1
|
Muneer MA, Chen X, Wang H, Munir MZ, Afridi MS, Yan X, Ji B, Li W, Wu L, Zheng C. Unraveling two decades of phyllosphere endophytes: tracing research trends and insights through visualized knowledge maps, with emphasis on microbial interactions as emerging frontiers. STRESS BIOLOGY 2024; 4:12. [PMID: 38319560 PMCID: PMC10847081 DOI: 10.1007/s44154-024-00148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Phyllosphere endophytes play a critical role in a myriad of biological functions, such as maintaining plant health and overall fitness. They play a determinative role in crop yield and quality by regulating vital processes, such as leaf functionality and longevity, seed mass, apical growth, flowering, and fruit development. This study conducted a comprehensive bibliometric analysis aiming to review the prevailing research trajectories in phyllosphere endophytes and harness both primary areas of interest and emerging challenges. A total of 156 research articles on phyllosphere endophytes, published between 2002 and 2022, were retrieved from the Web of Science Core Collection (WoSCC). A systematic analysis was conducted using CiteSpace to visualize the evolution of publication frequency, the collaboration network, the co-citation network, and keywords co-occurrence. The findings indicated that initially, there were few publications on the topic of phyllosphere endophytes. However, from 2011 onwards, there was a notable increase in the number of publications on phyllosphere endophytes, gaining worldwide attention. Among authors, Arnold, A Elizabeth is widely recognized as a leading author in this research area. In terms of countries, the USA and China hold the highest rankings. As for institutional ranking, the University of Arizona is the most prevalent and leading institute in this particular subject. Collaborative efforts among the authors and institutions tend to be confined to small groups, and a large-scale collaborative network needs to be established. This study identified the influential journals, literature, and hot research topics. These findings also highlight the interconnected nature of key themes, e.g., phyllosphere endophyte research revolves around the four pillars: diversity, fungal endophytes, growth, and endophytic fungi. This study provides an in-depth perspective on phyllosphere endophytes studies, revealing the identification of biodiversity and microbial interaction of phyllosphere endophytes as the principal research frontiers. These analytical findings not only elucidate the recent trajectory of phyllosphere endophyte research but also provide invaluable insights for similar studies and their potential applications on a global scale.
Collapse
Affiliation(s)
- Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention; Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Hexin Wang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention; Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Zeeshan Munir
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199, Lishui Rd, Shenzhen, 518055, China
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, CEP 37200-900, Brazil
| | - Xiaojun Yan
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baoming Ji
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350013, China
| | - Liangquan Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoyuan Zheng
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Deng Y, Yu X, Yin J, Chen L, Zhao N, Gao Y, Ren A. Epichloë Endophyte Enhanced Insect Resistance of Host Grass Leymus Chinensis by Affecting Volatile Organic Compound Emissions. J Chem Ecol 2023:10.1007/s10886-023-01459-6. [PMID: 37917413 DOI: 10.1007/s10886-023-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
In plant-herbivore interactions, plant volatile organic compounds (VOCs) play an important role in anti-herbivore defense. Grasses and Epichloë endophytes often form defensive mutualistic symbioses. Most Epichloë species produce alkaloids to protect hosts from herbivores, but there is no strong evidence that endophytes can affect the insect resistance of their hosts by altering VOC emissions. In this study, a native dominant grass, sheepgrass (Leymus chinensis), and its herbivore, oriental migratory locust (Locusta migratoria), were used as experimental materials. We studied the effect of endophyte-associated VOC emissions on the insect resistance of L. chinensis. The results showed that endophyte infection enhanced insect resistance of the host, and locusts preferred the odor of endophyte-free (EF) leaves to that of endophyte-infected (EI) leaves. We determined the VOC profile of L. chinensis using gas chromatography-mass spectrometry (GC-MS), and found that endophyte infection decreased the pentadecane (an alkane) emission from uneaten plants, and increased the nonanal (an aldehyde) emission from eaten plants. The olfactory response experiment showed that locusts were attracted by high concentration of pentadecane, while repelled by high concentration of nonanal, indicating that Epichloë endophytes may increase locust resistance of L. chinensis by decreasing pentadecane while increasing nonanal emission. Our results suggest that endophytes can induce VOC-mediated defense in hosts in addition to producing alkaloids, contributing to a better understanding the endophyte-plant-herbivore interactions.
Collapse
Affiliation(s)
- Yongkang Deng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinhe Yu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaqi Yin
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Shi X, Qin T, Qu Y, Zhang J, Hao G, Zhao N, Gao Y, Ren A. Infection by Endophytic Epichloë sibirica Was Associated with Activation of Defense Hormone Signal Transduction Pathways and Enhanced Pathogen Resistance in the Grass Achnatherum sibiricum. PHYTOPATHOLOGY 2022; 112:2310-2320. [PMID: 35704677 DOI: 10.1094/phyto-12-21-0521-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epichloë endophytes can improve the resistance of host grasses to pathogenic fungi, but the underlying mechanisms remain largely unknown. Here, we used phytohormone quantifications, gene expression analysis, and pathogenicity experiments to investigate the effect of Epichloë sibirica on the resistance of Achnatherum sibiricum to Curvularia lunata pathogens. Comparison of gene expression patterns between endophyte-infected and endophyte-free leaves revealed that endophyte infection was associated with significant induction of 1,758 and 765 differentially expressed genes in the host before and after pathogen inoculation, respectively. Functional analysis of the differentially expressed genes suggested that endophyte infection could activate the constitutive resistance of the host by increasing photosynthesis, enhancing the ability to scavenge reactive oxygen species, and actively regulating the expression of genes with function related to disease resistance. We found that endophyte infection was associated with induction of the expression of genes involved in the biosynthesis pathways of jasmonic acid, ethylene, and pipecolic acid and amplified the defense response of the jasmonic acid/ethylene co-regulated EIN/ERF1 transduction pathway and Pip-mediated TGA transduction pathway. Phytohormone quantifications showed that endophyte infection was associated with significant accumulation of jasmonic acid, ethylene, and pipecolic acid after pathogen inoculation. Exogenous phytohormone treatments confirmed that the disease index of plants was negatively related to both jasmonic acid and ethylene concentrations. Our results demonstrate that endophyte infection can not only improve the constitutive resistance of the host to phytopathogens before pathogen inoculation but also be associated with enhanced systemic resistance of the host to necrotrophs after C. lunata inoculation.
