1
|
Lutsiv T, Neil ES, McGinley JN, Didinger C, Fitzgerald VK, Weir TL, Hussan H, Hartman TJ, Thompson HJ. Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases. Nutrients 2024; 16:3178. [PMID: 39339778 PMCID: PMC11434987 DOI: 10.3390/nu16183178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Introducing grain legumes, i.e., pulses, into any food pattern effectively increases dietary fiber and other bioactive food components of public health concern; however, the impact depends on the amount consumed. Given the convergence of preclinical and clinical data indicating that intake of at least 300 g (1.5 cup) of cooked pulse per day has clinically observable benefit, the feasibility for a typical consumer was demonstrated by creation of a fourteen-day menu plan that met this criterion. This menu plan, named Bean Cuisine, was comprised of a combination of five cooked pulses: dry beans, chickpeas, cowpeas, dry peas, and lentils. As reported herein, the impact of each menu day of the fourteen-day plan on gut microbial composition and predicted function was evaluated in female C57BL/6J mice, a strain commonly used in studies of metabolic dysfunction-associated chronic diseases. We report that pulse-related effects were observed across a wide variety of food item combinations. In comparison to a pulse-free human cuisine, all pulse menu days enriched for a gut ecosystem were associated with changes in predicted metabolic pathways involving amino acids (lysine, tryptophan, cysteine), short-chain fatty acids (butyrate, acetate), and vitamins (B1, B6, B9, B12, K2) albeit via different combinations of microbiota, according to the PICRUSt2 estimates. The predicted metabolic functions correlating with the various pulses in the menus, indicate the value of a food pattern comprised of all pulse types consumed on a regular basis. This type of multi-pulse food pattern has the potential to enhance the taxonomic and functional diversity of the gut microbiome as a means of strengthening the resilience of the gut ecosystem to the challenges associated with the daily activities of living.
Collapse
Affiliation(s)
- Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth S Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Chelsea Didinger
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Vanessa K Fitzgerald
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Tiffany L Weir
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Hisham Hussan
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Yin L, Azi F, Xia X, Jin Y, Lu X, Cheng J, Guan Y, Cheng J, Lu G, Pang L. Microbiome-metabolomics-based insight into the protective effects of dietary fiber from sweetpotato residues on the high-fat diet-induced intestinal integrity damage. Int J Biol Macromol 2024; 275:133620. [PMID: 38960238 DOI: 10.1016/j.ijbiomac.2024.133620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Dietary fibers have attracted much attention due to their multiple benefits on gut health. In this work, the protective mechanism of dietary fiber from sweetpotato residues (SRDF) on the high-fat diet (HFD)-induced intestinal barrier injury was investigated using microbiome-metabolomics-based approach. The physicochemical property analysis demonstrated a thermal stability below 200 °C and porous pectin-polysaccharide structure of SRDF with high in vitro functional activities. The biochemical analysis indicated that SRDF significantly ameliorated intestinal barrier function by improving intestinal morphology and permeability and inhibiting inflammatory response. Microbiome analysis demonstrated that SRDF significantly reversed the HFD-induced dysbacteriosis, decreased the ratio of Firmicutes/Bacteroides and enhanced the relative abundance of probiotics, such as Muribaculaceae and Bifidobacteriaceae. Metabolomics analysis showed that SRDF also significantly altered the metabolic profile in the colon, wherein the differential metabolites were mainly involved in amino acid metabolism (especially tryptophan). Pearson correlation coefficient identified the beneficial relationship between intestinal microbiome and metabolome induced by SRDF. The limitation of this study was that the mouse model may not fully replicate the human intestinal responses due to the difference between the standard environmental conditions and natural world. Generally, our results implied the great potential of SRDF as a functional food ingredient.
Collapse
Affiliation(s)
- Liqing Yin
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China.
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, PR China
| | - Yunyi Jin
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghua Lu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiyu Cheng
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuge Guan
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Junfeng Cheng
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Guoquan Lu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Linjiang Pang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Choudhary D, Andreani GA, Mahmood S, Wen X, Patel MS, Rideout TC. Postnatal Consumption of Black Bean Powder Protects against Obesity and Dyslipidemia in Male Adult Rat Offspring from Obese Pregnancies. Nutrients 2024; 16:1029. [PMID: 38613062 PMCID: PMC11013182 DOI: 10.3390/nu16071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The adverse influence of maternal obesity on offspring metabolic health throughout the life-course is a significant public health challenge with few effective interventions. We examined if black bean powder (BBP) supplementation to a high-calorie maternal pregnancy diet or a postnatal offspring diet could offer protection against the metabolic programming of metabolic disease risk in adult offspring. Female Sprague Dawley rats were randomly assigned to one of three diets (n = 10/group) for a 3-week pre-pregnancy period and throughout gestation and lactation: (i) a low-caloric control diet (CON); (ii) a high-caloric obesity-inducing diet (HC); or (iii) the HC diet with 20% black bean powder (HC-BBP). At weaning [postnatal day (PND) 21], one male pup from each dam was weaned onto the CON diet throughout the postnatal period until adulthood (PND120). In addition, a second male from the HC group only was weaned onto the CON diet supplemented with BBP (CON-BBP). Thus, based on the maternal diet exposure and offspring postnatal diet, four experimental adult offspring groups were compared: CON/CON, HC/CON, HC-BPP/CON, and HC/CON-BBP. On PND120, blood was collected for biochemical analysis (e.g., lipids, glycemic control endpoints, etc.), and livers were excised for lipid analysis (triglycerides [TG] and cholesterol) and the mRNA/protein expression of lipid-regulatory targets. Compared with the CON/CON group, adult offspring from the HC/CON group exhibited a higher (p < 0.05) body weight (BW) (682.88 ± 10.67 vs. 628.02 ± 16.61 g) and hepatic TG (29.55 ± 1.31 vs. 22.86 ± 1.85 mmol/g). Although maternal BBP supplementation (HC-BBP/CON) had little influence on metabolic outcomes, the consumption of BBP in the postnatal period (HC/CON-BBP) lowered hepatic TG and cholesterol compared with the other treatment groups. Reduced hepatic TG in the HC/CON-BBP was likely associated with lower postnatal BW gain (vs. HC/CON), lower mRNA and protein expression of hepatic Fasn (vs. HC/CON), and lower serum leptin concentration (vs. CON/CON and HC groups). Our results suggest that the postnatal consumption of a black-bean-powder-supplemented diet may protect male rat offspring against the programming of obesity and dyslipidemia associated with maternal obesity. Future work should investigate the bioactive fraction of BBP responsible for the observed effect.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
- Department of Pediatrics, Division of Behavioral Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Gabriella A. Andreani
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| | - Saleh Mahmood
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| | - Xiaozhong Wen
- Department of Pediatrics, Division of Behavioral Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Mulchand S. Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA;
