1
|
Vallejos OP, Bueno SM, Kalergis AM. Probiotics in inflammatory bowel disease: microbial modulation and therapeutic prospects. Trends Mol Med 2025:S1471-4914(24)00338-1. [PMID: 39814640 DOI: 10.1016/j.molmed.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder that represents a significant public health challenge worldwide. This multifactorial condition results from complex interactions among genetic, environmental, immune, and microbial factors. Some beneficial microbes, known as probiotics, have been identified as promising therapeutic agents for inflammatory conditions, such as IBD. In this review, we explore the potential of probiotics as a therapeutic strategy for managing IBD. Probiotics have shown promise due to their ability to modulate the gut microbiota, regulate histamine levels, and enhance vitamin D metabolism, thereby promoting a tolerant immune profile and reducing inflammation. While the exact mechanisms underlying these benefits remain incompletely understood, probiotics represent a novel and emerging approach for alleviating the exacerbated inflammation characteristic of this disorder.
Collapse
Affiliation(s)
- Omar P Vallejos
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Ma G, Chen Z, Xie Z, Liu J, Xiao X. Mechanisms underlying changes in intestinal permeability during pregnancy and their implications for maternal and infant health. J Reprod Immunol 2025; 168:104423. [PMID: 39793281 DOI: 10.1016/j.jri.2025.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Proper regulation of intestinal permeability is essential for maintaining the integrity of the intestinal mucosal barrier. An abnormal increase in permeability can significantly contribute to the onset and progression of various diseases, including autoimmune disorders, metabolic conditions, allergies, and inflammatory bowel diseases. The potential connection between intestinal permeability and maternal health during pregnancy is increasingly recognized, yet a comprehensive review remains lacking. Pregnancy triggers a series of physiological structural adaptations and significant hormonal fluctuations that collectively contribute to an increase in intestinal permeability. Although an increase in intestinal permeability is typically a normal physiological response during pregnancy, an abnormal rise is associated with immune dysregulation, metabolic disorders, and various pregnancy-related complications, such as recurrent pregnancy loss, gestational diabetes mellitus, overweight and obesity during pregnancy, intrahepatic cholestasis of pregnancy, and preeclampsia. This paper discusses the components of the intestinal mucosal barrier, the concept of intestinal permeability and its measurement methods, and the mechanisms and physiological significance of increased intestinal permeability during pregnancy. It thoroughly explores the association between abnormal intestinal permeability during pregnancy and maternal diseases, aiming to provide evidence for the pathophysiology of disease development in pregnant women. Additionally, the paper examines intervention methods, such as gut microbiota modulation and nutritional interventions, to regulate intestinal permeability during pregnancy, improve immune and metabolic states, and offer feasible strategies for the prevention and adjuvant treatment of clinical pregnancy complications.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - JinXiang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Guo Z, Wang H, Sun J, Ma Y, Cui X, Kou S, Jiang Z, Zhang L, Wang X, Wang T, Sun L, Huang X. The intestinal absorption of triptolide for the treatment of rheumatoid arthritis is mediated by transporters. Int Immunopharmacol 2024; 143:113440. [PMID: 39471693 DOI: 10.1016/j.intimp.2024.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Tripterygium wilfordii Hook. f. is a traditional Chinese herb that is used to treat rheumatoid arthritis (RA). Triptolide (TP), an epoxidized diterpene lactone extracted from this herb, has been suggested to be the primary active and toxic component. In this work, the material basis and molecular mechanism of toxicity induced by T. wilfordii preparations in RA were investigated. Female rats with collagen-induced arthritis were given 500 μg·kg-1 TP intragastrically or intravenously. Compared with that in the control group, the AUClast in the CIA group was 1.7-fold greater after intragastric administration, while this value decreased 22.6 % after intravenous administration, suggesting that the absorption of TP was significantly greater in the CIA group. The results from RT-PCR and probe substrate perfusion indicated that Oatp1a5 expression was upregulated while P-glycoprotein (P-gp) expression was downregulated in the duodenums of CIA rats. Naringin, an inhibitor of Oatp1a5, decreased the Peff of TP in the rat duodenum by 27.9 %, whereas verapamil hydrochloride, an inhibitor of P-gp, increased the Peff by 50.8 %, suggesting that Oatp1a5 and P-gp mediate the uptake and efflux of TP in the rat duodenum, respectively. Furthermore, among the upstream nuclear receptors, the mRNA expression levels and protein expression levels of FXR and VDR were noticeably decreased. In the present study, the absorption of TP in the duodenums of CIA rats significantly increased due to the upregulation of Oatp1a5 expression and the downregulation of P-gp expression, leading to an increase in TP plasma exposure after intragastric administration. The altered expression of Oatp1a5 and P-gp may be related to FXR and VDR.
Collapse
Affiliation(s)
- Ziyu Guo
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong 518057, China
| | - Hefei Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueyang Cui
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanshan Kou
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinzhi Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sendani AA, Farmani M, Kazemifard N, Ghavami SB, Sadeghi A. Molecular mechanisms and therapeutic effects of natural products in inflammatory bowel disease. CLINICAL NUTRITION OPEN SCIENCE 2024; 58:21-42. [DOI: 10.1016/j.nutos.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
6
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
7
|
Jin Y, Xia H, Chen W, Huang X, Li K, Wang S, Xia W, Wang S, Zhang C, Zhang Y, Zheng C. Dietary supplementation with 25-hydroxyvitamin D 3 regulates productive performance, lipid metabolism and gut microbiota in aged laying ducks. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:90-103. [PMID: 39635415 PMCID: PMC11615913 DOI: 10.1016/j.aninu.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The aim of this study was to investigate the effect of dietary supplementation with 25-hydroxyvitamin D3 (25(OH)D3) on productive performance, lipid metabolism and gut microbiota in aged laying ducks. A total of 432 healthy Longyan ducks at 60-week of age were randomly allotted to 6 groups, each with 6 replicates of 12 ducks. Ducks were given a basal diet (without added 25(OH)D3) or that diet supplemented with 800, 1600, 2400, 3200, or 4000 IU/kg 25(OH)D3 for a total of 16 wk. Dietary supplementation with 25(OH)D3 improved egg production, egg mass and average daily feed intake, and decreased the feed conversion ratio (FCR) of ducks during the whole trial period (linear, quadratic; P < 0.05). Supplementation with 25(OH)D3 decreased very low-density lipoprotein (VLDL) content in yolk (P = 0.008), decreased high-density lipoprotein and low-density lipoprotein (LDL) content in plasma (P = 0.002). Hepatic index, VLDL, LDL, triglyceride and total cholesterol content in liver, nonalcoholic fatty liver activity score of liver and alanine aminotransferase activity in plasma were decreased with supplementation of 25(OH)D3 (linear or quadratic; P < 0.05). The decreased hepatic apolipoprotein B 100 and lipoprotein lipase expression, and increased hepatic peroxisome proliferator-activated receptor-α and sterol regulatory element binding protein-1 expression resulted from 25(OH)D3 supplementation (linear, quadratic; P < 0.05). Moreover, 25(OH)D3 supplementation increased the villus/crypt ratio (linear, quadratic; P < 0.05) and expression of zonula occludens protein 1 and nuclear factor-κ-gene binding in duodenum (P < 0.05). The supplementation of 25(OH)D3 reduced the abundance of Wittenberg polluted soil-2 bacteria, Synergistota, Bacteroidales, Colidextribacter, Eggerthellaceae, Oscillospira, Oscillibacter, UCG-009, Barnesiellaceae and Lachnospiraceae_UCG-010 in cecal contents (P < 0.05). Dietary requirements for 25(OH)D3 for ducks (60 to 76 wk), were estimated to be 3377 IU/kg for egg production, 3434 IU/kg for egg mass, and 3256 IU/kg for FCR. In summary, dietary 25(OH)D3 supplementation improved productive performance and influenced liver and plasma lipid homeostasis in aged laying ducks, which may be associated with the reduction of bacteria involved in carbohydrate metabolism in the cecum. Supplementing the basal diet with 3250 to 3450 IU/kg 25(OH)D3 is recommended for aged laying ducks (60 to 76 wk).
