Mingrong Qian
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Jie Xu
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| |
Collapse
|
25
|
Wu W, Zhang W, Booth JL, Hutchings DC, Wang X, White VL, Youness H, Cross CD, Zou MH, Burian D, Metcalf JP. Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 2016; 17:111. [PMID: 27604339 PMCID: PMC5013564 DOI: 10.1186/s12931-016-0428-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and most COPD exacerbations are caused by respiratory infections including influenza. Influenza infections are more severe in smokers. The mechanism of the increased risk and severity of infections in smokers is likely multifactorial, but certainly includes changes in immunologic host defenses. METHODS We investigated retinoic acid-inducible protein I (RIG-I) and interferon (IFN) induction by influenza A virus (IAV) in human bronchial epithelial cells (HBEC) isolated from smokers or nonsmokers. Subcultured HBEC cells were infected with A/Puerto Rico/8/1934 (PR8) IAV at an MOI of 1. After 24 h of infection, cells and supernatants were collected for qRT-PCR, immunoblot or ELISA to determine RIG-I, Toll-like receptor3 (TLR3) and IFN expression levels. RESULTS IAV exposure induced a vigorous IFN-β, IFN-λ 1 and IFN-λ 2/3 antiviral response in HBEC from nonsmokers and significant induction of RIG-I and TLR3. In cells from smokers, viral RIG-I and TLR3 mRNA induction was reduced 87 and 79 % compared to the response from nonsmokers. CS exposure history was associated with inhibition of viral induction of the IFN-β, IFN-λ1 and IFN-λ 2/3 mRNA response by 85, 96 and 95 %, respectively, from that seen in HBEC from nonsmokers. The demethylating agent 5-Aza-2-deoxycytidine reversed the immunosuppressive effects of CS exposure in HBEC since viral induction of all three IFNs was restored. IFN-β induction of RIG-I and TLR3 was also suppressed in the cells from smokers. CONCLUSION Our results suggest that active smoking reduces expression of antiviral cytokines in primary HBEC cells. This effect likely occurs via downregulation of RIG-I and TLR3 due to smoke-induced epigenetic modifications. Reduction in lung epithelial cell RIG-I and TLR3 responses may be a major mechanism contributing to the increased risk and severity of viral respiratory infections in smokers and to viral-mediated acute exacerbations of COPD.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vicky L White
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Houssein Youness
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cory D Cross
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Dennis Burian
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
26
|
Features of human-infecting avian influenza viruses and mammalian adaptations. J Infect 2016; 73:95-7. [DOI: 10.1016/j.jinf.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
|
27
|
Wu Z, Sha J, Yu Z, Zhao N, Cheng W, Chan TC, Amer S, Zhang Z, Liu S. Epidemiological and virological differences in human clustered and sporadic infections with avian influenza A H7N9. Int J Infect Dis 2016; 49:9-17. [PMID: 27235087 DOI: 10.1016/j.ijid.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous research has suggested that avian influenza A H7N9 has a greater potential pandemic risk than influenza A H5N1. This research investigated the difference in human clustered and sporadic cases of H7N9 virus and estimated the relative risk of clustered infections. METHODS Comparative epidemiology and virology studies were performed among 72 sporadic confirmed cases, 17 family clusters (FCs) caused by human-to-human transmission, and eight live bird market clusters (LCs) caused by co-exposure to the poultry environment. RESULTS The case fatality of FCs, LCs and sporadic cases (36%, 26%, and 29%, respectively) did not differ among the three groups (p>0.05). The average age (36 years, 60 years, and 58 years), co-morbidities (31%, 60%, and 54%), exposure to birds (72%, 100%, and 83%), and H7N9-positive rate (20%, 64%, and 35%) in FCs, LCs, and sporadic cases, respectively, differed significantly (p<0.05). These higher risks were associated with increased mortality. There was no difference between primary and secondary cases in LCs (p>0.05). However, exposure to a person with confirmed avian influenza A H7N9 (primary 12% vs. secondary 95%), history of visiting a live bird market (100% vs. 59%), multiple exposures (live bird exposure and human-to-human transmission history) (12% vs. 55%), and median days from onset to antiviral treatment (6 days vs. 3 days) differed significantly between primary and secondary cases in FCs (p<0.05). Mild cases were found in 6% of primary cases vs. 32% of secondary cases in FCs (p<0.05). Twenty-five isolates from the three groups showed 99.1-99.9% homology and increased human adaptation. CONCLUSIONS There was no statistical difference in the case fatality rate and limited transmission between FCs and LCs. However, the severity of the primary cases in FCs was much higher than that of the secondary cases due to the older age and greater underlying disease of the latter patients.
