1
|
Ye S, Chen J, Cao S, Luo D, Ba L. Thymol application delays the decline of fruit quality in blueberries via regulation of cell wall, energy and membrane lipid metabolism. Food Chem 2024; 458:140193. [PMID: 38959798 DOI: 10.1016/j.foodchem.2024.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
In this study, we evaluated the potential for exogenous thymol to slow this decline by measuring the effects of thymol application on cell wall, energy, and membrane lipid metabolism. The results showed that thymol application improved the preservation of the total soluble solids, titratable acidity, decay rate, and anthocyanin content, and effectively inhibited the accumulation of O2·-, H2O2, and malondialdehyde in blueberries during storage. Thymol application also effectively maintained fruit firmness, cell wall structure, and energy levels, while delaying the degradation of membrane phospholipids and unsaturated fatty acids during the storage of post-harvest blueberries. Therefore, exogenous thymol can maintain the quality of blueberry fruits by regulating energy and membrane lipid metabolism and reducing cell wall degradation. Thus, thymol-treatment could be a suitable biocontrol agent for maintaining blueberry quality and extending blueberry fruit storage life.
Collapse
Affiliation(s)
- Shengjie Ye
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Jianye Chen
- College of Horticulture Science, South China Agricultural University, Guangzhou 510642, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Donglan Luo
- School of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Liangjie Ba
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
2
|
Esmailpourmoghadam E, Salehi H, Moshtaghi N. Differential Gene Expression Responses to Salt and Drought Stress in Tall Fescue (Festuca arundinacea Schreb.). Mol Biotechnol 2024; 66:2481-2496. [PMID: 37742296 DOI: 10.1007/s12033-023-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Understanding gene expression kinetics and the underlying physiological mechanisms in stress combinations is a challenge for the purpose of stress resistance breeding. The novelty of this study is correlating the physiological mechanisms with the expression of key target genes in tall fescue under a combination of various salinity and osmotic stress treatments. Four drought- and salt-responsive genes belonging to different crucial pathways evaluated included one transcription factor FabZIP69, one for the cytosolic polyamine synthetase FaADC1, one for ABA signaling FaCYP707A1, and another one for the specific Na+/H+ plasma membrane antiporter FaSOS1 involve in osmotic homeostasis. FaSOS1, FaCYP707A1, and FabZIP69 were induced early at 6 h after NaCl treatment, while FaSOS1 and FaCYP707A1 were transcribed gradually after exposure to PEG. However, stress interactions showed a significantly increased expression in all genes. Expression of these genes was positively correlated to Pro, SSs, IL, DPPH, and antioxidant enzyme activity and negatively correlated with RWC, total Chl, and MSI. Chemical analyses showed that tall fescue plants exposed to the combination of stresses exhibited increased quantity of reactive oxygen species (H2O2), EL and DPPH, and higher levels of antioxidant enzyme activities (CAT, and SOD), Pro, and SSs content, compared with control seedlings. Under dual-stress conditions, the expression of FabZIP69 was effective in controlling the expression of FaSOS1 and FaADC1 genes differently.
Collapse
Affiliation(s)
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Zeng G, Wan Z, Xie R, Lei B, Li C, Gao F, Zhang Z, Xi Z. 24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism. PLANT CELL REPORTS 2024; 43:219. [PMID: 39155298 DOI: 10.1007/s00299-024-03283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
KEY MESSAGE Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Guihua Zeng
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuowu Wan
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Xie
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bingyuan Lei
- School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Chan Li
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifei Gao
- School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Liu F, Liu Q, Wu JH, Wang ZQ, Geng YJ, Li J, Zhang Y, Li S. Arabidopsis calcineurin B-like-interacting protein kinase 8 and its functional homolog in tomato negatively regulates ABA-mediated stomatal movement and drought tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:2396-2409. [PMID: 38516697 DOI: 10.1111/pce.14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Stomatal movement is critical for water transpiration, gas exchange, and responses to biotic stresses. Abscisic acid (ABA) induces stomatal closure to prevent water loss during drought. We report that Arabidopsis CIPK8 negatively regulates ABA-mediated stomatal closure and drought tolerance. CIPK8 is highly enriched in guard cells and transcriptionally induced by ABA. Functional loss of CIPK8 results in hypersensitive stomatal closure to ABA and enhanced drought tolerance. Guard cell-specific downregulation of CIPK8 mimics the phenotype of cipk8 whereas guard cell-specific expression of a constitutive active CIPK8 (CIPK8CA) has an opposite effect, suggesting a cell autonomous activity of CIPK8. CIPK8 physically interacts with CBL1 and CBL9. Functional loss of CBL1 and CBL9 mimics ABA-hypersensitive stomatal closure of cipk8 whereas abolishes the effect of CIPK8CA, indicating that CIPK8 and CBL1/CBL9 form a genetic module in ABA-responsive stomatal movement. SlCIPK7, the functional homolog of CIPK8 in tomato (Solanum lycopersicum), plays a similar role in ABA-responsive stomatal movement. Genomic editing of SlCIPK7 results in more drought-tolerant tomato, making it a good candidate for germplasm improvement.
Collapse
Affiliation(s)
- Fei Liu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Qi Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ju-Hua Wu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zong-Qi Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuan-Jun Geng
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Juan Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
5
|
Moura LMDF, da Costa AC, Müller C, Silva-Filho RDO, Almeida GM, da Silva AA, Capellesso ES, Cunha FN, Teixeira MB. Morpho-Physiological Traits and Oil Quality in Drought-Tolerant Raphanus sativus L. Used for Biofuel Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:1583. [PMID: 38931015 PMCID: PMC11207979 DOI: 10.3390/plants13121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Raphanus sativus L. is a potential source of raw material for biodiesel fuel due to the high oil content in its grains. In Brazil, this species is cultivated in the low rainfall off-season, which limits the productivity of the crop. The present study investigated the effects of water restriction on the physiological and biochemical responses, production components, and oil quality of R. sativus at different development stages. The treatments consisted of 100% water replacement (control), 66%, and 33% of field capacity during the phenological stages of vegetative growth, flowering, and grain filling. We evaluated characteristics of water relations, gas exchange, chlorophyll a fluorescence, chloroplast pigment, proline, and sugar content. The production components and chemical properties of the oil were also determined at the end of the harvest cycle. Drought tolerance of R. sativus was found to be mediated primarily during the vegetative growth stage by changes in photosynthetic metabolism, stability of photochemical efficiency, increased proline concentrations, and maintenance of tissue hydration. Grain filling was most sensitive to water limitation and showed a reduction in yield and oil content. However, the chemical composition of the oil was not altered by the water deficit. Our data suggest that R. sativus is a drought-tolerant species.
Collapse
Affiliation(s)
- Luciana Minervina de Freitas Moura
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
| | - Alan Carlos da Costa
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
- Centro de Excelência em Bioinsumos (CEBIO), Rua 88, 30—Setor Sul, Goiânia 74085-010, GO, Brazil
| | - Caroline Müller
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
| | - Robson de Oliveira Silva-Filho
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
| | - Gabriel Martins Almeida
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
| | - Adinan Alves da Silva
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
| | - Elivane Salete Capellesso
- Laboratório de Ecologia Vegetal, Universidade Federal do Paraná—Centro Politécnico, 100, Curitiba 81530-000, PR, Brazil;
| | - Fernando Nobre Cunha
- Laboratório de Hidráulica e Irrigação, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil;
| | - Marconi Batista Teixeira
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
- Laboratório de Hidráulica e Irrigação, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil;
| |
Collapse
|
6
|
Luo Q, Ma Y, Xie H, Chang F, Guan C, Yang B, Ma Y. Proline Metabolism in Response to Climate Extremes in Hairgrass. PLANTS (BASEL, SWITZERLAND) 2024; 13:1408. [PMID: 38794479 PMCID: PMC11125208 DOI: 10.3390/plants13101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry-wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways.
