1
|
Yamaguchi Y, Nagata J, Kawasaki T, Todo T, Hiramatsu N. Androgens induce renal synthesis of urinary lipocalin-family protein, a potential inter-sexual transmitter in viviparous rockfish. Biochim Biophys Acta Gen Subj 2025; 1869:130756. [PMID: 39761933 DOI: 10.1016/j.bbagen.2025.130756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
In viviparous black rockfish (Sebastes schlegelii), the kidney of reproductive-phase males actively produces lipocalin-type prostaglandin D2 synthase homolog (LPGDSh) protein, which is presumably involved in inter-sexual communication when emitted in the urine. The present study was undertaken to discover whether androgens and their nuclear receptors (Ars) are engaged in regulation of renal LPGDSh protein synthesis in black rockfish. Quantitative real-time polymerase chain reaction, in conjunction with immunohistochemistry and highly sensitive enzyme-linked immunosorbent assay, revealed that intra-abdominal administration of a synthetic androgen, 17α-methyltestosterone (MT), to juvenile black rockfish induced their renal expression of LPGDSh transcript and protein. In situ hybridization visualized arα and arβ transcripts in the renal tubules of mature males during the copulation season, where they were co-localized with LPGDSh protein. Androgens, such as 11β-hydroxytestosterone, MT, dihydrotestosterone, 11-ketotestosterone (11KT), testosterone, and androstenedione transactivated a luciferase reporter vector containing four repeats of a consensus androgen response element (ARE) in the presence of black rockfish Ars (either Arα or Arβ), with differences in ligand-preference and dose-response profiles being observed between the two Ars. In the presence of 11KT, the Ars transactivated a reporter vector containing the proximal 5'-flanking region of an LPGDSh gene in luciferase reporter assays. The region between 2100 bp and 1110 bp upstream from the start codon of the LPGDSh gene, wherein many ARE-like motifs are densely distributed, was imperative for the androgenic transactivation response of the 5'-flanking region. Collectively, these observations verify that renal synthesis of LPGDSh protein is upregulated by androgens.
Collapse
Affiliation(s)
- Yo Yamaguchi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Jun Nagata
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takuma Kawasaki
- Mariculture Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, 1-156-3 Funami, Muroran, Hokkaido 051-0013, Japan
| | - Takashi Todo
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Naoshi Hiramatsu
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
2
|
Lengyel K, Rudra M, Berghof TVL, Leitão A, Frankl-Vilches C, Dittrich F, Duda D, Klinger R, Schleibinger S, Sid H, Trost L, Vikkula H, Schusser B, Gahr M. Unveiling the critical role of androgen receptor signaling in avian sexual development. Nat Commun 2024; 15:8970. [PMID: 39419984 PMCID: PMC11487053 DOI: 10.1038/s41467-024-52989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Gonadal hormone activities mediated by androgen and estrogen receptors, along with cell-autonomous mechanisms arising from the absence of sex-chromosome dosage compensation, are key factors in avian sexual development. In this study, we generate androgen receptor (AR) knockout chickens (AR-/-) to explore the role of androgen signaling in avian sexual development. Despite developing sex-typical gonads and gonadal hormone production, AR-/- males and females are infertile. While few somatic sex-specific traits persist (body size, spurs, and tail feathers), crucial sexual attributes such as comb, wattles and sexual behaviors remain underdeveloped in both sexes. Testosterone treatment of young AR-/- males fails to induce crow behavior, comb development, or regression of the bursa of Fabricius, which are testosterone-dependent phenotypes. These findings highlight the significance of androgen receptor mechanisms in fertility and sex-specific traits in chickens, challenging the concept of a default sex in birds and emphasizing the dominance of androgen signaling in avian sexual development.
Collapse
Affiliation(s)
- Kamila Lengyel
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mekhla Rudra
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Tom V L Berghof
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Denise Duda
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Romina Klinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sabrina Schleibinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Trost
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Hanna Vikkula
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
3
|
Rodriguez Tirado C, Wang C, Li X, Deng S, Gonzalez J, Johnson NA, Xu Y, Metang LA, Sundar Rajan M, Yang Y, Yin Y, Hofstad M, Raj GV, Zhang S, Lemoff A, He W, Fan J, Wang Y, Wang T, Mu P. UBE2J1 is the E2 ubiquitin-conjugating enzyme regulating androgen receptor degradation and antiandrogen resistance. Oncogene 2024; 43:265-280. [PMID: 38030789 PMCID: PMC10798893 DOI: 10.1038/s41388-023-02890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Prostate cancer (PCa) is primarily driven by aberrant Androgen Receptor (AR) signaling. Although there has been substantial advancement in antiandrogen therapies, resistance to these treatments remains a significant obstacle, often marked by continuous or enhanced AR signaling in resistant tumors. While the dysregulation of the ubiquitination-based protein degradation process is instrumental in the accumulation of oncogenic proteins, including AR, the molecular mechanism of ubiquitination-driven AR degradation remains largely undefined. We identified UBE2J1 as the critical E2 ubiquitin-conjugating enzyme responsible for guiding AR ubiquitination and eventual degradation. The absence of UBE2J1, found in 5-15% of PCa patients, results in disrupted AR ubiquitination and degradation. This disruption leads to an accumulation of AR proteins, promoting resistance to antiandrogen treatments. By employing a ubiquitination-based AR degrader to adeptly restore AR ubiquitination, we reestablished AR degradation and inhibited the proliferation of antiandrogen-resistant PCa tumors. These findings underscore the fundamental role of UBE2J1 in AR degradation and illuminate an uncharted mechanism through which PCa maintains heightened AR protein levels, fostering resistance to antiandrogen therapies.
Collapse
Affiliation(s)
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Medha Sundar Rajan
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yi Yin
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Song Zhang
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei He
- Accutar Biotechnology, Inc., Wilmington, DE, USA
| | - Jie Fan
- Accutar Biotechnology, Inc., Wilmington, DE, USA
| | - Yunguan Wang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Hall E, Vrolijk MF. Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators. Nutrients 2023; 15:3330. [PMID: 37571268 PMCID: PMC10420890 DOI: 10.3390/nu15153330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The androgen receptor (AR) is a member of the family of ligand-activated transcription factors. Selective androgen receptor modulators (SARMs) exert their biological function through complex interactions with the AR. It has been speculated that overexertion of AR signaling cascades as a result of SARM abuse can be a risk factor for the development of various cardiovascular diseases. The present literature review explores the implications of the interaction between SARMs and the AR on cardiovascular health by focusing on the AR structure, function, and mechanisms of action, as well as the current clinical literature on various SARMs. It is shown that SARMs may increase the risk of cardiovascular diseases through implications on the renin-angiotensin system, smooth muscle cells, sympathetic nervous system, lipid profile, inflammation, platelet activity, and various other factors. More research on this topic is necessary as SARM abuse is becoming increasingly common. There is a noticeable lack of clinical trials and literature on the relationship between SARMs, cardiovascular diseases, and the AR. Future in vivo and in vitro studies within this field are vital to understand the mechanisms that underpin these complex interactions and risk factors.
Collapse
Affiliation(s)
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Barone B, Napolitano L, Abate M, Cirillo L, Reccia P, Passaro F, Turco C, Morra S, Mastrangelo F, Scarpato A, Amicuzi U, Morgera V, Romano L, Calace FP, Pandolfo SD, De Luca L, Aveta A, Sicignano E, Trivellato M, Spena G, D’Alterio C, Fusco GM, Vitale R, Arcaniolo D, Crocetto F. The Role of Testosterone in the Elderly: What Do We Know? Int J Mol Sci 2022; 23:3535. [DOI: doi.org/10.3390/ijms23073535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains.
Collapse
|
6
|
The Role of Testosterone in the Elderly: What Do We Know? Int J Mol Sci 2022; 23:ijms23073535. [PMID: 35408895 PMCID: PMC8998588 DOI: 10.3390/ijms23073535] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains.
