1
|
Nakamura Y, Wada S, Miyake C, Makino A, Suzuki Y. Regulation of photosystems II and I depending on N partitioning to Rubisco in rice leaves: a study using Rubisco-antisense transgenic plants. JOURNAL OF PLANT RESEARCH 2024; 137:1165-1175. [PMID: 39327385 DOI: 10.1007/s10265-024-01582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
We have previously suggested that in rice (Oryza sativa L.) leaves of different ages and N nutrition statuses, photosystems II and I (PSII and PSI, respectively) are regulated depending on N partitioning to Rubisco, which can determine the magnitude of unutilized light energy. The robustness of this mechanism was tested using Rubisco-antisense transgenic rice plants, in which reduced N partitioning to Rubisco markedly increases unutilized light energy. In wild-type plants, N partitioning to Rubisco tended to be smaller in the leaves at lower positions owing to leaf senescence. In the transgenic plants, N partitioning to Rubisco was generally smaller than in the wild-type plants and was relatively constant among leaf positions. The quantum efficiency of PSII [Y(II)] and quantum yield of non-photochemical quenching [Y(NPQ)] correlated positively and negatively, respectively, with N partitioning to Rubisco irrespective of leaf position or genotype. The oxidation levels of the reaction center chlorophyll of PSI (P700) [Y(ND)] negatively correlated with N partitioning to Rubisco. However, in mature and early senescent leaves of the transgenic plants, Y(ND) was markedly lower than expected from N partitioning to Rubisco. These results suggest that in the transgenic plants, the regulation depending on N partitioning to Rubisco is robust for PSII but fails for PSI in mature and early senescing leaves. In these leaves, the magnitudes of P700 oxidation were found to be less than expected from the Y(II) and Y(NPQ) values. The mechanistic reasons and physiological implications of these phenomena are discussed.
Collapse
Affiliation(s)
- Yuta Nakamura
- Graduate School of Arts and Sciences, Iwate University, Morioka, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
- Institute for Excellence in Higher Education, Tohoku University, Sendai, 980-8576, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| |
Collapse
|
2
|
Popson D, D’Silva S, Wheeless K, Morgan-Kiss R. Permanent Stress Adaptation and Unexpected High Light Tolerance in the Shade-Adapted Chlamydomonas priscui. PLANTS (BASEL, SWITZERLAND) 2024; 13:2254. [PMID: 39204690 PMCID: PMC11359158 DOI: 10.3390/plants13162254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The Antarctic photopsychrophile, Chlamydomonas priscui UWO241, is adapted to extreme environmental conditions, including permanent low temperatures, high salt, and shade. During long-term exposure to this extreme habitat, UWO241 appears to have lost several short-term mechanisms in favor of constitutive protection against environmental stress. This study investigated the physiological and growth responses of UWO241 to high-light conditions, evaluating the impacts of long-term acclimation to high light, low temperature, and high salinity on its ability to manage short-term photoinhibition. We found that UWO241 significantly increased its growth rate and photosynthetic activity at growth irradiances far exceeding native light conditions. Furthermore, UWO241 exhibited robust protection against short-term photoinhibition, particularly in photosystem I. Lastly, pre-acclimation to high light or low temperatures, but not high salinity, enhanced photoinhibition tolerance. These findings extend our understanding of stress tolerance in extremophilic algae. In the past 2 decades, climate change-related increasing glacial stream flow has perturbed long-term stable conditions, which has been associated with lake level rise, the thinning of ice covers, and the expansion of ice-free perimeters, leading to perturbations in light and salinity conditions. Our findings have implications for phytoplankton survival and the response to change scenarios in the light-limited environment of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
| | | | | | - Rachael Morgan-Kiss
- Department of Microbiology, Miami University, Oxford, OH 45056, USA; (D.P.); (S.D.); (K.W.)
| |
Collapse
|
3
|
Wang G, Mao J, Ji M, Wang W, Fu J. A comprehensive assessment of photosynthetic acclimation to shade in C4 grass (Cynodon dactylon (L.) Pers.). BMC PLANT BIOLOGY 2024; 24:591. [PMID: 38902617 PMCID: PMC11191358 DOI: 10.1186/s12870-024-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.
Collapse
Affiliation(s)
- Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinyan Mao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
| | - Mingxia Ji
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
4
|
Wang T, Sun Q, Zheng Y, Xu Y, Liu B, Li Q. Effects of Red and Blue Light on the Growth, Photosynthesis, and Subsequent Growth under Fluctuating Light of Cucumber Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1668. [PMID: 38931100 PMCID: PMC11207261 DOI: 10.3390/plants13121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The effects of red and blue light on growth and steady-state photosynthesis have been widely studied, but there are few studies focusing on dynamic photosynthesis and the effects of LED pre-treatment on cucumber seedlings' growth, so in this study, cucumber (Cucumis sativus L. cv. Jinyou 365) was chosen as the test material. White light (W), monochromatic red light (R), monochromatic blue light (B), and mixed red and blue lights with different red-to-blue ratios (9:1, 7:3, 5:5, 3:7, and 1:9) were set to explore the effects of red and blue light on cucumber seedlings' growth, steady-state photosynthesis, dynamic photosynthesis, and subsequent growth under fluctuating light. The results showed that compared with R and B, mixed red and blue light was more suitable for cucumber seedlings' growth, and the increased blue light ratios would decrease the biomass of cucumber seedlings under mixed red and blue light; cucumber seedlings under 90% red and 10% blue mixed light (9R1B) grew better than other treatments. For steady-state photosynthesis, blue light decreased the actual net photosynthetic rate but increased the maximum photosynthetic capacity by promoting stomatal development and opening; 9R1B exhibited higher actual net photosynthetic rate, but the maximum photosynthetic capacity was low. For dynamic photosynthesis, the induction rate of photosynthetic rate and stomatal conductance were also accelerated by blue light. For subsequent growth under fluctuating light, higher maximum photosynthetic capacity and photoinduction rate could not promote the growth of cucumber seedlings under subsequent fluctuating light, while seedlings pre-treated with 9R1B and B grew better under subsequent fluctuating light due to the high plant height and leaf area. Overall, cucumber seedlings treated with 9R1B exhibited the highest biomass and it grew better under subsequent fluctuating light due to the higher actual net photosynthetic rate, plant height, and leaf area.
Collapse
Affiliation(s)
- Tengqi Wang
- College of Horticulture Science and Engineering, Shandong Agriculture University, Tai’an 271018, China; (T.W.); (Q.S.)
| | - Qiying Sun
- College of Horticulture Science and Engineering, Shandong Agriculture University, Tai’an 271018, China; (T.W.); (Q.S.)
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.Z.); (Y.X.)
| | - Yaliang Xu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.Z.); (Y.X.)
| | - Binbin Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.Z.); (Y.X.)
| |
Collapse
|
5
|
Niu Y, Matsubara S, Nedbal L, Lazár D. Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light. PLANT, CELL & ENVIRONMENT 2024; 47:2240-2257. [PMID: 38482712 DOI: 10.1111/pce.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/28/2024] [Indexed: 04/30/2024]
Abstract
Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
6
|
Muino JM, Großmann C, Kleine T, Kaufmann K. Natural genetic variation in GLK1-mediated photosynthetic acclimation in response to light. BMC PLANT BIOLOGY 2024; 24:87. [PMID: 38311744 PMCID: PMC10840168 DOI: 10.1186/s12870-024-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Current Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Christopher Großmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Munich, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Yang QY, Wang XQ, Yang YJ, Huang W. Fluctuating light induces a significant photoinhibition of photosystem I in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108426. [PMID: 38340689 DOI: 10.1016/j.plaphy.2024.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.
Collapse
Affiliation(s)
- Qiu-Yan Yang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Qian Wang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China
| | - Ying-Jie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
8
|
Chaturvedi AK, Dym O, Levin Y, Fluhr R. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity. PLANT PHYSIOLOGY 2024; 194:1059-1074. [PMID: 37787609 DOI: 10.1093/plphys/kiad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Plants have evolved photosynthetic regulatory mechanisms to maintain homeostasis in response to light changes during diurnal transitions and those caused by passing clouds or by wind. One such adaptation directs photosynthetic electron flow to a cyclic pathway to alleviate excess energy surges. Here, we assign a function to regulatory cysteines of PGR5-like protein 1A (PGRL1A), a constituent of the PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow (CEF) pathway. During step increases from darkness to low light intensity in Arabidopsis (Arabidopsis thaliana), the intermolecular disulfide of the PGRL1A 59-kDa complex was reduced transiently within seconds to the 28-kDa form. In contrast, step increases from darkness to high light stimulated a stable, partially reduced redox state in PGRL1A. Mutations of 2 cysteines in PGRL1A, Cys82 and Cys183, resulted in a constitutively pseudo-reduced state. The mutant displayed higher proton motive force (PMF) and nonphotochemical quenching (NPQ) than the wild type (WT) and showed altered donor and acceptor dynamic flow around PSI. These changes were found to correspond with the redox state of PGRL1A. Continuous light regimes did not affect mutant growth compared to the WT. However, under fluctuating regimes of high light, the mutant showed better growth than the WT. In contrast, in fluctuating regimes of low light, the mutant displayed a growth penalty that can be attributed to constant stimulation of CEF under low light. Treatment with photosynthetic inhibitors indicated that PGRL1A redox state control depends on the penultimate Fd redox state. Our results showed that redox state changes in PGRL1A are crucial to optimize photosynthesis.