Collapse
Affiliation(s)
- Yongyan Jin
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huanting Xia
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuebing Huang
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kaichao Li
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shuang Wang
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiguan Xia
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shenglin Wang
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chang Zhang
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Cusato J, Ribaldone DG, D Avolio A, Infusino V, Antonucci M, Caviglia GP, Armandi A, Ceccarelli L, Costa F, Bottari A, Fe P, Bertani L, De Vita F. Associations Between Polymorphisms of Genes Related to Vitamin D Pathway and the Response to Vedolizumab and Ustekinumab in Inflammatory Bowel Disease. J Clin Med 2024; 13:7277. [PMID: 39685734 DOI: 10.3390/jcm13237277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Vitamin D (VD) has immunoregulatory properties, generating interest in its potential to influence therapeutic outcomes in inflammatory bowel disease (IBD), other than affecting the expression of genes encoding enzymes and transporters involved in drug metabolism and transport. This study investigated VD-related single nucleotide polymorphisms (SNPs) as predictors of clinical responses in patients with Crohn's disease (CD) and ulcerative colitis (UC) treated with vedolizumab (VDZ) or ustekinumab (UST) after 3 (T3) and 12 months (T12), as well as the achievement of fecal calprotectin (FC) levels < 250 mg/kg, a marker of mucosal healing. Methods: In this prospective study, 103 patients (67 CD, 36 UC) were enrolled, 40 receiving VDZ and 63 receiving UST. SNPs in the genes CYP24A1, GC, CYP27B1, and VD receptor (VDR) were analyzed via polymerase chain reaction (PCR) and associated with clinical and laboratory outcomes. Results: UST therapy demonstrated a higher clinical response rate at T12 compared to VDZ (p = 0.03). A correlation was found between response at T3 and T12 (p = 0.0002). GC 1296 AC polymorphism negatively predicted response at T12, with 63.6% of non-responders carrying this genotype. CYP24A1 8620 AG was a negative predictor for achieving FC < 250 mg/kg (p = 0.045). CYP24A1 22776 CT and VDR Cdx2 GG increased the likelihood of presenting CD over UC (OR 3.40, p = 0.009 and OR 3.74, p = 0.047, respectively). Additionally, CYP27B1 -1260 GT and +2838 CT increased the likelihood of non-ileal CD (OR 3.13, p = 0.054; OR 7.02, p = 0.01). Conclusions: This study reveals associations between VD-SNPs, clinical response to VDZ and UST, and IBD phenotype and localization, supporting the development of personalized IBD treatment and warranting further validation.
Collapse
Affiliation(s)
- Jessica Cusato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Antonio D Avolio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, 10149 Turin, Italy
| | | | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | | | - Andrea Bottari
- Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
| | - Pietro Fe
- Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
| | | | - Francesca De Vita
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
9
|
Kverka M, Stepan JJ. Associations Among Estrogens, the Gut Microbiome and Osteoporosis. Curr Osteoporos Rep 2024; 23:2. [PMID: 39585466 PMCID: PMC11588883 DOI: 10.1007/s11914-024-00896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF THE REVIEW The purpose of this Review was to summarize the evidence on the associations among estrogen status, cellular senescence, the gut microbiome and osteoporosis. RECENT FINDINGS Indicate that osteoporosis is a global public health problem that impacts individuals and society. In postmenopausal women, a decrease in estrogen levels is associated with a decrease in gut microbial diversity and richness, as well as increased permeability of the gut barrier, which allows for low-grade inflammation. The direct effects of estrogen status on the association between bone and the gut microbiome were observed in untreated and treated ovariectomized women. In addition to the direct effects of estrogens on bone remodeling, estrogen therapy could reduce the risk of postmenopausal osteoporosis by preventing increased gut epithelial permeability, bacterial translocation and inflammaging. However, in studies comparing the gut microbiota of older women, there were no changes at the phylum level, suggesting that age-related comorbidities may have a greater impact on changes in the gut microbiota than menopausal status does. Estrogens modify bone health not only by directly influencing bone remodeling, but also indirectly by influencing the gut microbiota, gut barrier function and the resulting changes in immune system reactivity.
Collapse
Affiliation(s)
- Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan J Stepan
- Institute of Rheumatology, Prague, Czechia.
- Department of Rheumatology, First Faculty of Medicine, Charles University, Kateřinská 32, Praha 2, 121 08, Czech Republic.
| |
Collapse
|
10
|
Wu D, Wang J, Wei Y, Zhang X, Hou Z. Correlation Analysis of Serum 25-Hydroxyvitamin D Levels With Immune Function and Calcium-Phosphate Metabolism in Patients With Bronchial Asthma Treated With Combination Therapy. Physiol Res 2024; 73:841-855. [PMID: 39560193 PMCID: PMC11629948 DOI: 10.33549/physiolres.935279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 12/13/2024] Open
Abstract
It was to investigate the clinical efficacy of the combination therapy of fluticasone propionate inhalation aerosol and vitamin D (VD) in pediatric bronchial asthma (BA) and analyze the correlation between serum 25-(OH)-D3 levels and immune function, as well as calcium-phosphorus metabolism. A total of 110 patients with BA were recruited. Regarding treatment plan, patients were randomly rolled into a single-drug treatment group (SDT, treated with fluticasone propionate inhalation aerosol alone) and a dual-drug treatment group (TDT, treated with the combination of fluticasone propionate inhalation aerosol and VD). The changes in serum 25-(OH)-D3 levels, immunoglobulins, T lymphocyte subsets, and inflammatory cytokine levels in children with BA under different treatment modalities were compared. Clinical symptom disappearance, asthma control, and quality of life (QoL) were assessed, and the total effective rate and adverse reactions (ARs) were compared. A control group consisting of 60 healthy children who underwent concurrent physical examinations was included. The differences in serum 25-(OH)-D3 levels, immunoglobulins, and T lymphocyte subset levels between children with BA and healthy controls were compared, and their correlations were analyzed. The TDT group showed a drastic reduction in the disappearance time of lung wheezing and dyspnea relative to the SDT group. Furthermore, the TDT group exhibited notable improvements in lung function parameters, including forced vital capacity (FVC), forced expiratory volume at one second (FEV1), FEV1/FVC, and peak expiratory flow (PEF). Blood gas analysis revealed a great decrease in PaCO2 and an increase in PaO2. The Childhood Asthma Control Test (C-ACT) scores for asthma control and Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores for QoL showed marked increases in the TDT group. Moreover, the TDT group demonstrated notable increases in serum 25-(OH)-D3 levels, immunoglobulins (IgA, IgG, and IgM), T lymphocyte subsets (CD4+ and CD8+), as well as blood calcium and phosphorus levels. Additionally, the TDT group exhibited a prominent increase in the anti-inflammatory cytokine interleukin (IL)-10 level and a drastic decrease in the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNF-alpha) levels (all P<0.05). The total effective rates of treatment in the SDT group and TDT group were 83.64 % and 96.36 %, respectively, with AR rates of 16.36 % and 7.27 %. The TDT group exhibited a superior total effective rate and an inferior incidence of ARs to the SDT group (both P<0.05). Additionally, in contrast to the control group, the BA group showed notable decreases in serum 25-(OH)-D3 levels, immunoglobulins (IgA, IgG, and IgM), T lymphocyte subsets (CD4+, CD8+, and CD4+/CD8+), as well as blood calcium and phosphorus levels (all P<0.05). Prior to treatment, there was a positive correlation between serum 25-(OH)-D3 levels and immunoglobulins (IgA, IgG, and IgM), T lymphocyte subsets (CD4+ and CD8+), as well as blood calcium and phosphorus levels in children with BA (P<0.05). In patients with BA, combined treatment with inhaled fluticasone propionate aerosol and VD may have a regulatory effect on serum 25-hydroxyVD levels, immune function, and calcium-phosphate metabolism. The correlation between serum 25-(OH)-D3 levels and immune function, as well as calcium-phosphate metabolism, suggested that VD may play a crucial role in the immune regulation and calcium-phosphate metabolism of BA.