Collapse
|
7
|
Ren B, Zhu Y. A New Perspective on Thyroid Hormones: Crosstalk with Reproductive Hormones in Females. Int J Mol Sci 2022; 23:ijms23052708. [PMID: 35269847 PMCID: PMC8911152 DOI: 10.3390/ijms23052708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that thyroid hormones (THs) are vital for female reproductive system homeostasis. THs regulate the reproductive functions through thyroid hormone receptors (THRs)-mediated genomic- and integrin-receptor-associated nongenomic mechanisms, depending on TH ligand status and DNA level, as well as transcription and extra-nuclear signaling transduction activities. These processes involve the binding of THs to intracellular THRs and steroid hormone receptors or membrane receptors and the recruitment of hormone-response elements. In addition, THs and other reproductive hormones can activate common signaling pathways due to their structural similarity and shared DNA consensus sequences among thyroid, peptide, and protein hormones and their receptors, thus constituting a complex and reciprocal interaction network. Moreover, THs not only indirectly affect the synthesis, secretion, and action of reproductive hormones, but are also regulated by these hormones at the same time. This crosstalk may be one of the pivotal factors regulating female reproductive behavior and hormone-related diseases, including tumors. Elucidating the interaction mechanism among the aforementioned hormones will contribute to apprehending the etiology of female reproductive diseases, shedding new light on the treatment of gynecological disorders.
Collapse
Affiliation(s)
- Bingtao Ren
- School of Pharmacy, Fudan University, Shanghai 200032, China;
| | - Yan Zhu
- Laboratory of Reproductive Pharmacology, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-64438416
| |
Collapse
|
8
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
9
|
Louis TJ, Qasem A, Abdelli LS, Naser SA. Extra-Pulmonary Complications in SARS-CoV-2 Infection: A Comprehensive Multi Organ-System Review. Microorganisms 2022; 10:153. [PMID: 35056603 PMCID: PMC8781813 DOI: 10.3390/microorganisms10010153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is typically presented with acute symptoms affecting upper and lower respiratory systems. As the current pandemic progresses, COVID-19 patients are experiencing a series of nonspecific or atypical extra-pulmonary complications such as systemic inflammation, hypercoagulability state, and dysregulation of the renin-angiotensin-aldosterone system (RAAS). These manifestations often delay testing, diagnosis, and the urge to seek effective treatment. Although the pathophysiology of these complications is not clearly understood, the incidence of COVID-19 increases with age and the presence of pre-existing conditions. This review article outlines the pathophysiology and clinical impact of SARS-CoV-2 infection on extra-pulmonary systems. Understanding the broad spectrum of atypical extra-pulmonary manifestations of COVID-19 should increase disease surveillance, restrict transmission, and most importantly prevent multiple organ-system complications.
Collapse
Affiliation(s)
- Taylor J Louis
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Ahmad Qasem
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Latifa S Abdelli
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
11
|
Control of testes mass by androgen receptor paralogs in a cichlid. J Comp Physiol B 2021; 192:107-114. [PMID: 34643776 DOI: 10.1007/s00360-021-01417-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Steroid hormones play numerous important and diverse roles in the differentiation and development of vertebrate primary and secondary reproductive characteristics. However, the exact role of androgen receptors-which bind circulating androgens-in this regulatory pathway is unclear. Teleost fishes further complicate this question by having two paralogs of the androgen receptor (ARα and ARβ) resulting from a duplication of their ancestral genome. We investigated the functional role of these two ARs on adult testes mass, by eliminating receptor function of one or both paralogs using CRISPR/Cas9 genome edited Astatotilapia burtoni, an African cichlid fish. Fish with two or more functional AR alleles were more likely to be male compared to fish with one or fewer, suggesting that the two paralogs may play redundant roles in the A. burtoni sex determination system. We replicated previous work showing that fish lacking functional ARβ possess testes smaller than wild-type fish, while fish lacking ARα possess testes larger than wild-type fish. However, we found novel evidence supporting a complex relationship between the two AR paralogs in the regulation of testes mass. For instance, the effects of ARα mutation on testes mass are eliminated in homozygous ARβ mutants but the reverse is not true. These results suggest a dynamic relationship between these two AR paralogs where ARβ functions may be permissive to ARα functions in the control of testes mass. This mechanism may contribute to the robust physiological plasticity displayed by A. burtoni and other social teleost fishes.
Collapse
|
12
|
Varela AA, Cheng S, Werren JH. Novel ACE2 protein interactions relevant to COVID-19 predicted by evolutionary rate correlations. PeerJ 2021; 9:e12159. [PMID: 34616619 PMCID: PMC8449537 DOI: 10.7717/peerj.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the cell receptor that the coronavirus SARS-CoV-2 binds to and uses to enter and infect human cells. COVID-19, the pandemic disease caused by the coronavirus, involves diverse pathologies beyond those of a respiratory disease, including micro-thrombosis (micro-clotting), cytokine storms, and inflammatory responses affecting many organ systems. Longer-term chronic illness can persist for many months, often well after the pathogen is no longer detected. A better understanding of the proteins that ACE2 interacts with can reveal information relevant to these disease manifestations and possible avenues for treatment. We have undertaken an approach to predict candidate ACE2 interacting proteins which uses evolutionary inference to identify a set of mammalian proteins that “coevolve” with ACE2. The approach, called evolutionary rate correlation (ERC), detects proteins that show highly correlated evolutionary rates during mammalian evolution. Such proteins are candidates for biological interactions with the ACE2 receptor. The approach has uncovered a number of key ACE2 protein interactions of potential relevance to COVID-19 pathologies. Some proteins have previously been reported to be associated with severe COVID-19, but are not currently known to interact with ACE2, while additional predicted novel ACE2 interactors are of potential relevance to the disease. Using reciprocal rankings of protein ERCs, we have identified strongly interconnected ACE2 associated protein networks relevant to COVID-19 pathologies. ACE2 has clear connections to coagulation pathway proteins, such as Coagulation Factor V and fibrinogen components FGA, FGB, and FGG, the latter possibly mediated through ACE2 connections to Clusterin (which clears misfolded extracellular proteins) and GPR141 (whose functions are relatively unknown). ACE2 also connects to proteins involved in cytokine signaling and immune response (e.g. XCR1, IFNAR2 and TLR8), and to Androgen Receptor (AR). The ERC prescreening approach has elucidated possible functions for relatively uncharacterized proteins and possible new functions for well-characterized ones. Suggestions are made for the validation of ERC-predicted ACE2 protein interactions. We propose that ACE2 has novel protein interactions that are disrupted during SARS-CoV-2 infection, contributing to the spectrum of COVID-19 pathologies.
Collapse
Affiliation(s)
- Austin A Varela
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, United States
| |
Collapse
|
13
|
Schlezinger JJ, Heiger-Bernays W, Webster TF. Predicting the Activation of the Androgen Receptor by Mixtures of Ligands Using Generalized Concentration Addition. Toxicol Sci 2021; 177:466-475. [PMID: 32726424 DOI: 10.1093/toxsci/kfaa108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Concentration/dose addition is widely used for compounds that act by similar mechanisms. But it cannot make predictions for mixtures of full and partial agonists for effect levels above that of the least efficacious component. As partial agonists are common, we developed generalized concentration addition, which has been successfully applied to systems in which ligands compete for a single binding site. Here, we applied a pharmacodynamic model for a homodimer receptor system with 2 binding sites, the androgen receptor, that acts according to the classic homodimer activation model: Each cytoplasmic monomer protein binds ligand, undergoes a conformational change that relieves inhibition of dimerization, and binds to DNA response elements as a dimer. We generated individual dose-response data for full (dihydroxytestosterone, BMS564929) and partial (TFM-4AS-1) agonists and a competitive antagonist (MDV3100) using reporter data generated in the MDA-kb2 cell line. We used the Schild method to estimate the binding affinity of MDV3100. Data for individual compounds fit the homodimer pharmacodynamic model well. In the presence of a full agonist, the partial agonist had agonistic effects at low effect levels and antagonistic effects at high levels, as predicted by pharmacological theory. The generalized concentration addition model fits the empirical mixtures data-full/full agonist, full/partial agonist, and full agonist/antagonist-as well or better than relative potency factors or effect summation. The ability of generalized concentration addition to predict the activity of mixtures of different types of androgen receptor ligands is important as a number of environmental compounds act as partial androgen receptor agonists or antagonists.