Collapse
Affiliation(s)
- Zuqun Wu
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Sha
- Department of Endocrinology, The 421 Hospital of the Chinese People's Liberation Army, Guangzhou, China
| | - Zhao Yu
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Na Zhao
- National Research Centre for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Cheng
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Ta-Chien Chan
- Research Centre for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Said Amer
- Department of Zoology, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 Chongqing South Road, Shanghai 200025, China.
| | - Shelan Liu
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
28
|
Liu S, Sha J, Yu Z, Hu Y, Chan TC, Wang X, Pan H, Cheng W, Mao S, Zhang RJ, Chen E. Avian influenza virus in pregnancy. Rev Med Virol 2016; 26:268-84. [PMID: 27187752 DOI: 10.1002/rmv.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Abstract
The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Jianping Sha
- Department of Endocrinology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, China
| | - Zhao Yu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yan Hu
- Department of Endocrinology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, China
| | - Ta-Chien Chan
- Centre for Geographic Information Science, Research Centre for Humanities and Social Science, Academia Sinica, Taipei, Taiwan
| | - Xiaoxiao Wang
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hao Pan
- Department of Infectious Diseases, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Wei Cheng
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Shenghua Mao
- Department of Infectious Diseases, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Run Ju Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Enfu Chen
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| |
Collapse
|
29
|
Sha J, Chen X, Ren Y, Chen H, Wu Z, Ying D, Zhang Z, Liu S. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus. Arch Virol 2016; 161:1239-59. [PMID: 26887968 PMCID: PMC7101734 DOI: 10.1007/s00705-016-2781-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/30/2016] [Indexed: 11/04/2022]
Abstract
A novel avian influenza A (H7N9) virus caused 5-10 % mild and 30.5 % fatal human infections as of December 10, 2015. In order to investigate the reason for the higher rate of fatal outcome of this infection, this study compared the molecular epidemiology and virology of avian influenza A (H7N9) viruses from mild (N = 14), severe (N = 50) and fatal (N = 35) cases, as well as from non-human hosts (N = 73). The epidemiological results showed that the average age of the people in the mild, severe and fatal groups was 27.6, 52 and 62 years old, respectively (p < 0.001). Males accounted for 42.9 % (6/14), 58.0 % (29/50), and 74.3 % (26/35) of cases in the mild, severe and fatal group respectively (p = 0.094). Median days from onset to start of antiviral treatment were 2, 5 and 7 days in the mild, severe and fatal group, respectively (p = 0.002). The median time from onset to discharge/death was 12, 40 and 19 days in the mild, severe and fatal group, respectively (p < 0.001). Analysis of whole genome sequences showed that PB2 (E627K), NA (R294K) and PA (V100A) mutations were markedly associated with an increased fatality rate, while HA (N276D) and PB2 (N559T) mutations were clearly related to mild cases. There were no differences in the genotypes, adaptation to mammalian hosts, and genetic identity between the three types of infection. In conclusion, advanced age and delayed confirmation of diagnosis and antiviral intervention were risk factors for death. Furthermore, PB2 (E627K), NA (R294K) and PA (V100A) mutations might contribute to a fatal outcome in human H7N9 infection.
Collapse
Affiliation(s)
- Jianping Sha
- Department of Gastroenterology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Xiaowen Chen
- Department of Senior Cadres, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Yajin Ren
- Pharmacy Department, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Haijun Chen
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Zuqun Wu
- Department of Respiratory Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ying
- Department of Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, People's Republic of China.
| |
Collapse
|
30
|
Chen J, Cui G, Lu C, Ding Y, Gao H, Zhu Y, Wei Y, Wang L, Uede T, Li L, Diao H. Severe Infection With Avian Influenza A Virus is Associated With Delayed Immune Recovery in Survivors. Medicine (Baltimore) 2016; 95:e2606. [PMID: 26844470 PMCID: PMC4748887 DOI: 10.1097/md.0000000000002606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human infection with avian influenza A virus (H7N9) is a concern because of the mortality rate. Previously, we characterized immunological responses during active infection with it and reported evidence of impaired antigen-presenting capability, particularly in severely affected individuals. Here we describe an investigation of immunological responses during a 1-year follow-up of survivors of H7N9 infection. Survivors of H7N9 infection were classified as having had mild (n = 42) or severe infection (n = 26). Their immune status, including human leukocyte antigen-DR expression on monocytes, and their ability to mount cytokine responses were assessed at 1, 3, and 12 months postinfection.The total lymphocyte count and the percentages of different types of lymphocytes had normalized by 1 month postinfection. However, there was evidence of ongoing impairment of immune responses in those who had had severe infection. This included reduced human leukocyte antigen-DR expression on CD14 monocytes, reduced interferon-γ production by T cells, and higher plasma levels of the matrix metalloproteinases 2, 3, and 9. By 3 months postinfection, these had all normalized.After severe H7N9 infection, recovery of the antigen-presenting capability of monocytes and T-cell responses are delayed. This may lead to an increased vulnerability to secondary bacterial infections.
