1
|
Giefing M, Sawicz G, Siebert R. FISH and FICTION in Lymphoma Research. Methods Mol Biol 2025; 2865:221-240. [PMID: 39424726 DOI: 10.1007/978-1-0716-4188-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a powerful and robust technique allowing the visualization of target sequences like genes in interphase nuclei. It is widely used in routine diagnostics to identify cancer-specific aberrations including lymphoma-associated translocations or gene copy number changes in single tumor cells. By combining FISH with immunophenotyping-a technique called fluorescence immunophenotyping and interphase cytogenetic as a tool for investigation of neoplasia (FICTION)-it is moreover possible to identify a cell population of interest. Here we describe standard protocols for FISH and FICTION as used in our laboratories in diagnosis and research.
Collapse
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Greta Sawicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, University Hospital, Ulm, Germany
| |
Collapse
|
2
|
Foiani G, Licenziato L, Marconato L, Fanelli A, Melchiotti E, Zanardello C, Aresu L, Vascellari M. Predictive value of TP53 RNAscope ®in situ hybridization and p53 immunohistochemistry for TP53 mutational status in canine diffuse large B-cell lymphoma. Vet Q 2024; 44:1-9. [PMID: 39282821 PMCID: PMC11407423 DOI: 10.1080/01652176.2024.2403453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
TP53 mutations are associated with short survival and poor treatment response in canine diffuse large B-cell lymphoma (cDLBCL). The expression of TP53 by RNAscope® in situ hybridization and p53 by immunohistochemistry (IHC) was investigated in 37 formalin-fixed paraffin-embedded cDLBCL, to assess their correlation with TP53 mutational status and to evaluate their prognostic value. TP53 was detected in all samples by RNAscope®. Ten of 37 (27%) cases expressed p53 by IHC, with highly variable percentage of positive cells. TP53 RNAscope® scores and p53 IHC results were not correlated. The expression of TP53 by RNAscope® was not influenced by its mutational status. Conversely, p53 IHC and TP53 mutations were significantly associated. p53 IHC predicted TP53 genetic mutations with high accuracy (97.3%). All TP53-mutated samples carrying missense mutations exhibited p53 expression by IHC, while all wild-type cases and a single case with frameshift insertion were negative. In univariable analysis, p53 IHC was associated with shorter time to progression (TTP) and lymphoma-specific survival (LSS). Nevertheless, in multivariable analysis, only treatment significantly affected TTP and LSS. These findings suggest p53 IHC is an accurate, cost-effective tool for predicting TP53 mutations in cDLBCL, unlike TP53 RNAscope®, though its prognostic value requires further validation.
Collapse
Affiliation(s)
- Greta Foiani
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Erica Melchiotti
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Claudia Zanardello
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Marta Vascellari
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| |
Collapse
|
3
|
Forzisi-Kathera-Ibarra E, Jo C, Castillo L, Gaur A, Lad P, Bortolami A, Roser C, Venkateswaran S, Dutto S, Selby M, Sampath H, Pan PY, Sesti F. KCNB1-Leptin receptor complexes couple electric and endocrine function in the melanocortin neurons of the hypothalamus. FASEB J 2024; 38:e70111. [PMID: 39436109 DOI: 10.1096/fj.202401931r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv+) channel named KCNB1 (alias Kv2.1) forms stable complexes with the leptin receptor (LepR) in a subset of hypothalamic neurons including proopiomelanocortin (POMC) expressing neurons of the Arcuate nucleus (ARHPOMC). Mice lacking functional KCNB1 channels (NULL mice) have less adipose tissue and circulating leptin than WT animals and are insensitive to anorexic stimuli induced by leptin administration. NULL mice produce aberrant amounts of POMC at any developmental stage. Canonical LepR-STAT3 signaling-which underlies POMC production-is impaired, whereas non-canonical insulin receptor substrate PI3K/Akt/FOXO1 and ERK signaling are constitutively upregulated in NULL hypothalami. The levels of proto-oncogene c-Fos-that provides an indirect measure of neuronal activity-are higher in arcuate NULL neurons compared to WT and most importantly do not increase in the former upon leptin stimulation. Hence, a Kv channel provides a molecular link between neuronal excitability and endocrine function in hypothalamic neurons.
Collapse
Affiliation(s)
- Elena Forzisi-Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Chanmee Jo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Leonard Castillo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Anika Gaur
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Prachi Lad
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Christian Roser
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Srinidi Venkateswaran
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stefania Dutto
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Matthew Selby
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni AB. Transcriptome analysis of rheumatoid arthritis uncovers genes linked to inflammation-induced pain. Sci Rep 2024; 14:25893. [PMID: 39472517 PMCID: PMC11522505 DOI: 10.1038/s41598-024-77212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. Overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- U. Penn, Philadelphia, PA, 19104, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- , Dartmouth, Hanover, NH, 03755, USA
| | - Christian Judkins
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Millipore Sigma, Rockville, MD, 20850, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Saber Tadros
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Wang S, Xu J, Wang X, Wang M, Xue H, Wu M, Fan C, Chen L, Xu L. cba-miR-222-3p involved in photoperiod-induced apoptosis in testes of striped hamsters by targeting TRAF7. Integr Zool 2024. [PMID: 39466916 DOI: 10.1111/1749-4877.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The role of miRNAs in the regulation of seasonal reproduction in rodents, particularly in relation to photoperiod changes, is still poorly understood. Previous studies on miRNA transcriptomes of striped hamster (Cricetulus barabensis) testes have indicated that the photoperiodism of testes, especially apoptosis, may be influenced by miRNAs. As a functional miRNA, cba-miR-222-3p in striped hamster testes exhibits suppression under a short photoperiod. To elucidate the potential role of testicular cba-miR-222-3p in the seasonal reproduction of striped hamsters, we exposed male striped hamsters to different photoperiods or injected miRNA agomir into the testes and observed the effects of these treatments, particularly some indicators related to apoptosis. The results showed that the levels of apoptosis in the testes increased in short daylength, accompanied by a significant decrease in cba-miR-222-3p expression and an increase in TRAF7 expression. Dual luciferase reporter assays verified the targeting relationship between cba-miR-222-3p and TRAF7 predicted by bioinformatics. In addition, the expression of TRAF7 decreased in the testes, which injected miRNA agomir, leading to inhibition of apoptosis, and the expression of key genes (MEKK3, p38, p53) in the downstream MAPK signaling pathway of TRAF7 was suppressed. These results suggest that short daylength induces testicular apoptosis in striped hamsters, and one possible mechanism is that the decreased expression of miR-222-3p in testes reduces the repression of TRAF7 translation, thereby activating the MAPK pathway and affecting the level of testicular apoptosis. These findings reveal the potential role of miR-222-3p in animal reproduction and provide new insights into the regulation of rodent populations.
Collapse
Affiliation(s)
- Shuo Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xingchen Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Mingdi Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huiliang Xue
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Chao Fan
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
6
|
Davidson A, Morley-Bunker A, Wiggins G, Walker L, Harris G, Mukundan R, Investigators KC. Deep Learning Segmentation of Chromogenic Dye RNAscope From Breast Cancer Tissue. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01301-9. [PMID: 39443395 DOI: 10.1007/s10278-024-01301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
RNAscope staining of breast cancer tissue allows pathologists to deduce genetic characteristics of the cancer by inspection at the microscopic level, which can lead to better diagnosis and treatment. Chromogenic RNAscope staining is easy to fit into existing pathology workflows, but manually analyzing the resulting tissue samples is time consuming. There is also a lack of peer-reviewed, performant solutions for automated analysis of chromogenic RNAscope staining. This paper covers the development and optimization of a novel deep learning method focused on accurate segmentation of RNAscope dots (which signify gene expression) from breast cancer tissue. The deep learning network is convolutional and uses ConvNeXt as its backbone. The upscaling portions of the network use custom, heavily regularized blocks to prevent overfitting and early convergence on suboptimal solutions. The resulting network is modest in size for a segmentation network and able to function well with little training data. This deep learning network was also able to outperform manual expert annotation at finding the positions of RNAscope dots, having a finalF 1 -score of 0.745. In comparison, the expert inter-raterF 1 -score was 0.596.
Collapse
Affiliation(s)
- Andrew Davidson
- Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Arthur Morley-Bunker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - George Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Logan Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Gavin Harris
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Ramakrishnan Mukundan
- Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand
| | - kConFab Investigators
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Arokiaraj CM, Leone MJ, Kleyman M, Chamessian A, Noh MC, Phan BN, Lopes BC, Corrigan KA, Cherupally VK, Yeramosu D, Franusich ME, Podder R, Lele S, Shiers S, Kang B, Kennedy MM, Chen V, Chen Z, Mathys H, Dum RP, Lewis DA, Qadri Y, Price TJ, Pfenning AR, Seal RP. Spatial, transcriptomic, and epigenomic analyses link dorsal horn neurons to chronic pain genetic predisposition. Cell Rep 2024; 43:114876. [PMID: 39453813 DOI: 10.1016/j.celrep.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology. Here, we take a multi-species approach to determine whether chronic pain variants impact the regulatory genomics of dorsal horn neurons. First, we generate a large rhesus macaque single-nucleus RNA sequencing (snRNA-seq) atlas and integrate it with available human and mouse datasets to produce a single unified, species-conserved atlas of neuron subtypes. Cellular-resolution spatial transcriptomics in mouse shows the precise laminar location of these neuron subtypes, consistent with our analysis of neuron-subtype-selective markers in macaque. Using this cross-species framework, we generate a mouse single-nucleus open chromatin atlas of regulatory elements that shows strong and selective relationships between the neuron-subtype-specific chromatin regions and variants from major chronic pain GWASs.