Collapse
Affiliation(s)
- Qiaoyu Luo
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810008, China
| | - Yonggui Ma
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China
| | - Feifei Chang
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Chiming Guan
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Bing Yang
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810008, China
| |
Collapse
|
7
|
Morales-Quintana L, Rabert C, Mendez-Yañez A, Ramos P. Transcriptional and structural analysis of non-specific lipid transfer proteins modulated by fungal endophytes in Antarctic plants under drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14359. [PMID: 38797943 DOI: 10.1111/ppl.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Angela Mendez-Yañez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Patricio Ramos
- Plant-microorganisms Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
8
|
Lopes JML, Nascimento LSDQ, Souza VC, de Matos EM, Fortini EA, Grazul RM, Santos MO, Soltis DE, Soltis PS, Otoni WC, Viccini LF. Water stress modulates terpene biosynthesis and morphophysiology at different ploidal levels in Lippia alba (Mill.) N. E. Brown (Verbenaceae). PROTOPLASMA 2024; 261:227-243. [PMID: 37665420 DOI: 10.1007/s00709-023-01890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Monoterpenes are the main component in essential oils of Lippia alba. In this species, the chemical composition of essential oils varies with genome size: citral (geraniol and neral) is dominant in diploids and tetraploids, and linalool in triploids. Because environmental stress impacts various metabolic pathways, we hypothesized that stress responses in L. alba could alter the relationship between genome size and essential oil composition. Water stress affects the flowering, production, and reproduction of plants. Here, we evaluated the effect of water stress on morphophysiology, essential oil production, and the expression of genes related to monoterpene synthesis in diploid, triploid, and tetraploid accessions of L. alba cultivated in vitro for 40 days. First, using transcriptome data, we performed de novo gene assembly and identified orthologous genes using phylogenetic and clustering-based approaches. The expression of candidate genes related to terpene biosynthesis was estimated by real-time quantitative PCR. Next, we assessed the expression of these genes under water stress conditions, whereby 1% PEG-4000 was added to MS medium. Water stress modulated L. alba morphophysiology at all ploidal levels. Gene expression and essential oil production were affected in triploid accessions. Polyploid accessions showed greater growth and metabolic tolerance under stress compared to diploids. These results confirm the complex regulation of metabolic pathways such as the production of essential oils in polyploid genomes. In addition, they highlight aspects of genotype and environment interactions, which may be important for the conservation of tropical biodiversity.
Collapse
Affiliation(s)
- Juliana Mainenti Leal Lopes
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- School of Life Science and Environment, Department of Genetic and Biotechnology, University of Trás-Os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004, Lisbon, Portugal
| | | | - Vinicius Carius Souza
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Elyabe Monteiro de Matos
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Evandro Alexandre Fortini
- Laboratory of Plant Tissue Culture (LCTII), Department of Plant Biology/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs S/N, Campus Universitário, Viçosa, MG, 36570-000, Brazil
| | | | - Marcelo Oliveira Santos
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Wagner Campos Otoni
- Laboratory of Plant Tissue Culture (LCTII), Department of Plant Biology/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs S/N, Campus Universitário, Viçosa, MG, 36570-000, Brazil
| | - Lyderson Facio Viccini
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
9
|
Melo ASD, Costa RRD, Sá FVDS, Dias GF, Alencar RSD, Viana PMDO, Peixoto TDC, Suassuna JF, Brito MEB, Ferraz RLDS, Costa PDS, Melo YL, Corrêa ÉB, Lacerda CFD, Dantas Neto J. Modulation of Drought-Induced Stress in Cowpea Genotypes Using Exogenous Salicylic Acid. PLANTS (BASEL, SWITZERLAND) 2024; 13:634. [PMID: 38475480 DOI: 10.3390/plants13050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Plant endogenous mechanisms are not always sufficient enough to mitigate drought stress, therefore, the exogenous application of elicitors, such as salicylic acid, is necessary. In this study, we assessed the mitigating action of salicylic acid (SA) in cowpea genotypes under drought conditions. An experiment was conducted with two cowpea genotypes and six treatments of drought stress and salicylic acid (T1 = Control, T2 = drought stress (stress), T3 = stress + 0.1 mM of SA, T4 = stress + 0.5 mM of SA, T5 = stress + 1.0 mM of SA, and T6 = stress + 2.0 mM of SA). Plants were evaluated in areas of leaf area, stomatal conductance, photosynthesis, proline content, the activity of antioxidant enzymes, and dry grain production. Drought stress reduces the leaf area, stomatal conductance, photosynthesis, and, consequently, the production of both cowpea genotypes. The growth and production of the BRS Paraguaçu genotype outcompetes the Pingo de Ouro-1-2 genotype, regardless of the stress conditions. The exogenous application of 0.5 mM salicylic acid to cowpea leaves increases SOD activity, decreases CAT activity, and improves the production of both genotypes. The application of 0.5 mM of salicylic acid mitigates drought stress in the cowpea genotype, and the BRS Paraguaçu genotype is more tolerant to drought stress.
Collapse
Affiliation(s)
- Alberto Soares de Melo
- Department of Biology, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Rayssa Ribeiro da Costa
- Department of Biology, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | | | - Guilherme Felix Dias
- Department of Biology, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | | | | | - Tayd Dayvison Custódio Peixoto
- Department of Agronomic and Forest Sciences, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, RN, Brazil
| | | | | | | | - Patrícia da Silva Costa
- Department of Biology, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Yuri Lima Melo
- Department of Biology, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Élida Barbosa Corrêa
- Department of Agricultural and Environmental Sciences, Universidade Estadual da Paraíba, Lagoa Seca 58117-000, PB, Brazil
| | | | - José Dantas Neto
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| |
Collapse
|
10
|
Jiao P, Jiang Z, Miao M, Wei X, Wang C, Liu S, Guan S, Ma Y. Zmhdz9, an HD-Zip transcription factor, promotes drought stress resistance in maize by modulating ABA and lignin accumulation. Int J Biol Macromol 2024; 258:128849. [PMID: 38113999 DOI: 10.1016/j.ijbiomac.2023.128849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Maize is the largest crop in the world in terms of both planting area and total yield, and it plays a crucial role in ensuring global food and feed security. However, in recent years, with climate deterioration, environmental changes, and the scarcity of freshwater resources, drought has become a serious limiting factor for maize yield and quality. Drought stress-induced signals undergo a series of transmission processes to regulate the expression of specific genes, thereby affecting the drought tolerance of plants at the tissue, cellular, physiological and biochemical levels. Therefore, in this study we investigated the HD-Zip transcription factor gene Zmhdz9, and yeast activation experiments demonstrated that Zmhdz9 exhibited transcriptional activation activity. Under drought stress, high abscisic acid (ABA) and lignin levels significantly improved drought resistance in maize. Yeast two-hybrid, bimolecular fluorescence complementation (BIFC) and pull-down experiments showed that Zmhdz9 interacted with ZmWRKY120 and ZmTCP9, respectively. Overexpression of Zmhdz9 and gene editing of ZmWRKY120 or ZmTCP9 improved maize drought resistance, indicating their importance in the drought stress response. Furthermore, Zmhdz9 promoted the direct transcription of ZmWRKY120 in the W-box, activating elements of the ZmNCED1 promoter, which encodes a key enzyme in ABA biosynthesis. Additionally, Zmhdz9 promoted direct transcription of ZmTCP9 in the GGTCA motif, activating elements of the ZmKNOX8 promoter, which encodes a key enzyme in lignin synthesis. This study showed that the regulation of ABA and lignin by Zmhdz9 is essential for drought stress resistance in maize.
Collapse
Affiliation(s)
- Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ming Miao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunlai Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
11
|
Bakhshi S, Eshghi S, Banihashemi Z. Application of candidate endophytic fungi isolated from extreme desert adapted trees to mitigate the adverse effects of drought stress on maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107961. [PMID: 37639983 DOI: 10.1016/j.plaphy.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The survival of plants under adverse conditions in desert habitats is related to microbial interactions, which can be an innovative strategy for reducing the effects of drought stress in colonized plants. In this study, two endophytic fungi, Trichoderma harzianum, and Fusarium solani, were recovered from the roots of trees in desert regions of Iran. A greenhouse experiment with two fungal agents (control, T. harzianum, F. solani, and T. harzianum + F. solani) and drought (100, 75, and 50% water-holding capacity) was performed on maize (Zea mays L.). Findings indicate that increasing drought levels negatively affect maize plant growth and physiological traits. However, the symbiotic relationship between fungal endophytes and maize roots increased fresh and dry biomass, root/shoot ratio, leaf area, relative water content, and membrane stability index compared with their control counterparts. Maize plants inoculated with endophytic fungi had 52.07, 40, 33.03, and 55.62% higher total phenolic, proline and soluble sugar concentrations, respectively than uninoculated controls. Photosynthetic parameters, including chlorophyll and carotenoid pigments, chlorophyll fluorescence, and gas exchange, were improved in the endophyte-treated plants. However, with increasing drought stress, maize plants colonized with endophytes, electrolyte leakage, and sub-stomatal CO2 concentrations decreased by 28.93% and 47.62%, respectively, compared to endophyte-free plants. When plants were exposed to higher levels of drought stress, endophytes were more effective in improving most parameters, and inoculation of maize seedlings with a combination of endophytes isolated from plants in harsh regions was more effective in increasing their tolerance to drought stress than individual inoculation of each fungus.