Collapse
Affiliation(s)
- Jianing Chen
- From the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (JC, GC, CL, YD, HG, YZ, YW, LW, LL, HD); and Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan (TU)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ishikane M, Kato H, Kawabata K, Ito H, Kanayama A, Matsui T, Oishi K. [The Cutting-edge of Medicine; A recent trend of emerging infections: MERS and Avian influenza A (H7N9)]. ACTA ACUST UNITED AC 2016; 104:114-9. [PMID: 26571785 DOI: 10.2169/naika.104.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Zhao FR, Zhou DH, Shao JJ, Lin T, Zhang YG, Chang HY. Avian influenza and live mixed poultry-animal markets in China. J Infect 2015; 71:693-5. [PMID: 26327234 DOI: 10.1016/j.jinf.2015.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Fu-Rong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Jun-Jun Shao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Tong Lin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yong-Guang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China.
| | - Hui-Yun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China.
| |
Collapse
|
33
|
Surveillance of Avian H7N9 Virus in Various Environments of Zhejiang Province, China before and after Live Poultry Markets Were Closed in 2013-2014. PLoS One 2015; 10:e0135718. [PMID: 26308215 PMCID: PMC4550274 DOI: 10.1371/journal.pone.0135718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background To date, there have been a total of 637 laboratory-confirmed cases of human infection with avian influenza A (H7N9) virus across mainland China, with 28% (179/637) of these reported in Zhejiang Province. Surveillance of avian H7N9 virus was conducted to investigate environmental contamination during H7N9 outbreaks. We sought to evaluate the prevalence of H7N9 in the environment, and the effects of poultry market closures on the incidence of human H7N9 cases. Methods We collected 6740 environmental samples from 751 sampling sites across 11 cities of Zhejiang Province (China) between January 2013 and March 2014. The presence of H7N9 was determined by reverse transcription polymerase chain reaction, with prevalence compared between sites and over time. The relationship between environmental contamination and human cases of H7N9 infection were analyzed using Spearman’s ranked correlation coefficient. Results Of the 6740 samples, 10.09% (680/6740) were H7N9-positive. The virus was found to circulate seasonally, and peaked during the spring and winter of 2013–2014. The prevalence of the virus decreased from the north to the southeast of the province, coinciding with the geographical distribution of human H7N9 cases. Compared with other sampling sites, live poultry markets (LPMs) had the highest prevalence of H7N9 virus at 13.94% (667/4784). Of the various sample types analyzed, virus prevalence was highest for chopping board swabs at 15.49% (110/710). The prevalence of the virus in the environment positively correlated with the incidence of human H7N9 cases (r2 = 0.498; P < 0.01). Cities with a higher incidence of human H7N9 cases also had a higher prevalence of H7N9 among samples and at sampling sites. Following the closure of LPMs at the end of January 2014, the prevalence of H7N9 decreased from 19.18% (487/2539) to 6.92% (79/1141). This corresponded with a decrease in the number of human H7N9 cases reported. Conclusions The prevalence of H7N9 virus in environmental samples oscillated seasonally, regardless of whether LPMs were open. The presence of H7N9 in environmental samples positively correlated with the number of human H7N9 cases, indicating that eradication of the virus from the environment is essential in reducing the numbers of H7N9 cases and halting the spread of the virus.