Collapse
Affiliation(s)
- Amit Kumar Chaturvedi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Casal-Porras I, Muñoz K, Ortega MJ, Brun FG, Zubía E. Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure. PLANTS (BASEL, SWITZERLAND) 2023; 12:4078. [PMID: 38140405 PMCID: PMC10748107 DOI: 10.3390/plants12244078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Seagrasses are plants adapted to the marine environment that inhabit shallow coastal waters, where they may be exposed to direct sunlight during low tides. These plants have photoprotection mechanisms, which could include the use of phenolic secondary metabolites. In this study, rosmarinic acid (RA) and the flavonoids of Zostera noltei from the Bay of Cadiz (Spain) have been analyzed, first to define suitable conditions of leaves (i.e., fresh, dried, or frozen) for quantitative analysis, and then to explore the potential correlation between the phenolic profile of the leaves and sunlight exposure using an in situ experimental approach. Compared with fresh leaves, the contents of RA and flavonoids were significantly lower in air-dried and freeze-dried leaves. Freezing caused highly variable effects on RA and did not affect to flavonoid levels. On the other hand, the content of RA was significantly higher in plants that emerged during low tides than in plants permanently submerged, while plants underneath an artificial UV filter experienced a progressive reduction in RA content. However, the major flavonoids did not show a clear response to sunlight exposure and were unresponsive to diminished UV incidence. The results showed a positive correlation of RA with direct sunlight and UV exposure of leaves, suggesting that this compound contributes to the photoprotection of Z. noltei.
Collapse
Affiliation(s)
- Isabel Casal-Porras
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - Kimberly Muñoz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - María J. Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Fernando G. Brun
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| |
Collapse
|
10
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
11
|
Kalra I, Wang X, Zhang R, Morgan-Kiss R. High salt-induced PSI-supercomplex is associated with high CEF and attenuation of state transitions. PHOTOSYNTHESIS RESEARCH 2023; 157:65-84. [PMID: 37347385 PMCID: PMC10484818 DOI: 10.1007/s11120-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
While PSI-driven cyclic electron flow (CEF) and assembly of thylakoid supercomplexes have been described in model organisms like Chlamydomonas reinhardtii, open questions remain regarding their contributions to survival under long-term stress. The Antarctic halophyte, C. priscuii UWO241 (UWO241), possesses constitutive high CEF rates and a stable PSI-supercomplex as a consequence of adaptation to permanent low temperatures and high salinity. To understand whether CEF represents a broader acclimation strategy to short- and long-term stress, we compared high salt acclimation between the halotolerant UWO241, the salt-sensitive model, C. reinhardtii, and a moderately halotolerant Antarctic green alga, C. sp. ICE-MDV (ICE-MDV). CEF was activated under high salt and associated with increased non-photochemical quenching in all three Chlamydomonas species. Furthermore, high salt-acclimated cells of either strain formed a PSI-supercomplex, while state transition capacity was attenuated. How the CEF-associated PSI-supercomplex interferes with state transition response is not yet known. We present a model for interaction between PSI-supercomplex formation, state transitions, and the important role of CEF for survival during long-term exposure to high salt.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
- Present Address: Department of Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | | |
Collapse
|
12
|
Singh PR, Pathak J, Rajneesh, Ahmed H, Häder DP, Sinha RP. Physiological responses of the cyanobacterium Synechocystis sp. PCC 6803 under rhythmic light variations. Photochem Photobiol Sci 2023; 22:2055-2069. [PMID: 37227683 DOI: 10.1007/s43630-023-00429-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Cyanobacteria are challenged by daily fluctuations of light intensities and photoperiod in their natural habitats, which affect the physiology and fitness of cyanobacteria. Circadian rhythms (CRs), an important endogenous process found in all organisms including cyanobacteria, control their physiological activities and helps in coping with 24-h light/dark (LD) cycle. In cyanobacteria, physiological responses under rhythmic ultraviolet radiation (UVR) are poorly studied. Therefore, we studied the changes in photosynthetic pigments, and physiological parameters of Synechocystis sp. PCC 6803 under UVR and photosynthetically active radiation (PAR) of light/dark (LD) oscillations having the combinations of 0, 4:20, 8:16, 12:12, 16:8, 20:4, and 24:24 h. The LD 16:8 enhanced the growth, pigments, proteins, photosynthetic efficiency, and physiology of Synechocystis sp. PCC6803. Continuous light (LL 24) of UVR and PAR exerted negative impact on the photosynthetic pigments, and chlorophyll fluorescence. Significant increase in reactive oxygen species (ROS) resulted in loss of plasma membrane integrity followed by decreased viability of cells. The dark phase played a significant role in Synechocystis to withstand the LL 24 under PAR and UVR. This study offers detailed understanding of the physiological responses of the cyanobacterium to changing light environment.
Collapse
Affiliation(s)
- Prashant R Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jainendra Pathak
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, Pt. Jawaharlal Nehru College (Affiliated to Bundelkhand University, Jhansi), Banda, 210001, India
| | - Rajneesh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Haseen Ahmed
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Donat-P Häder
- Department of Biology, Emeritus From Friedrich-Alexander University, Neue Str. 9, 91096, Möhrendorf, Germany
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- University Center for Research and Development (UCRD), Chandigarh University, Chandigarh, India.
| |
Collapse
|
13
|
Niu Y, Lazár D, Holzwarth AR, Kramer DM, Matsubara S, Fiorani F, Poorter H, Schrey SD, Nedbal L. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport. THE NEW PHYTOLOGIST 2023. [PMID: 37429324 DOI: 10.1111/nph.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, NL-1081 HV, Amsterdam, the Netherlands
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia D Schrey
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
14
|
Li YT, Gao HY, Zhang ZS. Effects of Environmental and Non-Environmental Factors on Dynamic Photosynthetic Carbon Assimilation in Leaves under Changing Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2015. [PMID: 37653932 PMCID: PMC10223794 DOI: 10.3390/plants12102015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Major research on photosynthesis has been carried out under steady light. However, in the natural environment, steady light is rare, and light intensity is always changing. Changing light affects (usually reduces) photosynthetic carbon assimilation and causes decreases in biomass and yield. Ecologists first observed the importance of changing light for plant growth in the understory; other researchers noticed that changing light in the crop canopy also seriously affects yield. Here, we review the effects of environmental and non-environmental factors on dynamic photosynthetic carbon assimilation under changing light in higher plants. In general, dynamic photosynthesis is more sensitive to environmental and non-environmental factors than steady photosynthesis, and dynamic photosynthesis is more diverse than steady photosynthesis. Finally, we discuss the challenges of photosynthetic research under changing light.
Collapse
Affiliation(s)
- Yu-Ting Li
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Hui-Yuan Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Zi-Shan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
15
|
Han LJ, Fan DY, Wang XP, Xu CY, Xia XL, Chow WS. The Protective Role of Non-Photochemical Quenching in PSII Photo-Susceptibility: A Case Study in the Field. PLANT & CELL PHYSIOLOGY 2023; 64:43-54. [PMID: 36201365 DOI: 10.1093/pcp/pcac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Non-photochemical quenching (NPQ) has been regarded as a safety valve to dissipate excess absorbed light energy not used for photochemistry. However, there exists no general consensus on the photoprotective role of NPQ. In the present study, we quantified the Photosystem II (PSII) photo-susceptibilities (mpi) in the presence of lincomycin, under red light given to five shade-acclimated tree species grown in the field. Photosynthetic energy partitioning theory was applied to investigate the relationships between mpi and each of the regulatory light-induced NPQ [Y(NPQ)], the quantum yield of the constitutive nonregulatory NPQ [Y(NO)] and the PSII photochemical yield in the light-adapted state [Y(PSII)] under different red irradiances. It was found that in the low to moderate irradiance range (50-800 μmol m-2 s-1) when the fraction of open reaction centers (qP) exceeded 0.4, mpi exhibited no association with Y(NPQ), Y(NO) and Y(PSII) across species. However, when qP < 0.4 (1,500 μmol m-2 s-1), there existed positive relationships between mpi and Y(NPQ) or Y(NO) but a negative relationship between mpi and Y(PSII). It is postulated that both Y(NPQ) and Y(NO) contain protective and damage components and that using only Y(NPQ) or Y(NO) metrics to identify the photo-susceptibility of a species is a risk. It seems that qP regulates the balance of the two components for each of Y(NPQ) and Y(NO). Under strong irradiance, when both protective Y(NPQ) and Y(NO) are saturated/depressed, the forward electron flow [i.e. Y(PSII)] acts as the last defense to resist photoinhibition.