| | - Todd C. Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| |
Collapse
|
4
|
Van K, Burns JL, Monk JM. Effect of Short-Chain Fatty Acids on Inflammatory and Metabolic Function in an Obese Skeletal Muscle Cell Culture Model. Nutrients 2024; 16:500. [PMID: 38398822 PMCID: PMC10891728 DOI: 10.3390/nu16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The fermentation of non-digestible carbohydrates produces short-chain fatty acids (SCFAs), which have been shown to impact both skeletal muscle metabolic and inflammatory function; however, their effects within the obese skeletal muscle microenvironment are unknown. In this study, we developed a skeletal muscle in vitro model to mimic the critical features of the obese skeletal muscle microenvironment using L6 myotubes co-treated with 10 ng/mL lipopolysaccharide (LPS) and 500 µM palmitic acid (PA) for 24 h ± individual SCFAs, namely acetate, propionate and butyrate at 0.5 mM and 2.5 mM. At the lower SCFA concentration (0.5 mM), all three SCFA reduced the secreted protein level of RANTES, and only butyrate reduced IL-6 protein secretion and the intracellular protein levels of activated (i.e., ratio of phosphorylated-total) NFκB p65 and STAT3 (p < 0.05). Conversely, at the higher SCFA concentration (2.5 mM), individual SCFAs exerted different effects on inflammatory mediator secretion. Specifically, butyrate reduced IL-6, MCP-1 and RANTES secretion, propionate reduced IL-6 and RANTES, and acetate only reduced RANTES secretion (p < 0.05). All three SCFAs reduced intracellular protein levels of activated NFκB p65 and STAT3 (p < 0.05). Importantly, only the 2.5 mM SCFA concentration resulted in all three SCFAs increasing insulin-stimulated glucose uptake compared to control L6 myotube cultures (p < 0.05). Therefore, SCFAs exert differential effects on inflammatory mediator secretion in a cell culture model, recapitulating the obese skeletal muscle microenvironment; however, all three SCFAs exerted a beneficial metabolic effect only at a higher concentration via increasing insulin-stimulated glucose uptake, collectively exerting differing degrees of a beneficial effect on obesity-associated skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Kelsey Van
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jessie L. Burns
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
5
|
John HS, Doucet É, Power KA. Dietary pulses as a means to improve the gut microbiome, inflammation, and appetite control in obesity. Obes Rev 2023; 24:e13598. [PMID: 37395146 DOI: 10.1111/obr.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
A dysbiotic intestinal microbiome has been linked to chronic diseases such as obesity, which may suggest that interventions that target the microbiome may be useful in treating obesity and its complications. Appetite dysregulation and chronic systemic low-grade inflammation, such as that observed in obesity, are possibly linked with the intestinal microbiome and are potential therapeutic targets for the treatment of obesity via the microbiome. Dietary pulses (e.g., common beans) are composed of nutrients and compounds that possess the potential to modulate the gut microbiota composition and function which can in turn improve appetite regulation and chronic inflammation in obesity. This narrative review summarizes the current state of knowledge regarding the connection between the gut microbiome and obesity, appetite regulation, and systemic and adipose tissue inflammation. More specifically, it highlights the efficacy of interventions employing dietary common beans as a means to improve gut microbiota composition and/or function, appetite regulation, and inflammation in both rodent obesity and in humans. Collectively, results presented and discussed herein provide insight on the gaps in knowledge necessary for a comprehensive understanding of the potential of beans as a treatment for obesity while highlighting what further research is required to gain this understanding.
Collapse
Affiliation(s)
- Hannah St John
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- The Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Nosworthy MG, Medina G, Lu ZH, House JD. Plant Proteins: Methods of Quality Assessment and the Human Health Benefits of Pulses. Foods 2023; 12:2816. [PMID: 37569085 PMCID: PMC10417564 DOI: 10.3390/foods12152816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
As countries increase their standard of living and individual income levels rise, there is a concomitant increase in the demand for animal-based protein. However, there are alternative sources. One of the alternatives available is that of increased direct human consumption of plant proteins. The quality of a dietary protein is an important consideration when discussing the merits of one protein source over another. The three most commonly used methods to express protein quality are the protein efficiency ratio (PER), a weight gain measurement; protein digestibility-corrected amino acid score (PDCAAS); and the digestible indispensable amino acid score (DIAAS). The possibility that alterations in the quality and quantity of protein in the diet could generate specific health outcomes is one being actively researched. Plant-based proteins may have additional beneficial properties for human health when compared to animal protein sources, including reductions in risk factors for cardiovascular disease and contributions to increased satiety. In this paper, the methods for the determination of protein quality and the potential beneficial qualities of plant proteins to human health will be described.
Collapse
Affiliation(s)
- Matthew G. Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gerardo Medina
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada;
| | - Zhan-Hui Lu
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Alfaro-Diaz A, Escobedo A, Luna-Vital DA, Castillo-Herrera G, Mojica L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr Rev Food Sci Food Saf 2023; 22:2910-2944. [PMID: 37182216 DOI: 10.1111/1541-4337.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.
Collapse
Affiliation(s)
- Arturo Alfaro-Diaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
8
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
9
|
Vieira NM, Peghinelli VV, Monte MG, Costa NA, Pereira AG, Seki MM, Azevedo PS, Polegato BF, de Paiva SAR, Zornoff LAM, Minicucci MF. Beans comsumption can contribute to the prevention of cardiovascular disease. Clin Nutr ESPEN 2023; 54:73-80. [PMID: 36963901 DOI: 10.1016/j.clnesp.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVD) are the major cause of global mortality, accounting for 31% of deaths worldwide. Healthy eating habits based on the consumption of bioactive molecules present in plant-based diets can contribute to the prevention of CVD. In this context, the consumption of common beans (Phaseolus vulgaris L.) is relevant. There are several species of beans, all of which provide proteins, carbohydrates, dietary fiber, vitamins, minerals, and phenolic compounds. More recently, the complexity of phytochemical components has expanded, including the role of antinutritional factors in nutrient bioavailability and immune responses. Experimental and clinical studies have shown that the consumption of beans results in less food consumption, control of body weight, and improvement of metabolic biochemical parameters. Thus, the consumption of beans is associated with a decrease in CVD risk factors. To date, there have been no interventional studies assessing CVD outcomes, such as hospitalization, infarction, and mortality, in the context of bean consumption. Furthermore, studies on the effect of bean consumption on metabolomics and intestinal microbiota are lacking. The purpose of this review is to explore the nutritional properties of beans and discuss the main effects of the consumption of beans on cardiovascular health. In conclusion, eating habits based on the consumption of bioactive molecules present in beans can contribute to the prevention of cardiovascular disease. Furthermore, there is a large gap in the literature regarding the consumption of beans associated with clinical outcomes, such as hospitalization and mortality.