Collapse
|
34
|
Tervo L, Mäkelä S, Syrjänen J, Huttunen R, Rimpelä A, Huhtala H, Vapalahti O, Vaheri A, Mustonen J. Smoking is associated with aggravated kidney injury in Puumala hantavirus-induced haemorrhagic fever with renal syndrome. Nephrol Dial Transplant 2015; 30:1693-8. [PMID: 26150428 DOI: 10.1093/ndt/gfv273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies indicate that smoking affects the outcome of some infections and is a risk factor for Puumala virus (PUUV) infection. The aim of this study was to assess the effect of smoking on the clinical severity of PUUV infection and the prevalence of smoking in patients with PUUV infection. METHODS A questionnaire on smoking habits was sent to 494 patients in 2012, who had been treated in Tampere University Hospital, Finland, for serologically confirmed PUUV infection during years 1982-2012. RESULTS Of all patients, 357 (72%) participated. Maximum plasma creatinine level measured during acute illness was significantly higher in current smokers than in non-smokers (median: 273 versus 184 µmol/L, P < 0.001). Current smokers had a higher maximum blood leucocyte count than non-smokers (median: 10.8 versus 8.9 × 10(9)/L, P < 0.001) and they were younger than non-smokers (38 versus 45 years, P < 0.001). There were no differences between current smokers and non-smokers in the other variables reflecting the severity of PUUV infection. Altogether 51% were current smokers at the time of onset of the illness, 57% of males and 36% of females. During these years in Finland, smoking among males in the same aged population has decreased from 33 to 22% and among females, smoking has varied between 14 and 20%. CONCLUSIONS Smoking is common in patients with PUUV infection. Current smokers suffer from more severe acute kidney injury (AKI) and they have higher leucocyte count than non-smokers in PUUV infection. Smoking cessation decreases the risk of severe AKI to the same level as observed in never-smokers.
Collapse
Affiliation(s)
- Laura Tervo
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland School of Medicine, University of Tampere, Tampere, Finland
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland School of Medicine, University of Tampere, Tampere, Finland
| | - Reetta Huttunen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Arja Rimpelä
- Tampere School of Health Sciences, University of Tampere, Tampere, Finland Department of Adolescent Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Tampere School of Health Sciences, University of Tampere, Tampere, Finland
| | - Olli Vapalahti
- Department of Virology, Medical Faculty, University of Helsinki, Helsinki, Finland Department of Virology and Immunology, HUSLAB, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medical Faculty, University of Helsinki, Helsinki, Finland Department of Virology and Immunology, HUSLAB, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
35
|
Huo X, Xu K, Dai Q, Qi X, Yu H, Bao C. Age and gender adjusted comparison of clinical features between severe cases infected with H7N9 and H1N1pdm influenza A in Jiangsu Province, China. PLoS One 2015; 10:e0120999. [PMID: 25815732 PMCID: PMC4376887 DOI: 10.1371/journal.pone.0120999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background Influenza H7N9 and H1N1pdm can cause severe human infections. It is important to investigate the distinguishing clinical features between these two diseases. Several studies have compared the differences in general, however, age and gender adjusted comparisons may be more useful and informative to the health professionals. Methods A total of 184 severe H1N1pdm patients and 37 severe H7N9 patients from Jiangsu Province were included in this analysis to perform age and gender adjusted comparison of clinical features. Results After adjusting age and gender, no significant differences in chronic medical conditions or treatment were found between severely ill patients with H7N9 and H1N1pdm. Severely ill patients with H7N9 had significantly longer interval from onset of illness to neuraminidase inhibitor treatment and to death. They were more likely to have complications such as acute respiratory distress syndrome (ARDS), liver and renal dysfunctions, and had a significantly higher risk of death. Conclusion Our results suggests that age and gender should be adjusted as important confounding factors when comparing the clinical features between severe H7N9 and H1N1pdm patients to avoid any misunderstanding regarding the differences between these two diseases particularly in terms of clinical severity and prognosis.