Collapse
Affiliation(s)
- Xinjian Shi
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tianzi Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaobing Qu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Junzhen Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Hao
- College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science & Engineering, Nankai University, Tianjin 300071, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Lazar A, Mushinski RM, Bending GD. Landscape scale ecology of Tetracladium spp. fungal root endophytes. ENVIRONMENTAL MICROBIOME 2022; 17:40. [PMID: 35879740 PMCID: PMC9310467 DOI: 10.1186/s40793-022-00431-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The genus Tetracladium De Wild. (Ascomycota) has been traditionally regarded as a group of Ingoldian fungi or aquatic hyphomycetes-a polyphyletic group of phylogenetically diverse fungi which grow on decaying leaves and plant litter in streams. Recent sequencing evidence has shown that Tetracladium spp. may also exist as root endophytes in terrestrial environments, and furthermore may have beneficial effects on the health and growth of their host. However, the diversity of Tetracladium spp. communities in terrestrial systems and the factors which shape their distribution are largely unknown. RESULTS Using a fungal community internal transcribed spacer amplicon dataset from 37 UK Brassica napus fields we found that soils contained diverse Tetracladium spp., most of which represent previously uncharacterised clades. The two most abundant operational taxonomic units (OTUs), related to previously described aquatic T. furcatum and T. maxilliforme, were enriched in roots relative to bulk and rhizosphere soil. For both taxa, relative abundance in roots, but not rhizosphere or bulk soil was correlated with B. napus yield. The relative abundance of T. furcatum and T. maxilliforme OTUs across compartments showed very similar responses with respect to agricultural management practices and soil characteristics. The factors shaping the relative abundance of OTUs homologous to T. furcatum and T. maxilliforme OTUs in roots were assessed using linear regression and structural equation modelling. Relative abundance of T. maxilliforme and T. furcatum in roots increased with pH, concentrations of phosphorus, and increased rotation frequency of oilseed rape. It decreased with increased soil water content, concentrations of extractable phosphorus, chromium, and iron. CONCLUSIONS The genus Tetracladium as a root colonising endophyte is a diverse and widely distributed part of the oilseed rape microbiome that positively correlates to crop yield. The main drivers of its community composition are crop management practices and soil nutrients.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Ryan M Mushinski
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum. J Fungi (Basel) 2022; 8:jof8060619. [PMID: 35736102 PMCID: PMC9225340 DOI: 10.3390/jof8060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Achnatherum sibiricum can be infected by two species of fungal endophytes, Epichloë gansuensis (Eg) and Epichloë sibirica (Es). In this study, the metabolites of Eg, Es, and their infected plants were studied by GC−MS analysis. The results showed that the metabolic profiles of Eg and Es were similar in general, and only six differential metabolites were detected. The direct effect of endophyte infection on the metabolites in A. sibiricum was that endophyte-infected plants could produce mannitol, which was not present in uninfected plants. Epichloë infection indirectly caused an increase in the soluble sugars in A. sibiricum related to growth and metabolites related to the defense against pathogens and herbivores, such as α-tocopherol, α-linolenic acid and aromatic amino acids. Epichloë infection could regulate galactose metabolism, starch and sucrose metabolism, tyrosine metabolism and phenylalanine metabolism of host grass. In addition, there was a significant positive correlation in the metabolite contents between the endophyte and the host.
Collapse
|
6
|
Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 2022; 204:151. [DOI: 10.1007/s00203-021-02637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
|
7
|
Minás A, García‐Parisi PA, Chludil H, Omacini M. Endophytes shape the legacy left by the above‐ and below‐ground litter of the host affecting the establishment of a legume. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexia Minás
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente IFEVAUniversidad de Buenos AiresCONICET Buenos Aires Argentina
| | - Pablo A. García‐Parisi
- Facultad de Agronomía Departamento de Producción Animal IFEVAUniversidad de Buenos AiresCONICET Buenos Aires Argentina
| | - Hugo Chludil
- Facultad de Agronomía Departamento de Biología Aplicada y Alimentos Universidad de Buenos Aires Buenos Aires Argentina
| | - Marina Omacini
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente IFEVAUniversidad de Buenos AiresCONICET Buenos Aires Argentina
| |
Collapse
|
8
|
Haines SR, Hall EC, Marciniak K, Misztal PK, Goldstein AH, Adams RI, Dannemiller KC. Microbial growth and volatile organic compound (VOC) emissions from carpet and drywall under elevated relative humidity conditions. MICROBIOME 2021; 9:209. [PMID: 34666813 PMCID: PMC8524935 DOI: 10.1186/s40168-021-01158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Microbes can grow in indoor environments if moisture is available, and we need an improved understanding of how this growth contributes to emissions of microbial volatile organic compounds (mVOCs). The goal of this study was to measure how moisture levels, building material type, collection site, and microbial species composition impact microbial growth and emissions of mVOCs. We subjected two common building materials, drywall, and carpet, to treatments with varying moisture availability and measured microbial communities and mVOC emissions. RESULTS Fungal growth occurred in samples at >75% equilibrium relative humidity (ERH) for carpet with dust and >85% ERH for inoculated painted drywall. In addition to incubated relative humidity level, dust sample collection site (adonis p=0.001) and material type (drywall, carpet, adonis p=0.001) drove fungal and bacterial species composition. Increased relative humidity was associated with decreased microbial species diversity in samples of carpet with dust (adonis p= 0.005). Abundant volatile organic compounds (VOCs) that accounted for >1% emissions were likely released from building materials and the dust itself. However, certain mVOCs were associated with microbial growth from carpet with dust such as C10H16H+ (monoterpenes) and C2H6SH+ (dimethyl sulfide and ethanethiol). CO2 production from samples of carpet with dust at 95% ERH averaged 5.92 mg hr-1 kg-1, while the average for carpet without dust at 95% ERH was 2.55 mg hr-1 kg-1. CONCLUSION Microbial growth and mVOC emissions occur at lower relative humidity in carpet and floor dust compared to drywall, which has important implications for human exposure. Even under elevated relative humidity conditions, the VOC emissions profile is dominated by non-microbial VOCs, although potential mVOCs may dominate odor production. Video Abstract.
Collapse
Affiliation(s)
- Sarah R. Haines
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario M5S 1A4 Canada
| | - Emma C. Hall
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 USA
| | | | - Pawel K. Misztal
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 USA
| | - Allen H. Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 USA
| | - Rachel I. Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH 43210 USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, Ohio State University, Columbus, OH 43210 USA
- Department of Civil, Environmental & Geodetic Engineering, Environmental Health Sciences, Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Antagonism to Plant Pathogens by Epichloë Fungal Endophytes-A Review. PLANTS 2021; 10:plants10101997. [PMID: 34685806 PMCID: PMC8539511 DOI: 10.3390/plants10101997] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Epichloë is a genus of filamentous fungal endophytes that has co-evolved with cool-season grasses with which they form long-term, symbiotic associations. The most agriculturally important associations for pasture persistence for grazing livestock are those between asexual vertically transmitted Epichloë strains and the pasture species, perennial ryegrass, and tall fescue. The fungus confers additional traits to their host grasses including invertebrate pest deterrence and drought tolerance. Selected strains of these mutualistic endophytes have been developed into highly efficacious biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for pasture persistence. Less publicized is the antagonism Epichloë endophytes display towards multiple species of saprophytic and pathogenic microbes. This opinion piece will review the current literature on antimicrobial properties exhibited by this genus of endophyte and discuss the reasons why this trait has historically remained a research curiosity rather than a trait of commercial significance.
