1
|
King C, Plakke B. Maternal choline supplementation modulates cognition and induces anti-inflammatory signaling in the prefrontal cortices of adolescent rats exposed to maternal immune activation. Brain Behav Immun Health 2024; 40:100836. [PMID: 39206430 PMCID: PMC11350509 DOI: 10.1016/j.bbih.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Maternal infection has long been described as a risk factor for neurodevelopmental disorders, especially autism spectrum disorders (ASD) and schizophrenia. Although many pathogens do not cross the placenta and infect the developing fetus directly, the maternal immune response to them is sufficient to alter fetal neurodevelopment, a phenomenon termed maternal immune activation (MIA). Low maternal choline is also a risk factor for neurodevelopmental disorders, and most pregnant people do not receive enough of it. In addition to its role in neurodevelopment, choline is capable of inducing anti-inflammatory signaling through a nicotinic pathway. Therefore, it was hypothesized that maternal choline supplementation would blunt the neurodevelopmental impact of MIA in offspring through long-term instigation of cholinergic anti-inflammatory signaling. To model MIA in rats, the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)) was used to elicit a maternal antiviral innate immune response in dams both with and without choline supplementation. Offspring were reared to both early and late adolescent stages (postnatal days 28 and 50, respectively), where anxiety-related behaviors and cognition were examined. After behavioral testing, animals were euthanized, and their prefrontal cortices (PFCs) were collected for analysis. MIA offspring demonstrated sex-specific patterns of altered cognition and repetitive behaviors, which were modulated by maternal choline supplementation. Choline supplementation also bolstered anti-inflammatory signaling in the PFCs of MIA animals at both early and late adolescent stages. These findings suggest that maternal choline supplementation may be sufficient to blunt some of the behavioral and neurobiological impacts of inflammatory exposures in utero, indicating that it may be a cheap, safe, and effective intervention for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| |
Collapse
|
2
|
King C, Plakke B. Maternal choline supplementation in neurodevelopmental disorders: mechanistic insights from animal models and future directions. Nutr Neurosci 2024:1-20. [PMID: 39046330 DOI: 10.1080/1028415x.2024.2377084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To synthesize evidence from animal models of neurodevelopmental disorders (NDD) using maternal choline supplementation, to characterize current knowledge on the mechanisms of choline's protective effects against NDD, and to identify gaps in knowledge for future study. METHODS A literature review was conducted in PubMed to identify studies using prenatal choline supplementation interventions in rodent models of neurodevelopmental disorders. 24 studies were identified, and behavioral and biological findings were extracted from each. Studies examining both genetic and environmental risk factors were included. RESULTS Maternal choline supplementation during gestation is protective against both genetic and environmental NDD risk factors. Maternal choline supplementation improves both cognitive and affective outcomes throughout the lifespan in NDD models. Prenatal choline improved these outcomes through its participation in processes like neurogenesis, epigenetic regulation, and anti-inflammatory signaling. DISCUSSION Maternal choline supplementation improves behavioral and neurobiological outcomes in animal models of NDD, paralleling findings in humans. Animal models provide a unique opportunity to study the mechanisms by which gestational choline improves neurodevelopmental outcomes. This is especially important since nearly 90% of pregnant people in the United States are deficient in choline intake. However, much is still unknown about the mechanisms through which choline and its derivatives act. Further research into this topic, especially mechanistic studies in animal models, is critical to modernize maternal choline intake guidelines and to develop interventions to increase maternal choline intake in vulnerable populations.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Nguyen HT, Oktayani PPI, Lee SD, Huang LC. Choline in pregnant women: a systematic review and meta-analysis. Nutr Rev 2024:nuae026. [PMID: 38607338 DOI: 10.1093/nutrit/nuae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