Collapse
Affiliation(s)
- Cynthia M Arokiaraj
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Leone
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Kleyman
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alexander Chamessian
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27708, USA; Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Myung-Chul Noh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - BaDoi N Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bettega C Lopes
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kelly A Corrigan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Vijay Kiran Cherupally
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Deepika Yeramosu
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael E Franusich
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Riya Podder
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sumitra Lele
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Byungsoo Kang
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Meaghan M Kennedy
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Viola Chen
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziheng Chen
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hansruedi Mathys
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Richard P Dum
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yawar Qadri
- Department of Anesthesiology, Emory University, Atlanta, GA 30038, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Avanzato VA, Bushmaker T, Oguntuyo KY, Yinda CK, Duyvesteyn HME, Stass R, Meade-White K, Rosenke R, Thomas T, van Doremalen N, Saturday G, Doores KJ, Lee B, Bowden TA, Munster VJ. A monoclonal antibody targeting the Nipah virus fusion glycoprotein apex imparts protection from disease. J Virol 2024; 98:e0063824. [PMID: 39240113 PMCID: PMC11494970 DOI: 10.1128/jvi.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F-Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.IMPORTANCENipah virus (NiV) is a highly lethal henipavirus (HNV) that causes severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, highlighting a need to develop countermeasures. The NiV surface displays the receptor binding protein (NiV-G, or RBP) and the fusion protein (NiV-F), which allow the virus to attach and enter cells. These proteins can be targeted by vaccines and antibodies to prevent disease. This work describes a neutralizing antibody (mAb92) that targets NiV-F. Structural characterization by cryo-electron microscopy analysis reveals where the antibody binds to NiV-F to neutralize the virus. This study also shows that prophylactic treatment of hamsters with mAb92 completely protected against developing NiV disease. This work shows how targeting NiV-F can be useful to preventing NiV disease, supporting future studies in the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Victoria A. Avanzato
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie J. Doores
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
9
|
Krause GM, Chirich Barreira LM, Albrecht A. Spatial mRNA expression patterns of orexin receptors in the dorsal hippocampus. Sci Rep 2024; 14:24788. [PMID: 39433837 PMCID: PMC11494061 DOI: 10.1038/s41598-024-76237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Orexins are wake-promoting neuropeptides that originate from hypothalamic neurons projecting to widespread brain areas throughout the central nervous system. They modulate various physiological functions via their orexin 1 (OXR1) and 2 (OXR2) receptors, including sleep-wake rhythm but also cognitive functions such as memory formation. Here, we provide a detailed analysis of OXR1 and OXR2 mRNA expression profiles in the dorsal hippocampus as a key region for memory formation, using RNAscope multiplex in situ hybridization. Interconnected subareas relevant for cognition and memory such as the medial prefrontal cortex and the nucleus reuniens of the thalamus were assessed as well. Both receptor types display distinct profiles, with the highest percentage of OXR1 mRNA-positive cells in the hilus of the dentate gyrus. Here, the content of OXR1 mRNA per cell was slightly modulated at selected time points over a 12 h light/ 12 dark light phase. Using RNAScope and quantitative polymerase chain reaction approaches, we began to address a cell-type specific expression of OXR1 in hilar GABAergic interneurons. The distinct expression profiles of both receptor subtypes within hippocampal subareas and circuits provide an interesting basis for future interventional studies on orexin receptor function in spatial and contextual memory.
Collapse
Affiliation(s)
- Gina Marie Krause
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | - Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106, Magdeburg, Germany.
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
10
|
Crouigneau R, Li YF, Auxillos J, Goncalves-Alves E, Marie R, Sandelin A, Pedersen SF. Mimicking and analyzing the tumor microenvironment. CELL REPORTS METHODS 2024; 4:100866. [PMID: 39353424 DOI: 10.1016/j.crmeth.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The tumor microenvironment (TME) is increasingly appreciated to play a decisive role in cancer development and response to therapy in all solid tumors. Hypoxia, acidosis, high interstitial pressure, nutrient-poor conditions, and high cellular heterogeneity of the TME arise from interactions between cancer cells and their environment. These properties, in turn, play key roles in the aggressiveness and therapy resistance of the disease, through complex reciprocal interactions between the cancer cell genotype and phenotype, and the physicochemical and cellular environment. Understanding this complexity requires the combination of sophisticated cancer models and high-resolution analysis tools. Models must allow both control and analysis of cellular and acellular TME properties, and analyses must be able to capture the complexity at high depth and spatial resolution. Here, we review the advantages and limitations of key models and methods in order to guide further TME research and outline future challenges.
Collapse
Affiliation(s)
- Roxane Crouigneau
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yan-Fang Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eliana Goncalves-Alves
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Esposito M, Yerly L, Shukla P, Hermes V, Sella F, Balazs Z, Lattmann E, Tastanova A, Turko P, Lang R, Kolm I, Staeger R, Kuonen F, Krauthammer M, Hafner J, Levesque MP, Restivo G. COL10A1 expression distinguishes a subset of cancer-associated fibroblasts present in the stroma of high-risk basal cell carcinoma. Br J Dermatol 2024; 191:775-790. [PMID: 38916477 DOI: 10.1093/bjd/ljae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most frequently diagnosed skin cancer and the most common malignancy in humans. Different morphological subtypes of BCC are associated with a low or high risk of recurrence and aggressiveness, but the underlying biology of how the individual subtypes arise remains largely unknown. As the majority of BCCs appear to arise from mutations in the same pathway, we hypothesized that BCC development, growth and invasive potential is also influenced by the tumour microenvironment and, in particular, by cancer-associated fibroblasts (CAFs) and the factors they secrete. OBJECTIVES To characterize the stroma of the different BCC subtypes with a focus on CAF populations. METHODS To investigate the stromal features of the different BCC subtypes, we used laser capture microdissection (LCM) followed by RNA sequencing (RNA-Seq). Fifteen BCC samples from five different 'pure' subtypes (i.e. superficial, nodular, micronodular, sclerosing and basosquamous; n = 3 each) were selected and included in the analysis. Healthy skin was used as a control (n = 6). The results were confirmed by immunohistochemistry (IHC). We validated our findings in two independent public single-cell RNA-Seq (scRNA-Seq) datasets and by RNAscope. RESULTS The stroma of the different BCC subtypes were found to have distinct gene expression signatures. Nodular and micronodular appeared to have the most similar signatures, while superficial and sclerosing the most different. By comparing low- and high-risk BCC subtypes, we found that COL10A1 is overexpressed in the stroma of sclerosing/infiltrative and basosquamous but not in micronodular high-risk subtypes. Those findings were confirmed by IHC in 93 different BCC and 13 healthy skin samples. Moreover, scRNA-Seq analysis of BCCs from two independent datasets found that the COL10A1-expressing population of cells is associated with the stroma adjacent to infiltrative BCC and shows extracellular matrix remodelling features. CONCLUSIONS We identified COL10A1 as a marker of high-risk BCC, in particular of the sclerosing/infiltrative and basosquamous subtypes. We demonstrated at the single-cell level that COL10A1 is expressed by a specific CAF population associated with the stroma of infiltrative BCC. This opens up new, tailored treatment options, and suggests COL10A1 as a new prognostic biomarker for BCC progression.
Collapse
Affiliation(s)
- Mauro Esposito
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Yerly
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Prachi Shukla
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victoria Hermes
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zsolt Balazs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Lang
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Staeger
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Juerg Hafner
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Chouery E, Mehawej C, Saade R, Barake R, Zarecki P, Gennery C, Corbani S, Korban R, Hamam A, Nasser Eldin J, Yamout M, Banna M, Yamout AKA, Adhami F, Megarbane A, Mustapha M. POLD3 haploinsufficiency is linked to non-syndromic sensorineural adult-onset progressive hearing and balance impairments. Eur J Hum Genet 2024:10.1038/s41431-024-01715-7. [PMID: 39414923 DOI: 10.1038/s41431-024-01715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hearing impairment (HI) is a significant health concern globally, influenced by genetic and environmental factors. We had identified a homozygous pathogenic variant in POLD3 in a Lebanese patient with an autosomal congenital recessive syndromic hearing loss (MIM#620869). This variant was found at heterozygous state in the parents, who developed progressive hearing impairment around age 40. We conducted a thorough clinical and genetic assessment of sixteen family members, including physical exams, audiometry and vestibular function evaluations. Additionally, gene expression analysis of the Pold3 gene was performed in mice using RNAscope. Twelve individuals were heterozygous for the variant in POLD3, of whom eight showed bilateral adult-onset HI, typically starting around ages 40-50, and two older patients displaying unilateral vestibular weakness. Additionally, two carriers of the variant developed cancer at an early age. RNAscope confirmed Pold3 expression in auditory and vestibular neurons. Exome sequencing analysis excluded the presence of pathogenic variants in any known hearing impairment or cancer predisposition genes. We present herein, for the first time, evidence of a heterozygous pathogenic POLD3 variant associated with a novel form of autosomal dominant progressive adult-onset hearing and vestibular impairments. We also highlight the necessity for further exploration of the role of POLD3 in cancer predisposition.