Collapse
|
10
|
Kagan IA. Soluble phenolic compounds of perennial ryegrass (Lolium perenne L.): Potential effects on animal performance, and challenges in determining profiles and concentrations. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Bastías DA, Gianoli E, Gundel PE. Fungal endophytes can eliminate the plant growth-defence trade-off. THE NEW PHYTOLOGIST 2021; 230:2105-2113. [PMID: 33690884 DOI: 10.1111/nph.17335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
A trade-off between growth and defence functions is commonly observed in plants. We propose that the association of plants with Epichloë fungal endophytes may eliminate this trade-off. This would be a consequence of the double role of these endophytes in host plants: the stimulation of plant growth hormones (e.g. gibberellins) and the fungal production of antiherbivore alkaloids. We put forward a model that integrates this dual effect of endophytes on plant growth and defence and test its predictions by means of meta-analysis of published literature. Our results support the notion that the enhanced plant resistance promoted by endophytes does not compromise plant growth. The limits and ecological benefits of this endophyte-mediated lack of plant growth-defence trade-off are discussed.
Collapse
Affiliation(s)
- Daniel A Bastías
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile
- Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Pedro E Gundel
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| |
Collapse
|
12
|
Najdabbasi N, Mirmajlessi SM, Dewitte K, Ameye M, Mänd M, Audenaert K, Landschoot S, Haesaert G. Green Leaf Volatile Confers Management of Late Blight Disease: A Green Vaccination in Potato. J Fungi (Basel) 2021; 7:jof7040312. [PMID: 33919547 PMCID: PMC8072593 DOI: 10.3390/jof7040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Yield losses of crops due to plant pathogens are a major threat in all agricultural systems. In view of environmental issues and legislative limitations for chemical crop protection products, the need to design new environmentally friendly disease management strategies has gained interest. Despite the unique capability of green leaf volatiles (GLVs) to suppress a broad spectrum of plant pathogens, their capacity to control the potato late-blight-causing agent Phytophthora infestans has not been well studied. This study addresses the potential role of the GLV Z-3-hexenyl acetate (Z-3-HAC) in decreasing the severity of late blight and the underlying gene-based evidence leading to this effect. Nine-week-old potato plants (Solanum tuberosum L.) were exposed to Z-3-HAC before they were inoculated with P. infestans genotypes at different time points. These pre-exposed potato plants exhibited slower disease development after infection with the highly pathogenic genotype of P. infestans (EU-13-A2) over time. Qualitative assessment showed that the exposed, infected plants possessed significantly lower sporulation intensity and disease severity compared to the control plants. Hypersensitive response (HR)-like symptoms were observed on the treated leaves when inoculated with different pathogen genotypes. No HR-like lesions were detected on the untreated leaves after infection. It was shown that the transcript levels of several defense-related genes, especially those that are involved in reactive oxygen species (ROS) production pathways were significantly expressed in plants at 48 and 72 h postexposure to the Z-3-HAC. The current work provides evidence on the role of Z-3-HAC in the increased protection of potato plants against late blight through plant immunity and offers new opportunities for the sustainable control of potato diseases.
Collapse
Affiliation(s)
- Neda Najdabbasi
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
- Institute of Agricultural and Environmental Sciences, Department of Plant Health, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia;
- Correspondence:
| | - Seyed Mahyar Mirmajlessi
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Kevin Dewitte
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Maarten Ameye
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Department of Plant Health, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia;
| | - Kris Audenaert
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Sofie Landschoot
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Geert Haesaert
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| |
Collapse
|
13
|
Z-3-Hexenylacetate emissions induced by the endophyte Epichloë occultans at different levels of defoliation during the host plant's life cycle. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E. Shaping the leaf microbiota: plant-microbe-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:36-56. [PMID: 32910810 PMCID: PMC8210630 DOI: 10.1093/jxb/eraa417] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
The aerial portion of a plant, namely the leaf, is inhabited by pathogenic and non-pathogenic microbes. The leaf's physical and chemical properties, combined with fluctuating and often challenging environmental factors, create surfaces that require a high degree of adaptation for microbial colonization. As a consequence, specific interactive processes have evolved to establish a plant leaf niche. Little is known about the impact of the host immune system on phyllosphere colonization by non-pathogenic microbes. These organisms can trigger plant basal defenses and benefit the host by priming for enhanced resistance to pathogens. In most disease resistance responses, microbial signals are recognized by extra- or intracellular receptors. The interactions tend to be species specific and it is unclear how they shape leaf microbial communities. In natural habitats, microbe-microbe interactions are also important for shaping leaf communities. To protect resources, plant colonizers have developed direct antagonistic or host manipulation strategies to fight competitors. Phyllosphere-colonizing microbes respond to abiotic and biotic fluctuations and are therefore an important resource for adaptive and protective traits. Understanding the complex regulatory host-microbe-microbe networks is needed to transfer current knowledge to biotechnological applications such as plant-protective probiotics.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| | - Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Priyamedha Sengupta