Collapse
Affiliation(s)
- Li-Jun Han
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Da-Yong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiang-Ping Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Cheng-Yang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xin-Li Xia
- National Engineering Laboratory Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Suzuki Y, Ohsaki K, Takahashi Y, Wada S, Miyake C, Makino A. Behavior of Photosystems II and I Is Modulated Depending on N Partitioning to Rubisco in Mature Leaves Acclimated to Low N Levels and Senescent Leaves in Rice. PLANT & CELL PHYSIOLOGY 2023; 64:55-63. [PMID: 36208302 DOI: 10.1093/pcp/pcac139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In mature leaves acclimated to low N levels and in senescent leaves, photosystems II and I (PSII and PSI, respectively) show typical responses to excess light energy. As CO2 assimilation is not transiently suppressed in these situations, the behavior of PSII and PSI is likely caused by endogenous biochemical changes in photosynthesis. In this study, this subject was studied in rice (Oryza sativa L.). Analysis was performed on mature and senescent leaves of control and N-deficient plants. Total leaf-N, Rubisco and chlorophyll (Chl) levels and their ratios were determined as biochemical parameters of photosynthesis. Total leaf-N, Rubisco and Chl levels decreased in the mature leaves of N-deficient plants and senescent leaves. The percentage of Rubisco-N in the total leaf-N decreased in these leaves, whereas that of Chl-N tended to remain almost constant in mature leaves but increased in senescent leaves. Changes in PSII and PSI parameters were best accounted for by the Rubisco-N percentage, strongly suggesting that the behavior of PSII and PSI is modulated depending on changes in N partitioning to Rubisco in mature leaves acclimated to low N levels and in senescent leaves. It is likely that a decrease in N partitioning to Rubisco leads to a decrease in Rubisco capacity relative to other photosynthetic capacities that inevitably generate excess light energy and that the operation of PSII and PSI is modulated in such situations.
Collapse
Affiliation(s)
- Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Kaho Ohsaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Yuki Takahashi
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572 Japan
| |
Collapse
|
17
|
Cun Z, Xu XZ, Zhang JY, Shuang SP, Wu HM, An TX, Chen JW. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1095726. [PMID: 36714733 PMCID: PMC9878349 DOI: 10.3389/fpls.2022.1095726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiang-Zeng Xu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Research Center for Collection and Utilization of Tropical Crop Resources, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
Alameldin HF, Montgomery BL. Plasticity of Arabidopsis rosette transcriptomes and photosynthetic responses in dynamic light conditions. PLANT DIRECT 2023; 7:e475. [PMID: 36628154 PMCID: PMC9822700 DOI: 10.1002/pld3.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
With the high variability of natural growth environments, plants exhibit flexibility and resilience in regard to the strategies they employ to maintain overall fitness, including maximizing light use for photosynthesis, while simultaneously limiting light-associated damage. We measured distinct parameters of photosynthetic performance of Arabidopsis thaliana plants under dynamic light regimes. Plants were grown to maturity then subjected to the following 5-day (16 h light, 8 h dark) regime: Day 1 at constant light (CL) intensity during light period, representative of a common lab growth condition; Day 2 under sinusoidal variation in light intensity (SL) during the light period that is representative of changes occurring during a clear sunny day; Day 3 under fluctuating light (FL) intensity during the light period that simulates sudden changes that might occur with the movements of clouds in and out of the view of the sun; Day 4, repeat of CL; and Day 5, repeat of FL. We also examined the global transcriptome profile in these growth conditions based on obtaining RNA-sequencing (RNA-seq) data for whole plant rosettes. Our transcriptomic analyses indicated downregulation of photosystem I (PSI) and II (PSII) associated genes, which were correlated with elevated levels of photoinhibition as indicated by measurements of nonphotochemical quenching (NPQ), energy-dependent quenching (qE), and inhibitory quenching (qI) under both SL and FL conditions. Furthermore, our transcriptomic results indicated downregulation of tetrapyrrole biosynthesis associated genes, coupled with reduced levels of chlorophyll under both SL and FL compared with CL, as well as downregulation of photorespiration-associated genes under SL. We also noticed an enrichment of the stress response gene ontology (GO) terms for genes differentially regulated under FL when compared with SL. Collectively, our phenotypic and transcriptome analyses serve as useful resources for probing the underlying molecular mechanisms associated with plant acclimation to rapid light intensity changes in the natural environment.
Collapse
Affiliation(s)
- Hussien F. Alameldin
- DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Agricultural Genetic Engineering Research Institute (AGERI)Agriculture Research Center (ARC)GizaEgypt
| | - Beronda L. Montgomery
- DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Department of BiologyGrinnell CollegeGrinnellIowaUSA
| |
Collapse
|
19
|
Correia C, Magnani F, Pastore C, Cellini A, Donati I, Pennisi G, Paucek I, Orsini F, Vandelle E, Santos C, Spinelli F. Red and Blue Light Differently Influence Actinidia chinensis Performance and Its Interaction with Pseudomonas syringae pv. Actinidiae. Int J Mol Sci 2022; 23:13145. [PMID: 36361938 PMCID: PMC9658526 DOI: 10.3390/ijms232113145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 03/08/2024] Open
Abstract
Light composition modulates plant growth and defenses, thus influencing plant-pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R-50%B (50R) and 25%R-75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses.
Collapse
Affiliation(s)
- Cristiana Correia
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Federico Magnani
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Chiara Pastore
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Pennisi
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Ivan Paucek
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Francesco Orsini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Conceição Santos
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Francesco Spinelli
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
20
|
Ferroni L, Živčak M, Kovar M, Colpo A, Pancaldi S, Allakhverdiev SI, Brestič M. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112549. [PMID: 36049286 DOI: 10.1016/j.jphotobiol.2022.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The wheat lines affected by a decrease in the leaf chlorophyll content typically experience a biomass loss. A known major problem of the chlorophyll-deficient wheat mutants is their limited prevention of Photosystem I (PSI) over-reduction brought about by an insufficient cyclic electron flow, potentially exposing them to a higher sensitivity to light fluctuations. However, the resistance of some mutant lines against fluctuating light suggests the occurrence of regulatory processes compensating for the defect in cyclic electron flow. In this study, a phenotyping approach based on fast chlorophyll a fluorescence induction (OJIP transient), corroborated by P700 redox kinetics, was applied to a collection of chlorophyll-deficient wheat lines, grown under continuous or fluctuating light. Quantitative parameters calculated from the OJIP transient are considered informative about Photosystem II (PSII) functional antenna size and photochemistry, as well as the functioning of the entire photosynthetic electron transport chain. The mutants tended to recover a wild-type-like chlorophyll content, and mature plants could hardly be distinguished based on their effective PSII antenna size. Nevertheless, specific OJIP-derived parameters were strongly correlated with the phenotype severity, in particular the amplitude of the I-P phase and the I-P/J-P amplitude ratio, which are indicative of a more capacitive pool of PSI final electron acceptors (ferredoxin and ferredoxin-NADP+ oxidoreductase, FNR). We propose that the enlargement of such pool of electron carriers is a compensatory response operating at the acceptor side of PSI to alleviate potentially harmful over-reduced states of PSI. Our results also suggest that, in chlorophyll-deficient mutants, higher FV /FM cannot prove a superior PSII photochemistry and wider I-P phase is not indicative of a higher relative content of PSI.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia.
| | - Marek Živčak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Marek Kovar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Andrea Colpo
- Laboratory of Plant Cytophysiology, Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Pancaldi
- Laboratory of Plant Cytophysiology, Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Marian Brestič
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia.
| |
Collapse
|
21
|
Wang H, Wang XQ, Zeng ZL, Yu H, Huang W. Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111207. [PMID: 35193751 DOI: 10.1016/j.plantsci.2022.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic induction after a sudden increase in illumination affects carbon gain. Photosynthetic dynamics under fluctuating light (FL) have been widely investigated in C3 and C4 plants but are little known in CAM plants. In our present study, the chlorophyll fluorescence, P700 redox state and electrochromic shift signals were measured to examine photosynthetic characteristics under FL in the CAM orchid Vanilla planifolia. The light use efficiency was maximized in the morning but was restricted in the afternoon, indicating that the pool of malic acid dried down in the afternoon. During photosynthetic induction in the morning, electron flow through photosystem I rapidly reached the 95% of the maximum value in 4-6 min, indicating that V. planifolia showed a fast photosynthetic induction when compared with C3 and C4 plants reported previously. Upon a sudden transition from dark to actinic light, a rapid re-oxidation of P700 was observed in V. planifolia, indicating the fast outflow of electrons from PSI to alternative electron acceptors, which was attributed to the O2 photo-reduction mediated by water-water cycle. The functioning of water-water cycle prevented photosystem I over-reduction after transitioning from low to high light and thus protected PSI under FL. In the afternoon, cyclic electron flow was stimulated under FL to fine-tune photosynthetic apparatus when photosynthetic CO2 was restricted. Therefore, water-water cycle cooperates with cyclic electron flow to regulate the photosynthesis under FL in the CAM orchid V. planifolia.
Collapse
Affiliation(s)
- Hui Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
22
|
Paradiso R, Proietti S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:742-780. [PMID: 0 DOI: 10.1007/s00344-021-10337-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
AbstractLight quantity (intensity and photoperiod) and quality (spectral composition) affect plant growth and physiology and interact with other environmental parameters and cultivation factors in determining the plant behaviour. More than providing the energy for photosynthesis, light also dictates specific signals which regulate plant development, shaping and metabolism, in the complex phenomenon of photomorphogenesis, driven by light colours. These are perceived even at very low intensity by five classes of specific photoreceptors, which have been characterized in their biochemical features and physiological roles. Knowledge about plant photomorphogenesis increased dramatically during the last years, also thanks the diffusion of light-emitting diodes (LEDs), which offer several advantages compared to the conventional light sources, such as the possibility to tailor the light spectrum and to regulate the light intensity, depending on the specific requirements of the different crops and development stages. This knowledge could be profitably applied in greenhouse horticulture to improve production schedules and crop yield and quality. This article presents a brief overview on the effects of light spectrum of artificial lighting on plant growth and photomorphogenesis in vegetable and ornamental crops, and on the state of the art of the research on LEDs in greenhouse horticulture. Particularly, we analysed these effects by approaching, when possible, each single-light waveband, as most of the review works available in the literature considers the influence of combined spectra.