Collapse
Affiliation(s)
- Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rami Saade
- Department of Otolaryngology-Head and Neck Surgery, Lebanese American University, Byblos, Lebanon
| | - Rana Barake
- Department of Otolaryngology-Head and Neck Surgery, Lebanese American University, Byblos, Lebanon
| | - Patryk Zarecki
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Sandra Corbani
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rima Korban
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ali Hamam
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Jade Nasser Eldin
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | | | | | - Fawaz Adhami
- Adhami Advanced Audiology Center, Tripoli, Lebanon
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
- Institut Jérôme Lejeune, Paris, France.
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Franck MCM, Weman HM, Ceder MM, Ahemaiti A, Henriksson K, Bengtsson E, Magnusson KA, Koning HK, Öhman-Mägi C, Lagerström MC. Spinal lumbar Urocortin 3-expressing neurons are associated with both scratching and Compound 48/80-induced sensations. Pain 2024:00006396-990000000-00740. [PMID: 39432740 DOI: 10.1097/j.pain.0000000000003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Urocortin 3 is a neuropeptide that belongs to the corticotropin-releasing hormone family and is involved in mechanosensation and stress regulation. In this study, we show that Urocortin 3 marks a population of excitatory neurons in the mouse spinal cord, divided into 2 nonoverlapping subpopulations expressing protein kinase C gamma or calretinin/calbindin 2, populations previously associated with mechanosensation. Electrophysiological experiments demonstrated that lumbar spinal Urocortin 3 neurons receive both glycinergic and GABAergic local tonic inhibition, and monosynaptic inputs from both Aβ and C fibers, which could be confirmed by retrograde trans-synaptic rabies tracing. Furthermore, fos analyses showed that subpopulations of lumbar Urocortin 3 neurons are activated by artificial scratching or Compound 48/80-induced sensations. Chemogenetic activation of lumbar Urocortin 3-Cre neurons evoked a targeted biting/licking behavior towards the corresponding dermatome and chemogenetic inhibition decreased Compound 48/80-induced behavior. Hence, spinal lumbar Urocortin 3 neurons represent a mechanically associated population with roles in both scratching and Compound 48/80-induced sensations.
Collapse
Affiliation(s)
- Marina C M Franck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erica Bengtsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Harmen K Koning
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Powell AL, Camus AC, Leary JH, Miller SN, Bell CM, Ng TFF. Novel adomavirus associated with proliferative skin lesions affecting the dermal denticles of a sand tiger shark ( Carcharias taurus). Front Vet Sci 2024; 11:1470052. [PMID: 39415956 PMCID: PMC11480009 DOI: 10.3389/fvets.2024.1470052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
A captive sand tiger shark (Carcharias taurus) presented with progressive, hard, raised, miliary skin lesions localized to the lateral trunk and peduncle. Histopathologic evaluation of biopsy samples revealed dysplastic proliferation of odontogenic epithelium with the production of collagenous material. Inclusion bodies and viral particles were not observed with light or transmission electron microscopy, respectively. However, using next generation sequencing with Illumina MiSeq and PCR followed by Sanger sequencing, the complete genome of a novel adomavirus, tentatively named sand tiger shark adomavirus (STAdoV), was obtained from the affected tissue. The genome was circular and 18.5 kilobases with bidirectionally transcribed genes, namely EO1, EO2 & 4, EO3, LO4, LO5, LO6, LO7, LO8, and SET. In situ hybridization using RNAscope® technology and a STAdoV specific probe localized viral DNA to the nuclei of proliferating epithelial cells. Adomaviruses are an emerging viral group with structural and replicative genes sharing a complex evolutionary history with adenoviruses and small circular DNA tumor viruses including papillomaviruses and polyomaviruses. Adomaviruses are described in a number of fish species in association with both necrotizing and proliferative diseases. BLAST analysis of the viral genome revealed greatest nucleotide identity (71.29%) to guitarfish adomavirus (GAdoV), another elasmobranch virus associated with proliferative (epidermal) skin lesions. Lesions in the index animal persisted for approximately 1 year during which time four conspecifics developed similar proliferations. Ultimately, lesions in all sharks regressed spontaneously without recurrence for 2 years.
Collapse
Affiliation(s)
- Ashley L. Powell
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Alvin C. Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - John H. Leary
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | - Cynthia M. Bell
- Specialty Oral Pathology for Animals, Geneseo, IL, United States
| | - Terry Fei Fan Ng
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Mitten EH, Souders A, Marron Fernandez de Velasco E, Aguado C, Luján R, Wickman K. Chronic ethanol exposure in mice evokes pre- and postsynaptic deficits in GABAergic transmission in ventral tegmental area GABA neurons. Br J Pharmacol 2024. [PMID: 39358985 DOI: 10.1111/bph.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE GABAergic neurons in mouse ventral tegmental area (VTA) exhibit elevated activity during withdrawal following chronic ethanol exposure. While increased glutamatergic input and decreased GABAA receptor sensitivity have been implicated, the impact of inhibitory signaling in VTA GABA neurons has not been fully addressed. EXPERIMENTAL APPROACH We used electrophysiological and ultrastructural approaches to assess the impact of chronic intermittent ethanol vapour exposure in mice on GABAergic transmission in VTA GABA neurons during withdrawal. We used CRISPR/Cas9 ablation to mimic a somatodendritic adaptation involving the GABAB receptor (GABABR) in ethanol-naïve mice to investigate its impact on anxiety-related behaviour. KEY RESULTS The frequency of spontaneous inhibitory postsynaptic currents was reduced in VTA GABA neurons following chronic ethanol treatment and this was reversed by GABABR inhibition, suggesting chronic ethanol strengthens the GABABR-dependent suppression of GABAergic input to VTA GABA neurons. Similarly, paired-pulse depression of GABAA receptor-dependent responses evoked by optogenetic stimulation of nucleus accumbens inputs from ethanol-treated mice was reversed by GABABR inhibition. Somatodendritic currents evoked in VTA GABA neurons by GABABR activation were reduced following ethanol exposure, attributable to the suppression of GIRK (Kir3) channel activity. Mimicking this adaptation enhanced anxiety-related behaviour in ethanol-naïve mice. CONCLUSIONS AND IMPLICATIONS Chronic ethanol weakens the GABAergic regulation of VTA GABA neurons in mice via pre- and postsynaptic mechanisms, likely contributing to their elevated activity during withdrawal and expression of anxiety-related behaviour. As anxiety can promote relapse during abstinence, interventions targeting VTA GABA neuron excitability could represent new therapeutic strategies for treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Eric H Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Carolina Aguado
- Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Bjørgen H, Brimsholm M, Asserson CF, Skaar K, Knutsen GM, Oaland Ø, Haldorsen R, Fjelldal PG, Hansen T, Rimstad E, Kleist BA, Lund-Iversen M, Kowalewski MP, Koppang EO. Deciphering the pathogenesis of melanized focal changes in the white skeletal muscle of farmed Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2024; 47:e13988. [PMID: 38943363 DOI: 10.1111/jfd.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Melanized focal changes (MFCs) in the fillet of farmed Atlantic salmon is a major quality concern. The changes are thought to initially appear as acute red focal changes (RFCs) that progress into chronic MFCs. Recent findings have indicated that hypoxia may be important in their development, possibly leading to necrosis affecting not only myocytes but also adipocytes. Thus, the aim of this study was to investigate possible hypoxic conditions in RFCs and the subsequent inflammatory responses and lesions in the adipose tissue in RFCs and MFCs. A collection of RFCs, MFCs and control muscle samples from several groups of farmed salmon was studied. Using immunohistochemistry, we found induction of the hypoxia-inducible factor 1 pathway in RFCs. Histological investigations of RFCs and MFCs revealed different stages of fat necrosis, including necrotic adipocytes, a myospherulosis-like reaction and the formation of pseudocystic spaces. Accumulations of foamy macrophages were detected in MFCs, indicating degradation and phagocytosis of lipids. Using in situ hybridization, we showed the presence of tyrosinase- and tyrosinase-related protein-1-expressing amelanotic cells in RFCs, which in turn became melanized in MFCs. In conclusion, we propose a sequence of events leading to the formation of MFCs, highlighting the pivotal role of adiposity, hypoxia and fat necrosis.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kirstin Skaar
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | | | | | | | | | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Espen Rimstad
- Unit of Virology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Mariusz Pawel Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
17
|
Ariotta V, Azzalini E, Canzonieri V, Hautaniemi S, Bonin S. Comparative Analysis of Gene Expression Analysis Methods for RNA in Situ Hybridization Images. J Mol Diagn 2024; 26:931-942. [PMID: 39068989 DOI: 10.1016/j.jmoldx.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Gene expression analysis is pivotal in cancer research and clinical practice. Although traditional methods lack spatial context, RNA in situ hybridization (RNA-ISH) is a powerful technique that retains spatial tissue information. Here, RNAscope score, RT-droplet digital PCR, and automated QuantISH and QuPath were used for quantifying RNA-ISH expression values from formalin-fixed, paraffin-embedded samples. The methods were compared using high-grade serous ovarian carcinoma samples, focusing on CCNE1, WFDC2, and PPIB genes. The findings demonstrate good concordance between automated methods and RNAscope, with RT-droplet digital PCR showing less concordance. Additionally, QuantISH exhibits robust performance, even for low-expressed genes like CCNE1, showcasing its modular design and enhancing accessibility as a viable alternative for gene expression analysis.