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Pewan SB, Otto JR, Kinobe RT, Adegboye OA, Malau-Aduli AEO. MARGRA Lamb Eating Quality and Human Health-Promoting Omega-3 Long-Chain Polyunsaturated Fatty Acid Profiles of Tattykeel Australian White Sheep: Linebreeding and Gender Effects. Antioxidants (Basel) 2020; 9:E1118. [PMID: 33198363 PMCID: PMC7697536 DOI: 10.3390/antiox9111118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Health-conscious consumers increasingly demand healthier, tastier, and more nutritious meat, hence the continuous need to meet market specifications and demand for high-quality lamb. We evaluated the longissimus dorsi muscle of 147 Tattykeel Australian White (TAW) sheep fed on antioxidant-rich ryegrass pastures exclusive to MAGRA lamb brand for meat eating quality parameters of intramuscular fat (IMF) content, fat melting point (FMP) and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). The aim was to assess the impact of linebreeding and gender on pasture-fed lamb eating quality and to test the hypothesis that variation in healthy lamb eating quality is a function of lamb gender and not its antioxidant status or inbreeding coefficient (IC). After solid-phase extraction and purification, phenolics and antioxidant enzyme activities were analysed by high-performance liquid chromatography and mass spectrometry. IMF and fatty acid composition were determined using solvent extraction and gas chromatography, respectively. IC was classified into low (0-5%), medium (6-10%) and high (>10%) and ranged from 0-15.6%. FMP and IMF ranged from 28 to 39 °C and 3.4% to 8.2%, with overall means of 34.6 ± 2.3 °C and 4.4 ± 0.2%, respectively, and n-3 LC-PUFA ranged from "source" to "good source" levels of 33-69 mg/100 g. Ewes had significantly (P ˂ 0.0001) higher IMF, C22:5n-3 (DPA), C22:6n-3 (DHA), C18:3n-6, C20:3, C22:4n-6, C22:5n-6, total monounsaturated (MUFA), PUFA and Σn-3 fatty acids and lower total saturated fatty acids (SFA) and FMP, than rams. As IC increased, there were no differences in FMP and IMF. Folin-Ciocalteu total phenolics, ferric reducing antioxidant power and antioxidant activities of glutathione peroxidase, catalase and superoxide dismutase enzymes did not differ by either gender or IC. This study provides evidence that IC is inconsequential in affecting antioxidant status, IMF, FMP and n-3 LC-PUFA in linebred and pasture-fed TAW sheep because the observed variation in individual fatty acids was mainly driven by gender differences between ewes and rams, hence the need to accept the tested hypothesis. This finding reinforces the consistent healthy eating quality of MARGRA lamb brand from TAW sheep regardless of its linebred origin.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
| |
Collapse
|
16
|
Maternal Exposure to Ozone Modulates the Endophyte-Conferred Resistance to Aphids in Lolium multiflorum Plants. INSECTS 2020; 11:insects11090548. [PMID: 32824905 PMCID: PMC7564161 DOI: 10.3390/insects11090548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/29/2023]
Abstract
Plants are challenged by biotic and abiotic stress factors and the incidence of one can increase or decrease resistance to another. These relations can also occur transgenerationally. For instance, progeny plants whose mothers experienced herbivory can be more resistant to herbivores. Certain fungal endophytes that are vertically transmitted endow plants with alkaloids and resistance to herbivores. However, endophyte-symbiotic plants exposed to the oxidative agent ozone became susceptible to aphids. Here, we explored whether this effect persists transgenerationally. We exposed Lolium multiflorum plants with and without fungal endophyte Epichloë occultans to ozone (120 or 0 ppb), and then, challenged the progeny with aphids (Rhopalosiphum padi). The endophyte was the main factor determining the resistance to aphids, but its importance diminished in plants with ozone history. This negative ozone effect on the endophyte-mediated resistance was apparent on aphid individual weights. Phenolic compounds in seeds were increased by the symbiosis and diminished by the ozone. The endophyte effect on phenolics vanished in progeny plants while the negative ozone effect persisted. Independently of ozone, the symbiosis increased the plant biomass (≈24%). Although ozone can diminish the importance of endophyte symbiosis for plant resistance to herbivores, it would be compensated by host growth stimulation.
Collapse
|
17
|
Shi X, Qin T, Liu H, Wu M, Li J, Shi Y, Gao Y, Ren A. Endophytic Fungi Activated Similar Defense Strategies of Achnatherum sibiricum Host to Different Trophic Types of Pathogens. Front Microbiol 2020; 11:1607. [PMID: 32793143 PMCID: PMC7393327 DOI: 10.3389/fmicb.2020.01607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
It is well documented that Epichloë endophytes can enhance the resistance of grasses to herbivory. However, reports on resistance to pathogenic fungi are limited, and their conclusions are variable. In this study, we chose pathogenic fungi with different trophic types, namely, the biotrophic pathogen Erysiphales species and the necrotrophic pathogen Curvularia lunata, to test the effects of Epichloë on the pathogen resistance of Achnatherum sibiricum. The results showed that, compared to Erysiphales species, C. lunata caused a higher degree of damage and lower photochemical efficiency (Fv/Fm) in endophyte−free (E−) leaves. Endophytes significantly alleviated the damage caused by these two pathogens. The leaf damaged area and Fv/Fm of endophyte−infected (E+) leaves were similar between the two pathogen treatments, indicating that the beneficial effects of endophytes were more significant when hosts were exposed to C. lunata than when they were exposed to Erysiphales species. We found that A. sibiricum initiated jasmonic acid (JA)−related pathways to resist C. lunata but salicylic acid (SA)–related pathways to resist Erysiphales species. Endophytic fungi had no effect on the content of SA but increased the content of JA and total phenolic compounds, which suggest that endophyte infection might enhance the resistance of A. sibiricum to these two different trophic types of pathogens through similar pathways.
Collapse
|
18
|
Bharadwaj R, Jagadeesan H, Kumar SR, Ramalingam S. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World J Microbiol Biotechnol 2020; 36:92. [PMID: 32562008 DOI: 10.1007/s11274-020-02868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.
Collapse
Affiliation(s)
- R Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - H Jagadeesan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - S R Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - S Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
19
|
Wolfe ER, Ballhorn DJ. Do Foliar Endophytes Matter in Litter Decomposition? Microorganisms 2020; 8:microorganisms8030446. [PMID: 32245270 PMCID: PMC7143956 DOI: 10.3390/microorganisms8030446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
Litter decomposition rates are affected by a variety of abiotic and biotic factors, including the presence of fungal endophytes in host plant tissues. This review broadly analyzes the findings of 67 studies on the roles of foliar endophytes in litter decomposition, and their effects on decomposition rates. From 29 studies and 1 review, we compiled a comprehensive table of 710 leaf-associated fungal taxa, including the type of tissue these taxa were associated with and isolated from, whether they were reported as endo- or epiphytic, and whether they had reported saprophytic abilities. Aquatic (i.e., in-stream) decomposition studies of endophyte-affected litter were significantly under-represented in the search results (p < 0.0001). Indicator species analyses revealed that different groups of fungal endophytes were significantly associated with cool or tropical climates, as well as specific plant host genera (p < 0.05). Finally, we argue that host plant and endophyte interactions can significantly influence litter decomposition rates and should be considered when interpreting results from both terrestrial and in-stream litter decomposition experiments.
Collapse
|
20
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Improving Phenolic Total Content and Monoterpene in Mentha x piperita by Using Salicylic Acid or Methyl Jasmonate Combined with Rhizobacteria Inoculation. Int J Mol Sci 2019; 21:E50. [PMID: 31861733 PMCID: PMC6981552 DOI: 10.3390/ijms21010050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023] Open
Abstract
The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.