Collapse
|
23
|
Salvatori N, Carteni F, Giannino F, Alberti G, Mazzoleni S, Peressotti A. A System Dynamics Approach to Model Photosynthesis at Leaf Level Under Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2022; 12:787877. [PMID: 35154180 PMCID: PMC8833254 DOI: 10.3389/fpls.2021.787877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Photosynthesis has been mainly studied under steady-state conditions even though this assumption results inadequate for assessing the biochemical responses to rapid variations occurring in natural environments. The combination of mathematical models with available data may enhance the understanding of the dynamic responses of plants to fluctuating environments and can be used to make predictions on how photosynthesis would respond to non-steady-state conditions. In this study, we present a leaf level System Dynamics photosynthesis model based and validated on an experiment performed on two soybean varieties, namely, the wild type Eiko and the chlorophyll-deficient mutant MinnGold, grown in constant and fluctuating light conditions. This mutant is known to have similar steady-state photosynthesis compared to the green wild type, but it is found to have less biomass at harvest. It has been hypothesized that this might be due to an unoptimized response to non-steady-state conditions; therefore, this mutant seems appropriate to investigate dynamic photosynthesis. The model explained well the photosynthetic responses of these two varieties to fluctuating and constant light conditions and allowed to make relevant conclusions on the different dynamic responses of the two varieties. Deviations between data and model simulations are mostly evident in the non-photochemical quenching (NPQ) dynamics due to the oversimplified combination of PsbS- and zeaxanthin-dependent kinetics, failing in finely capturing the NPQ responses at different timescales. Nevertheless, due to its simplicity, the model can provide the basis of an upscaled dynamic model at a plant level.
Collapse
Affiliation(s)
- Nicole Salvatori
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giorgio Alberti
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessandro Peressotti
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
24
|
Keller B, Zimmermann L, Rascher U, Matsubara S, Steier A, Muller O. Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. PLANT PHYSIOLOGY 2022; 188:301-317. [PMID: 34662428 PMCID: PMC8774793 DOI: 10.1093/plphys/kiab483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/13/2021] [Indexed: 05/19/2023]
Abstract
Photosynthesis acclimates quickly to the fluctuating environment in order to optimize the absorption of sunlight energy, specifically the photosynthetic photon fluence rate (PPFR), to fuel plant growth. The conversion efficiency of intercepted PPFR to photochemical energy (ɛe) and to biomass (ɛc) are critical parameters to describe plant productivity over time. However, they mask the link of instantaneous photochemical energy uptake under specific conditions, that is, the operating efficiency of photosystem II (Fq'/Fm'), and biomass accumulation. Therefore, the identification of energy- and thus resource-efficient genotypes under changing environmental conditions is impeded. We long-term monitored Fq'/Fm' at the canopy level for 21 soybean (Glycine max (L.) Merr.) and maize (Zea mays) genotypes under greenhouse and field conditions using automated chlorophyll fluorescence and spectral scans. Fq'/Fm' derived under incident sunlight during the entire growing season was modeled based on genotypic interactions with different environmental variables. This allowed us to cumulate the photochemical energy uptake and thus estimate ɛe noninvasively. ɛe ranged from 48% to 62%, depending on the genotype, and up to 9% of photochemical energy was transduced into biomass in the most efficient C4 maize genotype. Most strikingly, ɛe correlated with shoot biomass in seven independent experiments under varying conditions with up to r = 0.68. Thus, we estimated biomass production by integrating photosynthetic response to environmental stresses over the growing season and identified energy-efficient genotypes. This has great potential to improve crop growth models and to estimate the productivity of breeding lines or whole ecosystems at any time point using autonomous measuring systems.
Collapse
Affiliation(s)
- Beat Keller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lars Zimmermann
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach 53359, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Shizue Matsubara
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Angelina Steier
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
25
|
Rane J, Singh AK, Tiwari M, Prasad PVV, Jagadish SVK. Effective Use of Water in Crop Plants in Dryland Agriculture: Implications of Reactive Oxygen Species and Antioxidative System. FRONTIERS IN PLANT SCIENCE 2022; 12:778270. [PMID: 35082809 PMCID: PMC8784697 DOI: 10.3389/fpls.2021.778270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 05/03/2023]
Abstract
Under dryland conditions, annual and perennial food crops are exposed to dry spells, severely affecting crop productivity by limiting available soil moisture at critical and sensitive growth stages. Climate variability continues to be the primary cause of uncertainty, often making timing rather than quantity of precipitation the foremost concern. Therefore, mitigation and management of stress experienced by plants due to limited soil moisture are crucial for sustaining crop productivity under current and future harsher environments. Hence, the information generated so far through multiple investigations on mechanisms inducing drought tolerance in plants needs to be translated into tools and techniques for stress management. Scope to accomplish this exists in the inherent capacity of plants to manage stress at the cellular level through various mechanisms. One of the most extensively studied but not conclusive physiological phenomena is the balance between reactive oxygen species (ROS) production and scavenging them through an antioxidative system (AOS), which determines a wide range of damage to the cell, organ, and the plant. In this context, this review aims to examine the possible roles of the ROS-AOS balance in enhancing the effective use of water (EUW) by crops under water-limited dryland conditions. We refer to EUW as biomass produced by plants with available water under soil moisture stress rather than per unit of water (WUE). We hypothesize that EUW can be enhanced by an appropriate balance between water-saving and growth promotion at the whole-plant level during stress and post-stress recovery periods. The ROS-AOS interactions play a crucial role in water-saving mechanisms and biomass accumulation, resulting from growth processes that include cell division, cell expansion, photosynthesis, and translocation of assimilates. Hence, appropriate strategies for manipulating these processes through genetic improvement and/or application of exogenous compounds can provide practical solutions for improving EUW through the optimized ROS-AOS balance under water-limited dryland conditions. This review deals with the role of ROS-AOS in two major EUW determining processes, namely water use and plant growth. It describes implications of the ROS level or content, ROS-producing, and ROS-scavenging enzymes based on plant water status, which ultimately affects photosynthetic efficiency and growth of plants.
Collapse
Affiliation(s)
- Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
26
|
Diurnal Response of Photosystem I to Fluctuating Light Is Affected by Stomatal Conductance. Cells 2021; 10:cells10113128. [PMID: 34831351 PMCID: PMC8621556 DOI: 10.3390/cells10113128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Upon a sudden transition from low to high light, electrons transported from photosystem II (PSII) to PSI should be rapidly consumed by downstream sinks to avoid the over-reduction of PSI. However, the over-reduction of PSI under fluctuating light might be accelerated if primary metabolism is restricted by low stomatal conductance. To test this hypothesis, we measured the effect of diurnal changes in stomatal conductance on photosynthetic regulation under fluctuating light in tomato (Solanum lycopersicum) and common mulberry (Morus alba). Under conditions of high stomatal conductance, we observed PSI over-reduction within the first 10 s after transition from low to high light. Lower stomatal conductance limited the activity of the Calvin–Benson–Bassham cycle and aggravated PSI over-reduction within 10 s after the light transition. We also observed PSI over-reduction after transition from low to high light for 30 s at the low stomatal conductance typical of the late afternoon, indicating that low stomatal conductance extends the period of PSI over-reduction under fluctuating light. Therefore, diurnal changes in stomatal conductance significantly affect the PSI redox state under fluctuating light. Moreover, our analysis revealed an unexpected inhibition of cyclic electron flow by the severe over-reduction of PSI seen at low stomatal conductance. In conclusion, stomatal conductance can have a large effect on thylakoid reactions under fluctuating light.
Collapse
|
27
|
Takahashi Y, Wada S, Noguchi K, Miyake C, Makino A, Suzuki Y. Photochemistry of Photosystems II and I in Rice Plants Grown under Different N Levels at Normal and High Temperature. PLANT & CELL PHYSIOLOGY 2021; 62:1121-1130. [PMID: 33576433 DOI: 10.1093/pcp/pcab020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Although N levels affect leaf photosynthetic capacity, the effects of N levels on the photochemistry of photosystems II and I (PSII and PSI, respectively) are not well-understood. In the present study, we examined this aspect in rice (Oryza sativa L. 'Hitomebore') plants grown under three different N levels at normal or high temperatures that can occur during rice culture and do not severely suppress photosynthesis. At both growth temperatures, the quantum efficiency of PSII [Y(II)] and the fraction of the primary quinone electron acceptor in its oxidized state were positively correlated with the amount of total leaf-N, whereas the quantum yields of non-photochemical quenching and donor-side limitation of PSI [Y(ND)] were negatively correlated with the amount of total leaf-N. These changes in PSII and PSI parameters were strongly correlated with each other. Growth temperatures scarcely affected these relationships. These results suggest that the photochemistry of PSII and PSI is coordinately regulated primarily depending on the amount of total leaf-N. When excess light energy occurs in low N-acclimated plants, oxidation of the reaction center chlorophyll of PSI is thought to be stimulated to protect PSI from excess light energy. It is also suggested that PSII and PSI normally operate at high temperature used in the present study. In addition, as the relationships between Y(II) and Y(ND) were found to be almost identical to those observed in osmotically stressed rice plants, common regulation is thought to be operative when excess light energy occurs due to different causes.