Collapse
Affiliation(s)
- Nayane Maria Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | | | - Marina Gaiato Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Nara Aline Costa
- Faculty of Nutrition, UFG - Univ Federal de Goiás, Goiânia, Brazil.
| | - Amanda Gomes Pereira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Marcos Mitsuo Seki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Paula Schmidt Azevedo
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | | | | | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| |
Collapse
|
10
|
Fan S, Chen S, Lin L. Research progress of gut microbiota and obesity caused by high-fat diet. Front Cell Infect Microbiol 2023; 13:1139800. [PMID: 36992691 PMCID: PMC10040832 DOI: 10.3389/fcimb.2023.1139800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Obesity, a chronic metabolic disorder caused by an energy imbalance, has been increasingly prevalent and poses a global health concern. The multifactorial etiology of obesity includes genetics factors, high-fat diet, gut microbiota, and other factors. Among these factors, the implication of gut microbiota in the pathogenesis of obesity has been prominently acknowledged. This study endeavors to investigate the potential contribution of gut microbiota to the development of high-fat diet induced obesity, as well as the current state of probiotic intervention therapy research, in order to provide novel insights for the prevention and management of obesity.
Collapse
Affiliation(s)
- Shuyi Fan
- Scientific Research Department, Brain Hospital of Hunan Province, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Suyun Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Lin Lin
- Scientific Research Department, Brain Hospital of Hunan Province, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
12
|
Jiang T, Li Y, Li L, Liang T, Du M, Yang L, Yang J, Yang R, Zhao H, Chen M, Ding Y, Zhang J, Wang J, Xie X, Wu Q. Bifidobacterium longum 070103 Fermented Milk Improve Glucose and Lipid Metabolism Disorders by Regulating Gut Microbiota in Mice. Nutrients 2022; 14:nu14194050. [PMID: 36235706 PMCID: PMC9573661 DOI: 10.3390/nu14194050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/08/2022] Open
Abstract
Background: Fermented milk is beneficial for metabolic disorders, while the underlying mechanisms of action remain unclear. This study explored the benefits and underlying mechanisms of Bifidobacterium longum 070103 fermented milk (BLFM) in thirteen-week high-fat and high-sugar (HFHS) fed mice using omics techniques. Methods and results: BLFM with activated glucokinase (GK) was screened by a double-enzyme coupling method. After supplementing BLFM with 10 mL/kg BW per day, fasting blood glucose, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin were significantly reduced compared with the HFHS group. Among them, the final body weight (BW), epididymal fat, perirenal fat, and brown fat in BLFM group had better change trends than Lacticaseibacillus rhamnosus GG fermented milk (LGGFM) group. The amplicon and metabolomic data analysis identified Bifibacterium as a key gut microbiota at regulating glycolipid metabolism. BLFM reverses HFHS-induced reduction in bifidobacteria abundance. Further studies showed that BLFM significantly reduces the content of 3-indoxyl sulofphate associated with intestinal barrier damage. In addition, mice treated with BLFM improved BW, glucose tolerance, insulin resistance, and hepatic steatosis. Conclusion: BLFM consumption attenuates obesity and related symptoms in HFHS-fed mice probably via the modulation of gut microbes and metabolites.
Collapse
Affiliation(s)
- Tong Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mingzhu Du
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| | - Xinqiang Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| |
Collapse
|
13
|
Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition. Nutrients 2022; 14:nu14153202. [PMID: 35956378 PMCID: PMC9370468 DOI: 10.3390/nu14153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperlipidemia with fat accumulation and weight gain causes metabolic diseases and endangers human body health easily which is accompanied by metabolic abnormalities and intestinal flora disorders. In this study, the kidney bean fermented broth (KBF) was used in rats that were fed a high-fat diet to induce hyperlipidemia in order to subsequently analyse the serum metabolomics and gut microbiota modulatoration. The results show that the contents of the total polyphenols and total flavonoids in the KBF were up three and one times, while energy and carbohydrates decreased. In the HFD-induced hyperlipidemic model, body weight, organ weight, and the level of blood lipids (ALT, AST, TG, TC) were lower in rats treated with KBF than in the controls. Metabonomics indicate that there were significant differences in serum metabolomics between the KBF and the HFD. KBF could significantly improve the glycerophospholipids, taurine, and hypotaurine metabolism and amino acid metabolism of hyperlipidemic rats and then improve the symptoms of hypersterol and fat accumulation in rats. The relative abundance of beneficial bacteria increased while pathogenic bacteria decreased after the intervention of KBF. KBF ameliorates dyslipidemia of HFD-induced hyperlipidemic via modulating the blood metabolism and the intestinal microbiota. Collectively, these findings suggest that KBF could be developed as a functional food for anti-hyperlipidemia.
Collapse
|
15
|
Cheng Y, Tang S, Wu T, Pan S, Xu X. Lactobacillus casei-fermented blueberry pomace ameliorates colonic barrier function in high fat diet mice through MAPK-NF-κB-MLCK signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
Wei F, Yang X, Zhang M, Xu C, Hu Y, Liu D. Akkermansia muciniphila Enhances Egg Quality and the Lipid Profile of Egg Yolk by Improving Lipid Metabolism. Front Microbiol 2022; 13:927245. [PMID: 35928144 PMCID: PMC9344071 DOI: 10.3389/fmicb.2022.927245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Akkermansia muciniphila (A. muciniphila) has shown potential as a probiotic for the prevention and treatment of non-alcoholic fatty liver disease in both humans and mice. However, relatively little is known about the effects of A. muciniphila on lipid metabolism, productivity, and product quality in laying hens. In this study, we explored whether A. muciniphila supplementation could improve lipid metabolism and egg quality in laying hens and sought to identify the underlying mechanism. In the first experiment, 80 Hy-Line Brown laying hens were divided into four groups, one of which was fed a normal diet (control group), while the other three groups were administered a high-energy, low-protein diet to induce fatty liver hemorrhagic syndrome (FLHS). Among the three FLHS groups, one was treated with phosphate-buffered saline, one with live A. muciniphila, and one with pasteurized A. muciniphila. In the second experiment, 140 Hy-Line Brown laying hens were divided into two groups and respectively fed a basal diet supplemented or not with A. muciniphila lyophilized powder. The results showed that, in laying hens with FLHS, treatment with either live or pasteurized A. muciniphila efficiently decreased body weight, abdominal fat deposition, and lipid content in both serum and the liver; downregulated the mRNA expression of lipid synthesis-related genes and upregulated that of lipid transport-related genes in the liver; promoted the growth of short-chain fatty acids (SCFAs)-producing microorganisms and increased the cecal SCFAs content; and improved the yolk lipid profile. Additionally, the supplementation of lyophilized powder of A. muciniphila to aged laying hens reduced abdominal fat deposition and total cholesterol (TC) levels in both serum and the liver, suppressed the mRNA expression of cholesterol synthesis-related genes in the liver, reduced TC content in the yolk, increased eggshell thickness, and reshaped the composition of the gut microbiota. Collectively, our findings demonstrated that A. muciniphila can modulate lipid metabolism, thereby, promoting laying hen health as well as egg quality and nutritive value. Live, pasteurized, and lyophilized A. muciniphila preparations all have the potential for use as additives for improving laying hen production.