Collapse
Affiliation(s)
- D Wu
- Internal Medicine, Jingxing County Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China; Department of Imaging, Lincheng County People's Hospital, Xingtai, Hebei, China.
| | | | | | | | | |
Collapse
|
11
|
Max F, Gažová A, Smaha J, Jankovský M, Tesař T, Jackuliak P, Kužma M, Payer J, Kyselovič J. High Doses of Vitamin D and Specific Metabolic Parameters in Type 2 Diabetes Patients: Systematic Review. Nutrients 2024; 16:3903. [PMID: 39599690 PMCID: PMC11597282 DOI: 10.3390/nu16223903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Type II diabetes mellitus (T2DM) is recognized as a condition of mild chronic inflammation, marked by increased levels of acute-phase proteins and various inflammatory indicators. These inflammatory substances, along with inflammation of adipose tissue and the secretion of adipocytokines, can contribute to insulin resistance and β cell dysfunction. By influencing both innate and adaptive immunity, vitamin D can inhibit the production of inflammatory cytokines and help mitigate the low-grade chronic inflammation associated with T2DM. Several strategies have been proposed to increase vitamin D levels effectively and safely, but the recent and strong ones have common tactics. Short-term high doses increase the level acutely, and long-term lower doses maintain sufficient levels. Methods: The aim of our work was to determine and verify the effectiveness of high doses of vitamin D to safely increase its level in patients with type 2 diabetes mellitus, as well as the effect of these doses on selected metabolic parameters. Data from 20 studies (vitamin D group n = 612, and control group n = 592) regarding the influence of vitamin D supplementation with doses above 4000 IU on serum 25(OH)D, fasting blood glucose (FBG), hemoglobin A1c (HbA1c), blood pressure, serum calcium, and parathormone were pooled. Results: Vitamin D supplementation significantly improved serum 25(OH)D levels, with an average increase after intervention versus baseline at 177.09%. Our studies suggest that vitamin D supplementation may benefit various parameters in T2DM patients, including glycemic control, blood pressure, and PTH levels. Conclusions: Vitamin D supplementation may have beneficial effects on various parameters in type 2 diabetes patients, including glycemic control, blood pressure, and parathormone levels. However, the results are only sometimes consistent across all studies. Further examination is needed.
Collapse
Affiliation(s)
- Filip Max
- Department of Organisation and Management of Pharmacy, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Andrea Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia;
| | - Juraj Smaha
- 5th Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Ruzinovska 6, 826 06 Bratislava, Slovakia; (J.S.); (M.J.); (P.J.); (M.K.); (J.P.); (J.K.)
| | - Martin Jankovský
- 5th Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Ruzinovska 6, 826 06 Bratislava, Slovakia; (J.S.); (M.J.); (P.J.); (M.K.); (J.P.); (J.K.)
| | - Tomáš Tesař
- Department of Organisation and Management of Pharmacy, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Peter Jackuliak
- 5th Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Ruzinovska 6, 826 06 Bratislava, Slovakia; (J.S.); (M.J.); (P.J.); (M.K.); (J.P.); (J.K.)
| | - Martin Kužma
- 5th Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Ruzinovska 6, 826 06 Bratislava, Slovakia; (J.S.); (M.J.); (P.J.); (M.K.); (J.P.); (J.K.)
| | - Juraj Payer
- 5th Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Ruzinovska 6, 826 06 Bratislava, Slovakia; (J.S.); (M.J.); (P.J.); (M.K.); (J.P.); (J.K.)
| | - Ján Kyselovič
- 5th Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Ruzinovska 6, 826 06 Bratislava, Slovakia; (J.S.); (M.J.); (P.J.); (M.K.); (J.P.); (J.K.)
| |
Collapse
|
12
|
Pu D, Wang P, Wang X, Tian Y, Gong H, Ma X, Li M, Zhang D. Focusing on non-responders to infliximab with ulcerative colitis, what can we do first and next? Int Immunopharmacol 2024; 141:112943. [PMID: 39191122 DOI: 10.1016/j.intimp.2024.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic immune-mediated inflammation of the colorectum, for which infliximab (IFX) is currently the mainstay of treatment. However, one-third of patients with UC still fail to benefit from the IFX therapy, and early exposure to IFX impairs the efficacy of other subsequent biologics. Therefore, personalized therapeutic system is urgently needed to assist in clinical decision-making and precision treatment. METHODS Four microarray datasets of colonic biopsies from UC patients treated with IFX were obtained from the GEO database to form the Training Cohort and Validation Cohort. Differentially expressed genes (DEGs) in Training Cohort were identified and enriched for GO, KEGG and immune cell infiltration analysis. A prediction model for IFX efficacy was developed based on the LASSO and Logistic regression. The predictive accuracy of the model was verified by the Validation Cohort, and the model-genes/proteins were validated by immunohistochemistry. Gene-drug, gene-ncRNA interaction analysis were performed to identify drugs or non-coding RNAs (ncRNAs) that potentially interacted with the model-genes. Homology Modeling and Molecular Docking were conducted to filter the optimal candidate as the subsequent adjuvant or alternative for IFX in predicted non-responders. At last, the down-regulation of the key model-gene/protein CYP24A1 by the drug candidate Deferasirox was verified by Western Blot and qRT-PCR Assay based on cellular experiments. RESULTS A total of 113 DEGs were identified in the Training Cohort, mainly enriched in inflammatory cell chemotaxis, migration, and response to molecules derived from intestinal microbiota. Activated pro-inflammatory innate immune cells, including neutrophils, M1 macrophages, activated dendritic cells and mast cells, were significantly enriched in colons of non-responders. The prediction model based on three model-genes (IFI44L, CYP24A1, and RGS1) exhibited strong predictive efficacy, with AUC values of 0.901 and 0.80 in the Training and Validation Cohorts, respectively. Higher expression of the three model-genes/proteins in colons of non-responders to IFX was confirmed by clinical colonic mucosal biopsies. 4 Drugs (Calcitriol, Lunacalcipol, Deferasirox, Telaprevir), 15 miRNAs and 66 corresponding lnRNAs interacting with model-genes were identified. The protein 3D structure of the key model-gene/protein (human-derived CYP24A1) was developed. Through the Molecular Docking and cellular experimental validation, Deferasirox, which significantly down-regulated both the RNA and protein expression of CYP24A1, was identified as the optimal adjuvant or alternative for IFX in predicted non-responders with UC. CONCLUSION This study developed a novel prediction model for pre-assessing the efficacy of IFX in patients with UC, as the first step towards personalized therapy. Meanwhile, drugs and non-coding RNAs were provided as potential candidates to develop the next-step precise treatment for the predicted non-responders. In particular, Defeasirox appears to hold promise as an adjuvant or alternative to IFX for the optimization of UC therapy.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Pengfei Wang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xiang Wang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yonggang Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xueni Ma
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Muyang Li
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
13
|
Wang H, Gong W, Gao J, Cheng W, Hu Y, Hu C. Effects of vitamin D deficiency on chronic alcoholic liver injury. Free Radic Biol Med 2024; 224:220-231. [PMID: 39209135 DOI: 10.1016/j.freeradbiomed.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Vitamin D deficiency (VDD) has been found among alcoholics. However, little is known about the effect of VDD on alcoholic liver disease and the molecular mechanisms remain unclear. The aim of the current study was to evaluate whether vitamin D was deficient among patients with alcoholic fatty liver disease (AFLD) and the effect of VDD on chronic alcoholic liver injury and possible molecular mechanisms in mice. Our results found that lower 25-hydroxyvitamin D [25(OH)D] concentrations in patients with AFLD. And further analysis found that 25(OH)D is a protective factor in patients with AFLD. Mice experiments indicated that VDD can alter the composition of gut microbiota, down-regulate the protein levels of intestinal tight junction protein Occludin and E-cadherin, up-regulate the expression of inflammatory cytokines (tnf-α, il-1β, il-6, il-8, ccl2, il-10) in liver and colon tissue. And further exacerbated the protein levels of p65,P-IκB,P-p65 in alcoholic liver injury mice. In conclusion, VDD aggravates chronic alcoholic liver injury by activating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China; Women's Group Insurance Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, China
| | - Weiyi Gong
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jingxin Gao
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenxiu Cheng
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yongdi Hu
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Chunqiu Hu