Collapse
Affiliation(s)
- Yuki Takahashi
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Shinya Wada
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572 Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| |
Collapse
|
28
|
Cinq-Mars M, Samson G. Down-Regulation of Photosynthetic Electron Transport and Decline in CO2 Assimilation under Low Frequencies of Pulsed Lights. PLANTS 2021; 10:plants10102033. [PMID: 34685841 PMCID: PMC8540243 DOI: 10.3390/plants10102033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The decline in CO2 assimilation in leaves exposed to decreasing frequencies of pulsed light is well characterized, in contrast to the regulation of photosynthetic electron transport under these conditions. Thus, we exposed sunflower leaves to pulsed lights of different frequencies but with the same duty ratio (25%) and averaged light intensity (575 μmoles photons m−2 s−1). The rates of net photosynthesis Pn were constant from 125 to 10 Hz, and declined by 70% from 10 to 0.1 Hz. This decline coincided with (1) a marked increase in nonphotochemical quenching (NPQ), and (2) the completion after 25 ms of illumination of the first phase of P700 photooxidation, the primary electron donor of PSI. Under longer light pulses (<5 Hz), there was a slower and larger P700 photooxidation phase that could be attributed to the larger NPQ and to a resistance of electron flow on the PSI donor side indicated by 44% slower kinetics of a P700+ dark reduction. In addition, at low frequencies, the decrease in quantum yield of photochemistry was 2.3-times larger for PSII than for PSI. Globally, our results indicate that the decline in CO2 assimilation at 10 Hz and lower frequencies coincide with the formation of NPQ and a restriction of electron flows toward PSI, favoring the accumulation of harmless P700+.
Collapse
|
29
|
Zendonadi Dos Santos N, Piepho HP, Condorelli GE, Licieri Groli E, Newcomb M, Ward R, Tuberosa R, Maccaferri M, Fiorani F, Rascher U, Muller O. High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. PLANT, CELL & ENVIRONMENT 2021; 44:2858-2878. [PMID: 34189744 DOI: 10.1111/pce.14136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II ( Fq'/Fm' ) and the kinetics of electron transport measured by reoxidation rates ( Fr1' and Fr2' ). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, Fq'/Fm' and Fr2' were little affected, while Fr1' was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.
Collapse
Affiliation(s)
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Eder Licieri Groli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maria Newcomb
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Richard Ward
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
30
|
Terashima I, Matsuo M, Suzuki Y, Yamori W, Kono M. Photosystem I in low light-grown leaves of Alocasia odora, a shade-tolerant plant, is resistant to fluctuating light-induced photoinhibition. PHOTOSYNTHESIS RESEARCH 2021; 149:69-82. [PMID: 33817762 DOI: 10.1007/s11120-021-00832-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 05/15/2023]
Abstract
When intact green leaves are exposed to the fluctuating light, in which high light (HL) and low light (LL) alternate, photosystem I (PSI) is readily damaged. This PSI inhibition is mostly alleviated by the addition of far-red (FR) light. Here, we grew Alocasia odora, a shade-tolerant species, at several light levels and examined their photosynthetic traits in relation to the fluctuating light-induced PSI inhibition. We found that, even in the absence of FR, PSI in LL-grown leaves was resistant to the fluctuating light. LL leaves showed higher chlorophyll (Chl) contents on leaf area basis, lower Chl a/b ratios, lower cytochrome f/P700 ratios, and lower PSII/PSI excitation ratios assessed by the 77 K fluorescence. Also, P700 in the HL phase of the fluctuating light was more oxidized. The results of the regression analyses of the PSI photoinhibition to these traits indicate that the lower electron flow rate to P700 and more excitation energy transfer to PSI protect PSI in LL-grown leaves. Both of these contribute oxidization of P700 to the efficient quencher form P700+. These features may be common in LL-grown shade-tolerant species, which are often exposed to strong sunflecks in their natural habitats.
Collapse
Affiliation(s)
- Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsutoshi Matsuo
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Suzuki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka-City, Kanagawa, 259-1293, Japan
| | - Wataru Yamori
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-City, Tokyo, 188-0002, Japan
| | - Masaru Kono
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
31
|
Haber Z, Lampl N, Meyer AJ, Zelinger E, Hipsch M, Rosenwasser S. Resolving diurnal dynamics of the chloroplastic glutathione redox state in Arabidopsis reveals its photosynthetically derived oxidation. THE PLANT CELL 2021; 33:1828-1844. [PMID: 33624811 PMCID: PMC8254480 DOI: 10.1093/plcell/koab068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische
Friedrich–Wilhelms Universität Bonn, Friedrich-Ebert-Allee 144, D-53113
Bonn, Germany
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of
Agriculture, Food and Environment, The Hebrew University of Jerusalem,
Rehovot 7610001, Israel
| | - Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
- Author for correspondence:
| |
Collapse
|
32
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
33
|
Kalmatskaya OA, Trubitsin BV, Suslichenko IS, Karavaev VA, Tikhonov AN. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. PHOTOSYNTHESIS RESEARCH 2020; 146:123-141. [PMID: 32594291 DOI: 10.1007/s11120-020-00767-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Using thermoluminescence, PAM-fluorometry, and electron paramagnetic resonance (EPR) for assaying electron transport processes in chloroplasts in situ, we have compared photosynthetic characteristics in Tradescantia fluminensis leaves grown under low light (LL, 50-125 µmol photons m-2 s-1) or high light (HL, 875-1000 µmol photons m-2 s-1) condition. We found differences in the thermoluminescence (TL) spectra of LL- and HL-acclimated leaves. The LL and HL leaves show different proportions of the Q (~ 0 °C) and B (~ 25-30 °C) bands in their TL spectra; the ratios of the "light sums" of the Q and B bands being SQ/SB ≈ 1/1 (LL) and SQ/SB ≈ 1/3 (HL). This suggests the existence of different redox states of electron carriers on the acceptor side of PSII in LL and HL leaves, which may be affected, in particular, by different capacities of their photo-reducible PQ pools. Enhanced content of PQ in chloroplasts of LL leaves may be the reason for an efficient performance of photosynthesis at low irradiance. Kinetic studies of slow induction of Chl a fluorescence and measurements of P700 photooxidation by EPR demonstrate that HL leaves have faster (about 2 times) response to switching on actinic light as compared to LL leaves grown at moderate irradiation. HL leaves also show higher non-photochemical quenching (NPQ) of Chl a fluorescence. These properties of HL leaves (faster response to light and generation of enhanced NPQ) reflect the flexibility of their photosynthetic apparatus, providing sustainability and rapid response to fluctuations of environmental light intensity and solar stress resistance. Analysis of time-courses of the EPR signals of [Formula: see text] induced by far-red (λmax = 707 nm), exciting predominantly PSI, and white light, exciting both PSI and PSII, suggests that there is a contribution of cyclic electron flow around PSI to electron flow through PSI in HL leaves. The data obtained are discussed in terms of photosynthetic apparatus sustainability of HL and LL leaves under variable irradiation conditions.
Collapse
Affiliation(s)
| | - Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Igor S Suslichenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
34
|
Orzechowska A, Trtílek M, Tokarz K, Rozpądek P. A study of light-induced stomatal response in Arabidopsis using thermal imaging. Biochem Biophys Res Commun 2020; 533:1129-1134. [PMID: 33046242 DOI: 10.1016/j.bbrc.2020.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Thermal imaging was used to study the early stage response to light-induced heating of Arabidopsis thaliana leaves. Time-series thermograms provided a spatial and temporal characterization of temperature changes in Arabidopsis wild type and the ost1-2 mutant rosettes exposed to excessive illumination. The initial response to high light, defined by the exponential increase in leaf temperature of ost1-2 gave an increased thermal time constant compared to wild type plants. The inability to regulate stomata in ost1-2 resulted in enhanced stomatal conductance and transpiration rate. Under strong irradiation, a significant decline in the efficiency of photosystem II was observed. This study evaluates infrared thermography kinetics and determines thermal time constants in particular, as an early and rapid method for diagnosing the prime indicators of light stress in plants under excessive light conditions.