Collapse
Affiliation(s)
- Xiang Huo
- Department of Acute Infectious Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Ke Xu
- Department of Acute Infectious Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Qigang Dai
- Department of Acute Infectious Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Xian Qi
- Department of Acute Infectious Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Huiyan Yu
- Department of Acute Infectious Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Changjun Bao
- Department of Acute Infectious Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
- * E-mail:
| |
Collapse
|
36
|
Tan KX, Jacob SA, Chan KG, Lee LH. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans. Front Microbiol 2015; 6:140. [PMID: 25798131 PMCID: PMC4350415 DOI: 10.3389/fmicb.2015.00140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/06/2015] [Indexed: 01/05/2023] Open
Abstract
The novel avian influenza A H7N9 virus which caused the first human infection in Shanghai, China; was reported on the 31st of March 2013 before spreading rapidly to other Chinese provinces and municipal cities. This is the first time the low pathogenic avian influenza A virus has caused human infections and deaths; with cases of severe respiratory disease with pneumonia being reported. There were 440 confirmed cases with 122 fatalities by 16 May 2014; with a fatality risk of ∼28%. The median age of patients was 61 years with a male-to-female ratio of 2.4:1. The main source of infection was identified as exposure to poultry and there is so far no definitive evidence of sustained person-to-person transmission. The neuraminidase inhibitors, namely oseltamivir, zanamivir, and peramivir; have shown good efficacy in the management of the novel H7N9 virus. Treatment is recommended for all hospitalized patients, and for confirmed and probable outpatient cases; and should ideally be initiated within 48 h of the onset of illness for the best outcome. Phylogenetic analysis found that the novel H7N9 virus is avian in origin and evolved from multiple reassortments of at least four origins. Indeed the novel H7N9 virus acquired human adaptation via mutations in its eight RNA gene segments. Enhanced surveillance and effective global control are essential to prevent pandemic outbreaks of the novel H7N9 virus.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sabrina A. Jacob
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
37
|
Viral lung infections: epidemiology, virology, clinical features, and management of avian influenza A(H7N9). Curr Opin Pulm Med 2015; 20:225-32. [PMID: 24637225 DOI: 10.1097/mcp.0000000000000047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The avian influenza A(H7N9) virus has jumped species barrier and caused severe human infections. Here, we present the virological features relevant to clinical practice, and summarize the epidemiology, clinical findings, diagnosis, treatment, and preventive strategies of A(H7N9) infection. RECENT FINDINGS As of 18 February 2014, A(H7N9) virus has caused 354 infections in mainland China, Taiwan, and Hong Kong with a case-fatality rate of 32%. Elderly men were most affected. Most patients acquired the infection from direct contact with poultry or from a contaminated environment, although person-to-person transmission has likely occurred. A(H7N9) infection has usually presented with severe pneumonia, often complicated by acute respiratory distress syndrome and multiorgan failure. Mild infections have been reported in children and young adults. Nasopharyngeal aspirate and sputum samples should be collected for diagnosis, preferably using reverse transcriptase-PCR. Early treatment with neuraminidase inhibitors improved survival, but the efficacy of antivirals was hampered by resistant mutants. The closure of live poultry markets in affected areas has significantly contributed to the decline in the incidence of human cases. SUMMARY The emergence of A(H7N9) virus represents a significant health threat. High vigilance is necessary so that appropriate treatment can be instituted for the patient and preventive measures can be implemented.
Collapse
|
38
|
Wu W, Zhang W, More S, Booth JL, Duggan ES, Liu L, Zhao YD, Metcalf JP. Cigarette smoke attenuates the RIG-I-initiated innate antiviral response to influenza infection in two murine models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L848-58. [PMID: 25260755 PMCID: PMC4254961 DOI: 10.1152/ajplung.00158.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. Despite this association, the mechanisms underlying the increased susceptibility to respiratory virus infection are poorly understood. Retinoic acid-inducible gene I (RIG-I) is an important regulator of influenza virus-induced expression of antiviral cytokines, mainly interferons (IFNs), which are necessary to clear viral infections. In this study, we compared the innate cytokine responses of two mouse CS exposure models following a challenge with influenza A virus (IAV): 1) exposure of the mice to cigarette smoke extract (CSE) intratracheally and 2) exposure of the mice to CS in a whole body exposure chamber. Both intratracheal CSE treatment and whole body CS exposure caused antiviral immunosuppression in these mice, and both CS exposure methods inhibited RIG-I induction. CS attenuated influenza-induced antiviral IFNs and IP-10 expression in vivo. However, we did not find that CS inhibited induction of the proinflammatory cytokines IL-6 and TNF-α, whose expression was induced by IAV. Interestingly, IAV infection also increased Toll-like receptor 3 (TLR3) expression in mouse lung, but CS exposure did not impact TLR3 induction in these mice. Together, the results support our previous finding in a human lung organ culture model that the suppression of RIG-I induction and antiviral cytokine responses by CS are likely important in the enhanced susceptibility of smokers to influenza infection in the lung.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sunil More