Collapse
|
17
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
18
|
Yue C, Chu C, Zhao J, Zhang H, Chen W, Zhai Q. Dietary strategies to promote the abundance of intestinal Akkermansia muciniphila, a focus on the effect of plant extracts. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Glycyrrhiza Polysaccharide Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1345852. [PMID: 35432562 PMCID: PMC9012628 DOI: 10.1155/2022/1345852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Background Licorice is one of the most ubiquitous herbs in traditional Chinese medicine, with notable anti-inflammatory and antiulcerative effects as well as potent digestive disease therapeutic impacts; yet, its active components and mechanisms remain unclear. There is a lot of evidence that Glycyrrhiza polysaccharide (GPS) has antioxidants, improving intestinal flora, anti-inflammatory effects, etc. Hypothesis/Purpose. Here, we investigated the effects of GPS on dextran sulfate sodium (DSS)-induced acute ulcerative colitis (UC) mice and its possible mechanisms. Methods GPS (100, 200, and 400 mg/kg) or the positive control drug sulfasalazine (SASP) (200 mg/kg) were orally administered to mice for 8 days. Body weight was recorded daily. Symptoms associated with UC, such as disease activity index (DAI), colon length, spleen weight, and mucosal damage were detected. The possible mechanism of GPS ameliorating enteritis symptoms was explored by detecting intestinal permeability and serum levels of inflammatory factors, and changes in intestinal permeability were expressed by serum concentration of FITC-dextran and D-lactic acid. Results The results demonstrated that GPS administration alleviated UC symptoms in colitis mice, including weight loss, DAI index, shorting colon length, and mucosal damage. Mechanistic evaluation revealed that GPS treatment reduced intestinal permeability and serum levels of inflammatory factors: IL-1, IL-6, and TNF-α, while increasing serum levels of the anti-inflammatory factor IL-10, suggesting that GPS's mechanism in UC is related to reducing intestinal permeability and inhibiting the inflammatory response, with intestinal permeability implicated as the initiating mechanism. Conclusion This study highlights GPS as a promising therapeutic agent, with high therapeutic efficacy and a good safety profile, for enteritis and beyond.
Collapse
|
20
|
Almeida PP, Valdetaro L, Thomasi BBDM, Stockler-Pinto MB, Tavares-Gomes AL. High-fat diets on the enteric nervous system: Possible interactions and mechanisms underlying dysmotility. Obes Rev 2022; 23:e13404. [PMID: 34873814 DOI: 10.1111/obr.13404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Obesity is a chronic disease that affects various physiological systems. Among them, the gastrointestinal tract appears to be a main target of this disease. High-fat diet (HFD) animal models can help recapitulate the classic signs of obesity and present a series of gastrointestinal alterations, mainly dysmotility. Because intestinal motility is governed by the enteric nervous system (ENS), enteric neurons, and glial cells have been studied in HFD models. Given the importance of the ENS in general gut physiology, this review aims to discuss the relationship between HFD-induced neuroplasticity and gut dysmotility observed in experimental models. Furthermore, we highlight components of the gut environment that might influence enteric neuroplasticity, including gut microbiota, enteric glio-epithelial unit, serotonin release, immune cells, and disturbances such as inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Luisa Valdetaro
- Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
| | | | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | | |
Collapse
|
21
|
Gomes MJC, da Silva JS, Alves NEG, de Assis A, de Mejía EG, Mantovani HC, Martino HSD. Cooked common bean flour, but not its protein hydrolysate, has the potential to improve gut microbiota composition and function in BALB/c mice fed a high-fat diet added with 6-propyl-2-thiouracil. J Nutr Biochem 2022; 106:109022. [DOI: 10.1016/j.jnutbio.2022.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/29/2021] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
|
22
|
Yang W, Zhao P, Li X, Guo L, Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr Polym 2022; 277:118821. [PMID: 34893238 DOI: 10.1016/j.carbpol.2021.118821] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-term chronic disease, about 20% of IBD patients deteriorate to colorectal cancer. Currently, there is no radical cure for IBD. Natural plant polysaccharides (NPP) have low toxic and side effects, which have immune and prebiotic activities and possesses positive effect on alleviating IBD. In this review, we will focus on the alleviating effect of NPP on IBD in vitro and in vivo from three aspects: regulating intestinal flora imbalance, repairing intestinal barrier injury and improving immunity. The relationship between the chemical structure of natural plant polysaccharides and the therapeutic effect of IBD are highlighted. Finally, the synergistic role of NPP as a carrier of drugs or active molecules to reduce side effects and enhance targeting function are discussed, especially pectic polysaccharides. Broadly, this review provides a valuable reference for NPP to be developed as functional food or health products to alleviate IBD.
Collapse
Affiliation(s)
- Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
23
|
Ghanavati M, Nasrollahzadeh J. A calorie-restricted diet enriched with tree nuts and peanuts reduces the expression of CX3CR1 in peripheral blood mononuclear cells in patients with coronary artery disease. INT J VITAM NUTR RES 2021. [PMID: 34794330 DOI: 10.1024/0300-9831/a000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: The modification of the gut microbiome has been proposed to alter immune response which is a key driver in low-grade inflammation as well as metabolic markers. This study was conducted to determine the effects of a low-calorie diet with and without nuts on some gut bacterial abundance, metabolic markers, and gene expression in peripheral blood mononuclear cells (PBMCs) in stable coronary artery disease patients with overweight or obesity. Methods: Overweight or obese patients with stable coronary artery disease of both genders were randomly allocated to a nut-free calorie-restricted diet as 25% of energy deficit (CRD) or a CRD enriched with 39-60 gr/d of mixed nuts (CRDEN) for 8 weeks (32 patients in CRD and 35 patients in CRDEN). Mixed nuts consisted of equal amounts of unsalted pistachios, almonds, and peanuts. Microbiota analysis was performed by quantitative real-time polymerase chain reaction method on feces collected before and after the intervention, using primers targeting 16S ribosomal DNA of 4 different bacterial genera, including Bacteroides, Prevotella, Bifidobacterium, and Lactobacillus. We examined the plasma concentrations of glucose, insulin, adiponectin as well as expression of toll-like receptor-4 (TLR4) and fractalkine receptor (CX3CR1) in PBMCs. Results: A significant reduction in expression of CX3CR1 (p=0.04) and a tendency to lower expression of TLR4 in PBMCs (p=0.06) was observed in the CRDEN group at the end of the study compared to the CRD group. The abundance of fecal Prevotella also tended to increase in CRDEN compared to the CRD group (p=0.06). Plasma insulin and adiponectin had no significant changes. There was a positive correlation between fecal Prevotella abundance and plasma adiponectin at baseline (r=0.315, p=0.015) and the end of the study (r=0.380, p=0.003). Conclusion: Our results suggest that the inclusion of mixed tree nuts and peanuts in a low-calorie diet for 8 weeks led to a lower CX3CR expression in PBMCs in a cohort of overweight or obese patients with stable CAD. This finding provides another beneficial effect of diet supplemented with nuts on factors associated with inflammation. Trial registration: this clinical study has been registered at the clinical trial registration center (clinicaltrial.gov): NCT04078919 on September 6, 2019.