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Abdulrazzaq SB, Abu-Samak M, Omar A, Barakat M, Alzaghari LF, Mosleh I, Al-Najjar M, Al-Najjar MAA. The effect of vitamin D3 and omega-3 combination, taken orally, on triglycerides, lining of intestine, and the biodiversity of gut microbiota in healthy rats. J Appl Microbiol 2024; 135:lxae223. [PMID: 39223094 DOI: 10.1093/jambio/lxae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/31/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
AIM The gut microbiota plays a key role in host health. An intake of omega-3 and vitamin D3 in a separate manner is vital for maintaining good health of gut microbiota and controlling some illness manifestations. The aim of this study is to investigate the potential change in biodiversity of the gut microbiome in healthy rats supplemented with vitamin D3, omega-3 alone and their combination and to reflect onto the triglyceride levels in serum and fecal samples. METHODS AND RESULTS Using the 16S rRNA gene Miseq Illumina NGS, and monitoring triglyceride levels in serum and fecal samples coupled with several clinical parameters, we examined the effect of orally taken combination of omega-3 and vitamin D3 alongside the separate intake of supplements on gut microbiota in 24 healthy white Wistar rats for six weeks. The study findings showed that combination treatment encouraged the growth of opportunistic Clostridia class during day 21 and 42 of treatment by 7.7 and 7.4 folds, respectively, exhibited incomplete absorption levels for both supplements when used concomitantly, demonstrated a damaging effect on the gut intestinal lining wall thickness (126 µm) when compared to control group (158 µm), increasing lumen diameter (400 µm), and showed higher triglyceride level in fecal samples. CONCLUSIONS These findings indicate that omega-3 and vitamin D3 supplements as combination intake reveal unfavorable effects, thus, it is advised to conduct further in-depth studies to clarify the presence or absence of any chemical interaction between both supplements' molecules and to investigate based on human model to attain a superior perspective.
Collapse
Affiliation(s)
- Shaymaa B Abdulrazzaq
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Mahmoud Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Amin Omar
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Lujain F Alzaghari
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Ibrahim Mosleh
- Department of Medical Laboratory Sciences, University of Jordan, Amman 11942, Jordan
| | - Moath Al-Najjar
- Department of Advanced Computing Sciences, Maastricht University, 6211LK, The Netherlands
| | - Mohammad A A Al-Najjar
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| |
Collapse
|
15
|
Liu Q, Xu Y, Lv X, Guo C, Zhu H, Yang L, Wang Y. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine alleviates diet-induced hyperlipidemia by modulating intestinal gene expression profiles and metabolic pathway. Life Sci 2024; 352:122891. [PMID: 38977060 DOI: 10.1016/j.lfs.2024.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
There is a growing body of evidence suggesting that the composition of intestinal flora plays a significant role in regulating lipid metabolism. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (IMMH007) is a new candidate compound for regulating blood cholesterol and other lipids. In this study, we conducted metagenomic and metabolomic analyses on samples from high-fat diet-fed (HFD) hamsters treated with IMMH007. Our findings revealed that IMM-H007 reversed the imbalance of gut microbiota caused by a high-fat diet. Additionally, it activated adiponectin receptor and pantothenate and CoA biosynthesis pathway-related genes, which are known to regulate lipid and glucose metabolism. Furthermore, IMM-H007 promotes cholesterol metabolism by reducing the abundance of genes and species associated with 7α-dehydroxylation and bile salt hydrolase (BSH). Metabolomics and pharmacological studies have shown that IMM-H007 effectively improved glucose and lipid metabolism disorders caused by HFD, reduced the aggregation of secondary bile acids (SBAs), significantly increased the content of hyodeoxycholic acid (HDCA), and also activated the expression of VDR in the small intestine. As a result, there was a reduction in the leakage of diamine oxidase (DAO) into the bloodstream in hamsters, accompanied by an upregulation of ZO-1 expression in the small intestine. The results suggested that IMM-H007 regulated glucose and lipid metabolism, promoted cholesterol metabolism through activating the expression of VDR, inhibiting inflammatory and improving the permeability of the intestinal barrier. Thus, our study provides new understanding of how IMM-H007 interacts with intestinal function, microbiota, and relevant targets, shedding light on its mechanism of action.
Collapse
Affiliation(s)
- Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Core Facilities, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Xu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueqi Lv
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congcong Guo
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Chen Y, Guo JH, Chen YJ, Huang Y, Zhang C, Zhang Q, Gong YL, Chen J. 1,25-Dihydroxyvitamin D3 reduces early mortality post severe burn injury via alleviating endotoxemia, oxidative stress and inflammation. Burns 2024; 50:1790-1798. [PMID: 38987082 DOI: 10.1016/j.burns.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 07/12/2024]
Abstract
Severe burn patients frequently suffer from 1,25-Dihydroxyvitamin D3 (1,25-[OH]2-D3) deficiency. In this study, we investigated the effect of 1,25-[OH]2-D3 on early mortality post severe burn and potential underlying mechanisms. Our results indicate that 1,25-[OH]2-D3 significantly reduced early mortality in mice post severe burn injury. A decrease in serum lipopolysaccharide levels and an increase in serum superoxide dismutase activity were found after administration of 1,25-[OH]2-D3. Furthermore, 1,25-[OH]2-D3 demonstrated protective effects on both intestinal and lung histology and ameliorated lung inflammation. Its anti-inflammatory effect was further confirmed in airway epithelial cells. In conclusion, our study provides evidence that 1,25-[OH]2-D3 has a significant impact on the reduction of early mortality post severe burn injury, possibly through its ability to alleviate endotoxemia, oxidative stress, and inflammation. Our findings highlight the potential of 1,25-[OH]2-D3 to protect the intestinal mucosal barrier in the early stage following major burn injury and opens up new avenues for clinical application of 1,25-[OH]2-D3 in burn patients.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Jing Hui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ya Jie Chen
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Cheng Zhang
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Qiong Zhang
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Ya Li Gong
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Jing Chen
- State Key Laboratory of Trauma and Chemical Poisoning of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing 400038, China.
| |
Collapse
|
17
|
Sharma MK, Lee J, Shi H, Ko H, Goo D, Paneru D, Holladay SD, Gogal RM, Kim WK. Effect of dietary inclusion of 25-hydroxyvitamin D₃ and vitamin E on performance, gut health, oxidative status, and immune response in laying hens infected with coccidiosis. Poult Sci 2024; 103:104033. [PMID: 39059054 PMCID: PMC11331952 DOI: 10.1016/j.psj.2024.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D3 (25-hydroxyvitamin D3 (VD)) and vitamin E (VE) have proven to have immunomodulatory and antioxidant functions along with capacities to improve the reproductive function in chickens. Coccidiosis in laying hens at different stages of growth has been shown to negatively affect performance, immune response, and oxidative status, thus increasing the cost of production. A study was conducted to evaluate the influence of dietary VD or VE on performance, gut health, immune response, and oxidative status of laying hens at peak production. Laying hens (23 wk-of-age, n = 225) were randomly allocated into 5 treatment groups (n = 9 hens/replicate) with 5 replicate groups each: 1) unchallenged control (UC), 2) pair-fed control (PF), 3) challenged control (CC), 4) challenged control top-dressed with 5,000 IU of 25-hydroxyvitamin D3 (VD) per kg of diet, and 5) challenged control top-dressed with 100 IU of DL-α-tocopherol (VE). At 25 wk-of-age, hens grouped in CC, VD, and VE were challenged with mixed Eimeria spp. to induce coccidiosis. VD or VE supplemented hens did not impact bird body weight; however, egg production increased by 10.36% and 13.77%, respectively (P < 0.0001). Furthermore, the gut health of the hens was improved with either VD or VE supplementation, as indicated by lowered gut permeability and intestinal lesion scores (P < 0.05). VE significantly reduced the heterophil count (P = 0.0490) alongside numerically increasing the peripheral CD4+ and CD8+ T cells and monocyte counts (P > 0.05). Both VD or VE increased the TAC at 14 DPI compared to UC (P<0.05). Preliminary findings suggest that dietary VD or VE supplementation has the potential to improve gut health, modulate the immune response, and increase egg production in coccidiosis-infected laying hens.