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
39
|
Husain M. Avian influenza A (H7N9) virus infection in humans: Epidemiology, evolution, and pathogenesis. INFECTION GENETICS AND EVOLUTION 2014; 28:304-12. [DOI: 10.1016/j.meegid.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/09/2022]
|
40
|
Song Y, Xu F, Seeley EJ, Ou J, Zhu X, Sun R, Bai C. Acute Respiratory Distress Syndrome: Emerging Research in China. Am J Respir Crit Care Med 2014; 190:1090-3. [PMID: 25398108 DOI: 10.1164/rccm.201407-1392ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yuanlin Song
- 1 Department of Pulmonary Medicine Zhongshan Hospital, Fudan University Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Prognosis and survival of 128 patients with severe avian influenza A(H7N9) infection in Zhejiang province, China. Epidemiol Infect 2014; 143:1833-8. [PMID: 25358356 DOI: 10.1017/s0950268814002866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
No published studies have discussed details of the prognosis and survival of patients with severe avian influenza A(H7N9) infection. In this study we analysed 128 laboratory-confirmed cases of severe H7N9 infection in Zhejiang province, the most affected region during the H7N9 epidemic in mainland China. We found that an increase in patient age by 5 years was associated with a 1.41 [95% confidence interval (CI) 1.19-1.67] times odds ratio for fatality. In addition, the time interval between the first clinical visit after symptom onset and hospital admission was inversely associated with survival time since admission. Of the 47 patients who died of the disease, when the time interval between the first clinical visit and hospital admission increased by 1 day, the duration of survival was 0.78 times (95% CI 0.62-0.98) as long. Our results suggest that patients with severe influenza H7N9 infection at older ages were at a higher risk of fatality, and that a delay in hospital admission was associated with more rapid death. More studies are required to corroborate our major findings.
Collapse
|
42
|
Epidemiology of human infections with avian influenza A(H7N9) virus in the two waves before and after October 2013 in Zhejiang province, China. Epidemiol Infect 2014; 143:1839-45. [DOI: 10.1017/s095026881400257x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYWe compared the epidemiological and clinical features of avian influenza A(H7N9) virus infections in the population in Zhejiang province, China, between March and April 2013 (first wave) and October 2013 and February 2014 (second wave). No statistical difference was found for age, sex, occupation, presence of underlying conditions, exposure history, white blood cell count, lymphocyte percentage and illness timeline and duration (all P > 0·05). The virus spread to 30 new counties compared to the first wave. The case-fatality rate was 22% in the first wave and 42% in the second (P = 0·023). Of those infected, 66% in the first wave and 62% in the second wave had underlying conditions. The proportion of those exposed to live poultry markets were 80% and 66%, respectively. We recommend permanent closure of live poultry markets and reformation of poultry supply and sales.
Collapse
|
43
|
Zhang Y, Yu YS, Tang ZH, Chen XH, Zang GQ. Human infection with avian influenza A (H7N9) virus. Rev Inst Med Trop Sao Paulo 2014; 56:367-8. [PMID: 25076443 PMCID: PMC4131828 DOI: 10.1590/s0036-46652014000400019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Yong-Sheng Yu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Zheng-Hao Tang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Xiao-Hua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Guo-Qing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| |
Collapse
|
44
|
Watanabe T, Watanabe S, Maher EA, Neumann G, Kawaoka Y. Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol 2014; 22:623-31. [PMID: 25264312 DOI: 10.1016/j.tim.2014.08.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022]
Abstract
Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.
Collapse
Affiliation(s)
- Tokiko Watanabe
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shinji Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Eileen A Maher
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
45
|
Zhang Y, Mao H, Yan J, Zhang L, Sun Y, Wang X, Chen Y, Lu Y, Chen E, Lv H, Gong L, Li Z, Gao J, Xu C, Feng Y, Ge Q, Xu B, Xu F, Yang Z, Zhao G, Han J, Guus K, Li H, Shu Y, Chen Z, Xia S. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China. Virus Res 2014; 189:158-64. [DOI: 10.1016/j.virusres.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/27/2014] [Accepted: 05/01/2014] [Indexed: 12/15/2022]
|
46
|
Gong Z, Lv H, Ding H, Han J, Sun J, Chai C, Cai J, Yu Z, Chen E. Epidemiology of the avian influenza A (H7N9) outbreak in Zhejiang Province, China. BMC Infect Dis 2014; 14:244. [PMID: 24886478 PMCID: PMC4028008 DOI: 10.1186/1471-2334-14-244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/30/2014] [Indexed: 11/27/2022] Open
Abstract