CONTEXT Choline is a critical nutrient. Inadequate choline intake during pregnancy increases the risk of adverse maternal and offspring health. OBJECTIVE A systematic review and meta-analysis were conducted to examine the current recommendations for choline intake by pregnant women, estimate the overall prevalence of pregnant women with adequate choline intake, and explore associations between maternal choline level and adverse pregnancy outcomes (APOs). METHODS Choline recommendations for pregnant women were assessed from eight nutrient guidelines of the United States, United Kingdom, Canada, Australia, Asia, International Federation of Gynecology and Obstetrics, and World Health Organization. Data on the prevalence of pregnant women with adequate choline intake and the association between maternal choline level and APOs were collected from 5 databases up to May 2023. Meta-analyses with random effects and subgroup analyses were performed for the pooled estimate of prevalence and association. RESULTS Five recent nutrition guidelines from the United States (United States Department of Agriculture), United States (Food and Drug Administration), Canada, Australia, and the International Federation of Gynecology and Obstetrics have emphasized the importance of adequate choline intake for pregnant women. Of 27 publications, 19 articles explored the prevalence and 8 articles explored the association. Meta-analysis of 12 prevalence studies revealed a concerning 11.24% (95% confidence interval, 6.34-17.26) prevalence of pregnant women with adequate choline intake recommendations. A meta-analysis of 6 studies indicated a significant association between high maternal choline levels and a reduced risk of developing APOs, with an odds ratio of 0.51 (95% confidence interval, 0.40-0.65). CONCLUSION The existing guidelines highlight the importance of choline in supporting maternal health and fetal development during pregnancy. Furthermore, a high maternal choline level was likely to be associated with a lower risk of APOs. However, 88.76% of pregnant women do not achieve the optimal choline intake. Therefore, specific policies and actions may be necessary to improve choline intake in pregnant women's care and support the well-being of pregnant women. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CDR42023410561.
Collapse
Affiliation(s)
- Hoan Thi Nguyen
- College of Health Care Science, China Medical University, Taichung, Taiwan
- Nursing and Medical Technology, University of Medicine and Pharmacy, Ho Chi Minh City, VietNam
| | | | - Shin-Da Lee
- College of Health Care Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Li-Chi Huang
- College of Health Care Science, China Medical University, Taichung, Taiwan
- School of Nursing, China Medical University, Taichung, Taiwan
- Department of Nursing, China Medical University Children Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Manti S, Spoto G, Nicotera AG, Di Rosa G, Piedimonte G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge. Front Neurosci 2024; 17:1320319. [PMID: 38260010 PMCID: PMC10800711 DOI: 10.3389/fnins.2023.1320319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Brain development is a complex process that begins during pregnancy, and the events occurring during this sensitive period can affect the offspring's neurodevelopmental outcomes. Respiratory viral infections are frequently reported in pregnant women, and, in the last few decades, they have been related to numerous neuropsychiatric sequelae. Respiratory viruses can disrupt brain development by directly invading the fetal circulation through vertical transmission or inducing neuroinflammation through the maternal immune activation and production of inflammatory cytokines. Influenza virus gestational infection has been consistently associated with psychotic disorders, such as schizophrenia and autism spectrum disorder, while the recent pandemic raised some concerns regarding the effects of severe acute respiratory syndrome coronavirus 2 on neurodevelopmental outcomes of children born to affected mothers. In addition, emerging evidence supports the possible role of respiratory syncytial virus infection as a risk factor for adverse neuropsychiatric consequences. Understanding the mechanisms underlying developmental dysfunction allows for improving preventive strategies, early diagnosis, and prompt interventions.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
Obeid R, Karlsson T. Choline - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10359. [PMID: 38187796 PMCID: PMC10770654 DOI: 10.29219/fnr.v67.10359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/15/2022] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Choline is an essential nutrient with metabolic roles as a methyl donor in one carbon metabolism and as a precursor for membrane phospholipids and the neurotransmitter acetylcholine. Choline content is particularly high in liver, eggs, and wheat germ, although it is present in a variety of foods. The main dietary sources of choline in the Nordic and Baltic countries are meat, dairy, eggs, and grain. A diet that is devoid of choline causes liver and muscle dysfunction within 3 weeks. Choline requirements are higher during pregnancy and lactation than in non-pregnant women. Although no randomized controlled trials are available, observational studies in human, supported by coherence from interventional studies with neurodevelopmental outcomes and experimental studies in animals, strongly suggest that sufficient intake of choline during pregnancy is necessary for normal brain development and function in the child. Observational studies suggested that adequate intake of choline could have positive effects on cognitive function in older people. However, prospective data are lacking, and no intervention studies are available in the elderly.