Collapse
Affiliation(s)
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Erika Banchio
- INBIAS (CONICET-Universidad Nacional de Río Cuarto), Campus Universitario, 5800 Río Cuarto, Argentina;
| |
Collapse
|
21
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
22
|
Yuan J, Zhang W, Sun K, Tang MJ, Chen PX, Li X, Dai CC. Comparative Transcriptomics and Proteomics of Atractylodes lancea in Response to Endophytic Fungus Gilmaniella sp. AL12 Reveals Regulation in Plant Metabolism. Front Microbiol 2019; 10:1208. [PMID: 31191508 PMCID: PMC6546907 DOI: 10.3389/fmicb.2019.01208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
The fungal endophyte Gilmaniella sp. AL12 can establish a beneficial association with the medicinal herb Atractylodes lancea, and improve plant growth and sesquiterpenoids accumulation, which is termed “double promotion.” Our previous studies have uncovered the underling primary mechanism based on some physiological evidences. However, a global understanding of gene or protein expression regulation in primary and secondary metabolism and related regulatory processes is still lacking. In this study, we employed transcriptomics and proteomics of Gilmaniella sp. AL12-inoculated and Gilmaniella sp. AL12-free plants to study the impact of endophyte inoculation at the transcriptional and translational levels. The results showed that plant genes involved in plant immunity and signaling were suppressed, similar to the plant response caused by some endophytic fungi and biotroph pathogen. The downregulated plant immunity may contribute to plant-endophyte beneficial interaction. Additionally, genes and proteins related to primary metabolism (carbon fixation, carbohydrate metabolism, and energy metabolism) tended to be upregulated after Gilmaniella sp. AL12 inoculation, which was consistent with our previous physiological evidences. And, Gilmaniella sp. AL12 upregulated genes involved in terpene skeleton biosynthesis, and upregulated genes annotated as β-farnesene synthase and β-caryophyllene synthase. Based on the above results, we proposed that endophyte-plant associations may improve production (biomass and sesquiterpenoids accumulation) by increasing the source (photosynthesis), expanding the sink (glycolysis and tricarboxylic acid cycle), and enhancing the metabolic flux (sesquiterpenoids biosynthesis pathway) in A. lancea. And, this study will help to further clarify plant-endophyte interactions.
Collapse
Affiliation(s)
- Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Piao-Xue Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xia Li
- Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of Chinese National Center Rice Improvement, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
|
24
|
Qin J, Wu M, Liu H, Gao Y, Ren A. Endophyte Infection and Methyl Jasmonate Treatment Increased the Resistance of Achnatherum sibiricum to Insect Herbivores Independently. Toxins (Basel) 2018; 11:toxins11010007. [PMID: 30587763 PMCID: PMC6357071 DOI: 10.3390/toxins11010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022] Open
Abstract
Alkaloids are usually thought to be responsible for protecting endophyte-infected (EI) grasses from their herbivores. For EI grasses that produce few alkaloids, can endophyte infection enhance their resistance to herbivores? Related studies are limited. In the Inner Mongolian steppe, Achnatherum sibiricum is highly infected by Epichloë endophytes, but produces few alkaloids. Locusts are the common insect herbivores of grasses. In this study, A. sibiricum was used as plant material. Methyl jasmonate (MJ, when applied exogenously, can induce responses similar to herbivore damage) treatment was performed. The effects of endophyte infection and MJ treatment on the resistance of A. sibiricum to Locusta migratoria were studied. We found that locusts preferred EF (endophyte-free) plants to EI plants in both choice and no-choice feeding experiments. Endophyte infection enhanced the resistance of A. sibiricum to locusts. Endophyte infection decreased soluble sugar concentrations, while it increased the total phenolic content and phenylalanine ammonia lyase (PAL) activity, which may contribute to the resistance of A. sibiricum to locusts. There was an interaction effect between MJ treatment and endophyte infection on the growth of the host. MJ treatment was a negative regulator of the plant growth-promoting effects of endophyte infection. There was no interaction effect between MJ treatment and endophyte infection on the defense characteristics of the host. In groups not exposed to locusts, MJ treatment and endophyte infection had a similar effect in decreasing the soluble sugar content, while increasing the total phenolic content and the PAL activity. In groups exposed to locusts, the effect of MJ treatment on the above characteristics disappeared, while the effect of endophyte infection became more obvious. All of these results suggest that even for endophytes producing few alkaloids, they could still increase the resistance of native grasses to insect herbivores. Furthermore, endophyte infection might mediate the defense responses of the host, independent of jasmonic acid (JA) pathways.
Collapse
Affiliation(s)
- Junhua Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Man Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Hui Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z. Role of Epichloë Endophytes in Defense Responses of Cool-Season Grasses to Pathogens: A Review. PLANT DISEASE 2018; 102:2061-2073. [PMID: 30270751 DOI: 10.1094/pdis-05-18-0762-fe] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various cool-season grasses are infected by Epichloë endophyte, and this symbiotic relationship is always of benefit to the host grass due to an increased resistance to abiotic and biotic stresses. Fungal diseases adversely affect the yield, quality, and economic benefits of rangelands, which affects the production of animal husbandry. Therefore, it is imperative to breed resistant cultivars and to better understand the role of fungal endophytes in order to protect grasses against pathogens. The present review introduces research regarding how these endophytes affect the growth of pathogens in vitro and how they change the resistance of host plants to plant diseases. From the perspective of physical defense, changes in physiological indexes, and secretion of chemical compounds, we summarize the potential mechanisms by which endophytes are able to enhance the disease resistance of a host grass. Through these, we aim to establish a solid theoretical foundation for plant disease control and disease resistance breeding by application of fungal endophytes. A broader understanding of fungal endophyte effects on hosts could create a new opportunity for managing or introducing fungal symbioses in both agronomic or non-agronomic ecosystems.