Collapse
Affiliation(s)
- Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li X, Li C, Li Y, Liu C, Liang X, Liu T, Liu Z. Sodium nitroprusside protects HFD induced gut dysfunction via activating AMPKα/SIRT1 signaling. BMC Gastroenterol 2021; 21:359. [PMID: 34600475 PMCID: PMC8487517 DOI: 10.1186/s12876-021-01934-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Activation of Adenosine 5′-monophosphate-activated protein kinase/Sirtuin1 (AMPK/SIRT1) exerts an effect in alleviating obesity and gut damage. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, has been reported to activate AMPK. This study was to investigate the effect of SNP on HFD induced gut dysfunction and the mechanism. Methods SNP was applied on lipopolysaccharide (LPS) stimulated Caco-2 cell monolayers which mimicked intestinal epithelial barrier dysfunction and HFD-fed mice which were complicated by gut dysfunction. Then AMPKα/SIRT1 pathway and gut barrier indicators were investigated. Results SNP rescued the loss of tight junction proteins ZO-1 and occludin, the inhibition of AMPKα/SIRT1 in LPS stimulated Caco-2 cell monolayers, and the effects were not shown when AMPKa1 was knocked-down by siRNA. SNP also alleviated HFD induced obesity and gut dysfunction in mice, as indicated by the decreasing of intestinal permeability, the increasing expression of ZO-1 and occludin, the decreasing levels of pro-inflammatory cytokine IL-6, and the repairing of gut microbiota dysbiosis. These effects were complicated by the increased colonic NO content and the activated AMPKα/SIRT1 signaling. Conclusions The results may imply that SNP, as a NO donor, alleviates HFD induced gut dysfunction probably by activating the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuanqi Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Cong Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| |
Collapse
|
25
|
Monk JM, Liddle DM, Hutchinson AL, Burns JL, Wellings H, Cartwright NM, Muller WJ, Power KA, Robinson LE, Ma DWL. Fish oil supplementation increases expression of mammary tumor apoptosis mediators and reduces inflammation in an obesity-associated HER-2 breast cancer model. J Nutr Biochem 2021; 95:108763. [PMID: 33965532 DOI: 10.1016/j.jnutbio.2021.108763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Obesity is associated with inflammation and has been shown to increase breast cancer severity. The objective of this study was to examine the effect of fish oil (FO) supplementation in obesity-associated mammary tumorigenesis in the MMTV-neu(ndl)-YD5 mouse model of human epidermal growth factor receptor-2 positive BC. Female mice were fed one of three diets for 16 weeks: i) high fat diet [HF, % kacl: 41.2% lard, 18.7% corn oil (CO)], ii) an isocaloric HF plus menhaden FO diet (HF+FO, % kcal: 41.2 lard, 13.4% CO, 5.3% FO), iii) low fat diet (LF, % kcal: 4.7% lard, 6% CO). HF mice had increased body weight, visceral adipose weight and serum hormone concentrations (increased leptin and resistin; decreased adiponectin) versus LF, which was attenuated in the HF+FO group versus HF (P<.05). Compared to HF, tumor onset was delayed in HF+FO and LF mice (P<0.05). Compared to HF, HF+FO reduced mammary tumor multiplicity (-27%), tumor weight (-46%) and total tumor volume (-50%) (P<0.05). Additionally, HF+FO reduced mammary tumor multiplicity (-33%), tumor weight (-39%) and total tumor volume (-60%) versus LF. HF+FO improved mammary tumor apoptosis status with increased expression of pro-apoptotic Bad and decreased expression of anti-apoptotic Bcl-xLmediators versus HF (P<0.05). Additionally, HF+FO decreased tumor protein expression of activated Akt, NFκB p65 and STAT3, versus HF (P<0.05). Tumor mRNA expression of inflammatory mediators TNFα, IL-6 and leptin were reduced in HF+FO, whereas IL-10 expression was increased compared to HF (P<0.05). Collectively these results demonstrate the efficacy of FO supplementation for improving obesity-associated breast cancer outcomes.
Collapse
Affiliation(s)
- Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| | - Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Jessie L Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Hannah Wellings
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Nadia M Cartwright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - William J Muller
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research, Montreal, QC, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa ON, Canada, K1H 8L1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| |
Collapse
|
26
|
Chen L, Zhang S, Sun X, McDonald JD, Bruno RS, Zhu J. Application of Comparative Lipidomics to Elucidate Postprandial Metabolic Excursions Following Dairy Milk Ingestion in Individuals with Prediabetes. J Proteome Res 2021; 20:2583-2595. [PMID: 33719448 PMCID: PMC8106868 DOI: 10.1021/acs.jproteome.0c01009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nutrient-dense dairy foods are an important component of a healthy diet. Recommendations, however, advise non- and low-fat dairy foods despite controversy concerning whether full-fat dairy foods adversely impact cardiometabolic health. Therefore, in this study, our objective is to examine the differential plasma lipidomic responses to non-fat or full-fat milk ingestion during postprandial hyperglycemia. Seven adults with prediabetes completed a randomized cross-over study in which glucose was consumed alone or with non-fat or full-fat dairy milk. Plasma samples collected at 90 min and 180 min post milk ingestion were used to perform untargeted lipidomics analysis. A total of 332 lipids from 20 classes and five lipid categories were detected at different time points during the postprandial period. Dairy milk, especially non-fat milk, protected against lipid changes otherwise induced by glucose ingestion. Co-ingestion of dairy milk with glucose, regardless of fat content, significantly altered lipid profiles although full-fat milk more substantially modulated lipid profiles. For the identified lipid biomarkers, 68.0% and 66.7% of the lipids significantly increased at 90 and 180 min, respectively, while phosphatidylcholines (GPs) contributed most for the significant increase. Comparative lipidomics analysis indicated that both types of dairy milk induced significant changes in several lipid pathways, including glycerophospholipid metabolism and α-linolenic acid metabolism, to protect against postprandial hyperglycemia. In summary, our comparative lipidomics results suggested that dairy milk-mediated lipid modulation may be an effective dietary approach to reduce the risk of metabolic diseases among those with prediabetes.