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Martín-González NS, Castro-Quintas Á, Marques-Feixa L, Ayesa-Arriola R, López M, Fañanás L. Maternal respiratory viral infections during pregnancy and offspring's neurodevelopmental outcomes: a systematic review. Neurosci Biobehav Rev 2023; 149:105178. [PMID: 37059407 DOI: 10.1016/j.neubiorev.2023.105178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Maternal infections during pregnancy, as cytomegalovirus and zika, have been consistently associated with severe newborn neurodevelopmental conditions, mainly related to vertical transmission and congenital infection. However, little is known about the neurodevelopmental consequences of maternal respiratory viral infections, which are the most prevalent infections during pregnancy. The recent COVID-19 pandemic has increased the interest in understanding the consequences of infections in offspring's development. This systematic review explores whether maternal gestational viral respiratory infections are associated with neurodevelopmental deviations in children below 10 years-old. The search was conducted in Pubmed, PsychInfo and Web of Science databases. 12 articles were revised, including information about maternal infection (Influenza, SARS-CoV-2 and unspecified respiratory infections) and offspring's neurodevelopment (global development, specific functions, temperament and behavioral/emotional aspects). Controversial results were reported regarding maternal respiratory infections during pregnancy and infants' neurodevelopment. Maternal infections seem to be associated with subtle alterations in some offspring's developmental subdomains, as early motor development, and attentional, behavioral/emotional minor problems. Further studies are needed to determine the impact of other psychosocial confounding factors.
Collapse
Affiliation(s)
- Nerea San Martín-González
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| | - Águeda Castro-Quintas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| | - Laia Marques-Feixa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| | - Rosa Ayesa-Arriola
- Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - Marta López
- Fetal Medicine Research Center, Maternal fetal medicine department, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER of Rare Diseases, CIBER-ER), Madrid, Spain.
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
8
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
9
|
Obeid R, Derbyshire E, Schön C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv Nutr 2022; 13:2445-2457. [PMID: 36041182 PMCID: PMC9776654 DOI: 10.1093/advances/nmac082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 07/25/2022] [Indexed: 01/29/2023] Open
Abstract
We studied associations between prenatal and early postnatal choline intake, brain development, and neurocognitive function of children. We conducted a systematic review followed by a meta-analysis and critical appraisal of human studies published from 1997 to 2021. Thirty publications were identified. The meta-analysis included 5 of 7 case-control studies studying neural tube defects (NTDs) in relation to maternal choline intakes/circulating concentrations. Low maternal choline intake/circulating concentrations were associated with a higher OR for NTDs among 1131 mothers of newborns with NTDs and 4439 control mothers (pooled estimate = 1.36; 95% CI: 1.11, 1.67). The 95% prediction intervals were 0.78, 2.36. Findings and critical evaluation of 10 publications with interventional designs showed that higher maternal choline intakes during the second half of pregnancy and early postnatal period (550 mg up to 1 g/d on top of the diet) or a child intake of 513 to 625 mg/d from supplements were safe and likely to demonstrate favorable effects on several domains of child neurocognition, such as memory, attention, and visuospatial learning versus the comparators. Findings from observational studies (n = 13) partly supported the association between maternal choline intake/serum concentrations and child neurocognition, but there was low confidence in the use of plasma choline concentrations as a choline intake marker. In conclusion, low maternal choline intakes were associated with a higher OR for NTDs. The risk could be up to 2.36-fold in some populations. Despite limitations of available trials and observational studies, higher maternal choline intake was likely to be associated with better child neurocognition/neurodevelopment. The results should be used to guide choline intake recommendations in pregnancy and lactation, especially because most young women are not achieving the reference intake of choline. This meta-analysis is registered at PROSPERO as CRD42021233790.