Collapse
Affiliation(s)
- Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Steven D Holladay
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Wang H, Li H, Li Z, Zhao X, Hou X, Chen L, Xing L, Tian F. Crisaborole combined with vitamin D demonstrates superior therapeutic efficacy over either monotherapy in mice with allergic contact dermatitis. Sci Rep 2024; 14:20092. [PMID: 39209980 PMCID: PMC11362552 DOI: 10.1038/s41598-024-71135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study evaluated the therapeutic efficacy and underlying mechanisms of crisaborole combined with vitamin D in the treatment of allergic contact dermatitis. While crisaborole, a phosphodiesterase 4 inhibitor, and vitamin D analogs are commonly used in the treatment of atopic dermatitis, their combined therapeutic potential in allergic contact dermatitis (ACD) remains unexplored. Given their anti-inflammatory properties, we hypothesized that the combination of crisaborole and vitamin D could offer superior efficacy in mitigating the symptoms and underlying mechanisms of allergic contact dermatitis. In vitro, HaCaT cells stimulated with tumor necrosis factor-α and interferon-γ were treated with a combination of crisaborole and vitamin D, followed by cytokine expression analysis. In vivo, male C57BL/6 mice were divided into five groups and treated accordingly: blank control, dinitrochlorobenzene-induced model, crisaborole alone, vitamin D alone, and a combination of crisaborole and vitamin D. On day 14, dorsal skin and ear thickness were measured, followed by comprehensive pathological evaluations. In vivo and in vitro experiments showed that the expression levels of inflammatory factors were significantly lower in the DNCB + VD + Cri group than in the DNCB group. Histological analyses revealed that, compared with the DNCB group, the combined treatment group significantly reduced epidermal hyperkeratosis, improved epidermal transdermal water loss, decreased dermatitis scores, and diminished mast cell infiltration. Moreover, it lowered the expression levels of IL-6, IL-4, TNF-α, iNOS, IL-17, CC chemokine ligand 2 (CCL2), and CC chemokine receptor 2 (CCR2). CCL2 recognizes CCR2 and stimulates inflammatory cells, enhancing the inflammatory response. Increased CCL2 expression correlates with heightened inflammation and dendritic cell infiltration in ACD, while downregulation of CCL2 attenuates inflammation. Thus, the combined use of crisaborole and vitamin D demonstrates superior therapeutic efficacy over monotherapy in a mouse model of ACD. The combination of vitamin D and crisaborole significantly reduces inflammation and epidermal hyperkeratosis in a mouse model of allergic contact dermatitis, demonstrating superior therapeutic efficacy compared to either treatment alone. This suggests that the combined therapy could be a promising approach for the prevention and treatment of allergic contact dermatitis.
Collapse
Affiliation(s)
- Huachun Wang
- School of Public Health, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis., Tangshan, 063200, Hebei, China
| | - Hetong Li
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaomei Zhao
- School of Public Health, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis., Tangshan, 063200, Hebei, China
| | - Xiaoli Hou
- School of Public Health, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis., Tangshan, 063200, Hebei, China
| | - Lu Chen
- School of Public Health, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis., Tangshan, 063200, Hebei, China
| | - Lei Xing
- Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis., Tangshan, 063200, Hebei, China.
| |
Collapse
|
19
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
20
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Conti V, Polcaro G, De Bellis E, Donnarumma D, De Rosa F, Stefanelli B, Corbi G, Sabbatino F, Filippelli A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med 2024; 14:685. [PMID: 39063939 PMCID: PMC11278393 DOI: 10.3390/jpm14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Natural Health Products (NHPs) have long been considered a valuable therapeutic approach for the prevention and treatment of various diseases, including cancer. However, research on this topic has led to inconclusive and often controversial results. This review aims to provide a comprehensive update of the effects and mechanisms related to the use of NHPs, to describe the results of randomized clinical trials (RCTs) on their effects in cancer patients, and to critically discuss factors influencing clinical outcomes. RCTs available in the literature, even those studying the same NHP, are very heterogeneous in terms of indications, doses, route and timing of administration, and outcomes evaluated. Silymarin, ginsenoside, and vitamin E appear to be useful in attenuating adverse events related to radiotherapy or chemotherapy, and curcumin and lycopene might provide some benefit in patients with prostate cancer. Most RCTs have not clarified whether NHP supplementation provides any real benefit, while harmful effects have been shown in some cases. Overall, the available data suggest that although there is some evidence to support the benefits of NHPs in the management of cancer patients, further clinical trials with the same design are needed before their introduction into clinical practice can be considered.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Emanuela De Bellis
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Danilo Donnarumma
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Federica De Rosa
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
22
|
Yang CT, Yen HH, Su PY, Chen YY, Huang SP. High prevalence of vitamin D deficiency in Taiwanese patients with inflammatory bowel disease. Sci Rep 2024; 14:14091. [PMID: 38890510 PMCID: PMC11189481 DOI: 10.1038/s41598-024-64930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamin D deficiency is common in patients with inflammatory bowel disease (IBD). In this study, we aimed to evaluate the prevalence and risk factors of vitamin D deficiency in a Taiwanese IBD cohort. Vitamin D levels were checked in adult patients with IBD who were treated at Changhua Christian Hospital, a medical center in central Taiwan, from January 2017 to December 2023. The risk factors for vitamin D deficiency were evaluated. 106 adult IBD patients were included, including 20 patients with Crohn's disease and 86 with ulcerative colitis. The median age at diagnosis was 39.2 years. The mean vitamin D level was 22.2 ± 8 ng/mL. Forty-five patients (42.5%) had vitamin D deficiency (vitamin D level < 20 ng/mL). Comparing patients with normal vitamin D levels and those with vitamin D deficiency after multivariate adjustment, female sex and early age at diagnosis were identified as statistically significant risk factors. We found a prevalence of 42.5% of vitamin D deficiency in the Taiwanese IBD population. Understanding this issue is essential for teaching patients and doctors about vitamin D deficiency screening and improving patient outcomes.
Collapse
Affiliation(s)
- Chen-Ta Yang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 400, Taiwan
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Hsu-Heng Yen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 400, Taiwan.
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, 500, Taiwan.
| | - Pei-Yuan Su
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 400, Taiwan
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yang-Yuan Chen
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, 500, Taiwan
- Department of Hospitality Management, MingDao University, Changhua, 500, Taiwan
| | - Siou-Ping Huang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 400, Taiwan
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, 500, Taiwan
| |
Collapse
|
23
|
Zhan ZS, Zheng ZS, Shi J, Chen J, Wu SY, Zhang SY. Unraveling colorectal cancer prevention: The vitamin D - gut flora - immune system nexus. World J Gastrointest Oncol 2024; 16:2382-2391. [DOI: 10.4251/wjgo.v16.i6.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers diagnosed in the world. Although environmental and genetic factors play a major role in the pathogenesis of CRC, extensive research has suggested that vitamin D may play a pivotal role in the development of CRC. Vitamin D, primarily obtained through sunlight exposure, dietary sources, and supplements, has long been recognized for its essential functions in maintaining health, including immune regulation. This article delves into the intricate relationship between vitamin D, the immune system, gut flora, and the prevention of CRC. It presents a synthesis of epidemiological data, experimental studies, and clinical trials, highlighting the mechanisms by which vitamin D influences immune cell function, cytokine production, and inflammation. By enhancing the immune system’s surveillance and anti-tumor activity, vitamin D may offer a promising avenue for CRC prevention. Furthermore, this comprehensive review delves into the prospective clinical applications of vitamin D supplementation and delineates the forthcoming avenues of research in this dynamic domain. Additionally, the paper tentatively outlines a spectrum of prophylactic impacts of vitamin D on CRC, emphasizing its significant potential in reducing CRC risk through shedding light on its mechanisms, encompassing antineoplastic mechanisms, influences on the immune system, and modulation of the gut microbiome.