Collapse
Affiliation(s)
- Valeria Ariotta
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eros Azzalini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Vincenzo Canzonieri
- Department of Medical Sciences, University of Trieste, Trieste, Italy; Pathology Unit, Centro di Riferimento Oncologico IRCCS, Aviano-National Cancer Institute, Pordenone, Italy
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
18
|
Liang SQ, Navia AW, Ramseier M, Zhou X, Martinez M, Lee C, Zhou C, Wu J, Xie J, Su Q, Wang D, Flotte TR, Anderson DG, Tarantal AF, Shalek AK, Gao G, Xue W. AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys. Hum Gene Ther 2024; 35:814-824. [PMID: 38767512 PMCID: PMC11511778 DOI: 10.1089/hum.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/22/2024] Open
Abstract
Genome editing has the potential to treat genetic diseases in a variety of tissues, including the lung. We have previously developed and validated a dual adeno-associated virus (AAV) CRISPR platform that supports effective editing in the airways of mice. To validate this delivery vehicle in a large animal model, we have shown that intratracheal instillation of CRISPR/Cas9 in AAV5 can edit a housekeeping gene or a disease-related gene in the lungs of young rhesus monkeys. We observed up to 8% editing of angiotensin-converting enzyme 2 (ACE2) in lung lobes after single-dose administration. Single-nuclear RNA sequencing revealed that AAV5 transduces multiple cell types in the caudal lung lobes, including alveolar cells, macrophages, fibroblasts, endothelial cells, and B cells. These results demonstrate that AAV5 is efficient in the delivery of CRISPR/Cas9 in the lung lobes of young rhesus monkeys.
Collapse
Affiliation(s)
- Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrew W. Navia
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Michelle Ramseier
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Xuntao Zhou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michele Martinez
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California, USA
| | - Charles Lee
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California, USA
| | - Chen Zhou
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joae Wu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dan Wang
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California, USA
| | - Alex K. Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Nagase T, Nagase M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 2024; 47:2786-2799. [PMID: 39103520 DOI: 10.1038/s41440-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.
Collapse
Affiliation(s)
- Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
21
|
Singh S, Yao L, Shevtsova NA, Rybak IA, Dougherty KJ. Properties of rhythmogenic currents in spinal Shox2 interneurons across postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.612677. [PMID: 39386611 PMCID: PMC11463365 DOI: 10.1101/2024.09.26.612677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Locomotor behaviors are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity, and biomechanics. The basic rhythmic activity in the central nervous system that underlies locomotion is thought to be generated via a complex balance between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development. Here, we combined whole cell patch clamp recordings, immunohistochemistry, and RNAscope targeting lumbar Shox2 INs in mice, which are known to be involved in locomotor rhythm generation. We focused on the properties of putatively rhythmogenic ionic currents and the expression of corresponding ion channels across postnatal time points in mice. We show that subsets of Shox2 INs display voltage-sensitive conductances, in addition to respective ion channels, which may contribute to or shape rhythmic bursting. Persistent inward currents, M-type potassium currents, slow afterhyperpolarization, and T-type calcium currents are enhanced with age. In contrast, the hyperpolarization-activated and A-type potassium currents were either found with low prevalence in subsets of neonatal, juvenile, and adult Shox2 INs or did not developmentally change. We show that Shox2 INs become more electrophysiologically diverse by juvenile and adult ages, when locomotor behavior is weight-bearing. These results suggest a developmental shift in the magnitude of rhythmogenic ionic currents and the expression of corresponding ion channels that may be important for mature, weight-bearing locomotor behavior.
Collapse
|
22
|
Liu H, Yu M, Sun K, Zheng J, Wang J, Liu H, Feng H, Liu Y, Han D. KDF1 promotes ameloblast differentiation by inhibiting the IKK/IκB/NF-κB axis. J Cell Physiol 2024:e31437. [PMID: 39300779 DOI: 10.1002/jcp.31437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear. This study demonstrated that KDF1 was persistently expressed in all stages of ameloblast differentiation, through RNAscope in situ hybridization. KDF1 expression in the mouse ameloblast cell line LS8 was demonstrated via immunofluorescence assay. KDF1 was knocked out in LS8 cells using the CRISPR/Cas-9 system or overexpressed in LS8 cells through lentiviral infection. In vitro ameloblast differentiation induction, quantitative reverse transcription PCR, western blot analysis, and alkaline phosphatase (ALP) assay indicated that knockout or overexpression of KDF1 in LS8 cells decreased or increased the mRNA and protein levels of several key amelogenesis markers, as well as ALP activity. Furthermore, liquid chromatography-mass spectrometry and co-immunoprecipitation analyses revealed that KDF1 can interact with the IKK complex, thereby inhibiting the NF-κB pathway. Suppressing NF-κB activity partially recovered the decreased ameloblast differentiation in LS8 cells induced by KDF1-knockout. This study demonstrated that KDF1 can promote ameloblast differentiation of LS8 cells by inhibiting the IKK/IκB/NF-κB axis, and is a potential target for functional enamel regeneration.
Collapse
Affiliation(s)
- Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiayu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
23
|
Yoon JK, Schindler JW, Loperfido M, Baricordi C, DeAndrade MP, Jacobs ME, Treleaven C, Plasschaert RN, Yan A, Barese CN, Dogan Y, Chen VP, Fiorini C, Hull F, Barbarossa L, Unnisa Z, Ivanov D, Kutner RH, Guda S, Oborski C, Maiwald T, Michaud V, Rothe M, Schambach A, Pfeifer R, Mason C, Biasco L, van Til NP. Preclinical lentiviral hematopoietic stem cell gene therapy corrects Pompe disease-related muscle and neurological manifestations. Mol Ther 2024:S1525-0016(24)00606-3. [PMID: 39295144 DOI: 10.1016/j.ymthe.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aimin Yan
- AVROBIO, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Véronique Michaud
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA 02139, USA; Zayed Centre for Research, University College London, London WC1N 1DZ, UK
| | - Niek P van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Li H, Li Y, Wang T, Li S, Liu H, Ning S, Shen W, Zhao Z, Wu H. Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain. Neurosci Bull 2024:10.1007/s12264-024-01296-x. [PMID: 39277552 DOI: 10.1007/s12264-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 09/17/2024] Open
Abstract
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Wang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shuyi Ning
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
25
|
Zhao G, Chang J, Wei K. Correlation between breast cancer and human papillomavirus (HPV) infection. Heliyon 2024; 10:e37027. [PMID: 39281659 PMCID: PMC11401181 DOI: 10.1016/j.heliyon.2024.e37027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Breast cancer (BC), the most common malignant tumor in women worldwide, has been increasing in incidence and mortality year by year. While significant progress has been made in understanding the pathogenesis of breast cancer, certain aspects remain under investigation. Human papillomavirus (HPV) is known to be closely associated with a variety of cancers, including cervical, vulvar, anal, and head and neck cancers. It is important to note that while HPV is associated with the mentioned cancers, its direct association with breast cancer remains a topic of debate and research. In this paper, we review the research progress on the correlation between breast cancer and HPV infection, and put forward the problems in the current research. This review aims to shed light on the current understanding and controversies surrounding the correlation between HPV infection and breast cancer, providing insights for future research aimed at enhancing prevention and treatment strategies.
Collapse
Affiliation(s)
- Guimei Zhao
- Medical Laboratory Teaching and Research Office, School of Health, Quanzhou Medical College, 362011, Quanzhou, Fujian Province, China
| | - Jinchun Chang
- Medical Laboratory Teaching and Research Office, School of Health, Quanzhou Medical College, 362011, Quanzhou, Fujian Province, China
| | - Kaipeng Wei
- Medical Laboratory Teaching and Research Office, School of Health, Quanzhou Medical College, 362011, Quanzhou, Fujian Province, China
| |
Collapse
|
26
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen KJ, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion. Nat Commun 2024; 15:8043. [PMID: 39271675 PMCID: PMC11399407 DOI: 10.1038/s41467-024-52443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.
Collapse
Affiliation(s)
- Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yijun Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - José P Llongueras
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Vistein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Richard S Smith
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL, 60611, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Genevieve Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Chen JH, Elmelech L, Tang AL, Hacohen N. Powerful microscopy technologies decode spatially organized cellular networks that drive response to immunotherapy in humans. Curr Opin Immunol 2024; 91:102463. [PMID: 39277910 DOI: 10.1016/j.coi.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
In tumors, immune cells organize into networks of different sizes and composition, including complex tertiary lymphoid structures and recently identified networks centered around the chemokines CXCL9/10/11 and CCL19. New commercially available highly multiplexed microscopy using cyclical RNA in situ hybridization and antibody-based approaches have the potential to establish the organization of the immune response in human tissue and serve as a foundation for future immunology research.