Collapse
|
10
|
Freedman R, Hunter SK, Law AJ, Clark AM, Roberts A, Hoffman MC. Choline, folic acid, Vitamin D, and fetal brain development in the psychosis spectrum. Schizophr Res 2022; 247:16-25. [PMID: 33838984 PMCID: PMC8494861 DOI: 10.1016/j.schres.2021.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Choline, folic acid, and Vitamin D are essential for fetal brain development that may be the first steps in the pathogenesis of the psychotic spectrum. Micronutrient deficiencies have been associated with changes in fetal brain development, manifest as early problems in childhood behavior, and cognition, and later as increased incidence of psychotic and autism spectrum disorders. Micronutrient supplements may not only prevent deficiency, but they may also positively affect brain development in the context of other maternal risk factors, including maternal infection, stress, inflammation, and substance abuse. Many genes associated with later psychotic illness are highly expressed in the fetal brain, where they are responsible for various neurodevelopmental mechanisms. Interaction of micronutrient vitamins with these genetically programmed mechanisms to prevent pathological brain development associated with later psychosis is under active investigation. In addition to their effects on brain development, micronutrient vitamins have effects on other aspects of gestation and fetal development, including the prevention of premature delivery and other developmental abnormalities. Supplemental micronutrient vitamins should be part of good prenatal care, as has already happened for folic acid and Vitamin D and is now advocated by the American Medical Association for choline. The benefits of these micronutrient supplements include protection of brain development and the possibility of decreased risk for future psychotic disorders in those children who are either genetically or environmentally vulnerable. The purpose of this review is to present the current evidence supporting the safety and effectiveness of micronutrients in gestation and to suggest areas for future research.
Collapse
Affiliation(s)
- Robert Freedman
- Department of Psychiatry, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA.
| | - Sharon K Hunter
- Department of Psychiatry, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA
| | - Amanda J Law
- Department of Psychiatry, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA; Department of Cell and Developmental Biology, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA; Department of Medicine, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA
| | - Alena M Clark
- Department of Nutrition and Dietetics, Campus Box 93, University of Northern Colorado, Greeley, CO 80639, USA
| | | | - M Camille Hoffman
- Department of Psychiatry, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA; Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Chaudhary AMD, Musavi NB, Saboor S, Javed S, Khan S, Naveed S. Psychosis during the COVID-19 pandemic: A systematic review of case reports and case series. J Psychiatr Res 2022; 153:37-55. [PMID: 35797814 PMCID: PMC9248300 DOI: 10.1016/j.jpsychires.2022.06.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preliminary data suggest that patients with COVID-19 may experience psychiatric symptoms, including psychosis. We systematically reviewed the literature to evaluate the concurrence of new-onset psychosis or exacerbation of clinically stable psychosis through case reports and case series. METHODS Six databases were searched, followed by an electronic and manual search of the relevant articles. Studies were identified using predetermined eligibility criteria. We evaluated the demographic characteristics, clinical history, course of illness, management, and prognosis of the patients in these studies. RESULTS Case reports and case series, altogether consisting of 57 unique cases were included. The mean patient age for onset of psychotic symptoms was 43.4 years for men and 40.3 years for women. About 69% of patients had no prior history of psychiatric disorders. Most patients had mild COVID-19-related symptoms, with only 15 (26.3%) presenting with moderate to severe COVID-19-related disease and complications. The most commonly reported psychotic symptoms were delusions and hallucinations. Patients with psychotic symptoms were treated with antipsychotics, benzodiazepines, valproic acid, and electroconvulsive treatment. In 36 cases, psychotic symptoms resolved completely or improved significantly. Ten cases had partial improvement with residual psychotic symptoms, and one patient died due to cardiac arrest. CONCLUSION Most patients responded to a low-to-moderate dose of antipsychotics with a quick recovery. However, the residual psychiatric symptoms highlight the need for careful monitoring and longer follow-up. Clinicians should be mindful of the occurrence of psychosis due to COVID-19 infection in a subset of COVID-19 patients that can be misdiagnosed as a psychotic disorder alone.
Collapse
Affiliation(s)
- Amna Mohyud Din Chaudhary
- Department of Psychiatry, Case Western Reserve University/ University Hospitals, Cleveland, OH, USA.
| | | | - Sundas Saboor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sana Javed
- Nishtar Medical University, Multan, Pakistan.
| | - Sonia Khan
- Frontier Medical and Dental College, Abbottabad, Pakistan.
| | - Sadiq Naveed
- Clinical Lead - Child and Adolescent Inpatient Units, Institute of Living, Hartford, CT, USA; Frank H. Netter M.D. School of Medicine at Quinnipiac University, North Haven, CT, USA; University of Connecticut School of Medicine, CT, USA.