Collapse
Affiliation(s)
- Somayeh Bakhshi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Zia Banihashemi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Baghery MA, Kazemitabar SK, Dehestani A, Mehrabanjoubani P. Sesame ( Sesamum indicum L.) response to drought stress: susceptible and tolerant genotypes exhibit different physiological, biochemical, and molecular response patterns. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1353-1369. [PMID: 38024952 PMCID: PMC10678897 DOI: 10.1007/s12298-023-01372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Drought is one of the main environmental stresses affecting the quality and quantity of sesame production worldwide. The present study was conducted to investigate the effect of drought stress and subsequent re-watering on physiological, biochemical, and molecular responses of two contrasted sesame genotypes (susceptible vs. tolerant). Results showed that plant growth, photosynthetic rate, stomatal conductance, transpiration rate, and relative water content were negatively affected in both genotypes during water deficit. Both genotypes accumulated more soluble sugars, free amino acids, and proline and exhibited an increased enzyme activity for peroxidase, catalase, superoxide dismutase, and pyruvate dehydrogenase in response to drought damages including increased lipid peroxidation and membrane disruption. However, the tolerant genotype revealed a more extended root system and a more efficient photosynthetic apparatus. It also accumulated more soluble sugars (152%), free amino acids (48%), proline (75%), and antioxidant enzymes while showing lower electrolyte leakage (26%), lipid peroxidation (31%), and starch (35%) content, compared to the susceptible genotype at severe drought. Moreover, drought-related genes such as MnSOD1, MnSOD2, and PDHA-M were more expressed in the tolerant genotype, which encode manganese-dependent superoxide dismutase and the alpha subunit of pyruvate dehydrogenase, respectively. Upon re-watering, tolerant genotype recovered to almost normal levels of photosynthesis, carboxylation efficiency, lipid peroxidation, and electrolyte leakage, while susceptible genotype still suffered critical issues. Overall, these results suggest that a developed root system and an efficient photosynthetic apparatus along with the timely and effective accumulation of protective compounds enabled the tolerant sesame to withstand stress and successfully return to a normal growth state after drought relief. The findings of this study can be used as promising criteria for evaluating genotypes under drought stress in future sesame breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01372-y.
Collapse
Affiliation(s)
- Mohammad Amin Baghery
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Seyed Kamal Kazemitabar
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Pooyan Mehrabanjoubani
- Department of Basic Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
13
|
Mehravi S, Hanifei M, Gholizadeh A, Khodadadi M. Exploring the quantitative genetics of traits associated with drought tolerance and yield in Pimpinella anisum L. under different water regimes. PLANTA 2023; 257:102. [PMID: 37093410 DOI: 10.1007/s00425-023-04128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Genetic improvement of seed yield and drought resistance could be simultaneously gained in anise when breeding for drought resistance. Improving the water use efficiency of anise is a primary objective of anise breeding programs aimed at mitigating the impacts of drought stress. This study aimed to determine the predominant mechanisms involved in drought tolerance and investigate the genetic control of associated traits with drought tolerance and higher grain yield. According to these aims, 10 half-diallel hybrids and their five parents were evaluated in both field and greenhouse lysimetric experiments under well-watered and water deficit stress conditions. The results indicated that the inheritance of grain yield is complex and affected by water deficit stress. Similar heritability and genetic architecture were detected for flowering time and percentages of photosynthate partitioned to grain (PPPG) in both well-watered and water deficit stress treatments. Significant negative genetic correlations were observed between grain yield and flowering time, root dry mass, root diameter, root volume, root number, percentages of photosynthate partitioned to shoot, and percentages of photosynthate partitioned to root. Therefore, the selection of low values of these attributes can be used to improve grain yield under drought conditions. In contrast, a positive significant genetic linkage between grain yield and PPPG, chlorophyll content, cell membrane stability, and leaf relative water content reveal selection for high values of these attributes is favored. These attributes could be used as surrogate selection criteria in the early segregating generations. The P1 parent (early ripening parent) contained key genes associated with PPPG and drought escape. It was concluded that improvement of drought tolerance and grain yield could be simultaneously achieved in anise breeding programs.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- Department of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Amir Gholizadeh
- Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, 4915677555, Iran
| | - Mostafa Khodadadi
- Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, 33151-31359, Iran
| |
Collapse
|
14
|
Lazaridi E, Bebeli PJ. Cowpea Constraints and Breeding in Europe. PLANTS (BASEL, SWITZERLAND) 2023; 12:1339. [PMID: 36987026 PMCID: PMC10052078 DOI: 10.3390/plants12061339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is a legume with a constant rate of cultivation in Southern European countries. Consumer demand for cowpea worldwide is rising due to its nutritional content, while Europe is constantly attempting to reduce the deficit in the production of pulses and invest in new, healthy food market products. Although the climatic conditions that prevail in Europe are not so harsh in terms of heat and drought as in the tropical climates where cowpea is mainly cultivated, cowpea confronts with a plethora of abiotic and biotic stresses and yield-limiting factors in Southern European countries. In this paper, we summarize the main constraints for cowpea cultivation in Europe and the breeding methods that have been or can be used. A special mention is made of the availability plant genetic resources (PGRs) and their potential for breeding purposes, aiming to promote more sustainable cropping systems as climatic shifts become more frequent and fiercer, and environmental degradation expands worldwide.
Collapse
Affiliation(s)
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| |
Collapse
|
15
|
Pakzad R, Fatehi F, Kalantar M, Maleki M. Proteomics approach to investigating osmotic stress effects on pistachio. FRONTIERS IN PLANT SCIENCE 2023; 13:1041649. [PMID: 36762186 PMCID: PMC9907329 DOI: 10.3389/fpls.2022.1041649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Osmotic stress can occur due to some stresses such as salinity and drought, threatening plant survival. To investigate the mechanism governing the pistachio response to this stress, the biochemical alterations and protein profile of PEG-treated plants was monitored. Also, we selected two differentially abundant proteins to validate via Real-Time PCR. Biochemical results displayed that in treated plants, proline and phenolic content was elevated, photosynthetic pigments except carotenoid decreased and MDA concentration were not altered. Our findings identified a number of proteins using 2DE-MS, involved in mitigating osmotic stress in pistachio. A total of 180 protein spots were identified, of which 25 spots were altered in response to osmotic stress. Four spots that had photosynthetic activities were down-regulated, and the remaining spots were up-regulated. The biological functional analysis of protein spots exhibited that most of them are associated with the photosynthesis and metabolism (36%) followed by stress response (24%). Results of Real-Time PCR indicated that two of the representative genes illustrated a positive correlation among transcript level and protein expression and had a similar trend in regulation of gene and protein. Osmotic stress set changes in the proteins associated with photosynthesis and stress tolerance, proteins associated with the cell wall, changes in the expression of proteins involved in DNA and RNA processing occur. Findings of this research will introduce possible proteins and pathways that contribute to osmotic stress and can be considered for improving osmotic tolerance in pistachio.
Collapse
Affiliation(s)
- Rambod Pakzad
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mansour Kalantar
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
16
|
Aycan M, Baslam M, Mitsui T, Yildiz M. The TaGSK1, TaSRG, TaPTF1, and TaP5CS Gene Transcripts Confirm Salinity Tolerance by Increasing Proline Production in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233401. [PMID: 36501443 PMCID: PMC9738719 DOI: 10.3390/plants11233401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
Salinity is an abiotic stress factor that reduces yield and threatens food security in the world's arid and semi-arid regions. The development of salt-tolerant genotypes is critical for mitigating yield losses, and this journey begins with the identification of sensitive and tolerant plants. Numerous physiologic and molecular markers for detecting salt-tolerant wheat genotypes have been developed. One of them is proline, which has been used for a long time but has received little information about proline-related genes in wheat genotypes. In this study, proline content and the expression levels of proline-related genes (TaPTF1, TaDHN, TaSRG, TaSC, TaPIMP1, TaMIP, TaHKT1;4, TaGSK, TaP5CS, and TaMYB) were examined in sensitive, moderate, and tolerant genotypes under salt stress (0, 50, 150, and 250 mM NaCl) for 0, 12, and 24 h. Our results show that salt stress increased the proline content in all genotypes, but it was found higher in salt-tolerant genotypes than in moderate and sensitive genotypes. The salinity stress increased gene expression levels in salt-tolerant and moderate genotypes. While salt-stress exposure for 12 and 24 h had a substantial effect on gene expression in wheat, TaPTF1, TaPIMP1, TaMIP, TaHKT1;4, and TaMYB genes were considerably upregulated in 24 h. The salt-tolerant genotypes showed a higher positive interaction than a negative interaction. The TaPTF1, TaP5CS, TaGSK1, and TaSRG genes were found to be more selective than the other analyzed genes under salt-stress conditions. Despite each gene's specific function, increasing proline biosynthesis functioned as a common mechanism for separating salt tolerance from sensitivity.