Collapse
Affiliation(s)
- Chao Xia
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Nana Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Yawen Zhang
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| |
Collapse
|
26
|
da Silva Ribeiro A, Polonio JC, Costa AT, Dos Santos CM, Rhoden SA, Azevedo JL, Pamphile JA. Bioprospection of Culturable Endophytic Fungi Associated with the Ornamental Plant Pachystachys lutea. Curr Microbiol 2018; 75:588-596. [PMID: 29299623 DOI: 10.1007/s00284-017-1421-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023]
Abstract
Endophytes are fungi and bacteria that inhabit plant tissues without causing disease. Endophytes have characteristics that are important for the health of the plant and have been isolated from several plants of economic and medicinal interest but rarely from ornamental plants. The current study isolates and identifies endophytic fungi from the leaves of Pachystachys lutea and evaluates the antagonistic activity of these endophytes as well as cellulase production by the endophytes. Fungi were isolated by fragmentation from surface-disinfected leaves and were identified by the sequencing of the ITS gene and the genes coding for EF 1-α and β-tubulin followed by multilocus sequence analysis. Molecular taxonomic analysis revealed that 78% of the identified fungi belonged to the genus Diaporthe. We also identified strains belonging to the genera Colletotrichum, Phyllosticta, Xylaria, Nemania, and Alternaria. Most of the strains tested were able to inhibit the growth of pathogenic fungi, especially PL09 (Diaporthe sp.), which inhibited the growth of Colletotrichum sp., and PL03 (Diaporthe sp.), which inhibited the growth of Fusarium oxysporum. The production of cellulase ranged from 0.87 to 1.60 μmol/min. Foliar endophytic fungal isolates from P. lutea showed promising results for the in vitro control of plant pathogens and for cellulase production. This paper is the first report on culturable endophytic fungi isolated from the ornamental plant P. lutea.
Collapse
Affiliation(s)
- Amanda da Silva Ribeiro
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Julio Cesar Polonio
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Alessandra Tenório Costa
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Caroline Menicoze Dos Santos
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil
| | - Sandro Augusto Rhoden
- Federal Institute of Santa Catarina, Km 9 da Rodovia Duque de Caxias, São Francisco do Sul, SC, CEP 89240991, Brazil
| | - João Lúcio Azevedo
- Department of Genetics, College of Agriculture Luiz de Queiroz (ESALQ/USP), Piracicaba, SP, CEP 13418-900, Brazil
| | - João Alencar Pamphile
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Avenida Colombo, 5790 - Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brazil.
| |
Collapse
|
27
|
Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE. Epichloë Fungal Endophytes and Plant Defenses: Not Just Alkaloids. TRENDS IN PLANT SCIENCE 2017; 22:939-948. [PMID: 28923242 DOI: 10.1016/j.tplants.2017.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 05/25/2023]
Abstract
Although the role of fungal alkaloids in protecting grasses associated with Epichloë fungal endophytes has been extensively documented, the effects of the symbiont on the host plant's immune responses have received little attention. We propose that, in addition to producing protective alkaloids, endophytes enhance plant immunity against chewing insects by promoting endogenous defense responses mediated by the jasmonic acid (JA) pathway. We advance a model that integrates this dual effect of endophytes on plant defenses and test its predictions by means of a standard meta-analysis. This analysis supports a role of Epichloë endophytes in boosting JA-mediated plant defenses. We discuss the ecological scenarios where this effect of endophytes on plant defenses would be most beneficial for increasing plant fitness.
Collapse
Affiliation(s)
- Daniel A Bastias
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453 Buenos Aires, C1417DSE Buenos Aires, Argentina.
| | - M Alejandra Martínez-Ghersa
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453 Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453 Buenos Aires, C1417DSE Buenos Aires, Argentina; IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Pedro E Gundel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453 Buenos Aires, C1417DSE Buenos Aires, Argentina
| |
Collapse
|
28
|
Waqas M, Kim YH, Khan AL, Shahzad R, Asaf S, Hamayun M, Kang SM, Khan MA, Lee IJ. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J Zhejiang Univ Sci B 2017; 18:109-124. [PMID: 28124840 PMCID: PMC5296228 DOI: 10.1631/jzus.b1500262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/02/2016] [Indexed: 11/11/2022]
Abstract
We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro- and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro- and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents.
Collapse
Affiliation(s)
- Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
29
|
Karpyn Esqueda M, Yen AL, Rochfort S, Guthridge KM, Powell KS, Edwards J, Spangenberg GC. A Review of Perennial Ryegrass Endophytes and Their Potential Use in the Management of African Black Beetle in Perennial Grazing Systems in Australia. FRONTIERS IN PLANT SCIENCE 2017; 8:3. [PMID: 28154571 PMCID: PMC5244474 DOI: 10.3389/fpls.2017.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/03/2017] [Indexed: 05/05/2023]
Abstract
The major insect pest of Australian cool temperate pastures is the root-feeding insect Heteronychus arator (African black beetle, ABB). Significant pasture damage can occur even at low ABB densities (11 individuals per square meter), and often re-sowing of the whole paddock is required. Mitigation of the effects of pasture pests, and in particular subterranean species such as the larval form of ABB, can be challenging. Early detection is limited by the ability to visualize above-ground symptoms, and chemical control of insects in soil is often ineffective. This review takes a look at the historical events that molded the pastoral landscape in Australia. The importation route, changes in land management and pasture composition by European settlers may have aided the establishment of ABB in Australia. Perennial ryegrass Lolium perenne is discussed as it is one of the most important perennial agricultural grasses and is widely-sown in moderate-to-high-rainfall temperate zones of the world. Endophytic fungi from the genus Epichloë form symbiotic relationships with cool season grasses such as Lolium perenne (perennial ryegrass). They have been studied extensively and are well documented for enhancing persistence in pasture via a suite of bioactive secondary metabolites produced by the fungal symbionts. Several well-characterized secondary metabolites are discussed. Some can have negative effects on cattle (e.g., ergovaline and lolitrems) while others have been shown to benefit the host plant through deterrence of insect pests from feeding and by insecticidal activity (e.g., peramine, lolines, ergopeptines). Various control methods for ABB are also discussed, with a focus on the potential role of asexual Epichloë endophytes.
Collapse
Affiliation(s)
- Mijail Karpyn Esqueda
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
- *Correspondence: Mijail Karpyn Esqueda
| | - Alan L. Yen
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - Simone Rochfort
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
- Simone Rochfort
| | - Kathryn M. Guthridge
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
| | - Kevin S. Powell
- Agriculture Victoria, Department of Economic Development, Jobs, Transport and ResourcesRutherglen, VIC, Australia
| | - Jacqueline Edwards
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - German C. Spangenberg
- AgriBio, Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, Agriculture Victoria, La Trobe UniversityMelbourne, VIC, Australia
- Dairy Futures Co-operative Research CentreMelbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
30
|
Qin J, Gao Y, Liu H, Zhou Y, Ren A, Gao Y. Effect of Endophyte Infection and Clipping Treatment on Resistance and Tolerance of Achnatherum sibiricum. Front Microbiol 2016; 7:1988. [PMID: 28018319 PMCID: PMC5156843 DOI: 10.3389/fmicb.2016.01988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 12/24/2022] Open
Abstract
It is well-documented that endophytes can enhance the resistance of agronomical grasses, such as tall fescue and perennial ryegrass to herbivory. For native grasses, however, the related reports are limited, and the conclusions are variable. Achnatherum sibiricum is a grass native to the Inner Mongolian steppe. This grass is highly infected by endophytes but does not produce detectable endophyte-related alkaloids known under normal conditions. In this study, the contributions of endophytes to the resistance of A. sibiricum to Locusta migratoria were studied. We found that locusts preferred EF (endophyte-free) plants to EI (endophyte-infected) plants, and the weight of locusts fed on EI plants was significantly lower than those fed on EF plants. Hence, endophyte infection significantly enhanced the resistance of the host to L. migratoria. Endophyte infection significantly decreased the concentration of soluble sugar and amino acids while significantly increased the concentration of total phenolic content, and these metabolites may contribute to herbivore resistance of the host. The clipping treatment further strengthened the locust resistance advantage of EI over EF plants. After clipping, the weight of the locusts fed on EI plants significantly decreased compared with those fed on unclipped plants, whereas the weight of the locusts fed on EF plants increased significantly. The results suggested that endophyte infection could increase herbivore resistance while decreasing the tolerance of the host grass by mechanisms apart from endophyte-conferred alkaloid defense.