Collapse
Affiliation(s)
- Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Martin Trtílek
- Photon Systems Instruments, Drásov 470, 664 24, Drásov, Czech Republic
| | - Krzysztof Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland
| |
Collapse
|
35
|
Teixeira RT. Distinct Responses to Light in Plants. PLANTS 2020; 9:plants9070894. [PMID: 32679774 PMCID: PMC7411962 DOI: 10.3390/plants9070894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The development of almost every living organism is, to some extent, regulated by light. When discussing light regulation on biological systems, one is referring to the sun that has long been positioned in the center of the solar system. Through light regulation, all life forms have evolved around the presence of the sun. As soon our planet started to develop an atmospheric shield against most of the detrimental solar UV rays, life invaded land, and in the presence of water, it thrived. Especially for plants, light (solar radiation) is the source of energy that controls a high number of developmental aspects of growth, a process called photomorphogenesis. Once hypocotyls reach soil′s surface, its elongation deaccelerates, and the photosynthetic apparatus is established for an autotrophic growth due to the presence of light. Plants can sense light intensities, light quality, light direction, and light duration through photoreceptors that accurately detect alterations in the spectral composition (UV-B to far-red) and are located throughout the plant. The most well-known mechanism promoted by light occurring on plants is photosynthesis, which converts light energy into carbohydrates. Plants also use light to signal the beginning/end of key developmental processes such as the transition to flowering and dormancy. These two processes are particularly important for plant´s yield, since transition to flowering reduces the duration of the vegetative stage, and for plants growing under temperate or boreal climates, dormancy leads to a complete growth arrest. Understanding how light affects these processes enables plant breeders to produce crops which are able to retard the transition to flowering and avoid dormancy, increasing the yield of the plant.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
36
|
Tazoe Y, Ishikawa N, Shikanai T, Ishiyama K, Takagi D, Makino A, Sato F, Endo T. Overproduction of PGR5 enhances the electron sink downstream of photosystem I in a C 4 plant, Flaveria bidentis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:814-823. [PMID: 32314445 DOI: 10.1111/tpj.14774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 05/25/2023]
Abstract
C4 plants can fix CO2 efficiently using CO2 -concentrating mechanisms (CCMs), but they require additional ATP. To supply the additional ATP, C4 plants operate at higher rates of cyclic electron transport around photosystem I (PSI), in which electrons are transferred from ferredoxin to plastoquinone. Recently, it has been reported that the NAD(P)H dehydrogenase-like complex (NDH) accumulated in the thylakoid membrane in leaves of C4 plants, making it a candidate for the additional synthesis of ATP used in the CCM. In addition, C4 plants have higher levels of PROTON GRADIENT REGULATION 5 (PGR5) expression, but it has been unknown how PGR5 functions in C4 photosynthesis. In this study, PGR5 was overexpressed in a C4 dicot, Flaveria bidentis. In PGR5-overproducing (OP) lines, PGR5 levels were 2.3- to 3.0-fold greater compared with wild-type plants. PGR5-like PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1), which cooperates with PGR5, increased with PGR5. A spectroscopic analysis indicated that in the PGR5-OP lines, the acceptor side limitation of PSI was reduced in response to a rapid increase in photon flux density. Although it did not affect CO2 assimilation, the overproduction of PGR5 contributed to an enhanced electron sink downstream of PSI.
Collapse
Affiliation(s)
- Youshi Tazoe
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8052, Japan
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Niigata, 959-2702, Japan
| | - Noriko Ishikawa
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8052, Japan
| | - Toshiharu Shikanai
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8052, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8052, Japan
| | - Tsuyoshi Endo
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8052, Japan
| |
Collapse
|
37
|
Kalmatskaya OA, Karavaev VA, Tikhonov AN. Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light. PHOTOSYNTHESIS RESEARCH 2019; 142:265-282. [PMID: 31435864 DOI: 10.1007/s11120-019-00663-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/02/2019] [Indexed: 05/26/2023]
Abstract
Tradescantia is a good model for assaying induction events in higher plant leaves. Chlorophyll (Chl) fluorescence serves as a sensitive reporter of the functional state of photosynthetic apparatus in chloroplasts. The fluorescence time-course depends on the leaf growth conditions and actinic light quality. In this work, we investigated slow induction of Chl a fluorescence (SIF) excited by blue light (BL, λmax = 455 nm) or red light (RL, λmax = 630 nm) in dark-adapted leaves of Tradescantia fluminensis acclimated to high light (~ 1000 µmol photons m-2 s-1; HL) or low light (~ 100 µmol photons m-2 s-1; LL). Our special interest was focused on the contribution of the avoidance response to SIF kinetics. Bearing in mind that BL and RL have different impacts on photoreceptors that initiate chloroplast movements within the cell (accumulation/avoidance responses), we have compared the SIF patterns during the action of BL and RL. The time-courses of SIF and kinetics of non-photochemical quenching (NPQ) of Chl a fluorescence revealed a certain difference when leaves were illuminated by BL or RL. In both cases, the yield of fluorescence rose to the maximal level P and then, after the lag-phase P-S-M1, the fluorescence level decreased toward the steady state T (via the intermediate phases M1-M2 and M2-T). In LL-acclimated leaves, the duration of the P-S-M1 phase was almost two times longer that in HL-grown plants. In the case of BL, the fluorescence decay included the transient phase M1-M2. This phase was obscure during the RL illumination. Non-photochemical quenching of Chl a fluorescence has been quantified as [Formula: see text], where [Formula: see text] and [Formula: see text] stand for the fluorescence response to saturating pulses of light applied to dark-adapted and illuminated samples, respectively. The time-courses of such a formally determined NPQ value were markedly different during the action of RL and BL. In LL-grown leaves, BL induced higher NPQ as compared to the action of RL. In HL-grown plants, the difference between the NPQ responses to BL and RL illumination was insignificant. Comparing the peculiarities of Chl a fluorescence induced by BL and RL, we conclude that the avoidance response can provide a marked contribution to SIF and NPQ generation. The dependence of NPQ on the quality of actinic light suggests that chloroplast movements within the cell have a noticeable impact on the formally determined NPQ value. Analyzing kinetics of post-illumination decay of NPQ in the context of solar stress resistance, we have found that LL-acclimated Tradescantia leaves are more vulnerable to strong light than the HL-grown leaves.
Collapse
Affiliation(s)
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
38
|
Keller B, Matsubara S, Rascher U, Pieruschka R, Steier A, Kraska T, Muller O. Genotype Specific Photosynthesis x Environment Interactions Captured by Automated Fluorescence Canopy Scans Over Two Fluctuating Growing Seasons. FRONTIERS IN PLANT SCIENCE 2019; 10:1482. [PMID: 31998328 PMCID: PMC6962999 DOI: 10.3389/fpls.2019.01482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis reacts dynamic and in different time scales to changing conditions. Light and temperature acclimation balance photosynthetic processes in a complex interplay with the fluctuating environment. However, due to limitations in the measurements techniques, these acclimations are often described under steady-state conditions leading to inaccurate photosynthesis estimates in the field. Here we analyze the photosynthetic interaction with the fluctuating environment and canopy architecture over two seasons using a fully automated phenotyping system. We acquired over 700,000 chlorophyll fluorescence transients and spectral measurements under semi-field conditions in four crop species including 28 genotypes. As expected, the quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) was determined by light intensity. It was further significantly affected by spectral indices representing canopy structure effects. In contrast, a newly established parameter, monitoring the efficiency of electron transport (Fr2/Fv in the dark respective Fr2'/Fq' in the light), was highly responsive to temperature (R2 up to 0.75). This parameter decreased with temperature and enabled the detection of cold tolerant species and genotypes. We demonstrated the ability to capture and model the dynamic photosynthesis response to the environment over entire growth seasons. The improved linkage of photosynthetic performance to canopy structure, temperature and cold tolerance offers great potential for plant breeding and crop growth modeling.
Collapse
Affiliation(s)
- Beat Keller
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Uwe Rascher
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roland Pieruschka
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Angelina Steier
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thorsten Kraska
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Onno Muller
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
39
|
Samson G, Bonin L, Maire V. Dynamics of regulated YNPQ and non-regulated YNO energy dissipation in sunflower leaves exposed to sinusoidal lights. PHOTOSYNTHESIS RESEARCH 2019; 141:315-330. [PMID: 30891662 DOI: 10.1007/s11120-019-00633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Better understanding of photosynthetic efficiency under fluctuating light requires a specific approach to characterize the dynamics of energy dissipation in photosystem II. In this study, we characterized the interaction between the regulated YNPQ and non-regulated YNO energy dissipation in outdoor- and indoor-grown sunflower leaves exposed to repetitive cycles of sinusoidal lights of five amplitudes (200, 400, 600, 800, 1000 µmol m-2 s-1) and periods (20, 40, 60, 90, 120 s). The different light cycles induced various patterns of ChlF emission, from which were calculated the complementary quantum yields of photochemical energy conversion YII, light-regulated YNPQ, and non-regulated YNO non-photochemical energy dissipation. During the light cycles, YNO varied in complex but small patterns relative to those of YNPQ, whose variations were mostly mirrored by changes in YII. The YNO patterns could be decomposed by fast Fourier transform into a main (MH) and several upper harmonics (UH). Concerning YNPQ dynamics, they were described by sinusoidal regressions with two components, one constant during the light cycles but increasing with the average light intensity (YNPQc), and one variable (YNPQv). Formation and relaxation of YNPQv followed the intensity of the sinusoidal lights, with lags ranging from 5 to 13 s. These lags decreased with the amplitude of the incident light, and were shorter by 37% in outdoor than indoor leaves. YNPQv and UHs responses to the growth conditions, amplitudes, and the periods of the sinusoidal light were closely correlated (r = 0.939), whereas MH and YNPQc varied similarly (r = 0.803). The analysis of ChlF induced by sinusoidal lights may be a useful tool to better understand the dynamics of energy dissipation in PSII under fluctuating lights.