Collapse
Affiliation(s)
- Zhi-Song Zhan
- Department of Dentistry, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Zu-Shun Zheng
- Department of Physical Examination, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Jing Shi
- Department of Anesthesiology, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Juan Chen
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Si-Yi Wu
- Department of Surgery, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Shi-Yan Zhang
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| |
Collapse
|
24
|
Zhan ZS, Zheng ZS, Shi J, Chen J, Wu SY, Zhang SY. Unraveling colorectal cancer prevention: The vitamin D - gut flora - immune system nexus. World J Gastrointest Oncol 2024; 16:2394-2403. [PMID: 38994172 PMCID: PMC11236262 DOI: 10.4251/wjgo.v16.i6.2394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 06/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers diagnosed in the world. Although environmental and genetic factors play a major role in the pathogenesis of CRC, extensive research has suggested that vitamin D may play a pivotal role in the development of CRC. Vitamin D, primarily obtained through sunlight exposure, dietary sources, and supplements, has long been recognized for its essential functions in maintaining health, including immune regulation. This article delves into the intricate relationship between vitamin D, the immune system, gut flora, and the prevention of CRC. It presents a synthesis of epidemiological data, experimental studies, and clinical trials, highlighting the mechanisms by which vitamin D influences immune cell function, cytokine production, and inflammation. By enhancing the immune system's surveillance and anti-tumor activity, vitamin D may offer a promising avenue for CRC prevention. Furthermore, this comprehensive review delves into the prospective clinical applications of vitamin D supplementation and delineates the forthcoming avenues of research in this dynamic domain. Additionally, the paper tentatively outlines a spectrum of prophylactic impacts of vitamin D on CRC, emphasizing its significant potential in reducing CRC risk through shedding light on its mechanisms, encompassing antineoplastic mechanisms, influences on the immune system, and modulation of the gut microbiome.
Collapse
Affiliation(s)
- Zhi-Song Zhan
- Department of Dentistry, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Zu-Shun Zheng
- Department of Physical Examination, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Jing Shi
- Department of Anesthesiology, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Juan Chen
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Si-Yi Wu
- Department of Surgery, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| | - Shi-Yan Zhang
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| |
Collapse
|
25
|
Saeidlou SN, Vahabzadeh D, Karimi F, Babaei F. Determining the vitamin D supplementation duration to reach an adequate or optimal vitamin D status and its effect on blood lipid profiles: a longitudinal study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:81. [PMID: 38867281 PMCID: PMC11170904 DOI: 10.1186/s41043-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Recently, Serum vitamin D (Vit. D) levels evaluation and the use of Vit. D supplements have increased substantially. There is no specific guideline for the duration of Vit. D supplementation, so yet Vit. D supplementation duration has remained a critical and controversial issue. This study aimed to determine the vit. D supplementation duration to reach an adequate or optimal Vit. D status and its effect on lipid profile. METHODS In this longitudinal study, 345 women with different status of Vit. D levels were enrolled and followed up for one year. Eligible participants received 50,000 IU Vit. D3 (cholecalciferol) once a month for 12 consecutive months. The serum Vit. D levels and lipid profiles were measured at baseline, 3rd, 6th, and 12th months after the intervention. Participants were categorized based on Vit. D level at baseline into deficiency (< 20 ng/mL), inadequate (20-30 ng/mL), and adequate (> 30 ng/mL) groups, and the data were compared at different times between the three groups. RESULTS Three deficiency (n = 73), inadequate (n = 138) and adequate (n = 134) groups of participants were followed. In all participants the average amount of Vit. D level changes were 8 ng/mL after one year of supplementation. The mean changes of serum Vit. D level in 6th and 12th months vs. 3th month was as below: In deficiency group: 4.08 ± 0.85 and 10.01 ± 1.02 ng/mL; (p < 0.001), in inadequate group: 3.07 ± 0.59 and 7.26 ± 0.78 ng/mL; (p = 0.001) and in adequate group: 2.02 ± 0.88 and 6.44 ± 1.005 ng/ml; (p = 0.001). Lipid profiles were improved in three groups. So, the mean changes of lipid profiles at the end of the study comparing with the baseline were: -5.86 ± 2.09, -7.22 ± 1.43 and - 6.17 ± 1.72 (mg/dl) for LDL (p < 0.05); -12.24 ± 3.08, -13.64 ± 3.21 and - 17.81 ± 2.94 (mg/dl) for cholesterol (p < 0.05) in deficiency, inadequate and adequate groups, respectively. For triglyceride, the mean changes were - 13.24 ± 5.78 and - 15.85 ± 7.49 (mg/dl) in deficiency and adequate groups, respectively (p < 0.05). Although the triglyceride decreased in the inadequate group at the end of the study but this difference was not significant (p = 0.67). CONCLUSION Taking of 50,000 IU Vit. D 3 monthly for 12 months resulted in reaching its level to adequate level in both deficiency and insufficient groups; however, in the adequate group its level did not reach above than 50 ng/mL. Therefore, 50,000 IU Vit. D3 supplementation monthly for one year can have beneficial effects on lipid profiles and there is no risk of toxicity in healthy women.
Collapse
Affiliation(s)
- Sakineh Nouri Saeidlou
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Davoud Vahabzadeh
- Non-Communicable Disease Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Fozieh Karimi
- Midwifery Department, Ilam University of Medical Sciences, Ilam, Iran
| | - Fariba Babaei
- Department of Health Affairs, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
26
|
Sarb OF, Sarb AD, Iacobescu M, Vlad IM, Milaciu MV, Ciurmarnean L, Vacaras V, Tantau AI. From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases. Int J Mol Sci 2024; 25:5676. [PMID: 38891863 PMCID: PMC11171869 DOI: 10.3390/ijms25115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.
Collapse
Affiliation(s)
- Oliviu-Florentiu Sarb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Adriana-Daniela Sarb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Irina-Maria Vlad
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Lorena Ciurmarnean
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Vitalie Vacaras
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Alina-Ioana Tantau
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| |
Collapse
|
27
|
Huang FC, Huang SC. Unveiling the Novel Benefits of Co-Administering Butyrate and Active Vitamin D3 in Mice Subjected to Chemotherapy-Induced Gut-Derived Pseudomonas aeruginosa Sepsis. Biomedicines 2024; 12:1026. [PMID: 38790988 PMCID: PMC11118095 DOI: 10.3390/biomedicines12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
28
|
Zhang Y, Shen Z, Pei H, Wang G, Wang Z, Wei X, Yu J, Wang C, Hua J, He B. Impact of particulate-matter air pollution on 25-hydroxyvitamin D levels: a mendelian randomisation study. Public Health 2024; 230:190-197. [PMID: 38565065 DOI: 10.1016/j.puhe.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES In observational studies, the 25-hydroxyvitamin D (25(OH)D) level in body has been found to be closely related to particulate matter (PM) air pollution. In this study, we used the two-sample mendelian randomisation (MR) method to investigate and discuss the potential causal relationship and mode of influence. STUDY DESIGN MR study. METHODS PM data (PM10, PM2.5-10, PM2.5, PM2.5 absorbance) came from the UK Biobank database, and 25(OH)D data came from European Bioinformatics Institute (EBI) database. The analysis was conducted utilising three prominent methods (inverse-variance-weighted [IVW], MR-Egger, weighted median, weighted mode, and simple mode). The primary emphasis was placed on IVW, accompanied by heterogeneity and horizontal pleiotropy tests. Furthermore, sensitivity analysis was undertaken. RESULTS The MR analysis revealed a significant association between exposure to PM10 and a decrease in levels of 25(OH)D (odds ratio [OR]: 0.878, 95% confidence interval [CI]: 0.789-0.977). However, no significant relationship was observed between PM2.5 exposure and 25(OH)D (OR: 0.943, 95%CI: 0.858-1.037). Further analysis indicated that the main contributor to the decline in 25(OH)D levels is linked to PM2.5-10 exposure (OR: 0.840, 95%CI: 0.751-0.940) and PM2.5 absorbance (OR: 0.875, 95%CI: 0.824-0.929). No heterogeneity and horizontal pleiotropy existed. CONCLUSIONS The MR results suggest that PM (PM10, PM2.5-10 and PM2.5 absorbance) exposure lowers vitamin D (VD) levels, but PM2.5 was not found to have a significant effect on VD in humans.