Collapse
Affiliation(s)
- Junhua Qin
- College of Life Sciences Nankai University, Tianjin, China
| | - Yuan Gao
- College of Life Sciences Nankai University, Tianjin, China
| | - Hui Liu
- College of Life Sciences Nankai University, Tianjin, China
| | - Yong Zhou
- College of Life Sciences Nankai University, Tianjin, China
| | - Anzhi Ren
- College of Life Sciences Nankai University, Tianjin, China
| | - Yubao Gao
- College of Life Sciences Nankai University, Tianjin, China
| |
Collapse
|
31
|
Li Y, Duan B, Chen J, Korpelainen H, Niinemets Ü, Li C. Males exhibit competitive advantages over females of Populus deltoides under salinity stress. TREE PHYSIOLOGY 2016; 36:1573-1584. [PMID: 27587482 DOI: 10.1093/treephys/tpw070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Sexual competition among dioecious plants affects sex ratios and the spatial distribution of the sexes in different environments. At present, little is known about sexual dimorphisms induced by different competition patterns under salinity stress. We employed Populus deltoides as a model to investigate sex-related growth as well as physiological and biochemical responses to salinity stress under conditions of intrasexual and intersexual competition. Potted seedlings (two seedlings per pot; two females, two males, or one female and one male) were exposed to two salt levels (0 and 50 mM NaCl) and salinity- and competition-driven differences in growth, assimilation rate, water use, contents of leaf pigments and osmotica, hydrogen peroxide (H2O2), and antioxidant enzyme and nitrate reductase activity were examined. In the absence of salinity, no significant differences in competitive ability between males and females subjected to intrasexual competition were observed, although the growth of females was moderately greater under intersexual competition. The salinity treatment significantly increased the sex differences in competitive ability, especially under intersexual competition. Under salinity stress, males showed decreased height, but displayed greater capacity for osmotic adjustment, enhancement of long-term water-use efficiency and increase in antioxidant enzyme activities. The absolute values of these traits were greater in salt-stressed males than in females under intersexual competition. In addition, salt-stressed males accumulated less Cl- and had lower H2O2 contents than females. These data collectively demonstrate that the competitive advantage of females in non-stressed conditions is lost under salinity. Greater salinity resistance of males growing intermixed with females under salt stress can importantly affect the sex ratio of P. deltoides populations.
Collapse
Affiliation(s)
- Yan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, Sichuan, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Juan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, Sichuan, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Chunyang Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| |
Collapse
|
32
|
Jiang Y, Ye J, Veromann LL, Niinemets Ü. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. TREE PHYSIOLOGY 2016; 36:856-72. [PMID: 27225874 DOI: 10.1093/treephys/tpw035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Fungal infections result in decreases in photosynthesis, induction of stress and signaling volatile emissions and reductions in constitutive volatile emissions, but the way different physiological processes scale with the severity of infection is poorly known. We studied the effects of infection by the obligate biotrophic fungal pathogen Melampsora larici-populina Kleb., the causal agent of poplar leaf rust disease, on photosynthetic characteristics, and constitutive isoprene and induced volatile emissions in leaves of Populus balsamifera var. suaveolens (Fisch.) Loudon. exhibiting different degrees of damage. The degree of fungal damage, quantified by the total area of chlorotic and necrotic leaf areas, varied between 0 (noninfected control) and ∼60%. The rates of all physiological processes scaled quantitatively with the degree of visual damage, but the scaling with damage severity was weaker for photosynthetic characteristics than for constitutive and induced volatile release. Over the whole range of damage severity, the net assimilation rate per area (AA) decreased 1.5-fold, dry mass per unit area 2.4-fold and constitutive isoprene emissions 5-fold, while stomatal conductance increased 1.9-fold and dark respiration rate 1.6-fold. The emissions of key stress and signaling volatiles (methanol, green leaf volatiles, monoterpenes, sesquiterpenes and methyl salicylate) were in most cases nondetectable in noninfested leaves, and increased strongly with increasing the spread of infection. The moderate reduction in AA resulted from the loss of photosynthetically active biomass, but the reduction in constitutive isoprene emissions and the increase in induced volatile emissions primarily reflected changes in the activities of corresponding biochemical pathways. Although all physiological alterations in fungal-infected leaves occurred in a stress severity-dependent manner, modifications in primary and secondary metabolic pathways scaled differently due to contrasting operational mechanisms.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia College of Art, Changzhou University, Gehu 1, Changzhou 213164, Jiangsu, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Linda-Liisa Veromann
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
33
|
Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Gutierrez L, Sumano H, Rivero F, Alcala-Canto Y. Ixodicide activity of Eysenhardtia polystachya against Rhipicephalus (Boophilus) microplus. J Anim Sci 2016; 93:1980-6. [PMID: 26020221 DOI: 10.2527/jas.2014-8679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to evaluate the acaricidal effect of 2 compounds extracted from Eysenhardtia polystachya in vitro, namely coatlines and matlalines. Each extract was obtained by aqueous extraction in a nitrogen atmosphere. Engorged adult females of an amitraz-resistant strain of Rhipicephalus (Boophilus) microplus were used to produce larvae and to carry out the adult immersion test (AIT), while larvae were assayed using the larval packet test (LPT). After exposure to coatlines or matlalines, the mortality of larvae and engorged females, as well as the reproductive parameters of adult ticks were assessed. Coatlines were not lethal against larvae and did not decrease reproductive parameters. Conversely, matlalines showed a 90 to 100% efficacy against adults and larvae at all concentrations tested and a reduction of 76.41 to 80.64% oviposition and a 48.02 to 54.86% reduction in egg hatchability. Therefore, the acaricidal activity of matlalines was more efficient. Further studies are required to elucidate both the mode of action of matlalines as well the structure-activity relationships responsible for the observed differential efficacy between these 2 related isoflavans against the cattle tick.