Collapse
Affiliation(s)
- Murat Aycan
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara 06110, Türkiye
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Mustafa Yildiz
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara 06110, Türkiye
| |
Collapse
|
17
|
Ojagh SE, Moaveni P. Foliar-applied magnesium nanoparticles modulate drought stress through changes in physio-biochemical attributes and essential oil profile of yarrow (Achillea millefolium L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59374-59384. [PMID: 35386083 DOI: 10.1007/s11356-022-19559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are an emerging tool for mitigating environmental stresses. Although beneficial roles of NPs have been reported in some plants, there is little data on magnesium (Mg)-NPs in alleviating drought stress. Therefore, the field experiment was conducted to study changes in biochemical attributes and essential oil (EO) compositions of yarrow (Achillea millefolium L.) plants under drought stress and Mg-NPs in 2016 and 2017. Irrigation regimes were used in two levels as well-watered (irrigation intervals of 7 days) and drought stress (irrigation intervals of 14 days) conditions, and Mg-NPs were sprayed on leaves in four levels (0, 0.1, 0.3, and 0.5 g L-1). The results showed drought stress led to increased electrolyte leakage (EL), proline, carotenoid, anthocyanin, and total flavonoid content (TFC). However, flowers yield and EO yield were lower in plants exposed to drought stress as compared to well-watered conditions. The 0.3 and 0.5 g L-1 Mg-NPs were more effective in alleviating drought stress by enhancing these traits. Heat map results showed that EL and TSS represented the high variability upon different treatments. The GC and GC/MS results represented that α-pinene (8.60-12.20%), 1,8-cineol (9.03-14.02%), camphor (6.84-9.80%), α-bisabolol (8.54-18.81%), chamazulene (14.23-22.50%), and caryophyllene oxide (7.20-9.80%) were the min EO constitutes of yarrow plants. Totally, drought decreased monopertens but increased sesquiterpenes of EO. To sum up, foliar applied Mg-NPs in a range of 0.3-0.5 g L-1 can be recommended as effective tool to improve plant yield through changes in biochemical attributes of yarrow plants.
Collapse
Affiliation(s)
- Seyyed Ebrahim Ojagh
- Department of Agronomy, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Payam Moaveni
- Department of Agronomy, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
18
|
Wittayathanarattana T, Wanichananan P, Supaibulwatana K, Goto E. A short-term cooling of root-zone temperature increases bioactive compounds in baby leaf Amaranthus tricolor L. FRONTIERS IN PLANT SCIENCE 2022; 13:944716. [PMID: 35909758 PMCID: PMC9335047 DOI: 10.3389/fpls.2022.944716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Leafy vegetables that are offered as seedling leaves with petioles are referred to as baby leaf vegetables. One of the most nutritious baby leaves, amaranth (Amaranthus tricolor L.), contains several bioactive compounds and nutrients. Here, we investigated the growth and quality of baby leaf amaranth using a variety of short-term cooling root-zone temperatures (RZT; 5, 10, 15, and 20°C), periods (1, 3, 5, and 7 days), and combinations thereof. We observed that exposing amaranth seedlings to RZT treatments at 5 and 10°C for 1-3 days increased the antioxidant capacity and the concentrations of bioactive compounds, such as betalain, anthocyanin, phenolic, flavonoid, and ascorbic acid; however, extending the treatment period to 7 days decreased them and adversely affected growth. For RZT treatments at 20°C, leaf photosynthetic pigments, bioactive compounds, nutrients, and antioxidant capacity increased gradually as the treatment period was extended to 7 days. The integration of RZTs at 5 and 10°C for one day preceded or followed by an RZT treatment at 20°C for 2 days had varied effects on the growth and quality of amaranth leaves. After one day of RZT treatment at 5°C followed by 2 days of RZT treatment at 20°C, the highest concentrations of bioactive compounds, nutrients, and antioxidant capacity were 1.4-3.0, 1.7, and 1.7 times higher, respectively, than those of the control, and growth was not impaired. The short-term cooling RZT treatments under controlled environments were demonstrated to be adequate conditions for the improvement of target bioactive compounds in amaranth baby leaf without causing leaf abnormality or growth impairment.
Collapse
Affiliation(s)
- Takon Wittayathanarattana
- Graduate School of Horticulture, Chiba University,Chiba, Japan
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Praderm Wanichananan
- National Science and Technology Development Agency, Thailand Science Park, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | | | - Eiji Goto
- Graduate School of Horticulture, Chiba University,Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| |
Collapse
|
19
|
Mitogen-Activated Protein Kinase Is Involved in Salt Stress Response in Tomato (Solanum lycopersicum) Seedlings. Int J Mol Sci 2022; 23:ijms23147645. [PMID: 35887014 PMCID: PMC9319631 DOI: 10.3390/ijms23147645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Salt stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. In this study, tomato (Solanum lycopersicum L. ‘Micro-Tom’) seedlings treated with different concentrations of sodium chloride (NaCl) were investigated in terms of decreased plant height, stem diameter, dry weight, fresh weight, leaves relative water content and root activity. To reveal the response mechanism of tomato seedlings to salt stress, the transcriptome of tomato leaves was conducted. A total of 6589 differentially expressed genes (DEGs) were identified and classified into different metabolic pathways, especially photosynthesis, carbon metabolism, biosynthesis of amino acids and mitogen-activated protein kinase (MAPK) signaling pathway. Of these, approximately 42 DEGs were enriched in the MAPK signaling pathway, most of which mainly included plant hormone, hydrogen peroxide (H2O2), wounding and pathogen infection signaling pathways. To further explore the roles of MAPK under salt stress, MAPK phosphorylation inhibitor SB203580 (SB) was applied. We found that SB further decreased endogenous jasmonic acid, abscisic acid and ethylene levels under salt stress condition. Additionally, in comparison with NaCl treatment alone, SB + NaCl treatment reduced the content of O2− and H2O2 and the activities of antioxidant enzyme and downregulated the expression levels of genes related to pathogen infection. Together, the results revealed that MAPK might be involved in the salinity response of tomato seedlings by regulating hormone balance, ROS metabolism, antioxidant capacity and plant immunity.
Collapse
|
20
|
Moura LMDF, Carlos da Costa A, Gomes Vital R, Alves da Silva A, de Almeida Rodrigues A, Cândido-Sobrinho SA, Müller C. Root traits in Crambe abyssinica Hochst and Raphanus sativus L. plants are associated with differential tolerance to water deficit and post-stress recovery. PeerJ 2022. [DOI: 10.7717/peerj.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Previous studies have shown that Crambe abyssinica and Raphanus sativus are physiologically tolerant to water deficits; however, there is a lack of information on the mechanisms responsible for their tolerance regarding root morphological characteristics. This study aimed to characterize morphological changes in the root system of C. abyssinica and R. sativus subjected water deficit, as well as to identify the responses that improve tolerance and post-stress recovery capacity of these plants.
Methods
Independent experiments for each specieswere performed in a controlled greenhouse, where plants were randomly set in a randomized block design with five replicates. Plants of C. abyssinica and R. sativus were cultivated in pots and exposed to well-watered treatment (WW; 90% water holding capacity–WHC of the substrate) or water deficit (WD; 40% WHC) conditions, at 28 days after planting. The plants were kept under WD for 7, 14, or 21 days with rehydration soon after each episode of water deficit. Assessment of water relations, biomass allocation, leaf and root system morphological characteristics and gas exchange were performed after each period of water deficit and 48 h after rehydration.
Results
The water deficit reduced the water status of both species, and morphological and biomass allocation were not recovered after rehydration. Photosynthesis of C. abyssinica decreased with prolonged water deficit, which was also not recovered after rehydration. In R. sativus, photosynthesis was not altered by WD for 21 days, and a higher WUE was recorded. Root morphology of R. sativus was mainly affected at 14 days of WD, while the traits related to very fine roots increased at 21 days of WD, when compared to WW plants. Thus, R. sativus has shown greater tolerance to water deficits mainly due to the presence of very fine roots throughout the period of stress, when compared to C. abyssinica in which the fine roots predominated.
Collapse
Affiliation(s)
| | - Alan Carlos da Costa
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal Goiano, Rio Verde, GO, Brazil
- Centro de Excelência em Agricultura Exponencial, Rio Verde, GO, Brazil
| | - Roberto Gomes Vital
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal Goiano, Rio Verde, GO, Brazil
| | - Adinan Alves da Silva
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal Goiano, Rio Verde, GO, Brazil
- Centro de Excelência em Agricultura Exponencial, Rio Verde, GO, Brazil
| | | | - Silvio Alencar Cândido-Sobrinho
- Programa de Pós-Graduação em Ciências Médicas, Instituto de Biomedicina, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caroline Müller
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal Goiano, Rio Verde, GO, Brazil
| |
Collapse
|
21
|
Boublin F, Cabassa-Hourton C, Leymarie J, Leitao L. Potential involvement of proline and flavonols in plant responses to ozone. ENVIRONMENTAL RESEARCH 2022; 207:112214. [PMID: 34662576 DOI: 10.1016/j.envres.2021.112214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Ozone is considered to be a major phytotoxic pollutant. It is an oxidizing molecule with harmful effects that can affect human health and vegetation. Due to its phytotoxicity, it constitutes a threat to food security in a context of climate change. Proline accumulation is induced in response to numerous stresses and is assumed to be involved in plant antioxidant defense. We therefore addressed the question of the putative involvement of proline in plant ozone responses by analyzing the responses of two Arabidopsis mutants (obtained in the Col-0 genetic background) altered in proline metabolism and different ecotypes with various degrees of ozone sensitivity, to controlled ozone treatments. Among the mutants, the p5cs1 mutant plants accumulated less proline than the double prodh1xprodh2 (p1p2) mutants. Ozone treatments did not induce accumulation of proline in Col-0 nor in the mutant plants. However, the variation of the photosynthetic parameter Fv/Fm in the p1p2 mutant suggests a positive effect of proline. Proline accumulation induced by ozone was only observed in the most ozone-sensitive ecotypes, Cvi-0 and Ler. Contrary to our expectations, proline accumulation could not be correlated with variations in protein oxidation (carbonylation). On the other hand, flavonols content, measured here, using non-destructive methods, reflected exactly the genotypes ranking according to ozone sensitivity.