Collapse
Affiliation(s)
- Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| |
Collapse
|
14
|
Fan B, Mohammed A, Huang Y, Luo H, Zhang H, Tao S, Xu W, Liu Q, He T, Jin H, Sun M, Sun M, Yun Z, Zhao R, Wu G, Li X. Can Aspirin Use Be Associated With the Risk or Prognosis of Bladder Cancer? A Case-Control Study and Meta-analytic Assessment. Front Oncol 2021; 11:633462. [PMID: 34350107 PMCID: PMC8327774 DOI: 10.3389/fonc.2021.633462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
Aspirin, widely used to prevent cardiovascular disease, had been linked to the incidence of bladder cancer (BCa). Existing studies focusing on Chinese populations are relatively rare, especially for Northeast China. Meanwhile, relevant studies on the effects of aspirin on the occurrence or prognosis of BCa are inconsistent or even controversial. First, in the case control study, logistic regression analysis was used to investigate the association between aspirin intake and risk of BCa including 1121 patients with BCa and the 2242 controls. Subsequently, Kaplan-Meier curve and Cox regression analyses were applied to explore the association between aspirin intake and clinicopathological factors which may predict overall survival (OS) and recurrence-free survival (RFS) of BCa patients. Finally, we quantificationally combined the results with those from the published literature evaluating aspirin intake and its effects on the occurrence, outcome of surgery and prognosis of BCa by meta-analysis up to May 1, 2021.Our case-control study demonstrated that the regular use of aspirin was not associated with a reduced incidence of BCa (P=0.175). Stratified analyses of sex showed that aspirin intake did not lead to a lower risk of BCa in female patients (P=0.063). However, the male population who regularly took aspirin had a lower incidence of BCa (OR=0.748, 95% CI= 0.584-0.958, P=0.021). Subgroup analyses stratified by smoking found a significant reduction in the risk of BCa in current smokers with aspirin intake (OR=0.522, 95% CI=0.342-0.797, P=0.002). In terms of prognosis of BCa, patients with a history of aspirin intake did not had a markedly longer OS or RFS than those with no history of aspirin intake by Kaplan-Meier curves. Stratified analysis by sex showed no correlation between aspirin intake and the recurrence or survival of BCa for either male or female patients. However, in people younger than 68, aspirin intake seemed to have prolonged effects for overall survival (HR=3.876; 95% CI=1.326-11.325, P=0.019). Then, we performed a meta-analysis and the combined results from 19 articles and our study involving more than 39524 BCa cases indicated that aspirin intake was not associated with the occurrence of BCa (P=0.671). Subgroup analysis by whether regular use of aspirin, by the mean duration of use of aspirin, by sex, by smoking exposure, by research region and by study type also supported the above results. In terms of the impact of aspirin intake on the prognosis of patients with BCa, 11 articles and our study involving 8825 BCa cases were eligible. The combined results showed that patients with aspirin intake did not have significantly influence on survival, recurrence, progression and metastasis than those without aspirin intake. On the whole, both our retrospective study and literature meta-analysis suggested a lack of a strong relevant association between the use of aspirin and the incidence or prognosis of BCa. Thus, additional long-term follow-up prospective research is warranted to clarify the association of aspirin with BCa incidence and prognosis.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Alradhi Mohammed
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanbin Huang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Luo
- Clinical Medicine, Dalian Medical University, Dalian, China
| | - Hongxian Zhang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shenghua Tao
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weijiao Xu
- Clinical Medicine, Dalian Medical University, Dalian, China
| | - Qian Liu
- Medical Imaging, Dalian Medical University, Dalian, China
| | - Tao He
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huidan Jin
- Department of Anaesthesiology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Mengfan Sun
- Department of Pharmacy, Zhongshan College of Dalian Medical University, Dalian, China
| | - Man Sun
- Clinical Medicine, Dalian Medical University, Dalian, China
| | - Zhifei Yun
- Clinical Medicine, Dalian Medical University, Dalian, China
| | - Rui Zhao
- Department of Pharmacy, Zhongshan College of Dalian Medical University, Dalian, China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiancheng Li
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Uncovering Evidence for Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility through Gene-Environment Interactions. TOXICS 2021; 9:toxics9040077. [PMID: 33917455 PMCID: PMC8067468 DOI: 10.3390/toxics9040077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is linked to myriad disorders, characterized by the disruption of the complex endocrine signaling pathways that govern development, physiology, and even behavior across the entire body. The mechanisms of endocrine disruption involve a complex system of pathways that communicate across the body to stimulate specific receptors that bind DNA and regulate the expression of a suite of genes. These mechanisms, including gene regulation, DNA binding, and protein binding, can be tied to differences in individual susceptibility across a genetically diverse population. In this review, we posit that EDCs causing such differential responses may be identified by looking for a signal of population variability after exposure. We begin by summarizing how the biology of EDCs has implications for genetically diverse populations. We then describe how gene-environment interactions (GxE) across the complex pathways of endocrine signaling could lead to differences in susceptibility. We survey examples in the literature of individual susceptibility differences to EDCs, pointing to a need for research in this area, especially regarding the exceedingly complex thyroid pathway. Following a discussion of experimental designs to better identify and study GxE across EDCs, we present a case study of a high-throughput screening signal of putative GxE within known endocrine disruptors. We conclude with a call for further, deeper analysis of the EDCs, particularly the thyroid disruptors, to identify if these chemicals participate in GxE leading to differences in susceptibility.
Collapse
|
16
|
Liu X, Huo W, Zhang R, Wei D, Tu R, Luo Z, Wang Y, Dong X, Qiao D, Liu P, Zhang L, Fan K, Nie L, Liu X, Li L, Wang C, Mao Z. Androgen receptor DNA methylation is an independent determinant of glucose metabolic disorders in women; testosterone plays a moderating effect. J Diabetes 2021; 13:282-291. [PMID: 32979029 DOI: 10.1111/1753-0407.13117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have previously shown that serum testosterone was associated with impaired fasting glucose (IFG) and type 2 diabetes (T2D). Testosterone can be acting through binding the androgen receptor (AR). Therefore, we aimed to explore the independent associations of AR DNA methylation (ARm) with IFG and T2D and the moderation effects of serum testosterone on the associations. METHODS A case-control study with 1065 participants including 461 men and 604 women was performed. ARm in peripheral blood sample and serum testosterone were measured using pyrosequeuncing and liquid chromatography-tandem mass, respectively. Multivariable logistic regression was performed to estimate the associations of ARm (including 2 cytosine-phosphoguanine [CpG] islands and average methylation levels) with different glucose status. Serum testosterone was used as a moderator to estimate the moderation effect. RESULTS After multivariate adjustment, CpG 1, 2 and CpG average methylation were all significantly associated with IFG (CpG 1: Odds ratio (OR) = 4.80, 95% confidence interval (CI): 2.24-10.27; CpG 2: OR = 4.35, 95% CI: 2.50-7.58; CpG average: OR = 11.73, 95% CI: 5.36-25.67) in women. In addition, testosterone played negative moderation effects in above associations. Moreover, no significant independent associations of methylation levels with T2D was observed both in men and women. CONCLUSION Our findings demonstrate that ARm was positively associated with IFG in women and the associations would be weakened by testosterone. The individuals experiencing low testosterone and ARm levels reported a lower state of IFG than those who experienced high levels of testosterone and ARm in women.