| |
Collapse
|
12
|
Wang R, Wu Z, Huang C, Hashimoto K, Yang L, Yang C. Deleterious effects of nervous system in the offspring following maternal SARS-CoV-2 infection during the COVID-19 pandemic. Transl Psychiatry 2022; 12:232. [PMID: 35668063 PMCID: PMC9169439 DOI: 10.1038/s41398-022-01985-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
During the Coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is universally susceptible to all types of populations. In addition to the elderly and children becoming the groups of great concern, pregnant women carrying new lives need to be even more alert to SARS-CoV-2 infection. Studies have shown that pregnant women infected with SARS-CoV-2 can lead to brain damage and post-birth psychiatric disorders in offspring. It has been widely recognized that SARS-CoV-2 can affect the development of the fetal nervous system directly or indirectly. Pregnant women are recommended to mitigate the effects of COVID-19 on the fetus through vaccination, nutritional supplements, and psychological support. This review summarizes the possible mechanisms of the nervous system effects of SARS-CoV-2 infection on their offspring during the pregnancy and analyzes the available prophylactic and treatment strategies to improve the prognosis of fetal-related neuropsychiatric diseases after birth.
Collapse
Affiliation(s)
- Ruting Wang
- grid.452253.70000 0004 1804 524XDepartment of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Kenji Hashimoto
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
Infants prenatally exposed to SARS-CoV-2 show the absence of fidgety movements and are at higher risk for neurological disorders: A comparative study. PLoS One 2022; 17:e0267575. [PMID: 35507630 PMCID: PMC9067650 DOI: 10.1371/journal.pone.0267575] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital viral infections are believed to damage the developing neonatal brain. However, whether neonates exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) show manifestations of such damage remains unclear. For neurodevelopment evaluation, general movement assessments have been shown to be effective in identifying early indicators of neurological dysfunction, including the absence of fidgety movements. This study compared the early motor repertoire by general movement assessment at three to five months of age in neonates who were or were not prenatally exposed to SARS-CoV-2 to determine whether infants prenatally exposed to SARS-CoV-2 are at risk of developing neurological disorders. Fifty-six infants, including 28 in the exposed group of mothers without vaccination who had no need for intensive care and likely had SARS-CoV-2 infection close to the time of pregnancy resolution and 28 infants in the nonexposed group, were videotaped to compare their detailed early motor repertoires, in which a motor optimality score-revised (MOS-R) was calculated using Prechtl’s method by using the chi-square or Mann–Whitney U tests. In the exposed group, 3 (11%) infants showed the absence of fidgety movements with a total MOS-R<14 points, and 3 (11%) other infants showed abnormal fidgety movements. Between groups, atypical body symmetry (p = 0.009) and MOS-R values were significantly lower (Z = -3.08, p = 0.002), with a large size effect (Cohen’s d = 0.97). The consequences of this new virus go beyond the health of the pregnant mother, and these consequences in some of the infants in the exposed group are likely not transitory because of the absence of fidgety movements between 3–5 months; thus, these babies are at increased risk of developing a serious neurological disorder.
Collapse
|
14
|
Roy MK, La Carpia F, Cendali F, Fernando S, Moriconi C, Wojczyk BS, Wang L, Nemkov T, Hod EA, D’Alessandro A. Irradiation Causes Alterations of Polyamine, Purine, and Sulfur Metabolism in Red Blood Cells and Multiple Organs. J Proteome Res 2022; 21:519-534. [PMID: 35043621 PMCID: PMC8855667 DOI: 10.1021/acs.jproteome.1c00912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigating the metabolic effects of radiation is critical to understand the impact of radiotherapy, space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. However, no studies have interrogated the multiorgan effects of these treatments concurrently. Herein, we use a model that recapitulates transfusional iron overload, a condition often observed in chronically transfused patients. We applied an omics approach to investigate the impact of both the iron load and irradiation on the host metabolome. The results revealed dose-dependent effects of irradiation in the red blood cells, plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidneys, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the response to radiation in the organs and blood, especially in erythrocyte polyamines and spleen antioxidant metabolism, and affected glucose, methionine, and glutathione systems and tryptophan metabolism in the liver, stool, and the brain. Together, the results suggest that radiation impacts metabolism on a multiorgan level with a significant interaction of the host iron status.