Collapse
Affiliation(s)
- Guy Samson
- Département des sciences de l'environnement, Groupe de recherche en biologie végétale (GRBV), Université du Québec à Trois-Rivières (UQTR), C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
| | - Laurianne Bonin
- Département des sciences de l'environnement, Groupe de recherche en biologie végétale (GRBV), Université du Québec à Trois-Rivières (UQTR), C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Vincent Maire
- Département des sciences de l'environnement, Groupe de recherche en biologie végétale (GRBV), Université du Québec à Trois-Rivières (UQTR), C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| |
Collapse
|
40
|
Keller B, Vass I, Matsubara S, Paul K, Jedmowski C, Pieruschka R, Nedbal L, Rascher U, Muller O. Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping. PHOTOSYNTHESIS RESEARCH 2019; 140:221-233. [PMID: 30357678 PMCID: PMC6548062 DOI: 10.1007/s11120-018-0594-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/09/2018] [Indexed: 05/20/2023]
Abstract
Photosynthetic phenotyping requires quick characterization of dynamic traits when measuring large plant numbers in a fluctuating environment. Here, we evaluated the light-induced fluorescence transient (LIFT) method for its capacity to yield rapidly fluorometric parameters from 0.6 m distance. The close approximation of LIFT to conventional chlorophyll fluorescence (ChlF) parameters is shown under controlled conditions in spinach leaves and isolated thylakoids when electron transport was impaired by anoxic conditions or chemical inhibitors. The ChlF rise from minimum fluorescence (Fo) to maximum fluorescence induced by fast repetition rate (Fm-FRR) flashes was dominated by reduction of the primary electron acceptor in photosystem II (QA). The subsequent reoxidation of QA- was quantified using the relaxation of ChlF in 0.65 ms (Fr1) and 120 ms (Fr2) phases. Reoxidation efficiency of QA- (Fr1/Fv, where Fv = Fm-FRR - Fo) decreased when electron transport was impaired, while quantum efficiency of photosystem II (Fv/Fm) showed often no significant effect. ChlF relaxations of the LIFT were similar to an independent other method. Under increasing light intensities, Fr2'/Fq' (where Fr2' and Fq' represent Fr2 and Fv in the light-adapted state, respectively) was hardly affected, whereas the operating efficiency of photosystem II (Fq'/Fm') decreased due to non-photochemical quenching. Fm-FRR was significantly lower than the ChlF maximum induced by multiple turnover (Fm-MT) flashes. However, the resulting Fv/Fm and Fq'/Fm' from both flashes were highly correlated. The LIFT method complements Fv/Fm with information about efficiency of electron transport. Measurements in situ and from a distance facilitate application in high-throughput and automated phenotyping.
Collapse
Affiliation(s)
- Beat Keller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Molecular Plant Breeding, ETH Zürich, 8092, Zurich, Switzerland.
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center, 6726, Szeged, Hungary
| | - Shizue Matsubara
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Kenny Paul
- Institute of Plant Biology, Biological Research Center, 6726, Szeged, Hungary
| | - Christoph Jedmowski
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Pieruschka
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
41
|
Keller B, Vass I, Matsubara S, Paul K, Jedmowski C, Pieruschka R, Nedbal L, Rascher U, Muller O. Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping. PHOTOSYNTHESIS RESEARCH 2019; 140:221-233. [PMID: 30357678 DOI: 10.1007/s11120-018-0594-599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Photosynthetic phenotyping requires quick characterization of dynamic traits when measuring large plant numbers in a fluctuating environment. Here, we evaluated the light-induced fluorescence transient (LIFT) method for its capacity to yield rapidly fluorometric parameters from 0.6 m distance. The close approximation of LIFT to conventional chlorophyll fluorescence (ChlF) parameters is shown under controlled conditions in spinach leaves and isolated thylakoids when electron transport was impaired by anoxic conditions or chemical inhibitors. The ChlF rise from minimum fluorescence (Fo) to maximum fluorescence induced by fast repetition rate (Fm-FRR) flashes was dominated by reduction of the primary electron acceptor in photosystem II (QA). The subsequent reoxidation of QA- was quantified using the relaxation of ChlF in 0.65 ms (Fr1) and 120 ms (Fr2) phases. Reoxidation efficiency of QA- (Fr1/Fv, where Fv = Fm-FRR - Fo) decreased when electron transport was impaired, while quantum efficiency of photosystem II (Fv/Fm) showed often no significant effect. ChlF relaxations of the LIFT were similar to an independent other method. Under increasing light intensities, Fr2'/Fq' (where Fr2' and Fq' represent Fr2 and Fv in the light-adapted state, respectively) was hardly affected, whereas the operating efficiency of photosystem II (Fq'/Fm') decreased due to non-photochemical quenching. Fm-FRR was significantly lower than the ChlF maximum induced by multiple turnover (Fm-MT) flashes. However, the resulting Fv/Fm and Fq'/Fm' from both flashes were highly correlated. The LIFT method complements Fv/Fm with information about efficiency of electron transport. Measurements in situ and from a distance facilitate application in high-throughput and automated phenotyping.
Collapse
Affiliation(s)
- Beat Keller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Molecular Plant Breeding, ETH Zürich, 8092, Zurich, Switzerland.
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center, 6726, Szeged, Hungary
| | - Shizue Matsubara
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Kenny Paul
- Institute of Plant Biology, Biological Research Center, 6726, Szeged, Hungary
| | - Christoph Jedmowski
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Pieruschka
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
42
|
Suslichenko IS, Tikhonov AN. Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett 2019; 593:788-798. [PMID: 30896038 DOI: 10.1002/1873-3468.13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 11/09/2022]
Abstract
In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m-2 ·s-1 , LL) or to high light (~ 1000 μmol photons·m-2 ·s-1 , HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ]0 /[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ]0 /[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.
Collapse
Affiliation(s)
| | - Alexander N Tikhonov
- Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.,N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Benkov MA, Yatsenko AM, Tikhonov AN. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. PHOTOSYNTHESIS RESEARCH 2019; 139:203-214. [PMID: 29926255 DOI: 10.1007/s11120-018-0535-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50-125 µmol photons m-2 s-1 (LL) or at 875-1000 µmol photons m-2 s-1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters Fv/Fm (variable fluorescence) and F0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in Fv/Fm and a rise of F0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of Fv/Fm versus the treatment temperature (t), demonstrating a decrease in Fv/Fm at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of Fv/Fm at lower heating temperatures (t ≥ 25 °C), indicating the "fragility" of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.
Collapse
Affiliation(s)
- Michael A Benkov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Yatsenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
44
|
Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN. Three phases of energy-dependent induction of [Formula: see text] and Chl a fluorescence in Tradescantia fluminensis leaves. PHOTOSYNTHESIS RESEARCH 2019. [PMID: 29516232 DOI: 10.1007/s11120-018-0494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, the short-term regulation (STR, seconds to minute time scale) of photosynthetic apparatus is associated with the energy-dependent control in the chloroplast electron transport, the distribution of light energy between photosystems (PS) II and I, activation/deactivation of the Calvin-Benson cycle (CBC) enzymes, and relocation of chloroplasts within the plant cell. In this work, using a dual-PAM technique for measuring the time-courses of P700 photooxidation and Chl a fluorescence, we have investigated the STR events in Tradescantia fluminensis leaves. The comparison of Chl a fluorescence and [Formula: see text] induction allowed us to investigate the contribution of the trans-thylakoid pH difference (ΔpH) to the STR events. Two parameters were used as the indicators of ΔpH generation: pH-dependent component of non-photochemical quenching of Chl a fluorescence, and pHin-dependent rate of electron transfer from plastoquinol (PQH2) to [Formula: see text] (via the Cyt b6f complex and plastocyanin). In dark-adapted leaves, kinetics of [Formula: see text] induction revealed three phases. Initial phase is characterized by rapid electron flow to [Formula: see text] (τ1/2 ~ 5-10 ms), which is likely related to cyclic electron flow around PSI, while the outflow of electrons from PSI is restricted by slow consumption of NADPH in the CBC. The light-induced generation of ΔpH and activation of the CBC promote photooxidation of P700 and concomitant retardation of [Formula: see text] reduction (τ1/2 ~ 20 ms). Prolonged illumination induces additional slowing down of electron transfer to [Formula: see text] (τ1/2 ≥ 30-35 ms). The latter effect is not accompanied by changes in the Chl a fluorescence parameters which are sensitive to ΔpH generation. We suggest the tentative explanation of the latter results by the reversal of Q-cycle, which causes the deceleration of PQH2 oxidation due to the back pressure of stromal reductants.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Avercheva
- Faculty of Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
- Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
45
|
Tomimatsu H, Sakata T, Fukayama H, Tang Y. Short-term effects of high CO2 accelerate photosynthetic induction in Populus koreana × trichocarpa with always-open stomata regardless of phenotypic changes in high CO2 growth conditions. TREE PHYSIOLOGY 2019; 39:474-483. [PMID: 30053250 DOI: 10.1093/treephys/tpy078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 05/21/2023]
Abstract
Long-term high CO2 exposure accelerates photosynthetic induction response due to rapid light increase. However, it is unclear whether the acceleration is caused by acclimation of photosynthetic components (long-term CO2 effect) and/or by the sufficient substrate under high CO2 at the measurement (short-term CO2 effect). Populus koreana × trichocarpa cv. Peace has wide-open stomata almost not responding to changes of photon flux density. Using this species, we examined the long- and short-term CO2 effects on photosynthetic induction by focusing on biochemical components. We grew the plants under [CO2] of 380, 700 and 1020 μmol CO2 mol-1 air and measured the photosynthetic induction response under [CO2] of 380 and 1020 μmol CO2 mol-1 air. Despite significant reduction in Rubisco content and light-saturated photosynthetic rate in the leaves from the high growth CO2, the photosynthetic induction time was similar in leaves from different growth CO2 plants when measurement [CO2] was the same. The induction, however, was significantly fast at the higher than at the lower measurement [CO2], regardless of growth CO2 of the plants. These results demonstrate that the acceleration of apparent photosynthetic induction under high CO2 environment was mainly contributed by a short-term CO2 effect rather than by a long-term acclimation effect when stomatal limitation is not the major factor.