Collapse
Affiliation(s)
- Yi Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zan Shen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hang Pei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guanyin Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziyue Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinshi Wei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinsheng Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Wang
- Anji County Hospital of Chinese Medicine, Zhejiang, China
| | - Jiang Hua
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Bangjian He
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
29
|
Yang X, Cai S, Gong J, Zhang J, Lian M, Chen R, Zhou L, Bai P, Liu B, Zhuang M, Tan H, Xu J, Li M. Characterization of gut microbiota in patients with stage 3-4 chronic kidney disease: a retrospective cohort study. Int Urol Nephrol 2024; 56:1751-1762. [PMID: 38085410 DOI: 10.1007/s11255-023-03893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/16/2023] [Indexed: 04/09/2024]
Abstract
PURPOSE Multiple factors, such as dietary patterns, pharmaceutical interventions, and exposure to harmful substances, possess the capacity to influence gut microbiota composition. Gut microbiota dysbiosis has emerged as a significant contributor to the progression of chronic kidney disease (CKD) and its associated complications. By comprehending the intricacies of the intestinal microbiota, this research endeavor holds the potential to offer novel perspectives on potential strategies for mitigating CKD progression. METHODS In this retrospective analysis, we assessed gut microbiota composition in CKD patients. Fecal samples were collected from a cohort of 44 patients with stage 3-4 CKD, alongside a control group consisting of 132 healthy volunteers. Subsequently, 16 s rDNA sequencing was conducted to examine the composition of the gut microbiota. RESULTS Our findings revealed significant alterations in the diversity of intestinal microbiota in fecal samples between patients with stage 3-4 CKD and healthy subjects. Among the 475 bacterial genera, 164 were shared, while 242 dominant genera were exclusive to healthy subjects and 69 to CKD stages 3-4 samples. Notably, healthy volunteers exhibited a prevalence of intestinal Firmicutes and Bacteroidetes, whereas stage 3-4 CKD patients displayed higher abundance of Proteobacteria and Actinobacteria. The presence of uncultured Coprobacillus sp. notably contributed to distinguishing between the two groups. ROC curve analysis identified distinct microbiota with superior diagnostic efficacy for discriminating stage 3-4 CKD patients from healthy individuals. Metabolic pathway analysis revealed differing dominant pathways between the two groups-the NADH dehydrogenase pathway in healthy individuals and the phosphate acetyltransferase pathway in stage 3-4 CKD patients. Moreover, the CKD cohort displayed a higher proportion of Gram-negative bacteria and facultative anaerobes. CONCLUSIONS In conclusion, our study underscores the profound influence of gut microbiota dysbiosis on CKD progression. The distinct microbial profiles observed in CKD patients highlight the potential efficacy of microbiota-based interventions in mitigating CKD advancement.
Collapse
Affiliation(s)
- Xiali Yang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Shiying Cai
- Department of Nursing, Shenzhen Hospital of Southern Medical University, Shenzhen, 518101, People's Republic of China
- School of Nursing, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinsheng Gong
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Jun Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Minling Lian
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Rufu Chen
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Linghui Zhou
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Peijin Bai
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Bo Liu
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Minting Zhuang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Honghong Tan
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No.150 Jimo Road, Shanghai, 200120, People's Republic of China.
| | - Juan Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China.
| | - Meizhen Li
- Department of Nutrition, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China.
| |
Collapse
|
30
|
Aggeletopoulou I, Tsounis EP, Triantos C. Vitamin D and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Novel Mechanistic Insights. Int J Mol Sci 2024; 25:4901. [PMID: 38732118 PMCID: PMC11084591 DOI: 10.3390/ijms25094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.
Collapse
Affiliation(s)
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
31
|
Sharma MK, Kim WK. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals (Basel) 2024; 14:1015. [PMID: 38612254 PMCID: PMC11010854 DOI: 10.3390/ani14071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian coccidiosis, despite advancements in management, nutrition, genetics, and immunology, still remains the most impactful disease, imposing substantial economic losses to the poultry industry. Coccidiosis may strike any avian species, and it may be mild to severe, depending on the pathogenicity of Eimeria spp. and the number of oocysts ingested by the bird. Unlike broilers, low emphasis has been given to laying hens. Coccidiosis in laying hens damages the gastrointestinal tract and causes physiological changes, including oxidative stress, immunosuppression, and inflammatory changes, leading to reduced feed intake and a drastic drop in egg production. Several countries around the world have large numbers of hens raised in cage-free/free-range facilities, and coccidiosis has already become one of the many problems that producers have to face in the future. However, limited research has been conducted on egg-laying hens, and our understanding of the physiological changes following coccidiosis in hens relies heavily on studies conducted on broilers. The aim of this review is to summarize the effect of coccidiosis in laying hens to an extent and correlate it with the physiological changes that occur in broilers following coccidiosis. Additionally, this review tries to explore the nutritional strategies successfully used in broilers to mitigate the negative effects of coccidiosis in improving the gut health and performance of broilers and if they can be used in laying hens.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
32
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
33
|
Ding YJ, Li XN, Xiao Z, Li CY, Jia LH. Low vitamin D during pregnancy is associated with infantile eczema by up-regulation of PI3K/AKT/mTOR signaling pathway and affecting FOXP3 expression: A bidirectional cohort study. J Nutr Biochem 2024; 124:109516. [PMID: 37925089 DOI: 10.1016/j.jnutbio.2023.109516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Vitamin D has received increasing attention because of its association with atopic disease development. Limited studies that have been done on the impact of maternal vitamin D levels during pregnancy on infantile eczema are still debatable. We wanted to discover the effect of maternal vitamin D on infantile eczema and explore whether regulatory T cells (Treg) play a role in this process. 219 pairs of mothers and children were enrolled. Maternal fasting venous blood was collected in pregnancy's second and third trimesters to determine vitamin D levels. Cord blood and placenta samples were collected during childbirth for detecting levels of genes, proteins and cytokines. Pediatricians followed up the prevalence of eczema in infants within 1 year. The reported rate of vitamin D deficiency and insufficiency was 35.6% and 28.3%. Lower maternal 25(OH)D3 levels were related to a higher risk of infantile eczema. Foxp3 gene expression is lower in cord blood of infants with eczema compared to infants without eczema. There was a positive correlation between maternal 25(OH)D3 levels and the expression of FOXP3 gene in cord blood. Compared to vitamin D sufficiency women, vitamin D deficiency women's placental FOXP3 protein expression was decreased and PI3K/AKT/mTOR protein was up-regulated. Our study demonstrates that low prenatal maternal vitamin D levels increased the risk of infantile eczema aged 0-1 year, which might be related to the downregulating of the FOXP3 gene expression in cord blood and decreased placental FOXP3 protein expression. Low placental FOXP3 protein was related with activating PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ya-Jie Ding
- Huizhou Institute for Occupational Health, Huizhou, China; Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, China
| | - Xue-Ning Li
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Xiao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, China
| | - Chen-Yang Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, China
| | - Li-Hong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, China.