Collapse
Affiliation(s)
- Fanny Boublin
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES, Paris, F-75005, Paris, France
| | - Juliette Leymarie
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France.
| | - Luis Leitao
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France
| |
Collapse
|
22
|
A Circular Economy Approach to Restoring Soil Substrate Ameliorated by Sewage Sludge with Amendments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095296. [PMID: 35564693 PMCID: PMC9103250 DOI: 10.3390/ijerph19095296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023]
Abstract
This study examined the use of an artificial soil substrate in a mine waste reclamation area and its effect on plant metabolic functions. Research was conducted by determining the relationship between the plants’ biochemical features and the properties of plant growth medium derived from post-flotation coal waste, sewage sludge, crushed stone and fly ash on the surface of the mine waste disposal area. Trees and shrubs were established on the material and allowed to grow for eight years. The study determined that the applied plants and the naturally occurring Taraxacum officinale were suitable for physio-biochemical assessment, identification of derelict areas and reclamation purposes. An evaluation of a soil substrate applied to post-mining areas indicated that it was beneficial for plant growth since it activated the metabolic functions of herbaceous plants, shrubs, and trees. The study showed that soil substrate can be targeted to improve plant stress tolerance to potentially toxic elements (PTEs). These data suggest the potential for growth and slower susceptible response to Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. It is possible that the constructed soil-substitute substrate (biosolid material) would be an effective reclamation treatment in areas where natural soil materials are polluted by PTEs. This observation may reflect a more efficient use of soil substrate released from the cycling of organic biogene pools, in accordance with the circular economy approach. In further studies related to land reclamation using sewage sludge amendments, it would be necessary to extend the research to other stress factors, such as salinity or water deficiency.
Collapse
|
23
|
Nunes C, Moreira R, Pais I, Semedo J, Simões F, Veloso MM, Scotti-Campos P. Cowpea Physiological Responses to Terminal Drought-Comparison between Four Landraces and a Commercial Variety. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050593. [PMID: 35270063 PMCID: PMC8912480 DOI: 10.3390/plants11050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 05/23/2023]
Abstract
Cowpea (Vigna unguiculata) is a robust legume; nevertheless, yield is always affected by drought, especially when it occurs during reproductive growth and seed filling. Considered a key crop in the effort to attain food security, and a suitable crop for a scenario of climate change, modern disregard for cowpea landraces is particularly detrimental as it causes genetic variability loss, compromising breeding efforts. To contribute to the evaluation of the cowpea germplasm, four Portuguese landraces (L1, L2, L3, L4) were compared with a commercial variety (CV) to evaluate their physiological responses to terminal drought and their inter-variation on productivity, under semi-controlled conditions. Despite no differences in relative water content (RWC) between the CV and the landraces under water deficit (WD), differences in leaf water potential (Ψ) defined the CV as having an isohydric control of stomata in contrast with anisohydric control for landraces. There was an identical decrease in the photosynthetic rate for all plants under stress, caused by both stomatal and non-stomatal limitations, namely, damages at the level of photosystem II as indicated by fluorescence measurements. Instantaneous water use efficiency (iWUE) was improved with stress in L1 and L3. Maintenance of higher relative chlorophyll content for longer periods in the CV revealed a stay-green phenotype. The slim differences observed in terms of stomatal control, iWUE and progression of senescence between the CV and the landraces under WD led to quite important differences in terms of productivity, as inferred from improved yield (number of pods and number of grains per plant). This is a clear result of pragmatic on-farm selection. On one hand it shows that small differences in stomatal responses or water saving strategies under WD may lead to desirable outcomes and should therefore be considered during breeding. On the other hand, it suggests that other traits could be explored in view of drought adaptation. These results highlight the need to preserve and characterize as many genetic pools as possible within a species.
Collapse
Affiliation(s)
- Cátia Nunes
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Rita Moreira
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Isabel Pais
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| | - José Semedo
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| | - Fernanda Simões
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Maria Manuela Veloso
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Paula Scotti-Campos
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
24
|
Xiao X, Chen J, Liao X, Yan Q, Liang G, Liu J, Wang D, Guan R. Different Arbuscular Mycorrhizal Fungi Established by Two Inoculation Methods Improve Growth and Drought Resistance of Cinnamomum Migao Seedlings Differently. BIOLOGY 2022; 11:biology11020220. [PMID: 35205086 PMCID: PMC8869179 DOI: 10.3390/biology11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Drought is a global climatic phenomenon and one of the main factors that negatively affect plant growth. Karst is a unique type of ecosystem where ecological degradation is becoming more and more serious due to the aggravation of global drought. Vegetation restoration is an effective method for preventing ecological degradation in Karst ecosystems. Cinnamomum migao is selected as the tree species for vegetation restoration, because it is a unique, fast-growing medicinal plant of Southwest China that only thrives in Karst regions. Arbuscular mycorrhizal fungi (AMF) are an important component of the soil biota in ecosystems and alleviate drought stress in plants by forming a mutualistic symbiosis. Most previous studies just considered the effects of AMF species on drought resistance but did not evaluate different inoculation methods. The aim of the present study was to compare the effects of different AMF resulting from the use of different inoculation methods on the growth and drought resistance of C. migao seedlings in Karst soil. The findings of this study will improve the success rate of reforestation programs in Karst ecosystems through the utilization of these important microorganisms. Abstract Drought stress is one of the greatest obstacles affecting field crop productivity in arid and semi-arid regions, and its severity and frequency are expected to increase due to human-induced changes to the environment and climate. Drought has led to rocky desertification in Karst regions. Cinnamomum migao is a unique, fast-growing medicinal plant of Southwest China that only thrives in Karst regions. Arbuscular mycorrhizal fungi (AMF) symbiosis alleviates drought stress in plants; however, establishment and function of the symbiotic interaction between AMF host plant in relation to the inoculation method remain unclear. Therefore, we conducted an experiment to investigate the effects of AMF species (Glomus etunicatum and Funneliformis mosseae) and two inoculation methods (seed vs. seedling inoculation) under drought stress on C. migao seedlings, and quantified mycorrhizal colonization, AMF spore density, root vigor, relative water content, C. migao growth, antioxidant enzyme activities, and osmotic adjustment. Inoculation with AMF (G. etunicatum and F. mosseae) positively affected the growth and root vigor of Cinnamomum migao under drought stress, regardless of the inoculation method. Additionally, both AMF species markedly upregulated antioxidant enzyme activities and osmotic adjustment substances, regardless of the inoculation method. Our results showed that the collective stimulatory effect of G. etunicatum is more efficient than that of F. mosseae. AMF application could promote afforestation with C. migao to prevent rocky desertification in Karst regions where water is the greatest limiting factor on plant growth and yield.
Collapse
Affiliation(s)
- Xuefeng Xiao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Jingzhong Chen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Xiaofeng Liao
- Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China;
| | - Qiuxiao Yan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Gelin Liang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Jiming Liu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
- Correspondence: ; Tel.: +86-139-8501-5398
| | - Deng Wang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Ruiting Guan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| |
Collapse
|
25
|
Di Silvestre D, Passignani G, Rossi R, Ciuffo M, Turina M, Vigani G, Mauri PL. Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by Protein–Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants. BIOLOGY 2022; 11:biology11010095. [PMID: 35053093 PMCID: PMC8773257 DOI: 10.3390/biology11010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Plants often harbor persistent plant virus infection transmitted only vertically through seeds, resulting in no obvious symptoms (cryptic infections). Several studies have shown that such cryptic infections provide resilience against abiotic (and biotic) stress. We have recently discovered a new group of cryptic plant viruses infecting mitochondria (plant mitovirus). Mitochondria are cellular organelles displaying a pivotal role in protecting cells from the stress of nature . Here, we look at the proteomic alterations caused by the mitovirus cryptic infection of Chenopodium quinoa by Systems Biology approaches allowing one to evaluate data at holistic level. Quinoa is a domesticated plant species with many exciting features of abiotic stress resistance, and it is distinguished by its exceptional nutritional characteristics, such as the content and quality of proteins, minerals, lipids, and tocopherols. These features determined the growing interest for the quinoa crop by the scientific community and international organizations since they provide opportunities to produce high-value grains in arid, high-salt and high-UV agroecological environments. We discovered that quinoa lines hosting mitovirus activate some metabolic processes that might help them face drought. These findings present a new perspective for breeding crop plants through the augmented genome provided by accessory cryptic viruses to be investigated in the future. Abstract Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein–protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
- Correspondence: (D.D.S.); (G.V.)
| | - Giulia Passignani
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| | - Rossana Rossi
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, Department of Bio-Food Sciences, National Research Council (CNR), 10135 Turin, Italy; (M.C.); (M.T.)
| | - Massimo Turina
- Institute for Sustainable Plant Protection, Department of Bio-Food Sciences, National Research Council (CNR), 10135 Turin, Italy; (M.C.); (M.T.)