Collapse
Affiliation(s)
- Jonathan H Chen
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA; Northwestern University, Feinberg School of Medicine, Center for Human Immunobiology, Chicago, IL, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Pathology, MGH, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Liad Elmelech
- Krantz Family Center for Cancer Research, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Pathology, MGH, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Alexander L Tang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Jeon S, Park J, Likhite S, Moon JH, Shin D, Li L, Meyer KC, Lee JW, Lee SK. The postnatal injection of AAV9-FOXG1 rescues corpus callosum agenesis and other brain deficits in the mouse model of FOXG1 syndrome. Mol Ther Methods Clin Dev 2024; 32:101275. [PMID: 39022742 PMCID: PMC11253142 DOI: 10.1016/j.omtm.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Heterozygous mutations in the FOXG1 gene manifest as FOXG1 syndrome, a severe neurodevelopmental disorder characterized by structural brain anomalies, including agenesis of the corpus callosum, hippocampal reduction, and myelination delays. Despite the well-defined genetic basis of FOXG1 syndrome, therapeutic interventions targeting the underlying cause of the disorder are nonexistent. In this study, we explore the therapeutic potential of adeno-associated virus 9 (AAV9)-mediated delivery of the FOXG1 gene. Remarkably, intracerebroventricular injection of AAV9-FOXG1 to Foxg1 heterozygous mouse model at the postnatal stage rescues a wide range of brain pathologies. This includes the amelioration of corpus callosum deficiencies, the restoration of dentate gyrus morphology in the hippocampus, the normalization of oligodendrocyte lineage cell numbers, and the rectification of myelination anomalies. Our findings highlight the efficacy of AAV9-based gene therapy as a viable treatment strategy for FOXG1 syndrome and potentially other neurodevelopmental disorders with similar brain malformations, asserting its therapeutic relevance in postnatal stages.
Collapse
Affiliation(s)
- Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaein Park
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Ji Hwan Moon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Dongjun Shin
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Liwen Li
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Kathrin C. Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Jae W. Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
29
|
Drotos AC, Zarb RL, Booth V, Roberts MT. GluN2C/D-containing NMDA receptors enhance temporal summation and increase sound-evoked and spontaneous firing in the inferior colliculus. J Physiol 2024. [PMID: 39240253 DOI: 10.1113/jp286754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Along the ascending auditory pathway, there is a broad shift from temporal coding, which is common in the lower auditory brainstem, to rate coding, which predominates in auditory cortex. This temporal-to-rate transition is particularly prominent in the inferior colliculus (IC), the midbrain hub of the auditory system, but the mechanisms that govern how individual IC neurons integrate information across time remain largely unknown. Here, we report the widespread expression of Glun2c and Glun2d mRNA in IC neurons. GluN2C/D-containing NMDA receptors are relatively insensitive to voltage-dependent Mg2+ blockade, and thus can conduct current at resting membrane potential. Using in situ hybridization and pharmacology, we show that vasoactive intestinal peptide neurons in the IC express GluN2D-containing NMDA receptors that are activatable by commissural inputs from the contralateral IC. In addition, GluN2C/D-containing receptors have much slower kinetics than other NMDA receptors, and we found that GluN2D-containing receptors facilitate temporal summation of synaptic inputs in vasoactive intestinal peptide neurons. In a model neuron, we show that a GluN2C/D-like conductance interacts with the passive membrane properties of the neuron to alter temporal and rate coding of stimulus trains. Consistent with this, we show in vivo that blocking GluN2C/D-containing receptors decreases both the spontaneous firing rate and the overall firing rate elicited by amplitude-modulated sounds in many IC neurons. These results suggest that GluN2C/D-containing NMDA receptors influence rate coding for auditory stimuli in the IC by facilitating the temporal integration of synaptic inputs. KEY POINTS: NMDA receptors are critical components of most glutamatergic circuits in the brain, and the diversity of NMDA receptor subtypes yields receptors with a variety of functions. We found that many neurons in the auditory midbrain express GluN2C and/or GluN2D NMDA receptor subunits, which are less sensitive to Mg2+ blockade than the more commonly expressed GluN2A/B subunits. We show that GluN2C/D-containing receptors conducted current at resting membrane potential and enhanced temporal summation of synaptic inputs. In a model, we show that GluN2C/D-containing receptors provide additive gain for input-output functions driven by trains of synaptic inputs. In line with this, we found that blocking GluN2C/D-containing NMDA receptors in vivo decreased both spontaneous firing rates and firing evoked by amplitude-modulated sounds.
Collapse
Affiliation(s)
- Audrey C Drotos
- Department of Otolaryngology - Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rachel L Zarb
- Department of Otolaryngology - Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael T Roberts
- Department of Otolaryngology - Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Lin Y, Khan M, Weynand B, Laporte M, Coenjaerts F, Babusis D, Bilello JP, Mombaerts P, Jochmans D, Neyts J. A robust mouse model of HPIV-3 infection and efficacy of GS-441524 against virus-induced lung pathology. Nat Commun 2024; 15:7765. [PMID: 39237507 PMCID: PMC11377736 DOI: 10.1038/s41467-024-52071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/β and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Leuven, Belgium
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Frank Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium.
- VirusBank Platform, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Richards BK, Ch'ng SS, Simon AB, Pang TY, Kim JH, Lawrence AJ, Perry CJ. Relaxin family peptide receptor 3 (RXFP3) expressing cells in the zona incerta/lateral hypothalamus augment behavioural arousal. J Neurochem 2024. [PMID: 39233365 DOI: 10.1111/jnc.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024]
Abstract
Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice. We found that LH/ZI RXFP3+ (LH/ZIRXFP3) cells projected strongly to fear learning, stress, and arousal centres, notably, the periaqueductal grey, lateral habenula, and nucleus reuniens. These cells do not express hypocretin/orexin or melanin-concentrating hormone but display putative efferent connectivity with LH hypocretin/orexin+ neurons and dopaminergic A13 cells. Following Pavlovian fear conditioning, chemogenetically activating LH/ZIRXFP3 cells reduced fear expression (freezing) overall but also induced jumping behaviour and increased locomotor activity. Therefore, the decreased freezing was more likely to reflect enhanced arousal rather than reduced fear. Indeed, stimulating these cells produced distinct patterns of coactivation between several motor, stress, and arousal regions, as measured by Fos expression. These results suggest that activating LH/ZIRXFP3 cells generates brain-wide activation patterns that augment behavioural arousal.
Collapse
Affiliation(s)
- Brandon K Richards
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- School of Psychological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ariel B Simon
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Institute of Health and Sports (IHES), Victoria University, Footscray, Victoria, Australia
| | - Jee Hyun Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christina J Perry
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- School of Psychological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
32
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum Influence the Temporal Dynamics of Cartilaginous Mesenchymal Condensations in Developing Trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610014. [PMID: 39282283 PMCID: PMC11398369 DOI: 10.1101/2024.09.02.610014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. Notably, we observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated by E11.5 in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute. Cincinnati Children's Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center and University of Cincinnati Honors Program. Current affiliation University of Cincinnati, College of Medicine
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center. Current affiliation: Nationwide Children's Hospital Columbus OH
| | - Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center and University of Cincinnati Honors Program
| | - Yixin Wu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center. Current affiliation: Washington University in St. Louis, Division of Biology & Biomedical Sciences
| | - Yan Xu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children's Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
33
|
Bogaard M, Strømme JM, Kidd SG, Johannessen B, Bakken AC, Lothe RA, Axcrona K, Skotheim RI, Axcrona U. GRIN3A: A biomarker associated with a cribriform pattern and poor prognosis in prostate cancer. Neoplasia 2024; 55:101023. [PMID: 38944914 PMCID: PMC11267071 DOI: 10.1016/j.neo.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer with a cribriform pattern, including invasive cribriform carcinoma (ICC) and/or intraductal carcinoma (IDC) is associated with a poor prognosis, and the underlying mechanisms are unclear. Therefore, we aimed to identify biomarkers for this feature. Using a radical prostatectomy cohort, we performed within-patient differential expression analyses with RNA sequencing data to compare samples with a cribriform pattern to those with non-cribriform Gleason pattern 4 (NcGP4; n=13). ACSM1, GRIN3A, PCDHB2, and REG4 were identified as differentially expressed, and validation was performed using real-time reverse transcription polymerase chain reaction (n=99; 321 RNA samples) and RNA in situ hybridization on tissue microarrays (n=479; 2047 tissue cores). GRIN3A was significantly higher expressed in cribriform pattern vs. NcGP4, when assessed within the same patient (n=27; p=0.005) and between different patients (n=83; p=0.001). Tissue cores with IDC more often expressed GRIN3A compared to ICC, NcGP4, and benign tissue (52 % vs. ≤ 32 %). When IDC and NcGP4 was compared within the same patient (173 pairs of tissue cores; 54 patients), 38 (22 %) of the tissue microarray core pairs had GRIN3A expression in only IDC, 33 (19 %) had expression in both IDC and NcGP4, 14 (8 %) in only NcGP4 and 88 (51 %) were negative in both entities (p=0.001). GRIN3A was as well associated with biochemical recurrence (log-rank, p=0.002). In conclusion, ectopic GRIN3A expression is an RNA-based biomarker for the presence of cribriform prostate cancer, particularly for IDC.