Collapse
|
35
|
Dupont P, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. THE NEW PHYTOLOGIST 2015; 208:1227-40. [PMID: 26305687 PMCID: PMC5049663 DOI: 10.1111/nph.13614] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/18/2015] [Indexed: 05/21/2023]
Abstract
Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool-season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super-infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant-microbe associations behave the same in terms of their effects on the host.
Collapse
Affiliation(s)
- Pierre‐Yves Dupont
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Carla J. Eaton
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Jason J. Wargent
- Institute of Agriculture and EnvironmentMassey UniversityPalmerston North4442New Zealand
| | - Susanne Fechtner
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Peter Solomon
- Research School of BiologyCollege of Medicine, Biology and EnvironmentAustralian National UniversityCanberraACT0200Australia
| | - Jan Schmid
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Robert C. Day
- School of Medical SciencesUniversity of OtagoDunedin9054New Zealand
| | - Barry Scott
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Murray P. Cox
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
36
|
Waters EM, Watson MA. Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2015; 6:814. [PMID: 26483826 PMCID: PMC4588215 DOI: 10.3389/fpls.2015.00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/17/2015] [Indexed: 05/23/2023]
Abstract
Studies of clonal plant foraging generally focus on growth responses to patch quality once rooted. Here we explore the possibility of true plant foraging; the ability to detect and respond to patch resource status prior to rooting. Two greenhouse experiments were conducted to investigate the morphological changes that occur when individual daughter ramets of Fragaria vesca (woodland strawberry) were exposed to air above live (non-sterilized) or dead (sterilized) substrates. Contact between daughter ramets and substrate was prohibited. Daughter ramet root biomass was significantly larger over live versus dead substrate. Root:shoot ratio also increased over live substrate, a morphological response we interpret as indicative of active nutrient foraging. Daughter ramet root biomass was positively correlated with mother ramet size over live but not dead substrate. Given the choice between a live versus a dead substrate, primary stolons extended preferentially toward live substrates. We conclude that exposure to live substrate drives positive nutrient foraging responses in F. vesca. We propose that volatiles emitted from the substrates might be effecting the morphological changes that occur during true nutrient foraging.
Collapse
Affiliation(s)
- Erica M. Waters
- Department of Biology, Indiana University, Bloomington, INUSA
| | | |
Collapse
|
37
|
Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Niones JT, Takemoto D. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae. EUKARYOTIC CELL 2015; 14:13-24. [PMID: 24906411 PMCID: PMC4279024 DOI: 10.1128/ec.00034-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023]
Abstract
Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes.
Collapse
Affiliation(s)
- Jennifer T Niones
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
39
|
Copolovici L, Väärtnõu F, Portillo Estrada M, Niinemets Ü. Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. TREE PHYSIOLOGY 2014; 34:1399-410. [PMID: 25428827 PMCID: PMC4410320 DOI: 10.1093/treephys/tpu091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oak powdery mildew (Erysiphe alphitoides) is a major foliar pathogen of Quercus robur often infecting entire tree stands. In this study, foliage photosynthetic characteristics and constitutive and induced volatile emissions were studied in Q. robur leaves, in order to determine whether the changes in foliage physiological traits are quantitatively associated with the degree of leaf infection, and whether infection changes the light responses of physiological traits. Infection by E. alphitoides reduced net assimilation rate by 3.5-fold and isoprene emission rate by 2.4-fold, and increased stomatal conductance by 1.6-fold in leaves with the largest degree of infection of ∼60%. These alterations in physiological activity were quantitatively associated with the fraction of leaf area infected. In addition, light saturation of net assimilation and isoprene emission was reached at lower light intensity in infected leaves, and infection also reduced the initial quantum yield of isoprene emission. Infection-induced emissions of lipoxygenase pathway volatiles and monoterpenes were light-dependent and scaled positively with the degree of infection. Overall, this study indicates that the reduction of foliage photosynthetic activity and constitutive emissions and the onset of stress volatile emissions scale with the degree of infection, but also that the infection modifies the light responses of foliage physiological activities.
Collapse
Affiliation(s)
- Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia Institute of Research, Development, Innovation in Technical and Natural Sciences, 'Aurel Vlaicu' University, 2 Elena Dragoi, 310330 Arad, Romania
| | - Fred Väärtnõu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia
| | - Miguel Portillo Estrada
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia Estonian Academy of Sciences, 6 Kohtu, 10130 Tallinn, Estonia
| |
Collapse
|
40
|
Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 2014; 177:487-97. [DOI: 10.1007/s00442-014-3104-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
41
|
|
42
|
Symptomless Endophytic Fungi Suppress Endogenous Levels of Salicylic Acid and Interact With the Jasmonate-Dependent Indirect Defense Traits of Their Host, Lima Bean (Phaseolus lunatus). J Chem Ecol 2014; 40:816-25. [DOI: 10.1007/s10886-014-0477-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
43
|
Beck JJ, Smith L, Baig N. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:331-41. [PMID: 24347157 DOI: 10.1002/pca.2486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 05/12/2023]
Abstract
INTRODUCTION The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. OBJECTIVE To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. METHOD Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. RESULTS An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. CONCLUSION It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments.
Collapse
Affiliation(s)
- John J Beck
- Foodborne Toxin Detection and Prevention, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, California, USA
| | | | | |
Collapse
|
44
|
Li T, Blande JD, Gundel PE, Helander M, Saikkonen K. Epichloë endophytes alter inducible indirect defences in host grasses. PLoS One 2014; 9:e101331. [PMID: 24978701 PMCID: PMC4076332 DOI: 10.1371/journal.pone.0101331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/04/2014] [Indexed: 01/29/2023] Open
Abstract
Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC), a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue) and Festuca pratensis (meadow fescue). We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë–grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation.
Collapse
Affiliation(s)
- Tao Li
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | - James D. Blande
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Pedro E. Gundel
- Plant Production Research, MTT Agrifood Research Finland, Jokioinen, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | - Kari Saikkonen
- Plant Production Research, MTT Agrifood Research Finland, Jokioinen, Finland
| |
Collapse
|
45
|
García Parisi P, Grimoldi A, Omacini M. Endophytic fungi of grasses protect other plants from aphid herbivory. FUNGAL ECOL 2014. [DOI: 10.1016/j.funeco.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|