Collapse
Affiliation(s)
- Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Rui Zhang
- Zhengzhou Customs, Zhengzhou, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
17
|
Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2020; 82:309-340. [DOI: 10.1002/ddr.21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics Arulmigu Kalasalingam College of Pharmacy Krishnankoil Tamilnadu India
| | | | | | - Ponnusamy Palanisamy
- School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry MNR College of Pharmacy Sangareddy Telangana India
| | - Gowshiki Srinivasan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Adhvitha Premanand
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | | | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry Swamy Vivekananda College of Pharmacy Elayampalayam, Namakkal Tamilnadu India
| |
Collapse
|
18
|
Arzuaga X, Smith MT, Gibbons CF, Skakkebæk NE, Yost EE, Beverly BEJ, Hotchkiss AK, Hauser R, Pagani RL, Schrader SM, Zeise L, Prins GS. Proposed Key Characteristics of Male Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Evidence in Human Health Hazard Assessments. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:65001. [PMID: 31199676 PMCID: PMC6792367 DOI: 10.1289/ehp5045] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Assessing chemicals for their potential to cause male reproductive toxicity involves the evaluation of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in hazard identification and evidence integration, the process of identifying, screening and analyzing mechanistic studies and outcomes is a challenging exercise due to the diversity of research models and methods and the variety of known and proposed pathways for chemical-induced toxicity. Ten key characteristics of carcinogens provide a valuable tool for organizing and assessing chemical-specific data by potential mechanisms for cancer-causing agents. However, such an approach has not yet been developed for noncancer adverse outcomes. OBJECTIVES The objective in this study was to identify a set of key characteristics that are frequently exhibited by exogenous agents that cause male reproductive toxicity and that could be applied for identifying, organizing, and summarizing mechanistic evidence related to this outcome. DISCUSSION The identification of eight key characteristics of male reproductive toxicants was based on a survey of known male reproductive toxicants and established mechanisms and pathways of toxicity. The eight key characteristics can provide a basis for the systematic, transparent, and objective organization of mechanistic evidence relevant to chemical-induced effects on the male reproductive system. https://doi.org/10.1289/EHP5045.
Collapse
Affiliation(s)
- Xabier Arzuaga
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Martyn T. Smith
- University of California, Berkeley, School of Public Health, Berkeley, California, USA
| | - Catherine F. Gibbons
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Niels E. Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erin E. Yost
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brandiese E. J. Beverly
- Office of Health Assessment and Translation, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Andrew K. Hotchkiss
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russ Hauser
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rodrigo L. Pagani
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steven M. Schrader
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA (retired)
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Fuxjager MJ, Schuppe ER. Androgenic signaling systems and their role in behavioral evolution. J Steroid Biochem Mol Biol 2018; 184:47-56. [PMID: 29883693 DOI: 10.1016/j.jsbmb.2018.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroids mediate the organization and activation of masculine reproductive phenotypes in diverse vertebrate taxa. However, the effects of sex steroid action in this context vary tremendously, in that steroid action influences reproductive physiology and behavior in markedly different ways (even among closely related species). This leads to the idea that the mechanisms underlying sex steroid action similarly differ across vertebrates in a manner that supports diversification of important sexual traits. Here, we highlight the Evolutionary Potential Hypothesis as a framework for understanding how androgen-dependent reproductive behavior evolves. This idea posits that the cellular mechanisms underlying androgenic action can independently evolve within a given target tissue to adjust the hormone's functional effects. The result is a seemingly endless number of permutations in androgenic signaling pathways that can be mapped onto the incredible diversity of reproductive phenotypes. One reason this hypothesis is important is because it shifts current thinking about the evolution of steroid-dependent traits away from an emphasis on circulating steroid levels and toward a focus on molecular mechanisms of hormone action. To this end, we also provide new empirical data suggesting that certain cellular modulators of androgen action-namely, the co-factors that dynamically adjust transcritpional effects of steroid action either up or down-are also substrates on which evolution can act. We then close the review with a detailed look at a case study in the golden-collared manakin (Manacus vitellinus). Work in this tropical bird shows how androgenic signaling systems are modified in specific parts of the skeletal muscle system to enhance motor performance necessary to produce acrobatic courtship displays. Altogether, this paper seeks to develop a platform to better understand how steroid action influences the evolution of complex animal behavior.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States.
| | - Eric R Schuppe
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States
| |
Collapse
|
20
|
Ogino Y, Tohyama S, Kohno S, Toyota K, Yamada G, Yatsu R, Kobayashi T, Tatarazako N, Sato T, Matsubara H, Lange A, Tyler CR, Katsu Y, Iguchi T, Miyagawa S. Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. J Steroid Biochem Mol Biol 2018; 184:38-46. [PMID: 29885351 DOI: 10.1016/j.jsbmb.2018.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroid hormones including estrogens and androgens play fundamental roles in regulating reproductive activities and they act through estrogen and androgen receptors (ESR and AR). These steroid receptors have evolved from a common ancestor in association with several gene duplications. In most vertebrates, this has resulted in two ESR subtypes (ESR1 and ESR2) and one AR, whereas in teleost fish there are at least three ESRs (ESR1, ESR2a and ESR2b) and two ARs (ARα and ARβ) due to a lineage-specific whole genome duplication. Functional distinctions have been suggested among these receptors, but to date their roles have only been characterized in a limited number of species. Sexual differentiation and the development of reproductive organs are indispensable for all animal species and in vertebrates these events depend on the action of sex steroid hormones. Here we review the recent progress in understanding of the functions of the ESRs and ARs in the development and expression of sexually dimorphic characteristics associated with steroid hormone signaling in vertebrates, with representative fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
- Yukiko Ogino
- Attached Promotive Centre for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Saki Tohyama
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, St. Cloud, MN 56301, USA
| | - Kenji Toyota
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan; Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Gen Yamada
- Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan
| | - Ryohei Yatsu
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tohru Kobayashi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | | | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0809, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan.
| | - Shinichi Miyagawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.
| |
Collapse
|
21
|
Noorimotlagh Z, Mirzaee SA, Ahmadi M, Jaafarzadeh N, Rahim F. The possible DNA damage induced by environmental organic compounds: The case of Nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:171-181. [PMID: 29684747 DOI: 10.1016/j.ecoenv.2018.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Human impact on the environment leads to the release of many pollutants that produce artificial compounds, which can have harmful effects on the body's endocrine system; these are known as endocrine disruptors (EDs). Nonylphenol (NP) is a chemical compound with a nonyl group that is attached to a phenol ring. NP-induced H2AX is a sensitive genotoxic biomarker for detecting possible DNA damage; it also causes male infertility and carcinogenesis. We attempt to comprehensively review all the available evidence about the different ways with descriptive mechanisms for explaining the possible DNA damage that is induced by NP. We systematically searched several databases, including PubMed, Scopus, Web of Science, and gray literature, such as Google Scholar by using medical subheading (MeSH) terms and various combinations of selected keywords from January 1970 to August 2017. The initial search identified 62,737 potentially eligible studies; of these studies, 33 were included according to the established inclusion criteria. Thirty-three selected studies, include the topics of animal model (n = 21), cell line (n = 6), human model (n = 4), microorganisms (n = 1), solid DNA (n = 1), infertility (n = 4), apoptosis (n = 6), and carcinogenesis (n = 3). This review highlighted the possible deleterious effects of NP on DNA damage through the ability to produce ROS/RNS. Finally, it is significant to observe caution at this stage with the continued use of environmental pollutants such as NP, which may induce DNA damage and apoptosis.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Abbas Mirzaee
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Dart DA, Kandil S, Tommasini-Ghelfi S, Serrano de Almeida G, Bevan CL, Jiang W, Westwell AD. Novel Trifluoromethylated Enobosarm Analogues with Potent Antiandrogenic Activity In Vitro and Tissue Selectivity In Vivo. Mol Cancer Ther 2018; 17:1846-1858. [PMID: 29895558 DOI: 10.1158/1535-7163.mct-18-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer often develops antiandrogen resistance, possibly via androgen receptor (AR) mutations, which change antagonists to agonists. Novel therapies with increased anticancer activity, while overcoming current drug resistance are urgently needed. Enobosarm has anabolic effects on muscle and bone while having no effect on the prostate. Here, we describe the activity of novel chemically modified enobosarm analogues. The rational addition of bis-trifluoromethyl groups into ring B of enobosarm, profoundly modified their activity, pharmacokinetic and tissue distribution profiles. These chemical structural modifications resulted in an improved AR binding affinity-by increasing the molecular occupational volume near helix 12 of AR. In vitro, the analogues SK33 and SK51 showed very potent antiandrogenic activity, monitored using LNCaP/AR-Luciferase cells where growth, PSA and luciferase activity were used as AR activity measurements. These compounds were 10-fold more potent than bicalutamide and 100-fold more potent than enobosarm within the LNCaP model. These compounds were also active in LNCaP/BicR cells with acquired bicalutamide resistance. In vivo, using the AR-Luc reporter mice, these drugs showed potent AR inhibitory activity in the prostate and other AR-expressing tissues, e.g., testes, seminal vesicles, and brain. These compounds do not inhibit AR activity in the skeletal muscle, and spleen, thus indicating a selective tissue inhibitory profile. These compounds were also active in vivo in the Pb-Pten deletion model. SK33 and SK51 have significantly different and enhanced activity profiles compared with enobosarm and are ideal candidates for further development for prostate cancer therapy with potentially fewer side effects. Mol Cancer Ther; 17(9); 1846-58. ©2018 AACR.