Collapse
Affiliation(s)
- Mari Bogaard
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonas M Strømme
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Susanne G Kidd
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Anne C Bakken
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
34
|
Anderson TL, Keady JV, Songrady J, Tavakoli NS, Asadipooya A, Neeley RE, Turner JR, Ortinski PI. Distinct 5-HT receptor subtypes regulate claustrum excitability by serotonin and the psychedelic, DOI. Prog Neurobiol 2024; 240:102660. [PMID: 39218140 PMCID: PMC11444019 DOI: 10.1016/j.pneurobio.2024.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/03/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recent evidence indicates that neuronal activity within the claustrum (CLA) may be central to cellular and behavioral responses to psychedelic hallucinogens. The CLA prominently innervates many cortical targets and displays exceptionally high levels of serotonin (5-HT) binding. However, the influence of serotonin receptors, prime targets of psychedelic drug action, on CLA activity remains unexplored. We characterize the CLA expression of all known 5-HT subtypes and contrast the effects of 5-HT and the psychedelic hallucinogen, 2,5-dimethoxy-4-iodoamphetamine (DOI), on excitability of cortical-projecting CLA neurons. We find that the CLA is particularly enriched with 5-HT2C receptors, expressed predominantly on glutamatergic neurons. Electrophysiological recordings from CLA neurons that project to the anterior cingulate cortex (ACC) indicate that application of 5-HT inhibits glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). In contrast, application of DOI stimulates EPSCs. We find that the opposite effects of 5-HT and DOI on synaptic signaling can both be reversed by inhibition of the 5-HT2C, but not 5-HT2A, receptors. We identify specific 5-HT receptor subtypes as serotonergic regulators of the CLA excitability and argue against the canonical role of 5-HT2A in glutamatergic synapse response to psychedelics within the CLA-ACC circuit.
Collapse
Affiliation(s)
- Tanner L Anderson
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Jack V Keady
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Judy Songrady
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Navid S Tavakoli
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Artin Asadipooya
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Ryson E Neeley
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Pavel I Ortinski
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States.
| |
Collapse
|
35
|
Guo Y, Ren C, He Y, Wu Y, Yang X. Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Mol Med Rep 2024; 30:157. [PMID: 38994768 PMCID: PMC11258600 DOI: 10.3892/mmr.2024.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 07/13/2024] Open
Abstract
The intestines are the largest barrier organ in the human body. The intestinal barrier plays a crucial role in maintaining the balance of the intestinal environment and protecting the intestines from harmful bacterial invasion. Single‑cell RNA sequencing technology allows the detection of the different cell types in the intestine in two dimensions and the exploration of cell types that have not been fully characterized. The intestinal mucosa is highly complex in structure, and its proper functioning is linked to multiple structures in the proximal‑distal intestinal and luminal‑mucosal axes. Spatial localization is at the core of the efforts to explore the interactions between the complex structures. Spatial transcriptomics (ST) is a method that allows for comprehensive tissue analysis and the acquisition of spatially separated genetic information from individual cells, while preserving their spatial location and interactions. This approach also prevents the loss of fragile cells during tissue disaggregation. The emergence of ST technology allows us to spatially dissect enzymatic processes and interactions between multiple cells, genes, proteins and signals in the intestine. This includes the exchange of oxygen and nutrients in the intestine, different gradients of microbial populations and the role of extracellular matrix proteins. This regionally precise approach to tissue studies is gaining more acceptance and is increasingly applied in the investigation of disease mechanisms related to the gastrointestinal tract. Therefore, this review summarized the application of ST in gastrointestinal diseases.
Collapse
Affiliation(s)
- Yajing Guo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Chao Ren
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yuxi He
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Yue Wu
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Xiaojun Yang
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| |
Collapse
|
36
|
Grodner B, Shi H, Farchione O, Vill AC, Ntekas I, Diebold PJ, Wu DT, Chen CY, Kim DM, Zipfel WR, Brito IL, De Vlaminck I. Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat Microbiol 2024; 9:2262-2277. [PMID: 38918467 PMCID: PMC11371653 DOI: 10.1038/s41564-024-01735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
The exchange of mobile genetic elements (MGEs) facilitates the spread of functional traits including antimicrobial resistance within bacterial communities. Tools to spatially map MGEs and identify their bacterial hosts in complex microbial communities are currently lacking, limiting our understanding of this process. Here we combined single-molecule DNA fluorescence in situ hybridization (FISH) with multiplexed ribosomal RNA-FISH to enable simultaneous visualization of both MGEs and bacterial taxa. We spatially mapped bacteriophage and antimicrobial resistance (AMR) plasmids and identified their host taxa in human oral biofilms. This revealed distinct clusters of AMR plasmids and prophage, coinciding with densely packed regions of host bacteria. Our data suggest spatial heterogeneity in bacterial taxa results in heterogeneous MGE distribution within the community, with MGE clusters resulting from horizontal gene transfer hotspots or expansion of MGE-carrying strains. Our approach can help advance the study of AMR and phage ecology in biofilms.
Collapse
Affiliation(s)
- Benjamin Grodner
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Inc, Monmouth Junction, NJ, USA
| | - Owen Farchione
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Albert C Vill
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Peter J Diebold
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David T Wu
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David M Kim
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
37
|
Chen J, Larsson L, Swarbrick A, Lundeberg J. Spatial landscapes of cancers: insights and opportunities. Nat Rev Clin Oncol 2024; 21:660-674. [PMID: 39043872 DOI: 10.1038/s41571-024-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Solid tumours comprise many different cell types organized in spatially structured arrangements, with substantial intratumour and intertumour heterogeneity. Advances in spatial profiling technologies over the past decade hold promise to capture the complexity of these cellular architectures to build a holistic view of the intricate molecular mechanisms that shape the tumour ecosystem. Some of these mechanisms act at the cellular scale and are controlled by cell-autonomous programmes or communication between nearby cells, whereas other mechanisms result from coordinated efforts between large networks of cells and extracellular molecules organized into tissues and organs. In this Review we provide insights into the application of single-cell and spatial profiling tools, with a focus on spatially resolved transcriptomic tools developed to understand the cellular architecture of the tumour microenvironment and identify opportunities to use them to improve clinical management of cancers.
Collapse
Affiliation(s)
- Julia Chen
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Oncology, St George Hospital, Sydney, New South Wales, Australia
| | - Ludvig Larsson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
38
|
Tan C, Ge ZD, Kurup S, Dyakiv Y, Liu T, Muller WA, Kume T. FOXC1 and FOXC2 Ablation Causes Abnormal Valvular Endothelial Cell Junctions and Lymphatic Vessel Formation in Myxomatous Mitral Valve Degeneration. Arterioscler Thromb Vasc Biol 2024; 44:1944-1959. [PMID: 38989578 PMCID: PMC11335087 DOI: 10.1161/atvbaha.124.320316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the human transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.
Collapse
Affiliation(s)
- Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Zhi-Dong Ge
- Departments of Pediatrics, Surgery, and Pathology, Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago (Z.-D.G.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
- Honors College, University of Illinois at Chicago (S.K.)
| | - Yaryna Dyakiv
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ting Liu
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - William A. Muller
- Department of Pathology (W.A.M.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
39
|
Esteva-Font C, Geurts F, Hansen TPK, Hoorn EJ, Fenton RA. Inducible deletion of the prostaglandin EP3 receptor in kidney tubules of male and female mice has no major effect on water homeostasis. Am J Physiol Renal Physiol 2024; 327:F504-F518. [PMID: 38961846 DOI: 10.1152/ajprenal.00146.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
The prostaglandin E2 (PGE2) receptor EP3 has been detected in the thick ascending limb (TAL) and the collecting duct of the kidney, where its actions are proposed to inhibit water reabsorption. However, EP3 is also expressed in other cell types, including vascular endothelial cells. The aim here was to determine the contribution of EP3 in renal water handling in male and female adult mice by phenotyping a novel mouse model with doxycycline-dependent deletion of EP3 throughout the kidney tubule (EP3-/- mice). RNAscope demonstrated that EP3 was highly expressed in the cortical and medullary TAL of adult mice. Compared with controls EP3 mRNA expression was reduced by >80% in whole kidney (RT-qPCR) and nondetectable (RNAscope) in renal tubules of EP3-/- mice. Under basal conditions, there were no significant differences in control and EP3-/- mice of both sexes in food and water intake, body weight, urinary output, or clinical biochemistries. No differences were detectable between genotypes in handling of an acute water load or in their response to the vasopressin analog 1-deamino-8-d-arginine-vasopressin (dDAVP). No differences in water handling were observed when PGE2 production was enhanced using 1% NaCl load. Expression of proteins involved in kidney water handling was not different between genotypes. This study demonstrates that renal tubular EP3 is not essential for body fluid homeostasis in males or females, even when PGE2 levels are high. The mouse model is a novel tool for examining the role of EP3 in kidney function independently of potential developmental abnormalities or systemic effects.NEW & NOTEWORTHY The prostanoid EP3 receptor is proposed to play a key role in the kidney tubule and antagonize the effects of vasopressin on aquaporin-mediated water reabsorption. Here, we phenotyped a kidney tubule-specific inducible knockout mouse model of the EP3 receptor. Our major finding is that, even under physiological stress, tubular EP3 plays no detectable role in renal water or solute handling. This suggests that other EP receptors must be important for renal salt and water handling.