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, 10135 Turin, Italy
- Correspondence: (D.D.S.); (G.V.)
| | - Pier Luigi Mauri
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| |
Collapse
|
26
|
Mishra S, Sahu G, Shaw BP. Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea. PLANT CELL REPORTS 2022; 41:75-94. [PMID: 34570259 DOI: 10.1007/s00299-021-02783-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Drought stress response studies and overexpression of vun-miR408 proved it to be essential for abiotic stress tolerance in cowpea. Small RNA and transcriptome sequencing of an elite high-yielding drought-tolerant Indian cowpea cultivar, Pusa Komal revealed a differential expression of 198 highly conserved, 21 legume-specific, 14 less-conserved, and 10 novel drought-responsive microRNAs (miRNAs) along with 3391 (up-regulated) and 3799 (down-regulated) genes, respectively, in the leaf and root libraries. Among the differentially expressed miRNAs, vun-miR408-3p, showed an up-regulation of 3.53-log2-fold change under drought stress. Furthermore, laccase 12 (LAC 12) was identified as the potential target of vun-miR408-3p using 5' RNA ligase-mediated rapid amplification of cDNA ends. The stable transgenic cowpea lines overexpressing artificial vun-miR408-3p (OX-amiR408) displayed enhanced drought and salinity tolerance as compared to the wild-type plants. An average increase of 30.17% in chlorophyll, 26.57% in proline, and 27.62% in relative water content along with lesser cellular H2O2 level was observed in the transgenic lines in comparison with the wild-type plants under drought stress. Additionally, the scanning electron microscopic study revealed a decrease in the stomatal aperture and an increase in the trichome density in the transgenic lines. The expression levels of laccase 3 and laccase 12, the potential targets of miR408, related to lipid catabolic processes showed a significant reduction in the wild-type plants under drought stress and the transgenic lines, indicating the regulation of lignin content as a plausibly essential trait related to the drought tolerance in cowpea. Taken together, this study primarily focused on identification of drought-responsive miRNAs and genes in cowpea, and functional validation of role of miR408 towards drought stress response in cowpea.
Collapse
Affiliation(s)
- Sagarika Mishra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India.
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
27
|
Wang J, Liang C, Yang S, Song J, Li X, Dai X, Wang F, Juntawong N, Tan F, Zhang X, Jiao C, Zou X, Chen W. iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings. PeerJ 2021; 9:e11509. [PMID: 34141478 PMCID: PMC8180192 DOI: 10.7717/peerj.11509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Methods To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. Result In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper cultivars in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher ROS scavenging, photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180.
Collapse
Affiliation(s)
- Jing Wang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Chengliang Liang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Sha Yang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jingshuang Song
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuefeng Li
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiongze Dai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Fei Wang
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Niran Juntawong
- Faculty of Science, Department of Botany, Kasetsart University, Bangkok, Thailand
| | - Fangjun Tan
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xilu Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuexiao Zou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
28
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
29
|
Jin T, Sun Y, Shan Z, He J, Wang N, Gai J, Li Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1155-1169. [PMID: 33368860 PMCID: PMC8196659 DOI: 10.1111/pbi.13536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Salt stress has detrimental effects on crop growth and yield, and the area of salt-affected land is increasing. Soybean is a major source of vegetable protein, oil and feed, but considered as a salt-sensitive crop. Cultivated soybean (Glycine max) is domesticated from wild soybean (G. soja) but lost considerable amount of genetic diversity during the artificial selection. Therefore, it is important to exploit the gene pool of wild soybean. In this study, we identified 34 salt-tolerant accessions from wild soybean germplasm and found that a 7-bp insertion/deletion (InDel) in the promoter of GsERD15B (early responsive to dehydration 15B) significantly affects the salt tolerance of soybean. GsERD15B encodes a protein with transcriptional activation function and contains a PAM2 domain to mediate its interaction with poly(A)-binding (PAB) proteins. The 7-bp deletion in GsERD15B promoter enhanced the salt tolerance of soybean, with increased up-regulation of GsERD15B, two GmPAB genes, the known stress-related genes including GmABI1, GmABI2, GmbZIP1, GmP5CS, GmCAT4, GmPIP1:6, GmMYB84 and GmSOS1 in response to salt stress. We propose that natural variation in GsERD15B promoter affects soybean salt tolerance, and overexpression of GsERD15B enhanced salt tolerance probably by increasing the expression levels of genes related to ABA-signalling, proline content, catalase peroxidase, dehydration response and cation transport.
Collapse
Affiliation(s)
- Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yangyang Sun
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhong Shan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNational Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
30
|
Xie H, Li M, Chen Y, Zhou Q, Liu W, Liang G, Jia Z. Important Physiological Changes Due to Drought Stress on Oat. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.644726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As temperatures rise and water availability decreases, the water decit is gaining attention regarding future agricultural production. Drought stress is a global issue and adversely affects the productivity of different crops. In this study, drought-tolerant varieties of oats were screened to determine drought-tolerant varieties that may be employed in drought-prone areas to achieve sustainable development and mitigate the impact of climate change. To do so, the growth and stress adaptive mechanism of 15 domestic and overseas oat cultivars at the seedling stage were analyzed. Water stress was simulated using 20% polyethylene glycol (PEG-6000). The results showed that the soluble protein content and superoxide dismutase activity of variety DY2 significantly increased under drought stress, whereas the photochemical efficiency and relative water content decreased slightly. The relative electrical conductivity (REC) and drought damage index of the QH444 and DY2 varieties increased the least. The peroxidase content of Q1 and DY2 significantly increased, and the catalase activity of Q1, QH444, and DY2 also substantially increased. Principal component analysis revealed that nine physiological and biochemical parameters were transformed into three independent comprehensive indexes. The comprehensive evaluation results showed that DY2, LN, and Q1 exhibited a strong drought resistance capacity and could be used as a reference material for a drought-resistant oat breeding program. The gray correlation analysis also indicated that Fv/Fm, chlorophyll, REC, and malondialdehyde could be used as key indexes for evaluating the drought resistance of oat.
Collapse
|
31
|
Biochemical Responses and Leaf Gas Exchange of Fig (Ficus carica L.) to Water Stress, Short-Term Elevated CO2 Levels and Brassinolide Application. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7040073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The identification of the key components in the response to drought stress is fundamental to upgrading drought tolerance of plants. In this study, biochemical responses and leaf gas exchange characteristics of fig (Ficus carica L.) to water stress, short-term elevated CO2 levels and brassinolide application were evaluated. The ‘Improved Brown Turkey’ cultivar of fig was propagated from mature two- to three-year-old plants using cuttings, and transferred into a substrate containing 3:2:1 mixed soil (top soil: organic matters: sand). The experiment was arranged as a nested design with eight replications. To assess changes in leaf gas exchange and biochemical responses, these plants were subjected to two levels of water stress (well-watered and drought-stressed) and grown under ambient CO2 and 800 ppm CO2. Water deficits led to effects on photosynthetic rate, stomatal conductance, transpiration rate, vapour pressure deficit, water use efficiency (WUE), intercellular CO2, and intrinsic WUE, though often with effects only at ambient or elevated CO2. Some changes in content of chlorophyll, proline, starch, protein, malondialdehyde, soluble sugars, and activities of peroxidase and catalase were also noted but were dependent on CO2 level. Overall, fewer differences between well-watered and drought-stressed plants were evident at elevated CO2 than at ambient CO2. Under drought stress, elevated CO2 may have boosted physiological and metabolic activities through improved protein synthesis enabling maintenance of tissue water potential and activities of antioxidant enzymes, which reduced lipid peroxidation.