Background A novel influenza A virus infection was identified on March 31, 2013 in China and a total of 134 cases were identified in 12 provinces of China between March 25 and September 31, 2013. Of these, 46 cases occurred in Zhejiang Province and the number of patients is the largest in China. Methods Field investigations were conducted for each confirmed H7N9 case. A standardized questionnaire was used to collect information about demographics, exposure history, clinical signs and symptoms, timelines of medical visits and care after onset of illness, and close contacts. Descriptive statistics were used to analyze the epidemiological and clinical characteristics. Samples from the patients were collected and tested by real time reverse transcriptase-polymerase chain reaction and viral culture. Results A total of 46 laboratory confirmed cases of H7N9 influenza infection were identified in the Zhejiang province between March 31 and September 31, 2013 of which 29 were male and 17 were female. The median age of patients was 61.5 years and 76.09% of cases occurred in persons aged ≥50 years old. Unlike other province, 34.78% of cases in Zhejiang Province were rural residents. Among 11 deaths, 9 were male, 10 were older than 60 years old, and 10 had underlying diseases. 30 of 38 cases with available data had a recent history of poultry exposures and 8 cases had multi-exposure history. The estimated median incubation period was two days which was shorter than corresponding data in other provinces. All cases were hospitalized and the median time from illness onset to hospitalization was 5 days. Symptoms at the onset of the illness included fever, cough, expectoration, shivering, fatigue, muscular aches, nausea, vomiting. Only 4.91% contacts developed respiratory symptoms, but their samples were tested negative for H7N9 virus designating lack of human-to-human transmission of the virus. Conclusions All cases were sporadic and there was no evidence of an epidemiologic link between them. Control measures including closing affected poultry and slaughtering backyard poultry are needed not only in urban areas but also in rural areas to reduce human H7N9 infection risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
47
|
Sun J, Gong Z, Lv H, Chen Z, Chai C, Liu S, Ling F, Lu Y, Cai J, Yu Z, Miao Z, Ren J, Chen E. Comparison of characteristics between patients with H7N9 living in rural and urban areas of Zhejiang Province, China: a preliminary report. PLoS One 2014; 9:e93775. [PMID: 24710171 PMCID: PMC3977906 DOI: 10.1371/journal.pone.0093775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/09/2014] [Indexed: 11/25/2022] Open
Abstract
A total of 134 cases of H7N9 influenza infection were identified in 12 provinces of China between March 25 and September 31, 2013. Of these, 46 cases occurred in Zhejiang Province. We carried out a preliminary comparison of characteristics between rural and urban H7N9 cases from Zhejiang Province, China. Field investigations were conducted for each confirmed H7N9 case. A standardized questionnaire was used to collect information about demographics, exposure history, clinical signs and symptoms, timelines of medical visits and care after onset of illness. Of the 46 H7N9 cases in Zhejiang Province identified between March 25 and September 31, 2013, there were 16 rural cases and 30 urban cases. Compared to urban cases, there was a higher proportion of females among the rural cases [11/16 (69%) vs. 6/30 (20%), P = 0.001]. Among the rural cases, 14/15 (93%) with available data had a history of recent poultry exposure, which was significantly higher than that among urban cases (64%, P = 0.038). More patients from the rural group had a history of breeding poultry compared with those from the urban group [38% (6/16) vs. 10% (3/30), respectively; P = 0.025]. Interestingly, the median number of medical visits of patients from rural areas was higher than that of patients from urban areas (P = 0.046). There was no difference between the two groups in terms of age distribution, fatality rate, incubation period, symptoms, and underlying medical conditions. In conclusion, compared to patients from urban areas, more patients from rural areas were female, had an exposure history, had a history of breeding poultry, and had a higher number of medical visits. These findings indicate that there are different exposure patterns between patients living in rural and urban areas and that more rural cases were infected through backyard poultry breeding.
Collapse
Affiliation(s)
- Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Huakun Lv
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Zhiping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Chengliang Chai
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Shelan Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Feng Ling
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Ye Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Jian Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Zhao Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Ziping Miao
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Jiangping Ren
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
- * E-mail:
| |
Collapse
|
48
|
Wu W, Metcalf JP. Cigarette smoking and innate immune responses to influenza infection. World J Immunol 2014; 4:20-25. [DOI: 10.5411/wji.v4.i1.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/18/2013] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Cigarette smoking (CS) suppresses the immune system, and smoking is a well-known major risk factor for respiratory tract infections, including influenza infection. Both smoking cigarettes and passive smoking alter a wide range of immunological functions, including innate and adaptive immune responses. Past reviews on CS and innate immunity have been focused on the effects of CS on structural changes of the lung, as well as the effects on the function of alveolar macrophages, leukocytes, natural killer cells and dendritic cells. The study of innate immunity has developed rapidly in the last decade with the discovery of new receptors for virus recognition and interferon responses. This review aims to give a brief summary of recent findings on the suppressive effects of CS on the innate response to influenza virus, especially as it pertains to suppression of the function of pattern recognition receptors for influenza virus.