Collapse
Affiliation(s)
- Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | | | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | | | - Chiara Moriconi
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | | | - Lin Wang
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Eldad A Hod
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045,Corresponding authors: Angelo D’Alessandro, PhD, Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO 80045, Phone # 303-724-0096,
| |
Collapse
|
15
|
Mate A, Reyes-Goya C, Santana-Garrido Á, Sobrevia L, Vázquez CM. Impact of maternal nutrition in viral infections during pregnancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166231. [PMID: 34343638 PMCID: PMC8325560 DOI: 10.1016/j.bbadis.2021.166231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Other than being a physiological process, pregnancy is a condition characterized by major adaptations of maternal endocrine and metabolic homeostasis that are necessary to accommodate the fetoplacental unit. Unfortunately, all these systemic, cellular, and molecular changes in maternal physiology also make the mother and the fetus more prone to adverse outcomes, including numerous alterations arising from viral infections. Common infections during pregnancy that have long been recognized as congenitally and perinatally transmissible to newborns include toxoplasmosis, rubella, cytomegalovirus, and herpes simplex viruses (originally coined as ToRCH infections). In addition, enterovirus, parvovirus B19, hepatitis virus, varicella-zoster virus, human immunodeficiency virus, Zika and Dengue virus, and, more recently, coronavirus infections including Middle Eastern respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) infections (especially the novel SARS-CoV-2 responsible for the ongoing COVID-19 pandemic), constitute relevant targets for current research on maternal-fetal interactions in viral infections during pregnancy. Appropriate maternal education from preconception to the early postnatal period is crucial to promote healthy pregnancies in general and to prevent and/or reduce the impact of viral infections in particular. Specifically, an adequate lifestyle based on proper nutrition plans and feeding interventions, whenever possible, might be crucial to reduce the risk of virus-related gestational diseases and accompanying complications in later life. Here we aim to provide an overview of the emerging literature addressing the impact of nutrition in the context of potentially harmful viral infections during pregnancy.
Collapse
Affiliation(s)
- Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Luis Sobrevia
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
16
|
Freedman R, Hunter SK, Law AJ, Hoffman MC. Prenatal prevention of psychiatric illness and childhood development population-wide. World Psychiatry 2021; 20:226-227. [PMID: 34002528 PMCID: PMC8129834 DOI: 10.1002/wps.20853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Robert Freedman
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sharon K Hunter
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda J Law
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - M Camille Hoffman
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
17
|
Hoffman MC, Freedman R, Law AJ, Clark AM, Hunter SK. Maternal nutrients and effects of gestational COVID-19 infection on fetal brain development. Clin Nutr ESPEN 2021; 43:1-8. [PMID: 34024500 PMCID: PMC8144544 DOI: 10.1016/j.clnesp.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Maternal gestational infection is a well-characterized risk factor for offsprings' development of mental disorders including schizophrenia, autism, and attention deficit disorder. The inflammatory response elicited by the infection is partly directed against the placenta and fetus and is the putative pathogenic mechanism for fetal brain developmental abnormalities. Fetal brain abnormalities are generally irreversible after birth and increase risk for later mental disorders. Maternal immune activation in animals models this pathophysiology. SARS-CoV-2 produces maternal inflammatory responses during pregnancy similar to previously studied common respiratory viruses. METHOD Choline, folic acid, Vitamin D, and n-3 polyunsaturated fatty acids are among the nutrients that have been studied as possible mitigating factors for effects of maternal infection and inflammation on fetal development. Clinical and animal studies relevant to their use in pregnant women who have been infected are reviewed. RESULTS Higher maternal choline levels have positive effects on the development of brain function for infants of mothers who experienced viral infections in early pregnancy. No other nutrient has been studied in the context of viral inflammation. Vitamin D reduces pro-inflammatory cytokines in some, but not all, studies. Active folic acid metabolites decrease anti-inflammatory cytokines. N-3 polyunsaturated fatty acids have no effect. CONCLUSIONS Vitamin D and folic acid are already supplemented in food additives and in prenatal vitamins. Despite recommendations by several public health agencies and medical societies, choline intake is often inadequate in early gestation when the brain is forming. A public health initiative for choline supplements during the pandemic could be helpful for women planning or already pregnant who also become exposed or infected with SARS-CoV-2.