Collapse
|
32
|
Inthama P, Pumas P, Pekkoh J, Pathom-Aree W, Pumas C. Plant Growth and Drought Tolerance-Promoting Bacterium for Bioremediation of Paraquat Pesticide Residues in Agriculture Soils. Front Microbiol 2021; 12:604662. [PMID: 33815305 PMCID: PMC8014035 DOI: 10.3389/fmicb.2021.604662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Thailand is an agricultural country. However, agricultural productivity relies on the heavy use of herbicides, especially paraquat. Paraquat accumulation is emerging as a problem in an ever-growing portion of agricultural land. Paraquat residues are toxic to plants, animals, and aquatic organisms in the environment. Biological remediation is a process that can mitigate agricultural chemical contaminants. One of the interesting bioremediators is bacteria. Not only do certain soil bacteria remediate paraquat, but some of them also possess plant growth-promoting properties, which provide advantages in field application. Thus, this study aimed to screen soil bacteria that could degrade paraquat and, at the same time, promote plant growth. Bacteria were isolated from paraquat-treated agricultural soil in Mueang Kaen Pattana municipality, Chiang Mai province, Thailand. On the basis of morphological and 16S rDNA sequence analyses, the selected bacterium was identified as Bacillus aryabhattai strain MoB09. It is capable of growing in nitrogen-free media. B. aryabhattai growth and paraquat degradation were found to be optimum at pH 7 and 30°C. This selected strain also possessed plant growth-promoting abilities, including indole production, siderophore production, phosphate solubilization, and 1-aminocyclopropane-1-carboxylic acid deaminase activity. Paraquat degradation was also evaluated in pot experiments of cowpea (Vigna unguiculata). It was found that this strain could remediate the paraquat residue in both sterilized and non-sterilized soils. The cowpea plants grown in paraquat-contaminated soil with B. aryabhattai showed longer root and shoot lengths than those grown in soil without bacterial inoculation. In addition, B. aryabhattai also promoted the growth of cowpea under induced drought stress. These results suggested that B. aryabhattai could be applied to mitigate paraquat residue in soil and also to promote plant productivity for the organic crop production.
Collapse
Affiliation(s)
- Phatcharida Inthama
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pamon Pumas
- Department of Environmental Science, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
33
|
Li X, Zhao C, Zhang T, Wang G, Amombo E, Xie Y, Fu J. Exogenous Aspergillus aculeatus Enhances Drought and Heat Tolerance of Perennial Ryegrass. Front Microbiol 2021; 12:593722. [PMID: 33679629 PMCID: PMC7933552 DOI: 10.3389/fmicb.2021.593722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is a cool-season grass whose growth and development are limited by drought and high temperature. Aspergillus aculeatus has been reported to promote plant growth and counteract the adverse effects of abiotic stresses. The objective of this study was to assess A. aculeatus-induced response mechanisms to drought and heat resistance in perennial ryegrass. We evaluated the physiological and biochemical markers of drought and heat stress based on the hormone homeostasis, photosynthesis, antioxidant enzymes activity, lipid peroxidation, and genes expression level. We found out that under drought and heat stress, A. aculeatus-inoculated leaves exhibited higher abscisic acid (ABA) and lower salicylic acid (SA) contents than non-inoculated regimes. In addition, under drought and heat stress, the fungus enhanced the photosynthetic performance, decreased the antioxidase activities, and mitigated membrane lipid peroxidation compared to non-inoculated regime. Furthermore, under drought stress, A. aculeatus induced a dramatic upregulation of sHSP17.8 and DREB1A and a downregulation of POD47, Cu/ZnSOD, and FeSOD genes. In addition, under heat stress, A. aculeatus-inoculated plants exhibited a higher expression level of HSP26.7a, sHSP17.8, and DREB1A while a lower expression level of POD47 and FeSOD than non-inoculated ones. Our results provide an evidence of the protective role of A. aculeatus in perennial ryegrass response to drought and heat stresses.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Chuncheng Zhao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Ting Zhang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
34
|
Haq ANU, Islam A, Younas F, Danish L, Ullah I, Nadhman A, Shah H, Khan I. Impact of zinc oxide nanoflowers on growth dynamics and physio-biochemical response of Triticum aestivum. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2020; 102:568-584. [DOI: 10.1080/02772248.2020.1837133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/10/2020] [Indexed: 10/10/2024]
Affiliation(s)
- Ayesha Naveed Ul Haq
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Arshad Islam
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farhan Younas
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Lubna Danish
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Hamidullah Shah
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Imran Khan
- Gomal University, Gomal Center for Biochemistry and Biotechnology, Indus Highway, Dera Ismail Khan, Pakistan
| |
Collapse
|
35
|
Balboa K, Ballesteros GI, Molina-Montenegro MA. Integration of Physiological and Molecular Traits Would Help to Improve the Insights of Drought Resistance in Highbush Blueberry Cultivars. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1457. [PMID: 33137914 PMCID: PMC7693893 DOI: 10.3390/plants9111457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Water deficit or drought is one of the most severe factors limiting plant yield or fruit quality. Thus, water availability for irrigation is decisive for crop success, such as the case of highbush blueberry (Vaccinium corymbosum L.). Therefore, drought stress may compromise blueberry production due to lower fruit weight or fruit yield. Despite this, it is unclear if there is any difference in the response of blueberry cultivars to water deficit, either in terms of physiological and molecular parameters, or in terms of their sensitivity or resistance to drought. In this study, we determined the effect of drought on different physiological parameters in blueberry plants (relative water content (RWC), photochemical efficiency of photosystem II (Fv/Fm), Carbon Isotopic Discrimination, and proline content) in six V. corymbosum cultivars. We also explored molecular responses in terms of gene expression coding for late embryogenesis abundant proteins. Finally, we estimated cultivar water deficit resistance using an integrative model based on physiological results. Upon water deficit conditions, we found reductions in Fv/Fm, RWC, and isotopic discrimination of 13C (Δ13C), while proline content increased significantly for all cultivars. Additionally, we also found differences in the estimated water deficit resistance index. These results indicate differences in water deficit resistance, possibly due to variations in cultivars' genetic composition.
Collapse
Affiliation(s)
- Karen Balboa
- Bachillerato en Ciencias, Facultad de Ciencias, Universidad Santo Tomás, Av. Circunvalación Poniente #1855, Talca 3460000, Chile;
| | | | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1281, Chile
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
36
|
Marcińska I, Dziurka K, Waligórski P, Janowiak F, Skrzypek E, Warchoł M, Juzoń K, Kapłoniak K, Czyczyło-Mysza IM. Exogenous Polyamines Only Indirectly Induce Stress Tolerance in Wheat Growing in Hydroponic Culture under Polyethylene Glycol-Induced Osmotic Stress. Life (Basel) 2020; 10:life10080151. [PMID: 32823849 PMCID: PMC7459500 DOI: 10.3390/life10080151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to evaluate the effect of osmotic stress caused by polyethylene glycol (PEG) 6000 in hydroponic culture on wheat seedlings of drought-resistant Chinese Spring (CS) and drought-susceptible SQ1 cultivar, and to examine the alleviative role of exogenous polyamines (PAs) applied to the medium. The assessment was based on physiological (chlorophyll a fluorescence kinetics, chlorophyll and water content) as well as biochemical (content of carbohydrates, phenols, proline, salicylic and abscisic acid, activity of low molecular weight antioxidants) parameters, measured after supplementation with PAs (putrescine, spermidine and spermine) on the 3rd, 5th and 7th day of the treatment. The results indicate that PAs ameliorate the effects of stress, indirectly and conditionally inducing stress tolerance of wheat seedlings. In contrast to the susceptible SQ1, the resistant CS cultivar activated its protective mechanisms, adjusting the degree of their activation to the level of the stress, depending on the genetic resources of the plant. Increased accumulation of antioxidants in the resistant CS in response to stress after the application of PAs confirms the hypothesis that PAs are involved in the signaling pathway determining the antioxidative response and the tolerance of wheat plants to drought stress.