Collapse
|
49
|
Ji H, Gu Q, Chen LL, Xu K, Ling X, Bao CJ, Tang FY, Qi X, Wu YQ, Ai J, Shen GY, Dong DJ, Yu HY, Huang M, Cao Q, Xu Y, Zhao W, Xu YT, Xia Y, Chen SH, Yang GL, Gu CL, Xie GX, Zhu YF, Zhu FC, Zhou MH. Epidemiological and clinical characteristics and risk factors for death of patients with avian influenza A H7N9 virus infection from Jiangsu Province, Eastern China. PLoS One 2014; 9:e89581. [PMID: 24595034 PMCID: PMC3942409 DOI: 10.1371/journal.pone.0089581] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Background A novel avian influenza A (H7N9) virus has caused great morbidity as well as mortality since its emergence in Eastern China in February 2013. However, the possible risk factors for death are not yet fully known. Methods and Findings Patients with H7N9 virus infection between March 1 and August 14, 2013 in Jiangsu province were enrolled. Data were collected with a standard form. Mean or percentage was used to describe the features, and Fisher's exact test or t-test test was used to compare the differences between fatal and nonfatal cases with H7N9 virus infection. A total of 28 patients with H7N9 virus infection were identified among whom, nine (32.1%) died. The median age of fatal cases was significant higher than nonfatal cases (P<0.05). Patients with older age were more strongly associated with increased odds of death (OR = 30.0; 95% CI, 2.85–315.62). Co-morbidity with chronic lung disease and hypertension were risk factors for mortality (OR = 14.40; 95% CI, 1.30–159.52, OR = 6.67; 95% CI, 1.09–40.43, respectively). Moreover, the presence of either bilateral lung inflammation or pulmonary consolidation on chest imaging on admission was related with fatal outcome (OR = 7.00; 95%CI, 1.10–44.61). Finally, dynamic monitoring showed that lymphopenia was more significant in fatal group than in nonfatal group from day 11 to week five (P<0.05). The decrease in oxygenation indexes were observed in most cases and more significantly in fatal cases after week three (P<0.05), and the value of nearly all fatal cases were below 200 mmHg during our evaluation period. Conclusions Among cases with H7N9 virus infection, increased age accompanied by co-morbidities was the risk of death. The severity of lung infection at admission, the persistence of lymphocytopenia, and the extended duration of lower oxygenation index all contributed to worsened outcomes of patients with H7N9 virus infection.
Collapse
Affiliation(s)
- Hong Ji
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Qin Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Li-ling Chen
- Suzhou Municipal Center for Disease Control and Prevention, Suzhou, Jiangsu, China
| | - Ke Xu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Xia Ling
- Wuxi Municipal Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Chang-jun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- * E-mail: (CJB); (MHZ)
| | - Fen-yang Tang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Xian Qi
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Ying-qiu Wu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Ai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Gu-yu Shen
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Dan-jiang Dong
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Hui-yan Yu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Mao Huang
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quan Cao
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Xu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhao
- The Second Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Yang-ting Xu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Yu Xia
- Suzhou Municipal Center for Disease Control and Prevention, Suzhou, Jiangsu, China
| | - Shan-hui Chen
- Wuxi Municipal Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Gen-lin Yang
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Cai-ling Gu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guo-xiang Xie
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Ye-fei Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Feng-cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Ming-hao Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- * E-mail: (CJB); (MHZ)
| |
Collapse
|
50
|
van de Sandt CE, Kreijtz JHCM, de Mutsert G, Geelhoed-Mieras MM, Hillaire MLB, Vogelzang-van Trierum SE, Osterhaus ADME, Fouchier RAM, Rimmelzwaan GF. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88:1684-93. [PMID: 24257602 PMCID: PMC3911609 DOI: 10.1128/jvi.02843-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 01/05/2023] Open
Abstract
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8(+) T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8(+) T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8(+) T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8(+) T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8(+) T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8(+) T cells may afford some protection against infection with the new virus.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cells, Cultured
- China/epidemiology
- Cross Protection
- Cross Reactions
- Disease Outbreaks
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Interferon-gamma/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Seasons
- Sequence Alignment
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron A. M. Fouchier
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| | - Guus F. Rimmelzwaan
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| |
Collapse
|