Collapse
Affiliation(s)
- Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaowei Sun
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua D. McDonald
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S. Bruno
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients 2021; 13:nu13030757. [PMID: 33652785 PMCID: PMC7996849 DOI: 10.3390/nu13030757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HF→HFB) or LF (11% fat as kcal; HF→LF) (n = 12/group). HF→HFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmβ, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HF→LF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HF→HFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HF→HFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.
Collapse
|
28
|
Li W, Chen C, Chen M, Zhang X, Ji Q, Wang Y, Zheng Q, Tan S, Gao X, Lu Y. Salted and Unsalted Zhàcài (Brassica juncea var. tumida) Alleviated High-Fat Diet-Induced Dyslipidemia by Regulating Gut Microbiota: A Multiomics Study. Mol Nutr Food Res 2020; 64:e2000798. [PMID: 33098239 DOI: 10.1002/mnfr.202000798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Zhàcài (ZC), a salting-processed Brassica juncea var. tumida vegetable, is widely consumed as a pickle, but little is known about the health benefits of both salted and unsalted ZC as a whole food. METHODS AND RESULTS The preventive effects of salted and unsalted ZC against dyslipidemia are assessed in high-fat (HF) diet-fed mice. HF intake for 12 continuous weeks cause dyslipidemia in mice, as evidenced by the elevations in serum total triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels by 30%, 66%, and 117%, respectively. Metabolomics analysis and the 16S rRNA genes sequencing suggest that dietary administration of salted and unsalted ZC (2.5% w/w) alleviates HF-induced dyslipidemia, metabolic disorders of short-chain fatty acids, and disturbance of intestinal flora in mice. These positive effects of unsalted ZC are stronger than those of salted ZC. Moreover, fecal bacteria transplantation confirms the antidyslipidemia of ZC. CONCLUSION These results suggest that consumption of ZC may prevent HF-induced dyslipidemia by regulating gut microbiota.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Chunlian Chen
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Mengting Chen
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Xiangyang Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Qin Ji
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Yu Wang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Qiaoran Zheng
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Xiaoxv Gao
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Yalong Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
29
|
Nakamura A, Yokoyama Y, Tanaka K, Benegiamo G, Hirayama A, Zhu Q, Kitamura N, Sugizaki T, Morimoto K, Itoh H, Fukuda S, Auwerx J, Tsubota K, Watanabe M. Asperuloside Improves Obesity and Type 2 Diabetes through Modulation of Gut Microbiota and Metabolic Signaling. iScience 2020; 23:101522. [PMID: 32932138 PMCID: PMC7498753 DOI: 10.1016/j.isci.2020.101522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/05/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Asperuloside (ASP) is an iridoid glycoside that is extracted from Eucommia leaves. Eucommia is used in traditional Chinese medicine and has a long history of benefits on health and longevity. Here, we investigated the impact of ASP on obesity-related metabolic disorders and show that ASP reduces body weight gain, glucose intolerance, and insulin resistance effectively in mice fed with a high-fat diet (HFD). Intestinal dysbiosis is closely linked with metabolic disorders. Our data indicate that ASP achieves these benefits on metabolic homeostasis by reversing HFD-induced gut dysbiosis and by changing gut-derived secondary metabolites and metabolic signaling. Our results indicate that ASP may be used to regulate gut microbiota for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Anna Nakamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Fujisawa, Kanagawa 252-0882, Japan
| | - Yoko Yokoyama
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Fujisawa, Kanagawa 252-0882, Japan
| | - Kazuki Tanaka
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan
| | - Giorgia Benegiamo
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Qi Zhu
- Health Science Laboratory, Keio Research Institute at SFC, Fujisawa, Kanagawa 252-0882, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Naho Kitamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Fujisawa, Kanagawa 252-0882, Japan
| | - Taichi Sugizaki
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kohkichi Morimoto
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Kazuo Tsubota
- Health Science Laboratory, Keio Research Institute at SFC, Fujisawa, Kanagawa 252-0882, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsuhiro Watanabe
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Fujisawa, Kanagawa 252-0882, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
30
|
Delzenne NM, Rodriguez J, Olivares M, Neyrinck AM. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord 2020; 21:369-380. [PMID: 32691288 DOI: 10.1007/s11154-020-09572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies in humans and animal models describe disturbances of the gut microbial ecosystem associated with adiposity and hallmarks of the metabolic syndrome, including hepatic and cardiovascular diseases. The manipulation of the microbiome, which is largely influenced by the diet, appears as an innovative therapeutic tool to prevent or control obesity and related diseases. This review describes the impact of nutrients on the gut microbiota composition and/or function and when available, the consequences on host physiology. A special emphasis is made on the contribution of bacterial-derived metabolites in the regulation of key gut functions that may explain their systemic effect.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Wei F, Liu Y, Bi C, Chen S, Wang Y, Zhang B. Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high-fat diet mice. Food Sci Nutr 2020; 8:2348-2359. [PMID: 32405392 PMCID: PMC7215204 DOI: 10.1002/fsn3.1521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/21/2023] Open
Abstract
Hyperlipidemia is associated with chronic inflammation and intestinal dysbiosis. The purpose of this study was to investigate the protective effect of Nostoc sphaeroids Kütz (NO) on diet-induced hyperlipidemia in mice. Experimental animals received a high-fat diet (HFD) for 4 weeks, then an HFD supplemented with 2.5% or 7.5% NO for 6 weeks. HFD-fed mice exhibited a significant increase in serum total cholesterol, triglycerides, and low-density lipid cholesterol, and a decrease in high-density lipid cholesterol. NO supplementation was associated with significantly lower dyslipidemia, decreased intestinal inflammation, and inhibition of toll-like receptor 4 gene repression in HFD-fed mice. Results suggest that NO treatment protected the integrity of the intestinal barrier. NO treatment was also associated with significant changes in the intestinal microbiota induced by HFD and an increase in the Firmicutes-to-Bacteroidetes ratio. Furthermore, NO treatment was also inversely correlated with mice obesity and hyperlipidemia NO and was associated with no significant in fecal short-chain fatty acids. In conclusion, NO significantly ameliorated hyperlipidemia induced by a HFD in mice, potentially via a decrease intestinal inflammation, increase in intestinal barrier integrity, and amelioration in the gut microbiota.