Collapse
|
37
|
Saikia B, Singh S, Debbarma J, Velmurugan N, Dekaboruah H, Arunkumar KP, Chikkaputtaiah C. Multigene CRISPR/Cas9 genome editing of hybrid proline rich proteins (HyPRPs) for sustainable multi-stress tolerance in crops: the review of a promising approach. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:857-869. [PMID: 32377037 PMCID: PMC7196567 DOI: 10.1007/s12298-020-00782-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 05/05/2023]
Abstract
The recent global climate change has directly impacted major biotic and abiotic stress factors affecting crop productivity worldwide. Therefore, the need of the hour is to develop sustainable multiple stress tolerant crops through modern biotechnological approaches to cope with climate change. Hybrid proline rich proteins (HyPRPs) are the cell-wall structural proteins, which contain an N-terminal repetitive proline-rich domain and a C-terminal conserved eight-cysteine motif domain. HyPRPs are known to regulate multiple abiotic and biotic stress responses in plants. Recently, a few HyPRPs have been characterized as negative regulators of abiotic and biotic stress responses in different plants. Disruption of such negative regulators for desirable positive phenotypic traits has been made possible through the advent of advanced genome engineering tools. In the past few years, CRISPR/Cas9 has emerged as a novel breakthrough technology for crop improvement by target specific editing of known negative regulatory host genes. Here, we have described the mechanism of action and the role of known HyPRPs in regulating different biotic and abiotic stress responses in major crop plants. We have also discussed the importance of the CRISPR/Cas9 based genome editing system in targeting known negative regulatory HyPRPs for multi-stress crop tolerance using the tomato crop model. Application of genome editing to manipulate the HyPRPs of major crop plants holds promise in developing newer stress management methods in this rapidly changing climate and would lead in the future to sustain crop productivity.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| | - Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Hariprasanna Dekaboruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat, Assam 785700 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| |
Collapse
|
38
|
Sara HC, René GH, Rosa UC, Angela KG, Clelia DLP. Agave angustifolia albino plantlets lose stomatal physiology function by changing the development of the stomatal complex due to a molecular disruption. Mol Genet Genomics 2020; 295:787-805. [PMID: 31925511 DOI: 10.1007/s00438-019-01643-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022]
Abstract
Stomatal development is regulated by signaling pathways that function in multiple cellular programs, including cell fate and cell division. However, recent studies suggest that molecular signals are affected by CO2 concentration, light intensity, and water pressure deficit, thereby modifying distribution patterns and stomatic density and likely other foliar features as well. Here, we show that in addition to lacking chloroplasts, the albino somaclonal variants of Agave angustifolia Haw present an irregular epidermal development and morphological abnormalities of the stomatal complex, affecting the link between the stomatal conductance, transpiration and photosynthesis, as well as the development of the stoma in the upper part of the leaves. In addition, we show that changes in the transcriptional levels of SPEECHLESS (SPCH), TOO MANY MOUTHS (TMM), MITOGEN-ACTIVATED PROTEIN KINASE 4 and 6 (MAPK4 and MAPK6) and FOUR LIPS (FLP), all from the meristematic tissue and leaf, differentially modulate the stomatal function between the green, variegated and albino in vitro plantlets of A. angustifolia. Likewise, we highlight the conservation of microRNAs miR166 and miR824 as part of the regulation of AGAMOUS-LIKE16 (AGL16), recently associated with the control of cell divisions that regulate the development of the stomatal complex. We propose that molecular alterations happening in albino cells formed from the meristematic base can lead to different anomalies during the transition and specification of the stomatal cell state in leaf development of albino plantlets. We conclude that the molecular alterations in the meristematic cells in albino plants might be the main variable associated with stoma distribution in this phenotype.
Collapse
Affiliation(s)
- Hernández-Castellano Sara
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Garruña-Hernández René
- CONACYT-Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, 97345, Mérida, Yucatán, Mexico
| | - Us-Camas Rosa
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Kú-Gonzalez Angela
- Centro de Investigación Científica de Yucatán A.C., Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 N° 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - De-la-Peña Clelia
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
39
|
Quy TN, Xuan TD, Andriana Y, Tran HD, Khanh TD, Teschke R. Cordycepin Isolated from Cordyceps militaris: Its Newly Discovered Herbicidal Property and Potential Plant-Based Novel Alternative to Glyphosate. Molecules 2019; 24:E2901. [PMID: 31405038 PMCID: PMC6720702 DOI: 10.3390/molecules24162901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 01/24/2023] Open
Abstract
There is currently much interest in finding new phytochemicals among plants and fungi as nature-based alternatives to replace problematic herbicides such as glyphosate, which are preferentially used in agricultural production n. We discovered striking herbicidal potency in Cordyceps militaris (L.) and identified cordycepin as its principal plant growth inhibitor. Cordycepin obtained as an ethyl acetate extract was subjected to column chromatography and evaluated for its bioassay-guided phytotoxic capacity against Raphanus sativus (radish), showing a maximum inhibition on germination and growth of radish (IC50 = 0.052-0.078 mg/mL). Gas chromatography-mass spectrometry (GC-MS) (m/z: 251.2) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) ([M + Na]+ m/z: 274.1; [M + H]+ m/z: 252.1) analyses confirmed cordycepin as the major component of the tested column fraction (55.38%). At 0.04 mg/mL, cordycepin showed 3.8-5.9- and 3.3-3.7-fold greater inhibition of the germination and growth of radish than benzoic acid (BA) and glyphosate, respectively. Compared with BA, isolated cordycepin reduced plant chlorophyll and carotenoid contents (2.0-9.5 -fold), while proline, total phenolic and total flavonoid contents were increased 1.2-1.8-fold. Finally, cordycepin promoted electrolyte leakage and malondialdehyde accumulation in radish aerial parts. Thus, cordycepin successfully isolated from Cordyceps militaris is a highly potent plant growth inhibitor with pending worldwide patent and may become a potential plant-based novel alternative to the disputed glyphosate.
Collapse
Affiliation(s)
- Tran Ngoc Quy
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan
- Can Tho University, Can Tho City 902070, Vietnam
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Yusuf Andriana
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan
| | - Hoang-Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh 72820, Vietnam
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany
| |
Collapse
|
40
|
The Relationship between Stem Diameter Shrinkage and Tree Bole Moisture Loss Due to Transpiration. FORESTS 2019. [DOI: 10.3390/f10030290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The responsiveness of four types of stem diameter shrinkage indicators to sap flow changes was compared under four air temperature and cloudiness conditions: above 0 °C below 80% cloud cover days; above 0 °C large percentage cloud cover days; low temperature below 80% cloud cover days; and low temperature large percentage cloud cover days. In this study, we investigated the effects of indicative functions of relatively easy-to-access stem diameter shrinkage on variation characteristics of sap flow. High-resolution-based stem diameter shrinkage is related to changes in tree moisture content. Stem diameter shrinkage indicators are adopted to confirm sap flow changes resulting from transpiration pull, which may enhance the power of stem diameter shrinkage as an index for tree bole moisture loss. After measuring stem diameter variations, the following stem diameter shrinkage indicators were calculated: maximum daily shrinkage, daily stem diameter increment, daily stem diameter variation, and tree water deficit-induced stem shrinkage (TWD). Sap flow was measured synchronously, and stem diameter shrinkage indicators were analyzed to confirm their responses to sap flow. TWD was positively correlated (r ≥ 0.317) with daily variations in sap flow and reached extremely significant levels (p ≤ 0.001) under all conditions. TWD and maximum daily shrinkage were able to better reflect the correlation between changes in stem diameter and sap flow on a daily scale, except large percentage cloud cover days with low temperatures. Changes in stem diameter had no correlation with sap flow during low temperature and large percentage cloud cover days. Among all stem diameter shrinkage indicators, TWD showed the highest correlation (r ≥ 0.601 and p ≤ 0.001) with sap flow under all conditions, except during large percentage cloud cover days with low temperatures. The stem diameter shrinkage indicators did not reflect sap flow changes during large percentage cloud cover days with low temperatures. The indicator that best reflected moisture loss of trees was TWD.
Collapse
|
41
|
Wang X, Ren Y, Li J, Wang Z, Xin Z, Lin T. Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance. Biol Res 2019; 52:14. [PMID: 30894225 PMCID: PMC6427858 DOI: 10.1186/s40659-019-0222-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. Methods Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. Results In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. Conclusion These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.
Collapse
Affiliation(s)
- Xinbo Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jingjing Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
42
|
Zhang C, Shi S, Liu Z, Yang F, Yin G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:226-240. [PMID: 30537610 DOI: 10.1016/j.jplph.2018.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 05/23/2023]
Abstract
Drought stress is considered the most adverse factor restricting plant survival, growth, and productivity. The identification of the key adaptive mechanisms to drought stress is essential to enhance the drought resistance of plants. In this study, differential responses of three alfalfa varieties to drought, including Medicago sativa L. cv. Longzhong (drought-tolerant), Longdong (moderate drought-tolerant), and Gannong No. 3 (drought-sensitive), were comparatively studied at morphological, physio-biochemical, and transcriptional levels after a 12-day period of drought stress simulated by -1.2 MPa polyethylene glycol (PEG-6000). The results showed that prolonged drought stress dramatically decreased growth and photosynthetic capacity of three alfalfa varieties while it increased the accumulation of malondialdehyde (MDA), reactive oxygen species (ROS), osmolytes and antioxidants including reduced ascorbate and glutathione, ascorbate peroxidase (APX) activities, and gene expression of antioxidative enzymes (MsCu/Zn-SOD, MsFeSOD, MtPOD, MsGPX, MsAPX, MsMDAR, MtDHAR, and MsGR). Nine days of treatment and some key traits, including the maximum quantum yield of photosystem II (Fv/Fm), the levels of MDA, O2-, and H2O2, the redox states of ascorbate and glutathione, APX activity, and the transcript levels of MsFeSOD, MsGR, and MsMDAR, might contribute to differentiating the drought stress tolerance in alfalfa. Overall, drought-tolerant Longzhong showed the highest water retention, photosynthetic performance, and osmoregulation capacity, the lowest lipid peroxidation, and the highest antioxidant enzyme activities and gene expression, which were mainly involved in the ascorbate-glutathione cycle to maintain the balance between the generation and scavenging of intracellular ROS. These findings highlight that enhanced antioxidative protection and declined lipid peroxidation play an important role in alfalfa tolerance against drought.
Collapse
Affiliation(s)
- Cuimei Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zhen Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fan Yang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoli Yin
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|