Collapse
Affiliation(s)
- D Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom. .,Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Sahar Kandil
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Serena Tommasini-Ghelfi
- Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Gilberto Serrano de Almeida
- Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Charlotte L Bevan
- Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
23
|
Crowder CM, Lassiter CS, Gorelick DA. Nuclear Androgen Receptor Regulates Testes Organization and Oocyte Maturation in Zebrafish. Endocrinology 2018; 159:980-993. [PMID: 29272351 PMCID: PMC5788001 DOI: 10.1210/en.2017-00617] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
Androgens act through the nuclear androgen receptor (AR) to regulate gonad differentiation and development. In mice, AR is necessary for spermatogenesis, testis development, and formation of external genitalia in males and oocyte maturation in females. However, the extent to which these phenotypes are conserved in nonmammalian vertebrates is not well understood. Here, we generate zebrafish with a mutation in the ar gene (aruab105/105) and examine the role of AR in sexual determination and gonad development. We found that zebrafish AR regulates male sexual determination, because the majority of aruab105/105 mutant embryos developed ovaries and displayed female secondary sexual characteristics. The small percentage of mutants that developed testes displayed female secondary sexual characteristics, exhibited structurally disorganized testes, and were unable to release or produce normal levels of sperm, demonstrating that AR is necessary for zebrafish testis development and fertility. In females, we found that AR regulates oocyte maturation and fecundity. The aruab105/105 mutant females developed ovaries filled primarily with immature stage I oocytes and few mature stage III oocytes. Two genes whose expression is enriched in wild-type ovaries compared with testes (cyp19a1a, foxl2a) were upregulated in ar mutant testes, and two genes enriched in testes (amh, dmrt1) were upregulated in ar mutant ovaries. These findings demonstrate that AR regulates sexual determination, testis development, and oocyte maturation and suggest that AR regulates sexually dimorphic gene expression. The ar mutant we developed will be useful for modeling human endocrine function in zebrafish.
Collapse
Affiliation(s)
- Camerron M. Crowder
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | - Daniel A. Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
24
|
Holmes BE, Smeester L, Fry RC, Weinberg HS. Identification of endocrine active disinfection by-products (DBPs) that bind to the androgen receptor. CHEMOSPHERE 2017; 187:114-122. [PMID: 28843117 DOI: 10.1016/j.chemosphere.2017.08.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
The formation of disinfection by-products (DBPs) in drinking water occurs when chemical disinfectants such as chlorine and chloramine react with natural organic matter and anthropogenic pollutants. Some DBPs have been linked to bladder cancer and infertility; however, the underlying mechanism of action is unknown. One possibility is disruption of the endocrine system, with DBPs binding to the androgen receptor and subsequently altering gene expression. Using the androgen receptor-binding assay and in silico molecular docking, the binding affinity of 21 suspected and known DBPs were tested individually at concentrations over the range 0.1 nM-2 mM. 14 DBPs were found to bind at IC50 values ranging from 1.86 mM for 2,3-dichloropropionamide to 13.5 μM for 3,4,5,6-tetrachloro-benzoquinone as compared to the positive control, 4-n-nonylphenol which bound at 31.6 μM. Since DBPs are present in drinking waters as mixtures, the question of how IC50 values for individual DBPs might be affected by the presence of other chemicals is addressed. Seven of the chemicals with the strongest binding affinities and one chemical with no binding affinity were tested in binary mixtures with 4-n-nonylphenol, a known androgenic chemical found in some surface waters. In these binary mixtures, concentration additive binding was observed. While typical levels of individual androgenic DBPs in drinking water are below their measured IC50 values, their combined binding abilities in mixtures could be a source of androgen disruption.
Collapse
Affiliation(s)
- Breanne E Holmes
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Howard S Weinberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
25
|
Distinct hormonal regulation of two types of sexual dimorphism in submandibular gland of mice. Cell Tissue Res 2017; 371:261-272. [DOI: 10.1007/s00441-017-2719-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
|
26
|
Converse A, Zhang C, Thomas P. Membrane Androgen Receptor ZIP9 Induces Croaker Ovarian Cell Apoptosis via Stimulatory G Protein Alpha Subunit and MAP Kinase Signaling. Endocrinology 2017. [PMID: 28633436 DOI: 10.1210/en.2017-00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies show that androgen-induced apoptosis in Atlantic croaker primary granulosa and theca (G/T) cells and in human breast and prostate cancer cell lines is mediated by the membrane androgen receptor ZIP9, which belongs to the SLC39A zinc transporter family. However, the apoptotic signaling pathways remain unclear because ZIP9 activates an inhibitory G protein in human cancer cells, whereas recombinant croaker ZIP9 activates a stimulatory G protein (Gs) in transfected cancer cells. We investigated androgen-dependent apoptotic pathways to identify the signaling pathways regulated through wild-type croaker ZIP9 in ovarian follicle cells. We show that the ZIP9-mediated apoptotic signaling pathway in croaker G/T cells shares several proapoptotic members with those in human cancer cells, but is activated through a Gsα subunit-dependent pathway. Testosterone treatment of croaker G/T cells increased intracellular zinc levels, mitogen-activated protein (MAP) kinase activity, caspase 3 activity, messenger RNA levels of proapoptotic members Bax, p53, and c-Jun N-terminal kinase, and the incidence of apoptosis, similar to findings in mammalian cancer cells, but also increased cyclic adenosine monophosphate concentrations. Transfection with small interfering RNA targeting croaker ZIP9 blocked testosterone-induced increase in bax, p53, and jnk expression. Testosterone-induced apoptosis and caspase 3 activation depended on the presence of extracellular zinc and were effectively blocked with cotreatment of inhibitors of the Gsα subunit, adenylyl cyclase, protein kinase A, and MAP kinase (Erk1/2) activation. These results indicate that ZIP9-mediated testosterone signaling in croaker G/T cells involves multiple pathways, some of which differ from those activated through ZIP9 in human cancer cells even though a similar apoptotic response is observed.
Collapse
Affiliation(s)
- Aubrey Converse
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373
| | - Chenan Zhang
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373
| |
Collapse
|
27
|
Thomas P, Pang Y, Dong J. Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling. Mol Cell Endocrinol 2017; 447:23-34. [PMID: 28219737 DOI: 10.1016/j.mce.2017.02.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/29/2022]
Abstract
Characteristics of novel human membrane androgen receptor (mAR), ZIP9 (SLC39A9), were investigated in ZIP9-transfected PC-3 cells (PC3-ZIP9). Ligand blot analysis showed plasma membrane [3H]-T binding corresponds to the position of ZIP9 on Western blots which suggests ZIP9 can bind [3H]-T alone, without a protein partner. Progesterone antagonized testosterone actions, blocking increases in zinc, Erk phosphorylation and apoptosis, further evidence that ZIP9 is specifically activated by androgens. Pre-treatment with GTPγS and pertussis toxin decreased plasma membrane [3H]-T binding and blocked testosterone-induced increases in Erk phosphorylation and intracellular zinc, indicating ZIP9 is coupled to an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling. Testosterone treatment of nuclei and mitochondria which express ZIP9 decreased their zinc contents, suggesting ZIP9 also regulates free zinc through releasing it from these intracellular organelles. The results show ZIP9 is a specific Gi coupled-mAR mediating testosterone-induced MAP kinase and zinc signaling in PC3-ZIP9 cells.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA.