Collapse
Affiliation(s)
- M Camille Hoffman
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Amanda J Law
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Alena M Clark
- Department of Nutrition and Dietetics, Campus Box 93, University of Northern Colorado, Greeley, CO, 80639, USA.
| | - Sharon K Hunter
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Hunter SK, Hoffman MC, McCarthy L, D’Alessandro A, Wyrwa A, Noonan K, Christians U, Nakimuli-Mpungu E, Zeisel SH, Law AJ, Freedman R. Black American Maternal Prenatal Choline, Offspring Gestational Age at Birth, and Developmental Predisposition to Mental Illness. Schizophr Bull 2020; 47:896-905. [PMID: 33184653 PMCID: PMC8266582 DOI: 10.1093/schbul/sbaa171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Black Americans have increased risk for schizophrenia and other mental illnesses with prenatal origins. Prenatal choline promotes infant brain development and behavioral outcomes, but choline has not been specifically assessed in Black Americans. Pregnant women (N = 183, N = 25 Black Americans) enrolled in a study of prenatal stressors and interactions with prenatal choline. Black American women had lower 16-week gestation plasma choline than Whites. Lower choline was not related to obesity, income, or metabolic genotypes. Pregnant women in rural Uganda have higher choline levels than Black American women. Black Americans' lower choline was associated with higher hair cortisol, indicative of higher stress. Lower maternal choline was associated with offsprings' lower gestational age at birth and with decreased auditory P50 inhibition, a marker of inhibitory neuron development. Behavioral development was assessed on the Infant Behavior Questionnaire-R-SF (IBQ-R) at 3 months. Lower Black American maternal gestational choline was associated with lower infant IBQ-R Orienting/Regulation, indicating decreased attention and relation to caregivers. Additional evidence for developmental effects of choline in Black Americans comes from a randomized clinical trial of gestational phosphatidylcholine supplementation versus placebo that included 15 Black Americans. Phosphatidylcholine increased gestational age at birth and newborn P50 inhibition and decreased Social Withdrawn and Attention problems at 40 months of age in Black Americans' offspring compared to placebo. Inhibitory and behavioral deficits associated with lower prenatal choline in offspring of Black American women indicate potential developmental predispositions to later mental illnesses that might be ameliorated by prenatal choline or phosphatidylcholine supplementation.
Collapse
Affiliation(s)
- Sharon K Hunter
- Department of Psychiatry, University of Colorado School of
Medicine, Aurora, CO
| | - M Camille Hoffman
- Department of Psychiatry, University of Colorado School of
Medicine, Aurora, CO,Department of Obstetrics and Gynecology, Division of Maternal and Fetal
Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Lizbeth McCarthy
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal
Medicine, University of Colorado School of Medicine, Aurora, CO,Department of Obstetrics and Gynecology, Denver Health Medical
Center, Denver, CO
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado
School of Medicine, Aurora, CO
| | - Anna Wyrwa
- Department of Psychiatry, University of Colorado School of
Medicine, Aurora, CO
| | - Kathleen Noonan
- Department of Psychiatry, University of Colorado School of
Medicine, Aurora, CO
| | - Uwe Christians
- Department of Anesthesiology, iC42 Clinical Research and Development,
University of Colorado School of Medicine, Aurora, CO
| | - Etheldreda Nakimuli-Mpungu
- Department of Psychiatry, School of Medicine, Makerere University College of
Health Sciences. Kampala, Uganda
| | - Steven H Zeisel
- Departments of Nutrition and Pediatrics, University of North
Carolina, Chapel Hill, NC
| | - Amanda J Law
- Department of Psychiatry, University of Colorado School of
Medicine, Aurora, CO,Department of Cell and Developmental Biology, University of Colorado School of
Medicine, Aurora, CO
| | - Robert Freedman
- Department of Psychiatry, University of Colorado School of
Medicine, Aurora, CO,To whom correspondence should be addressed; Department of Psychiatry F-546,
University of Colorado Denver School of Medicine, Anschutz Medical Center, Aurora, CO
80045, US; tel: 720-224-4638, fax: 303-724-4960, e-mail:
| |
Collapse
|