Collapse
Affiliation(s)
- Hajime Tomimatsu
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Japan
| | - Tsuyoshi Sakata
- Biological Laboratory, Center for Natural Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Japan
| | - Hiroshi Fukayama
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Yanhong Tang
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Japan
| |
Collapse
|
46
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
47
|
Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro E, Rintamäki E. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. PLANT DIRECT 2018; 2:e00093. [PMID: 31245694 PMCID: PMC6508795 DOI: 10.1002/pld3.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Linear electron transport in the thylakoid membrane drives photosynthetic NADPH and ATP production, while cyclic electron flow (CEF) around photosystem I only promotes the translocation of protons from stroma to thylakoid lumen. The chloroplast NADH dehydrogenase-like complex (NDH) participates in one CEF route transferring electrons from ferredoxin back to the plastoquinone pool with concomitant proton pumping to the lumen. CEF has been proposed to balance the ratio of ATP/NADPH production and to control the redox poise particularly in fluctuating light conditions, but the mechanisms regulating the NDH complex remain unknown. We have investigated potential regulation of the CEF pathways by the chloroplast NADPH-thioredoxin reductase (NTRC) in vivo by using an Arabidopsis knockout line of NTRC as well as lines overexpressing NTRC. Here, we present biochemical and biophysical evidence showing that NTRC stimulates the activity of NDH-dependent CEF and is involved in the regulation of generation of proton motive force, thylakoid conductivity to protons, and redox balance between the thylakoid electron transfer chain and the stroma during changes in light conditions. Furthermore, protein-protein interaction assays suggest a putative thioredoxin-target site in close proximity to the ferredoxin-binding domain of NDH, thus providing a plausible mechanism for redox regulation of the NDH ferredoxin:plastoquinone oxidoreductase activity.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Jouni Toivola
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Andrea Trotta
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Manuel Guinea Diaz
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
48
|
Antonacci A, Lambreva MD, Margonelli A, Sobolev AP, Pastorelli S, Bertalan I, Johanningmeier U, Sobolev V, Samish I, Edelman M, Havurinne V, Tyystjärvi E, Giardi MT, Mattoo AK, Rea G. Photosystem-II D1 protein mutants of Chlamydomonas reinhardtii in relation to metabolic rewiring and remodelling of H-bond network at Q B site. Sci Rep 2018; 8:14745. [PMID: 30283151 PMCID: PMC6170454 DOI: 10.1038/s41598-018-33146-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Photosystem II (PSII) reaction centre D1 protein of oxygenic phototrophs is pivotal for sustaining photosynthesis. Also, it is targeted by herbicides and herbicide-resistant weeds harbour single amino acid substitutions in D1. Conservation of D1 primary structure is seminal in the photosynthetic performance in many diverse species. In this study, we analysed built-in and environmentally-induced (high temperature and high photon fluency – HT/HL) phenotypes of two D1 mutants of Chlamydomonas reinhardtii with Ala250Arg (A250R) and Ser264Lys (S264K) substitutions. Both mutations differentially affected efficiency of electron transport and oxygen production. In addition, targeted metabolomics revealed that the mutants undergo specific differences in primary and secondary metabolism, namely, amino acids, organic acids, pigments, NAD, xanthophylls and carotenes. Levels of lutein, β-carotene and zeaxanthin were in sync with their corresponding gene transcripts in response to HT/HL stress treatment in the parental (IL) and A250R strains. D1 structure analysis indicated that, among other effects, remodelling of H-bond network at the QB site might underpin the observed phenotypes. Thus, the D1 protein, in addition to being pivotal for efficient photosynthesis, may have a moonlighting role in rewiring of specific metabolic pathways, possibly involving retrograde signalling.
Collapse
Affiliation(s)
- Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29,3 00015, Monterotondo Stazione, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29,3 00015, Monterotondo Stazione, Rome, Italy
| | - Andrea Margonelli
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29,3 00015, Monterotondo Stazione, Rome, Italy
| | - Anatoly P Sobolev
- Institute of Chemical Methodologies, National Research Council of Italy, Via Salaria km 29,3 00015, Monterotondo Stazione, Rome, Italy
| | - Sandro Pastorelli
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29,3 00015, Monterotondo Stazione, Rome, Italy.,Neotron S.p.a., Santa Maria di Mugnano, Modena, Italy
| | - Ivo Bertalan
- Martin-Luther-University, Plant Physiology Institute, Weinbergweg 10, D-06120, Halle Saale, Germany
| | - Udo Johanningmeier
- Martin-Luther-University, Plant Physiology Institute, Weinbergweg 10, D-06120, Halle Saale, Germany
| | - Vladimir Sobolev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilan Samish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.,Amai Proteins Ltd., 2 Bergman St., Rehovot, Israel
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, FI-20014, University of Turku, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, FI-20014, University of Turku, Turku, Finland
| | - Maria T Giardi
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29,3 00015, Monterotondo Stazione, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Beltsville Agricultural Research Centre, United States Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, Maryland, 20705, USA.
| | - Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29,3 00015, Monterotondo Stazione, Rome, Italy.
| |
Collapse
|
49
|
Costa BNS, Costa IJS, Souza GADE, Santos DND, Silveira FADA, Melo ETDE, Martins AD, Pasqual M, Setotaw TA, Rodrigues FA. Anatomical modifications of Butia capitata propagated under colored shade nets. AN ACAD BRAS CIENC 2018; 90:3615-3624. [PMID: 30184010 DOI: 10.1590/0001-3765201820170347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/18/2018] [Indexed: 11/21/2022] Open
Abstract
The jelly palm plant [Butia capitata (Martius) Beccari] is a native palm of the Cerrado biome used for many purposes in northern Minas Gerais State, Brazil. Dormancy is common in palm seeds, resulting in slow and uneven germination that may take years to complete. Modification in the growth pattern, anatomical parameters, physiological and biochemical characteristics of the plant can be verified due to changes in the light spectrum transmitted through colored shade nets used. Therefore, the objective of this study is to evaluate the effect of colored shade nets on the leaf and root anatomy of the jelly palm plant. The experiment was performed in a completely randomized design, with five treatments, ten replicates and eight plants per replicate, totaling 400 plants. Four colored photo-converter nets with 50% shading and different radiation proportions were employed: white (985 μmol.m-2.s-1), red (327 μmol.m-2.s-1), black (433 μmol.m-2.s-1) and silver (405 μmol.m-2.s-1). The plants cultivated under direct sunlight (1000 μmol.m-2.s-1) were considered as the control group. Leaf and root anatomical analysis was performed on 10 plants per treatment. It is possible to conclude that the colored shade nets caused changes in leaf and root anatomy of the jelly palm plant (Butia capitata).
Collapse
Affiliation(s)
- Bárbara N S Costa
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Irton J S Costa
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Genaina A DE Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-000 Viçosa, MG, Brazil
| | - Dalilhia N Dos Santos
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Flávia A DA Silveira
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Evaldo T DE Melo
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Adalvan D Martins
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Moacir Pasqual
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Tesfahun A Setotaw
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| | - Filipe A Rodrigues
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Sylvio Menicucci, 1001, Kennedy, 37200-000 Lavras, MG, Brazil
| |
Collapse
|
50
|
Murakami K, Matsuda R, Fujiwara K. A Mathematical Model of Photosynthetic Electron Transport in Response to the Light Spectrum Based on Excitation Energy Distributed to Photosystems. PLANT & CELL PHYSIOLOGY 2018; 59:1643-1651. [PMID: 29697808 DOI: 10.1093/pcp/pcy085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
To enable us to analyze more systematically the effects of the spectral distribution of light (i.e. light quality) on photosynthetic electron transport, we propose a simple mathematical model which describes electron transport reactions under light-limited conditions based on the excitation energy distributed to the photosystems. The model assumes that the rate-limiting photosystem performs the photochemical reaction at its maximum yield, while the yield in the other photosystem is passively down-regulated to equalize the rates of linear electron transport through the photosystems. Using intact cucumber leaves, we tested the model by comparing actual and estimated photosynthetic parameters under several combinations of photon flux densities of red and far-red lights (R and FR, respectively). Simultaneously provided R and FR yielded greater gross photosynthetic rates than the sums of the rates under only R and only FR, which is known as the 'enhancement effect'. The present model reproduced these non-additive increases in the gross photosynthetic rates in response to supplemental FR to R and provided more accurate estimates than an existing method that did not take the enhancement effect into account (root mean square errors: 0.11 and 0.21 μmol m-2 s-1, respectively). Using the present model, the photon flux density of the supplemental FR which gives the changing point of rate-limiting photosystem and the photochemical yields of the non-rate-limiting photosystems were estimated reasonably well. The present study has therefore formulated a simplified quantitative electron transport model in response to the light spectrum based on generally accepted concepts and demonstrated its validity experimentally.
Collapse
Affiliation(s)
- Keach Murakami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Ryo Matsuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Kazuhiro Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| |
Collapse
|