Collapse
Affiliation(s)
| | - Frank Geurts
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Toke P K Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Bertolini A, Nguyen M, Zehra SA, Taleb SA, Bauer-Pisani T, Palm N, Strazzabosco M, Fiorotto R. Prominent role of gut dysbiosis in the pathogenesis of cystic fibrosis-related liver disease in mice. J Hepatol 2024; 81:429-440. [PMID: 38554847 PMCID: PMC11347101 DOI: 10.1016/j.jhep.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis-related liver disease (CFLD) is a chronic cholangiopathy that increases morbidity and mortality in patients with CF. Current treatments are unsatisfactory, and incomplete understanding of CFLD pathogenesis hampers therapeutic development. We have previously shown that mouse CF cholangiocytes respond to lipopolysaccharide with excessive inflammation. Thus, we investigated the role of the gut-liver axis in the pathogenesis of CFLD. METHODS Wild-type (WT), whole-body Cftr knockout (CFTR-KO) and gut-corrected (CFTR-KO-GC) mice were studied. Liver changes were assessed by immunohistochemistry and single-cell transcriptomics (single-cell RNA sequencing), inflammatory mediators were analysed by proteome array, faecal microbiota by 16S ribosomal RNA sequencing and gut permeability by FITC-dextran assay. RESULTS The livers of CFTR-KO mice showed ductular proliferation and periportal inflammation, whereas livers of CFTR-KO-GC mice had no evident pathology. Single-cell RNA sequencing analysis of periportal cells showed increased presence of neutrophils, macrophages and T cells, and activation of pro-inflammatory and pathogen-mediated immune pathways in CFTR-KO livers, consistent with a response to gut-derived stimuli. CFTR-KO mice exhibited gut dysbiosis with enrichment of Enterobacteriaceae and Enterococcus spp., which was associated with increased intestinal permeability and mucosal inflammation, whereas gut dysbiosis and inflammation were absent in CFTR-KO-GC mice. Treatment with nonabsorbable antibiotics ameliorated intestinal permeability and liver inflammation in CFTR-KO mice. Faecal microbiota transfer from CFTR-KO to germ-free WT mice did not result in dysbiosis nor liver pathology, indicating that defective intestinal CFTR is required to maintain dysbiosis. CONCLUSION Defective CFTR in the gut sustains a pathogenic microbiota, creates an inflammatory milieu, and alters intestinal permeability. These changes are necessary for the development of cholangiopathy. Restoring CFTR in the intestine or modulating the microbiota could be a promising strategy to prevent or attenuate liver disease. IMPACT AND IMPLICATIONS Severe cystic fibrosis-related liver disease (CFLD) affects 10% of patients with cystic fibrosis (CF) and contributes to increased morbidity and mortality. Treatment options remain limited due to a lack of understanding of disease pathophysiology. The cystic fibrosis transmembrane conductance regulator (CFTR) mediates Cl- and HCO3- secretion in the biliary epithelium and its defective function is thought to cause cholestasis and excessive inflammatory responses in CF. However, our study in Cftr-knockout mice demonstrates that microbial dysbiosis, combined with increased intestinal permeability caused by defective CFTR in the intestinal mucosa, acts as a necessary co-factor for the development of CFLD-like liver pathology in mice. These findings uncover a major role for the gut microbiota in CFLD pathogenesis and call for further investigation and clinical validation to develop targeted therapeutic strategies acting on the gut-liver axis in CF.
Collapse
Affiliation(s)
- Anna Bertolini
- Department of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, New Haven, USA
| | - Mytien Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, USA
| | - Syeda Andleeb Zehra
- Department of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, New Haven, USA
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, New Haven, USA
| | - Tory Bauer-Pisani
- Department of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, New Haven, USA
| | - Noah Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, USA
| | - Mario Strazzabosco
- Department of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, New Haven, USA
| | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
41
|
Gunn BK, Leary JH, Lee VM, Kirby AJ, Scott G, Camus AC. First report of the emerging rosette agent (Sphaerothecum destruens) in a captive held native north American cyprinid, the warpaint shiner (Luxilus coccogenis, Cope). JOURNAL OF FISH DISEASES 2024; 47:e13980. [PMID: 38857293 DOI: 10.1111/jfd.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Affiliation(s)
- Bridgette K Gunn
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - John H Leary
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Vivian M Lee
- Department of Animal Health, Georgia Aquarium, Atlanta, Georgia, USA
| | - Ashley J Kirby
- Department of Animal Health, Georgia Aquarium, Atlanta, Georgia, USA
| | - Gregory Scott
- Department of Animal Health, Georgia Aquarium, Atlanta, Georgia, USA
| | - Alvin C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
42
|
Zhou A, Sharma A, Kuhnell D, Hinrichs BH, Kendler A, Wang J, Dillehey-McKillip K, Tang AL, Takiar V, Wise-Draper TM, Langevin SM. Multimodal assessment of high-risk human papillomavirus in sinonasal squamous cell carcinoma. Pathol Res Pract 2024; 261:155486. [PMID: 39088875 DOI: 10.1016/j.prp.2024.155486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
High-risk human papillomavirus (hrHPV) is an emerging risk factor for sinonasal squamous cell carcinoma (SNSCC). The goal of this study was to assess the prevalence of hrHPV and subtype distribution in SNSCC and correlation with patient and clinical characteristics. This retrospective cohort study included 43 cases diagnosed with incident primary SNSCC at the University of Cincinnati Medical Center from 2010 to 2015. The prevalence of hrHPV was interrogated using a multi-assay approach that included p16 immunohistochemistry (IHC), RNA in-situ hybridization (ISH), and hrHPV DNA sequencing. The association of hrHPV with 5-year overall survival (OS) and 2-year disease-free survival (DFS) was assessed. Fourteen cases (32.6 %) were classified as hrHPV positive, based on the a priori definition of having either a positive RNAScope™ ISH test or hrHPV DNA and p16-positive IHC; 9 cases (20.9 %) were positive for all three tests. All cases that arose from an inverted sinonasal papilloma (ex-ISP) were negative for hrHPV. HPV16 was the most common subtype among hrHPV positive cases (58.8 %), followed by HPV18 (17.6 %). No significant association was observed between hrHPV and OS or DFS after adjusting for potential confounding. hrHPV is prevalent in a sizable fraction of SNSCC. Additional studies are needed to better elucidate the relationship with patient survival outcomes and determine the optimal testing modality for prognostication.
Collapse
Affiliation(s)
- Anna Zhou
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anish Sharma
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Damaris Kuhnell
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Benjamin H Hinrichs
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ady Kendler
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jiang Wang
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States; University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Kelsey Dillehey-McKillip
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States; University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alice L Tang
- University of Cincinnati Cancer Center, Cincinnati, OH, United States; Department of Otolaryngology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Vinita Takiar
- University of Cincinnati Cancer Center, Cincinnati, OH, United States; Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Staff Scientist, Cincinnati VA Medical Center, Cincinnati, OH, United States
| | - Trisha M Wise-Draper
- University of Cincinnati Cancer Center, Cincinnati, OH, United States; Division of Hematology & Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Scott M Langevin
- Division of Hematology & Oncology, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, United States; University of Vermont Cancer Center, Burlington, VT, United States.
| |
Collapse
|
43
|
Wopperer FJ, Olinger E, Wiesener A, Broeker KAE, Knaup KX, Schaefer JT, Galiano M, Schneider K, Schiffer M, Büttner-Herold M, Reis A, Schmieder R, Pasutto F, Hilgers KF, Poglitsch M, Ziegler C, Shoemaker R, Sayer JA, Wiesener MS. Progressive Kidney Failure by Angiotensinogen Inactivation in the Germline. Hypertension 2024; 81:1857-1868. [PMID: 39005223 DOI: 10.1161/hypertensionaha.124.22806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Autosomal recessive renal tubular dysgenesis is a rare, usually fatal inherited disorder of the renin-angiotensis system (RAS). Herein, we report an adolescent individual experiencing an unknown chronic kidney disease and aim to provide novel insights into disease mechanisms. METHODS Exome sequencing for a gene panel associated with renal disease was performed. The RAS was assessed by comprehensive biochemical analysis in blood. Renin expression was determined in primary tubular cells by quantitative polymerase chain reaction and in situ hybridization on kidney biopsy samples. Allele frequencies of heterozygous and biallelic deleterious variants were determined by analysis of the Genomics England 100,000 Genomes Project. RESULTS The patient was delivered prematurely after oligohydramnios was detected during pregnancy. Postnatally, he recovered from third-degree acute kidney injury but developed chronic kidney disease stage G3b over time. Exome sequencing revealed a previously reported pathogenic homozygous missense variant, p.(Arg375Gln), in the AGT (angiotensinogen) gene. Blood AGT concentrations were low, but plasma renin concentration and gene expression in kidney biopsy, vascular, and tubular cells revealed strong upregulation of renin. Angiotensin II and aldosterone in blood were not abnormally elevated. CONCLUSIONS Renal tubular dysgenesis may present as chronic kidney disease with a variable phenotype, necessitating broad genetic analysis for diagnosis. Functional analysis of the RAS in a patient with AGT mutation revealed novel insights regarding compensatory upregulation of renin in vascular and tubular cells of the kidney and in plasma in response to depletion of AGT substrate as a source of Ang II (similarly observed with hepatic AGT silencing for the treatment of hypertension).