Collapse
Affiliation(s)
- Fenfen Wei
- Research Institute for Science and Technology of Functional FoodsBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| | - Yinlu Liu
- Research Institute for Science and Technology of Functional FoodsBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| | - Cuicui Bi
- Research Institute for Science and Technology of Functional FoodsBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| | - Sheng Chen
- Hunan Yandi Bioengineering Co., Ltd.ZhuzhouChina
| | - Yulan Wang
- Hunan Yandi Bioengineering Co., Ltd.ZhuzhouChina
| | - Bo Zhang
- Research Institute for Science and Technology of Functional FoodsBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| |
Collapse
|
32
|
Wang WW, Wang J, Zhang HJ, Wu SG, Qi GH. Supplemental Clostridium butyricum Modulates Lipid Metabolism Through Shaping Gut Microbiota and Bile Acid Profile of Aged Laying Hens. Front Microbiol 2020; 11:600. [PMID: 32351471 PMCID: PMC7176355 DOI: 10.3389/fmicb.2020.00600] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Probiotic Clostridium butyricum could affect lipid metabolism in broilers. However, it is not clear whether C. butyricum could improve lipid metabolism through shaping gut microbiota and bile acid (BA) profile of laying hens. We aimed to evaluate the contributions of gut microbiota and BA profile to the potential effect of C. butyricum on lipid metabolism of aged laying hens. A total of 192 60-week-old Hy-Line Brown laying hens were divided into two groups (eight replicates per group). Birds were fed a basal diet supplemented with 0 or 2.7 g/kg C. butyricum (1.0 × 109 CFU/g). Samples were collected at the end of week 8 of the experiment. The results showed elevated (P < 0.05) concentrations of glucagon-like peptide 1, insulin and thyroid hormones in serum responded to C. butyricum addition, which also decreased (P < 0.05) hepatic free fatty acids contents, as well as increased (P < 0.05) the expression of hepatic acyl-CoA oxidase, farnesoid X receptor (FXR) and PPARα. C. butyricum addition increased (P < 0.05) Bacteroidetes abundance but tended to decrease (P < 0.10) Firmicutes abundance in the ileum. Besides, C. butyricum addition resulted in higher (P < 0.05) abundances of Clostridia (Clostridiales) and Prevotellaceae, concurrent with an increasing trend (P < 0.10) of Bifidobacteriaceae abundance and decreased the abundances of several harmful bacteria such as Klebsiella (P < 0.05). Regarding ileal BA profile, there was a reduced (P < 0.05) content of tauro-α-muricholic acid, increased (P < 0.05) contents of tauroursodeoxycholic acid and lithocholic acid, along with increasing trends (P < 0.10) of glycochenodeoxycholic acid and hyodeoxycholic acid contents due to C. butyricum addition, which also increased (P < 0.05) ileal FXR expression. Collectively, supplemental C. butyricum accelerated hepatic fatty acid oxidation, and shaped gut microbiota and BA profile, thus reducing fat deposition in the liver of aged laying hens.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Han Y, Xiao H. Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annu Rev Food Sci Technol 2020; 11:119-143. [DOI: 10.1146/annurev-food-111519-014337] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intake of whole foods, such as fruits and vegetables, may confer health benefits to the host. The beneficial effects of fruits and vegetables were mainly attributed to their richness in polyphenols and microbiota-accessible carbohydrates (MACs). Components in fruits and vegetables modulate composition and associated functions of the gut microbiota, whereas gut microbiota can transform components in fruits and vegetables to produce metabolites that are bioactive and important for health. The progression of multiple diseases, such as obesity and inflammatory bowel disease, is associated with diet and gut microbiota. Although the exact causality between these diseases and specific members of gut microbiota has not been well characterized, accumulating evidence supported the role of fruits and vegetables in modulating gut microbiota and decreasing the risks of microbiota-associated diseases. This review summarizes the latest findings on the effects of whole fruits and vegetables on gut microbiota and associated diseases.
Collapse
Affiliation(s)
- Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
34
|
Xu H, Zhao C, Li Y, Liu R, Ao M, Li F, Yao Y, Tao Z, Yu L. The ameliorative effect of the Pyracantha fortuneana (Maxim.) H. L. Li extract on intestinal barrier dysfunction through modulating glycolipid digestion and gut microbiota in high fat diet-fed rats. Food Funct 2020; 10:6517-6532. [PMID: 31538163 DOI: 10.1039/c9fo01599j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pyracantha fortuneana fruits are consumed as a dietary supplement in China and attenuate obesity and metabolic disorders. Obesity is known to be associated with intestinal barrier dysfunction driven by hyperglycemia and gut dysbiosis. However, whether the health benefits of P. fortuneana fruits are linked with the intestinal barrier function (IBF) remains unknown. This study aimed to evaluate the restorative effects of P. fortuneana fruit extract (PFE) on the IBF. Sprague Dawley rats were fed with a chow, a high-fat diet (HFD), or a PFE-supplemented diet for 8 weeks. Results showed that PFE intervention ameliorated HFD-induced intestinal barrier dysfunction by attenuating impaired structural integrity, reducing the elevated lactulose/mannitol ratio, and improving the mRNA and protein expression levels of tight junction proteins in HFD-fed rats. The ameliorations were associated with a beneficial effect on glycolipid homeostasis, as evidenced from the PFE decreasing intestinal absorptive capacity based on the d-xylose excretory rate, lowering the expression of GLUT2 and inhibiting digestive enzyme activities. The proanthocyanidins in the PFE showed greater in vitro inhibition on α-amylase, α-glucosidase, and lipase compared with triterpenoid saponins. Furthermore, the ameliorations on the IBF were also associated with effects on the microbial composition based on 16S rRNA gene sequence analysis. Several bacterial groups, which were linked with gut barrier integrity, were modulated after PFE administration, that is, Actinobacteria, Bacteroidaceae, Corynebacteriaceae, Lactobacillaceae, and S24-7 were elevated and the HFD-induced increase in Clostridia, Ruminococcaceae, Oscillospira, and Flexispira was restored. These data provide evidence for the ameliorative effect of the PFE on diet-induced intestinal barrier functional alternations in association with its capacity to modulate glycolipid digestion and gut microbiota in HFD-fed obese rats.
Collapse
Affiliation(s)
- Hang Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
McGinley JN, Fitzgerald VK, Neil ES, Omerigic HM, Heuberger AL, Weir TL, McGee R, Vandemark G, Thompson HJ. Pulse Crop Effects on Gut Microbial Populations, Intestinal Function, and Adiposity in a Mouse Model of Diet-Induced Obesity. Nutrients 2020; 12:E593. [PMID: 32106420 PMCID: PMC7146478 DOI: 10.3390/nu12030593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
The dietary fiber gap that is present in many countries co-exists with a low intake of grain legumes (pulses) that have 2-3 times more dietary fiber than cereal grains that are commonly recommended to increase fiber intake. Given the relationships among dietary fiber, gut health and chronic disease risk, a study was undertaken in a preclinical mouse model for obesity to examine how commonly consumed pulses, i.e., chickpea, common bean, dry pea and lentil, would impact gut microbes, intestinal function, and adiposity. Pulses were fed to C57BL/6 mice at similar levels of protein and fiber. Bacterial count in the cecum was elevated 3-fold by pulse consumption. At the phylum level, a 2.2- to 5-fold increase in Bacteriodetes relative to Firmicutes was observed. For Akkermansia muciniphila, a health-beneficial bacterium, differential effects were detected among pulses ranging from no effect to a 49-fold increase. Significant differences among pulses in biomarkers of intestinal function were not observed. Pulses reduced accumulation of lipid in adipose tissue with a greater reduction in the subcutaneous versus visceral depots. Metabolomics analysis indicated that 108 metabolites were highly different among pulse types, and several compounds are hypothesized to influence the microbiome. These results support recent recommendations to increase consumption of pulse-based foods for improved health, although all pulses were not equal in their effects.