| | - Yefei Pang
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Jing Dong
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| |
Collapse
|
28
|
Noorimotlagh Z, Haghighi NJ, Ahmadimoghadam M, Rahim F. An updated systematic review on the possible effect of nonylphenol on male fertility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3298-3314. [PMID: 27826822 DOI: 10.1007/s11356-016-7960-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Diverse industries like detergents, resins and polymers, hair dyes, intravaginal spermicides, and pesticides produce endocrine disruptor (ED)-containing wastewaters that have hazardous effects on the environment and public health. Nonylphenol (NP) is a chemical substance that consists of a phenolic group and an attached lipophilic linear nonyl chain. NP has weak estrogenic activity and affects estrogen receptor (ER), as well as induces male infertility via a negative impact on spermatogenesis and sperm quality. The aim of this study was to comprehensively review all available literature about the side effects of NP on the male genital system. We systematically searched Scopus and PubMed using MeSH terms that include "Organic Chemicals," "Infertility," "Infertility, Male," "Nonylphenol", ("Infertility, Male"[Mesh]) OR "Nonylphenol" [Supplementary Concept]) OR "Prostate"[Mesh]) OR "Spermatozoa"[Mesh]) OR "Sertoli Cells"[Mesh]) OR "Leydig Cells"[Mesh] OR "Male accessory gland" OR "Epididym" OR "Reproductive toxicity"), and all other possible combinations from January 1, 1970, to September 15, 2016, with language limit. The initial search identified 117,742 potentially eligible studies, of which 33 met the established inclusion criteria and were included in the analysis. Thirty-three selected studies include animal model (n = 18), cell line (n = 15), human model (n = 1), morphology (n = 13), sperm quality (n = 17), and toxicity (n = 14). This review highlighted the evidence for the ED effect of NP that acts through interference with ER, discussing male reproductive tract perturbations. We critically discuss the available evidence on the effect of NP on sperm quality (such as motility, viability, sperm count, and sperm concentration), dramatic morphological changes (such as change of weights of testes and epididymis), and biochemical changes related to oxidative stress in testes. Finally, it is important to take caution with the continued use of NP that disrupts male reproductive health.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neemat Jaafarzadeh Haghighi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadimoghadam
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- PhD in Molecular Medicine, Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Kanno Y, Zhao S, Yamashita N, Yanai K, Nemoto K, Inouye Y. Androgen receptor functions as a negative transcriptional regulator of DEPTOR, mTOR inhibitor. J Toxicol Sci 2016; 40:753-8. [PMID: 26558456 DOI: 10.2131/jts.40.753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It has been noticed that crosstalk between androgen receptor (AR) and mammalian target of rapamycin (mTOR) signaling pathways plays a crucial role in the proliferation of prostate cancer cells. To clarify this mechanism, we focused on DEPTOR, a naturally occurring inhibitor of mTOR. The treatment of a human AR-positive prostate cancer cell line, LNCaP, with the AR-agonist dihydrotestosterone (DHT) repressed DEPTOR mRNA expression in a time-dependent manner. This repression was abrogated by treatment with the AR-antagonist bicalutamide. Knockdown of DEPTOR mRNA by siRNA resulted in the increased phosphorylation of 70 kDa ribosomal protein S6 kinase 1 (S6K), a substrate of mTORC1, accompanied by the elevated expression of cyclin D1, a positive regulator of cell proliferation. Furthermore, the ChIP assay demonstrated that AR could bind to AR-responsible element-like region within the 4th intron of the DEPTOR gene. The amount of acetylated histone H3 (Lys9, Lys14) was reduced by the DHT treatment in this region. Taken together, these results propose that AR-dependent prostate cancer cell proliferation requires decreased DEPTOR transcription directly controlled by AR.
Collapse
Affiliation(s)
- Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University
| | | | | | | | | | | |
Collapse
|
30
|
Kandil S, Westwell AD, McGuigan C. 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer. Bioorg Med Chem Lett 2016; 26:2000-4. [PMID: 26965862 DOI: 10.1016/j.bmcl.2016.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
The clinically used androgen receptor (AR) antagonists (bicalutamide, flutamide and nilutamide) bind with low affinity to AR and can induce escape mechanisms. Furthermore, under AR gene amplification or mutation conditions they demonstrate agonist activity and fail to inhibit AR, causing relapse into castration resistant prostate cancer (CRPC). Discovery of new scaffolds distinct from the 4-cyano/nitro-3-(trifluoromethyl)phenyl group common to currently used antiandrogens is urgently needed to avoid cross-resistance with these compounds. In this study, a series of twenty-nine 7-substituted umbelliferone derivatives was prepared and their antiproliferative activities were evaluated. The most active compound 7a demonstrated submicromolar inhibitory activity in the human prostate cancer cell line (22Rv1); IC50=0.93 μM which represents a 50 fold improvement over the clinical antiandrogen bicalutamide (IC50=46 μM) and a more than 30 fold improvement over enzalutamide (IC50=32 μM). Interestingly, this compound showed even better activity against the human breast cancer cell line (MCF-7); IC50=0.47 μM. Molecular modelling studies provided a plausible theoretical explanation for our findings.
Collapse
Affiliation(s)
- Sahar Kandil
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Wales, United Kingdom.
| | - Andrew D Westwell
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Wales, United Kingdom
| | - Christopher McGuigan
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
31
|
O'Hara L, Smith LB. Development and Characterization of Cell-Specific Androgen Receptor Knockout Mice. Methods Mol Biol 2016; 1443:219-248. [PMID: 27246343 DOI: 10.1007/978-1-4939-3724-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conditional gene targeting has revolutionized molecular genetic analysis of nuclear receptor proteins, however development and analysis of such conditional knockouts is far from simple, with many caveats and pitfalls waiting to snare the novice or unprepared. In this chapter, we describe our experience of generating and analyzing mouse models with conditional ablation of the androgen receptor (AR) from tissues of the reproductive system and other organs. The guidance, suggestions, and protocols outlined in the chapter provide the key starting point for analyses of conditional-ARKO mice, completing them as described provides an excellent framework for further focussed project-specific analyses, and applies equally well to analysis of reproductive tissues from any mouse model generated through conditional gene targeting.
Collapse
Affiliation(s)
- Laura O'Hara
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
32
|
Grogg A, Trippel M, Pfaltz K, Lädrach C, Droeser RA, Cihoric N, Salhia B, Zweifel M, Tapia C. Androgen receptor status is highly conserved during tumor progression of breast cancer. BMC Cancer 2015; 15:872. [PMID: 26552477 PMCID: PMC4640208 DOI: 10.1186/s12885-015-1897-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Background With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. Methods AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. Results AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). Conclusions Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is highly conserved during tumor progression and a change only occurs in a small fraction (4.1 %). Our study supports the notion that targeting AR could be effective for many BC patients and that re-testing of AR status in formerly negative or mixed type BC’s is recommended.
Collapse
Affiliation(s)
- André Grogg
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | - Mafalda Trippel
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | - Katrin Pfaltz
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | - Claudia Lädrach
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | - Raoul A Droeser
- Department of Surgery, University Hospital Basel, Basel, Switzerland.
| | - Nikola Cihoric
- Department of Radiation Oncology, Bern University Hospital, and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland. .,Department of Medical Oncology, Bern University Hospital, Bern, Switzerland.
| | - Bodour Salhia
- Translational Genomics Research Institute, Phoenix, USA.
| | - Martin Zweifel
- Department of Medical Oncology, Bern University Hospital, Bern, Switzerland. .,University Cancer Center, Breast Center, Inselspital Bern, Bern, Switzerland.
| | - Coya Tapia
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland. .,University Cancer Center, Breast Center, Inselspital Bern, Bern, Switzerland. .,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Life Science Plaza, 2130 W. Holcombe, Blvd. Unit 2951, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Li YR, Yang WX. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors. Gene 2015; 576:195-207. [PMID: 26478466 DOI: 10.1016/j.gene.2015.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells. Cancers (Basel) 2015; 7:1622-42. [PMID: 26295410 PMCID: PMC4586787 DOI: 10.3390/cancers7030854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023] Open
Abstract
The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.