Collapse
Affiliation(s)
- Florian J Wopperer
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Eric Olinger
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium (E.O.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (E.O., J.A.S.)
| | - Antje Wiesener
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | - Karl X Knaup
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan T Schaefer
- Department of Pediatrics and Adolescent Medicine (J.T.S., M.G.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Matthias Galiano
- Department of Pediatrics and Adolescent Medicine (J.T.S., M.G.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Karen Schneider
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology (M.B.-H.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - André Reis
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Roland Schmieder
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Francesca Pasutto
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | | | - Robin Shoemaker
- Department of Pediatrics, University of Kentucky, Lexington (R. Shoemaker)
| | - John A Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (E.O., J.A.S.)
| | - Michael S Wiesener
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
44
|
Tona R, Inagaki S, Ishibashi Y, Faridi R, Yousaf R, Roux I, Wilson E, Fenollar-Ferrer C, Chien WW, Belyantseva IA, Friedman TB. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants. J Biol Chem 2024; 300:107725. [PMID: 39214300 PMCID: PMC11465063 DOI: 10.1016/j.jbc.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.
Collapse
Affiliation(s)
- Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Maryland, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| |
Collapse
|
45
|
Chandel A, DeBeaubien NA, Ganguly A, Meyerhof GT, Krumholz AA, Liu J, Salgado VL, Montell C. Thermal infrared directs host-seeking behaviour in Aedes aegypti mosquitoes. Nature 2024; 633:615-623. [PMID: 39169183 PMCID: PMC11410652 DOI: 10.1038/s41586-024-07848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Mosquito-borne diseases affect hundreds of millions of people annually and disproportionately impact the developing world1,2. One mosquito species, Aedes aegypti, is a primary vector of viruses that cause dengue, yellow fever and Zika. The attraction of Ae. aegypti female mosquitos to humans requires integrating multiple cues, including CO2 from breath, organic odours from skin and visual cues, all sensed at mid and long ranges, and other cues sensed at very close range3-6. Here we identify a cue that Ae. aegypti use as part of their sensory arsenal to find humans. We demonstrate that Ae. aegypti sense the infrared (IR) radiation emanating from their targets and use this information in combination with other cues for highly effective mid-range navigation. Detection of thermal IR requires the heat-activated channel TRPA1, which is expressed in neurons at the tip of the antenna. Two opsins are co-expressed with TRPA1 in these neurons and promote the detection of lower IR intensities. We propose that radiant energy causes local heating at the end of the antenna, thereby activating temperature-sensitive receptors in thermosensory neurons. The realization that thermal IR radiation is an outstanding mid-range directional cue expands our understanding as to how mosquitoes are exquisitely effective in locating hosts.
Collapse
Affiliation(s)
- Avinash Chandel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Nicolas A DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Anindya Ganguly
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Geoff T Meyerhof
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | | | - Jiangqu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Vincent L Salgado
- BASF, Research Triangle Park, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
46
|
Conrad WS, Oriol L, Kollman G, Faget L, Hnasko TS. Proportion and distribution of neurotransmitter-defined cell types in the ventral tegmental area and substantia nigra pars compacta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582356. [PMID: 38464250 PMCID: PMC10925288 DOI: 10.1101/2024.02.28.582356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Most studies on the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) have focused on dopamine neurons and their role in processes such as motivation, learning, movement, and associated disorders such as addiction. However there has been increasing attention on other VTA and SNc cell types that release GABA, glutamate, or a combination of neurotransmitters. Yet the relative distributions and proportions of neurotransmitter-defined cell types across VTA and SNc has remained unclear. Here, we used fluorescent in situ hybridization in male and female mice to label VTA and SNc neurons that expressed mRNA encoding the canonical vesicular transporters for dopamine, GABA, or glutamate: vesicular monoamine transporter (VMAT2), vesicular GABA transporter (VGAT), and vesicular glutamate transporter (VGLUT2). Within VTA, we found that no one type was particularly more abundant, instead we observed similar numbers of VMAT2+ (44%), VGAT+ (37%) and VGLUT2+ (41%) neurons. In SNc we found that a slight majority of neurons expressed VMAT2 (54%), fewer were VGAT+ (42%), and VGLUT2+ neurons were least abundant (16%). Moreover, 20% of VTA neurons and 10% of SNc neurons expressed more than one vesicular transporter, including 45% of VGLUT2+ neurons. We also assessed within VTA and SNc subregions and found remarkable heterogeneity in cell-type composition. And by quantifying density across both anterior-posterior and medial-lateral axes we generated heatmaps to visualize the distribution of each cell type. Our data complement recent single-cell RNAseq studies and support a more diverse landscape of neurotransmitter-defined cell types in VTA and SNc than is typically appreciated.
Collapse
Affiliation(s)
- William S Conrad
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lucie Oriol
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Grace Kollman
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lauren Faget
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Thomas S Hnasko
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase MD 20815, USA
| |
Collapse
|
47
|
Norris MR, Kuo CC, Dunn SS, Kim JR, Becker LJ, Borges G, Thang LV, Parker KE, McCall JG. Mu opioid receptors gate the locus coeruleus pain generator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.562785. [PMID: 37961541 PMCID: PMC10634678 DOI: 10.1101/2023.10.20.562785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Loc V. Thang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle E. Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Boulay G, Broye LC, Dong R, Iyer S, Sanalkumar R, Xing YH, Buisson R, Rengarajan S, Naigles B, Duc B, Volorio A, Awad ME, Renella R, Chebib I, Nielsen GP, Choy E, Cote GM, Zou L, Letovanec I, Stamenkovic I, Rivera MN, Riggi N. EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors. Nat Commun 2024; 15:7460. [PMID: 39198430 PMCID: PMC11358472 DOI: 10.1038/s41467-024-51851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
EWS fusion oncoproteins underlie several human malignancies including Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer driven by EWS-WT1 fusion proteins. Here we combine chromatin occupancy and 3D profiles to identify EWS-WT1-dependent gene regulation networks and target genes. We show that EWS-WT1 is a powerful chromatin activator controlling an oncogenic gene expression program that characterizes primary tumors. Similar to wild type WT1, EWS-WT1 has two isoforms that differ in their DNA binding domain and we find that they have distinct DNA binding profiles and are both required to generate viable tumors that resemble primary DSRCT. Finally, we identify candidate EWS-WT1 target genes with potential therapeutic implications, including CCND1, whose inhibition by the clinically-approved drug Palbociclib leads to marked tumor burden decrease in DSRCT PDXs in vivo. Taken together, our studies identify gene regulation programs and therapeutic vulnerabilities in DSRCT and provide a mechanistic understanding of the complex oncogenic activity of EWS-WT1.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liliane C Broye
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Rui Dong
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Yu-Hang Xing
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benoît Duc
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Angela Volorio
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raffaele Renella
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lee Zou
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Miguel N Rivera
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland.
- Genentech Inc, Department of Cell and Tissue Genomics (CTG), South San Francisco, CA, USA.
| |
Collapse
|
49
|
Jaijyan DK, Yang S, Ramasamy S, Gu A, Zeng M, Subbian S, Tyagi S, Zhu H. Imaging and quantification of human and viral circular RNAs. Nucleic Acids Res 2024; 52:e70. [PMID: 39051561 PMCID: PMC11347131 DOI: 10.1093/nar/gkae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
We present a robust approach for cellular detection, imaging, localization, and quantification of human and viral encoded circular RNAs (circRNA) using amplified fluorescence in situ hybridization (ampFISH). In this procedure, a pair of hairpin probes bind next to each other at contiguous stretches of sequence and then undergo a conformational reorganization which initiates a target-dependent hybridization chain reaction (HCR) resulting in deposition of an amplified fluorescent signal at the site. By harnessing the capabilities of both ampFISH and single-molecule FISH (smFISH), we selectively identified and imaged circular RNAs and their linear counterparts derived from the human genome, SARS-CoV-2 (an RNA virus), and human cytomegalovirus (HCMV, a DNA virus). Computational image processing facilitated accurate quantification of circular RNA molecules in individual cells. The specificity of ampFISH for circular RNA detection was confirmed through an in situ RNase R treatment that selectively degrades linear RNAs without impacting circular RNAs. The effectiveness of circular RNA detection was further validated by using ampFISH probes with mismatches and probe pairs that do not bind to the continuous sequence in their target RNAs but instead bind at segregated sites. An additional specificity test involved probes against the negative strands of the circular RNA sequence, absent in the cell. Importantly, our technique allows simultaneous detection of circular RNAs and their linear counterparts within the same cell with single molecule sensitivity, enabling explorations of circular RNA biogenesis, subcellular localization, and functions.
Collapse
Affiliation(s)
- Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, VA, USA
| | - Shaomin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark. NJ 07103, USA
| | - Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark. NJ 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark. NJ 07103, USA
- Department of Medicine, New Jersey Medical School, Rutgers University, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
50
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|