Collapse
Affiliation(s)
- John N. McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (J.N.M.); (V.K.F.); (E.S.N.)
| | - Vanessa K. Fitzgerald
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (J.N.M.); (V.K.F.); (E.S.N.)
| | - Elizabeth S. Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (J.N.M.); (V.K.F.); (E.S.N.)
| | - Heather M. Omerigic
- Department of Horticulture, Colorado State University, Fort Collins, CO 80523, USA; (H.M.O.); (A.L.H.)
| | - Adam L. Heuberger
- Department of Horticulture, Colorado State University, Fort Collins, CO 80523, USA; (H.M.O.); (A.L.H.)
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rebecca McGee
- USDA-ARS Grain Legume Genetics and Physiology, Washington State University, Pullman, WA 99164, USA; (R.M.); (G.V.)
| | - George Vandemark
- USDA-ARS Grain Legume Genetics and Physiology, Washington State University, Pullman, WA 99164, USA; (R.M.); (G.V.)
| | - Henry J. Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (J.N.M.); (V.K.F.); (E.S.N.)
| |
Collapse
|
36
|
Li Q, Liang X, Xue X, Wang K, Wu L. Lipidomics Provides Novel Insights into Understanding the Bee Pollen Lipids Transepithelial Transport and Metabolism in Human Intestinal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:907-917. [PMID: 31842537 DOI: 10.1021/acs.jafc.9b06531] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bee pollen (BP) shows profound gut-protecting potentials. BP lipids (BPLs) mainly composed by phospholipids and polyunsaturated fatty acids might be one of the important contributors, while how BPL exerts gut-protecting effects and is transported through intestinal cell monolayers need to be investigated. Here, we exploited a strategy that combines an UPLC-Q-exactive orbitrap/MS-based lipidomics approach with a human intestinal cell (Caco-2) monolayer transport model, to determine the transepithelial transportation of BPL from Camellia sinensis L. (BPL-Cs), in pathological conditions. The results showed that BPL-Cs protected Caco-2 cells against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction by improving cell viability, maintaining membrane integrity, increasing tight junctions (ZO-1 and Claudin-1), and eliciting the expressions of antioxidative-related genes (NQO1, Nrf2, Txnrd1, and GSTA1). Lipidomics analysis revealed that DSS suppressed the transport and uptake of most of BPL-Cs including glycerophospholipids, sphingomyelins, and glycosylsphingolipids. Pretreatment with BPL-Cs significantly regulated glycerophospholipid and sphingolipid metabolisms, potentially involved in building permeability barriers and alleviating intestinal oxidative stress. Finally, eight classes of lipids were identified as the potential biomarkers for evaluating DSS-induced Caco-2 cell dysfunctions and BPL-intervened modulation. These findings shed light on the development of BPL as gastrointestinal protective food supplements in the future.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Xinwen Liang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| |
Collapse
|
37
|
Huang K, Yu W, Li S, Guan X, Liu J, Song H, Liu D, Duan R. Effect of embryo-remaining oat rice on the lipid profile and intestinal microbiota in high-fat diet fed rats. Food Res Int 2019; 129:108816. [PMID: 32036900 DOI: 10.1016/j.foodres.2019.108816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Embryo-remaining oat rice (EROR), as a newly developed oat product, is popular in China for its good taste, but little is known about its healthy functions. In this study, the effects of EROR on lipid metabolism regulation were investigated in in vitro and in vivo models. The results showed that the oat ethanol extracts significantly alleviated lipid accumulation, total cholesterol and triglyceride levels in HepG2 cells. EROR supplementation dramatically improved the lipid profile in the serum and liver and downregulated the expression levels of HMGCR, SREBP-1C and FAS, which are related to lipid metabolic disorder in high-fat diet (HFD) fed rats. A HFD decreases the production of short-chain fatty acids (SCFAs) in the cecum, which are related to intestinal microbiota dysbiosis. The intake of EROR significantly increased the total SCFAs, acetate and propionate and promoted the abundance of SCFA-producing bacteria. Furthermore, the intake of EROR led to abundant increases in Bifidobacterium and Akkermansia and decreases of Rombutsia, Fusicatenibacter, Holdemanella and Turicibacter, which were negatively and positively correlated with the lipid metabolism-related indices. These results provide evidence that EROR is a good functional food candidate to ameliorate lipid metabolic disorder and hyperlipidemia.
Collapse
Affiliation(s)
- Kai Huang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Wenwen Yu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Sen Li
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Jing Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 200135, PR China
| | - Hongdong Song
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Dandan Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Ruiqian Duan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
38
|
Cooked Red Lentils Dose-Dependently Modulate the Colonic Microenvironment in Healthy C57Bl/6 Male Mice. Nutrients 2019; 11:nu11081853. [PMID: 31405019 PMCID: PMC6724071 DOI: 10.3390/nu11081853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary pulses, including lentils, are protein-rich plant foods that are enriched in intestinal health-promoting bioactives, such as non-digestible carbohydrates and phenolic compounds. The aim of this study was to investigate the effect of diets supplemented with cooked red lentils on the colonic microenvironment (microbiota composition and activity and epithelial barrier integrity and function). C57Bl/6 male mice were fed one of five diets: a control basal diet (BD), a BD-supplemented diet with 5, 10 or 20% cooked red lentils (by weight), or a BD-supplemented diet with 0.7% pectin (equivalent soluble fiber level as found in the 20% lentil diet). Red lentil supplementation resulted in increased: (1) fecal microbiota α-diversity; (2) abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Prevotella, Roseburia and Dorea spp.); (3) concentrations of fecal SCFAs; (4) mRNA expression of SCFA receptors (G-protein-coupled receptors (GPR 41 and 43) and tight/adherens junction proteins (Zona Occulden-1 (ZO-1), Claudin-2, E-cadherin). Overall, 20% lentil had the greatest impact on colon health outcomes, which were in part explained by a change in the soluble and insoluble fiber profile of the diet. These results support recent public health recommendations to increase consumption of plant-based protein foods for improved health, in particular intestinal health.
Collapse
|