Collapse
|
35
|
Xu J, Li M, Zhang L, Xiong H, Lai L, Guo M, Zong T, Zhang D, Yang B, Wu L, Tang M, Kuang H. Expression and regulation of androgen receptor in the mouse uterus during early pregnancy and decidualization. Mol Reprod Dev 2015; 82:898-906. [DOI: 10.1002/mrd.22532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Jingjie Xu
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Mo Li
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Lu Zhang
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Hao Xiong
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Lidan Lai
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Meijun Guo
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Teng Zong
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Dalei Zhang
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Bei Yang
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Lei Wu
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| | - Min Tang
- Department of Cell Biology; School of Medicine; Nanchang University; Nanchang Jiangxi China
| | - Haibin Kuang
- Department of Physiology; Nanchang University; Nanchang Jiangxi China
| |
Collapse
|
36
|
Kiezun J, Kaminska B, Jankowski J, Dusza L. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development. Gen Comp Endocrinol 2015; 217-218:62-70. [PMID: 25776460 DOI: 10.1016/j.ygcen.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/09/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity.
Collapse
Affiliation(s)
- J Kiezun
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - B Kaminska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - J Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 5, 10-719 Olsztyn, Poland.
| | - L Dusza
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
37
|
Kiezun J, Leska A, Kaminska B, Jankowski J, Dusza L. Expression of the androgen receptor in the testes and the concentrations of gonadotropins and sex steroid hormones in male turkeys (Meleagris gallopavo) during growth and development. Gen Comp Endocrinol 2015; 214:149-56. [PMID: 25072891 DOI: 10.1016/j.ygcen.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/26/2023]
Abstract
Androgens, including testosterone (T) and androstenedione (A4), are essential for puberty, fertility and sexual functions. The biological activity of those hormones is mediated via the androgen receptor (AR). The regulation of androgen action in birds is poorly understood. Therefore, the present study analysed mRNA and protein expression of AR in the testes, plasma concentrations of the luteinizing hormone (LH), follicle-stimulating hormone (FSH), T, A4 and oestradiol (E2), as well as the levels of T, A4 and E2 in testicular homogenates of male turkeys (Meleagris gallopavo) at the age of 4, 8, 12, 16, 20, 24 and 28weeks. Plasma concentrations of LH and FSH, as well as plasma and testicular levels of T and A4 began to increase at 20weeks of age. The lowest plasma levels of E2 were noted at 20weeks relative to other growth stages. The 20th week of life seems to be the key phase in the development of the reproductive system of turkeys. The AR protein was found in the nuclei of testicular cells in all examined growth stages. Higher expression of AR protein in the testes beginning at 20weeks of age was accompanied by high plasma concentrations of LH and high plasma and testicular levels of androgens. This relationship seems to be necessary to regulate male sexual function.
Collapse
Affiliation(s)
- J Kiezun
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - A Leska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - B Kaminska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - J Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 5, 10-719 Olsztyn, Poland.
| | - L Dusza
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
38
|
Morphology and gene expression profile of the submandibular gland of androgen-receptor-deficient mice. Arch Oral Biol 2015; 60:320-32. [DOI: 10.1016/j.archoralbio.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/01/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022]
|
39
|
Abstract
Androgens are regulators of important adipocyte functions such as adipogenesis, lipid storage, and lipolysis. Through depot-specific impact on the cells of each fat compartment, androgens could modulate body fat distribution patterns in humans. Testosterone and dihydrotestosterone have been shown to inhibit the differentiation of preadipocytes to lipid-storing adipocytes in several models including primary cultures of human adipocytes from both men and women. Androgen effects have also been observed on some markers of lipid metabolism such as LPL activity, fatty acid uptake, and lipolysis. Possible depot-specific and sex-specific effects have been observed in some but not all models. Transformation of androgen precursors to active androgens or their inactivation by enzymes that are expressed and functional in adipose tissue may contribute to modulate the local availability of active hormones. These phenomena, along with putative depot-specific interactions with glucocorticoids may contribute to human body fat distribution patterns.
Collapse
Affiliation(s)
- Mouna Zerradi
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2
| | - Julie Dereumetz
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2
| | - Marie-Michèle Boulet
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2
| | - André Tchernof
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2.
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2.
| |
Collapse
|
40
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chung WM, Chang WC, Chen L, Lin TY, Chen LC, Hung YC, Ma WL. Ligand-independent androgen receptors promote ovarian teratocarcinoma cell growth by stimulating self-renewal of cancer stem/progenitor cells. Stem Cell Res 2014; 13:24-35. [PMID: 24793306 DOI: 10.1016/j.scr.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian teratocarcinoma (OVTC) arises from germ cells and contains a high percentage of cancer stem/progenitor cells (CSPCs), which promote cancer development through their ability to self-renew. Androgen and androgen receptor (androgen/AR) signaling has been reported to participate in cancer stemness in some types of cancer; however, this phenomenon has never been studied in OVTC. METHODS Ovarian teratocarcinoma cell line PA1 was manipulated to overexpress or knockdown AR by lentiviral deliver system. After analyzing of AR expression in PA1 cells, cell growth assay was assessed at every given time point. In order to determine ligand effect on AR actions, luciferase assay was performed to evaluate endogenous and exogenous AR function in PA1 cells. CD133 stem cell marker antibody was used to identify CSPCs in PA1 cells, and AR expression level in enriched CSPCs was determined. To assess AR effects on CD133+ population progression, stem cell functional assays (side population, sphere formation assay, CD133 expression) were used to analyze role of AR in PA1 CSPCs. In tissue specimen, immunohistochemistry staining was used to carry out AR and CD133 staining in normal and tumor tissue. RESULTS We examined androgen/AR signaling in OVTC PA1 cells, a CSPCs-rich cell line, and found that AR, but not androgen, promoted cell growth. We also examined the effects of AR on CSPCs characteristics and found that AR expression was more abundant in CD133+ cells, a well-defined ovarian cancer stem/progenitor marker, than in CD133- populations. Moreover, results of the sphere formation assay revealed that AR expression was required to maintain CSPCs populations. Interestingly, this AR-governed self-renewal capacity of CSPCs was only observed in CD133+ cells. In addition, we found that AR-mediated CSPCs enrichment was accompanied by down-regulation of p53 and p16. Finally, co-expression of AR and CD133 was more abundant in OVTC lesions than in normal ovarian tissue. CONCLUSION The results of this study suggest that AR itself might play a ligand-independent role in the development of OVTC.
Collapse
Affiliation(s)
- Wei-Min Chung
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chun Chang
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Lumin Chen
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Tze-Yi Lin
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Chi Chen
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Yao-Ching Hung
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Wen-Lung Ma
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan.
| |
Collapse
|
42
|
Soares TS, Fernandes SAF, Lima ML, Stumpp T, Schoorlemmer GH, Lazari MFM, Porto CS. Experimental varicocoele in rats affects mechanisms that control expression and function of the androgen receptor. Andrology 2013; 1:670-81. [PMID: 23836701 DOI: 10.1111/j.2047-2927.2013.00103.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 01/24/2023]
Abstract
Varicocoele is an important cause of male infertility. Normal male reproductive function and fertility depends on a delicate balance between androgen receptor (AR) and the classic oestrogen receptors ESR1 (ERα) and ESR2 (ERβ). Using a model of surgically induced varicocoele in rats, this study aimed to investigate the effects of varicocoele on the expression of AR, ESR1, ESR2 and G-protein coupled oestrogen receptor (GPER). Varicocoele did not affect the mRNA and protein expression of ESR1 and ESR2 in both testes. Varicocoele did not affect the mRNA and protein expression of GPER in the right testis, but slightly reduced the mRNA and increased the protein levels in the left testis. Varicocoele did not affect the mRNA for AR, but reduced the protein levels in both testes. A proteomic approach was used in an attempt to find differentially expressed targets with possible correlation with AR downregulation. Varicocoele caused the differential expression of 29 proteins. Six proteins were upregulated, including the receptor for activated C kinase 1 (RACK1), and 23 were downregulated, including dihydrolipoamide dehydrogenase, alpha-enolase and pyrophosphatase 1. Western blot analysis confirmed that varicocoele upregulated the expression of RACK1, a protein involved with tyrosine phosphorylation and regulation of AR transcriptional activity, AR metabolism and dynamics of the blood-testis barrier. In conclusion, this study suggests that varicocoele affects mechanisms that control AR expression and function. This regulation of AR may play an important role in the varicocoele-induced testicular dysfunction. Furthermore, varicocoele downregulates several other proteins in the testis that may be useful markers of spermatozoa function and male infertility.
Collapse
Affiliation(s)
- T S Soares
- Section of Experimental Endocrinology, Department of Pharmacology, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60–70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.
Collapse
|
44
|
Zhang X, Sui Z. Deciphering the selective androgen receptor modulators paradigm. Expert Opin Drug Discov 2012; 8:191-218. [DOI: 10.1517/17460441.2013.741582] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xuqing Zhang
- Janssen Research and Development, LLC, Welsh and McKean Roads, PO Box 776, Spring House, PA 19477, USA
| | - Zhihua Sui
- Janssen Research and Development, LLC, Welsh and McKean Roads, PO Box 776, Spring House, PA 19477, USA
| |
Collapse
|
45
|
Leska A, Kiezun J, Kaminska B, Dusza L. Seasonal changes in the expression of the androgen receptor in the testes of the domestic goose (Anser anser f. domestica). Gen Comp Endocrinol 2012; 179:63-70. [PMID: 22885558 DOI: 10.1016/j.ygcen.2012.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
It is generally acknowledged that seasonal fluctuations in the morphology and function of bird testes are primarily regulated by seasonal changes in circulating concentrations of testosterone (T) which mediates its action via the androgen receptor (AR). However, it has not yet been elucidated whether gonadal sensitivity to androgens also varies across the bird reproductive cycle. In order to answer the above question, this study makes the first ever attempt to account for the gonadal expression of the AR gene and protein in relation to circulating and testicular T concentrations in the gonads of male birds during the reproductive cycle. The experimental model used in this study was the domestic goose, Anser anser f. domestica, a species with three distinct phases of the annual reproductive cycle: the breeding season in March, the non-breeding season in July and the sexual reactivation phase in November. The plasma and testicular T concentrations were highest in the breeding season, followed by a dramatic decline in the non-breeding season with a successive rise in the sexual reactivation phase. Interestingly, we observed the divergent effect of season on AR mRNA and protein expression. Whereas the AR gene expression showed a nearly inverse relationship with T levels, the seasonal variations in AR protein levels primarily reflected the differences in T concentrations. The results of our study also indicated that regardless of the examined phase of the season, an abundance of AR protein was found only in the nuclei of Leydig and Sertoli cells and myoid cells. The above supports the observation that somatic cells are the targets for androgen action in bird testes. Summarizing, this study revealed that seasonal variations in sensitivity to androgens in the gonads of male birds are reflected in variations in the availability of their cognate receptors. Furthermore, a different pattern of seasonal expression of the AR gene and protein suggests that the AR system is subject to complex regulation that includes both steroid-dependent and steroid-independent factors.
Collapse
Affiliation(s)
- A Leska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | | | | | | |
Collapse
|
46
|
Mohler ML, Coss CC, Duke CB, Patil SA, Miller DD, Dalton JT. Androgen receptor antagonists: a patent review (2008-2011). Expert Opin Ther Pat 2012; 22:541-65. [PMID: 22583332 DOI: 10.1517/13543776.2012.682571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Androgen receptor (AR) antagonists are predominantly used as chemical castration to treat prostate cancer (i.e., in conjunction with androgen deprivation therapy (ADT)). Unfortunately, castration-resistant prostate cancer (CRPC) typically develops that is refractory to targeted therapy. Insights into CRPC biology have led to the emergence of a promising clinical candidate MDV3100 (1) and a resurgence in this field. A pipeline of preclinical competitive (C-terminally directed) antagonists was discovered using a variety of innovative screening paradigms. Some inhibit nuclear translocation, selectively downregulate or degrade AR (SARD), antagonize wild-type and escape mutant AR (pan-antagonists) and/or antagonize AR target organs in vivo. Separately, the N-terminal domain has emerged as a promising novel target for noncompetitive antagonists. AREAS COVERED AR antagonists whose patents published between 2008 and 2011 are reviewed. Antagonists are organized based on the screening paradigm reported as discussed above. EXPERT OPINION Novel mechanisms provide a more informed basis for selecting a competitive antagonist; however, high potency and favorable in vivo properties remain paramount. Noncompetitive antagonists have theoretical advantages suggestive of improved clinical efficacy, but no clinical proof of concept as of yet.
Collapse
Affiliation(s)
- Michael L Mohler
- Preclinical Research and Development, GTx, Inc., 3 North Dunlap Street, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
47
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|
48
|
De Gendt K, Verhoeven G. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol 2012; 352:13-25. [PMID: 21871526 DOI: 10.1016/j.mce.2011.08.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 12/28/2022]
Abstract
This review aims to evaluate the contribution of individual cell-selective knockout models to our current understanding of androgen action. Cre/loxP technology has allowed the generation of cell-selective knockout models targeting the androgen receptor (AR) in distinct putative target cells in a wide variety of organs and tissues including: testis, ovary, accessory sex tissues, muscle, bone, fat, liver, skin and myeloid tissue. In some androgen-regulated processes such as spermatogenesis and folliculogenesis this approach has lead to the identification of a key cellular mediator of androgen action (Sertoli and granulosa cells, respectively). In many target tissues, however, the final response to androgens appears to be more complex. Here, cell-selective knockout technology offers a platform upon which we can begin to unravel the more complex interplay and signaling pathways of androgens. A prototypic example is the analysis of mesenchymal-epithelial interactions in many accessory sex glands. Furthermore, for some actions of testosterone, in which part of the effect is mediated by the active metabolite 17β-estradiol, conditional knockout technology offers a novel strategy to study the relative contribution of AR and estrogen receptor-mediated signaling. The latter approach has already resulted in a better understanding of androgen action in brain and bone. Finally, cell-selective knockout technology has generated valuable models to search for AR-controlled molecular mediators of androgen action, a strategy that has successfully been applied to the study of androgen action in the testis and in the epididymis. Although some conditional knockout models have provided clear answers to physiologic questions, it should be noted that others have pointed to unexpected complexities or technical limitations confounding interpretation of the results.
Collapse
Affiliation(s)
- Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium
| | | |
Collapse
|
49
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Ding Y, Tang J, Zou J, She R, Wang Y, Yue Z, Tian J, Xia K, Yin J, Wang D. The effect of microgravity on tissue structure and function of rat testis. Braz J Med Biol Res 2011; 44:1243-50. [PMID: 22042268 DOI: 10.1590/s0100-879x2011007500147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 09/09/2011] [Indexed: 11/22/2022] Open
Abstract
To explore whether an environment of weightlessness will cause damage to the reproductive system of animals, we used the tail-suspension model to simulate microgravity, and investigated the effect of microgravity on the tissue structure and function of the testis in sexually mature male rats. Forty-eight male Wistar rats weighing 200-250 g were randomly assigned to three groups (N = 16 each): control, tail traction, and tail suspension. After the rats were suspended for 7 or 14 days, morphological changes of testis were evaluated by histological and electron microscopic methods. The expression of HSP70, bax/bcl-2 and AR (androgen receptor) in testis was measured by immunohistochemistry. Obvious pathological lesions were present in the testis after the rats were suspended for 7 or 14 days. We detected overexpression of HSP70 and an increase of apoptotic cells, which may have contributed to the injury to the testis. The expression of AR, as an effector molecule in the testis, was significantly decreased in the suspended groups compared to control (P < 0.01). We also observed that, with a longer time of suspension, the aforementioned pathological damage became more serious and some pathological injury to the testis was irreversible. The results demonstrated that a short- or medium-term microgravity environment could lead to severe irreversible damage to the structure of rat testis.
Collapse
Affiliation(s)
- Ye Ding
- Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing
| | | | | | | | | | | | | | | | | | | |
Collapse
|