| |
Collapse
|
34
|
Chienwichai P, Tipthara P, Tarning J, Limpanont Y, Chusongsang P, Chusongsang Y, Kiangkoo N, Adisakwattana P, Reamtong O. Identification of trans-genus biomarkers for early diagnosis of intestinal schistosomiasis and progression of gut pathology in a mouse model using metabolomics. PLoS Negl Trop Dis 2024; 18:e0011966. [PMID: 38381759 PMCID: PMC10880994 DOI: 10.1371/journal.pntd.0011966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Schistosomiasis is one of the most devastating human diseases worldwide. The disease is caused by six species of Schistosoma blood fluke; five of which cause intestinal granulomatous inflammation and bleeding. The current diagnostic method is inaccurate and delayed, hence, biomarker identification using metabolomics has been applied. However, previous studies only investigated infection caused by one Schistosoma spp., leaving a gap in the use of biomarkers for other species. No study focused on understanding the progression of intestinal disease. Therefore, we aimed to identify early gut biomarkers of infection with three Schistosoma spp. and progression of intestinal pathology. We infected 3 groups of mice, 3 mice each, with Schistosoma mansoni, Schistosoma japonicum or Schistosoma mekongi and collected their feces before and 1, 2, 4 and 8 weeks after infection. Metabolites in feces were extracted and identified using mass spectrometer-based metabolomics. Metabolites were annotated and analyzed with XCMS bioinformatics tool and Metaboanalyst platform. From >36,000 features in all conditions, multivariate analysis found a distinct pattern at each time point for all species. Pathway analysis reported alteration of several lipid metabolism pathways as infection progressed. Disturbance of the glycosaminoglycan degradation pathway was found with the presence of parasite eggs, indicating involvement of this pathway in disease progression. Biomarkers were discovered using a combination of variable importance for projection score cut-off and receiver operating characteristic curve analysis. Five molecules met our criteria and were present in all three species: 25-hydroxyvitamin D2, 1α-hydroxy-2β-(3-hydroxypropoxy) vitamin D3, Ganoderic acid Md, unidentified feature with m/z 455.3483, and unidentified feature with m/z 456.3516. These molecules were proposed as trans-genus biomarkers of early schistosomiasis. Our findings provide evidence for disease progression in intestinal schistosomiasis and potential biomarkers, which could be beneficial for early detection of this disease.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nuttapohn Kiangkoo
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
35
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
36
|
Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol 2024; 14:1323233. [PMID: 38235147 PMCID: PMC10792057 DOI: 10.3389/fimmu.2023.1323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Liu C, Liu X, Shi H, Chen F, Sun L, Gao X, Wang Y. The correlation between serum 25-hydroxyvitamin D level and ulcerative colitis: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2023; 35:1375-1381. [PMID: 37851357 DOI: 10.1097/meg.0000000000002670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE The incidence of UC has increased yearly. Many studies have suggested that patients with ulcerative colitis have abnormal vitamin D levels. A systematic review and meta-analysis were conducted to investigate the association between vitamin D levels and ulcerative colitis. METHODS We searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang and China Science and Technology Journal Database (VIP) from inception to December 2022. We included case-control studies comparing the differences in vitamin D levels between patients with ulcerative colitis and healthy populations. Meta-analysis was performed using Review Manager5.4, Stata17.0 and other software. RESULTS Sixteen eligible observational studies were selected from 473 articles involving 2234 subjects, and they included 987 patients with ulcerative colitis and 1247 controls. The results showed that the serum level of vitamin D in patients with ulcerative colitis was significantly lower than that in healthy controls (SMD = -0.83, 95% CI: -1.18, -0.48). Vitamin D deficiency was reported in five studies. The prevalence of vitamin D deficiency was significantly higher in the ulcerative colitis group than in the healthy control group (OR = 1.90, 95% CI: 1.38, 2.62). CONCLUSION Serum vitamin D levels were significantly lower in patients with ulcerative colitis than in healthy controls.
Collapse
Affiliation(s)
- Chenyu Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang HQ, Zhao MX, Hong SC, He X, Tao L, Tong CC, Jing Guan, Xu DX, Chen X. 1,25(OH) 2D 3 alleviates oxidative stress and inflammation through up-regulating HMGCS2 in DSS-induced colitis. Int Immunopharmacol 2023; 125:111131. [PMID: 38149572 DOI: 10.1016/j.intimp.2023.111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Previous study found that supplements with active vitamin D3 alleviated experimental colitis. The objective of this study was to investigate the possible role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a ketone synthase, on vitamin D3 protecting against experimental colitis. METHODS HMGCS2 and vitamin D receptor (VDR) were measured in UC patients. The effects of vitamin D deficiency (VDD) and exogenous 1,25(OH)2D3 supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. DSS-induced oxidative stress and inflammation were analyzed in HT-29 cells. HMGCS2 was detected in 1,25(OH)2D3-pretreated HT-29 cells and mouse intestines. HMGCS2 was silenced to investigate the role of HMGCS2 in 1,25(OH)2D3 protecting against experimental colitis. RESULTS Intestinal HMGCS2 downregulation was positively correlated with VDR reduction in UC patients. The in vivo experiments showed that VDD exacerbated DSS-induced colitis. By contrast, 1,25(OH)2D3 supplementation ameliorated DSS-induced colon damage, oxidative stress and inflammation. HMGCS2 was up-regulated after 1,25(OH)2D3 supplementation both in vivo and in vitro. Transfection with HMGCS2-siRNA inhibited antioxidant and anti-inflammatory effects of 1,25(OH)2D3 in DSS-treated HT-29 cells. CONCLUSION 1,25(OH)2D3 supplementation up-regulates HMGCS2, which is responsible for 1,25(OH)2D3-mediated protection against oxidative stress and inflammation in DSS-induced colitis. These findings provide a potential therapeutic strategy for alleviating colitis-associated oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hong-Qian Wang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China
| | - Meng-Xue Zhao
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China
| | - Shao-Cheng Hong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China
| | - Xue He
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China
| | - Li Tao
- Department of Gastroenterology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng-Cheng Tong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China
| | - Jing Guan
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Digestive Diseases of Anhui Province, Hefei, China.
| |
Collapse
|
39
|
He Y, Huang X, Zhang J, Liao J, Huang H, He Y, Gao M, Liao Y, Xiong Z. Decreased Peripheral Blood Lymphocyte Count Predicts Poor Treatment Response in Peritoneal Dialysis-Associated Peritonitis. J Inflamm Res 2023; 16:5327-5338. [PMID: 38026234 PMCID: PMC10658940 DOI: 10.2147/jir.s438674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Peripheral blood lymphocyte counts is a pivotal parameter in assessing the host's immune response during maladies and the equilibrium of the immune system which has been found to correlate with various diseases progression and prognosis. However, there was no study on patients with peritoneal dialysis-associated peritonitis (PDAP). We sought to investigate the prognostic value of baseline peripheral blood lymphocyte count in PDAP patients. Patients and methods This retrospective study analyzed data from 286 PDAP patients over nine years. Episodes were categorized according to the tertiles of peripheral blood lymphocyte counts (Very Low Lymphocyte Count (VLLC) Group, <0.72×106/L; Low Lymphocyte Count (LLC) Group, 0.72-1.11×106/L; Normal Lymphocyte Count (NLC) Group, ≥ 1.11×106/L). Demographic, laboratory, and infection-related variables were analyzed. Cox regression and generalized estimating equation (GEE) models were used to estimate the association between lymphocyte counts and PDAP treatment failure, which included PD catheter removal and death. Results After adjusting for other potential predictors, decreased lymphocyte counts exhibited an incremental relationship with the risk of treatment failure. The VLLC group indicated a 270% (95% CI, 1.168-6.247, P=0.020) and 273% (95% CI, 1.028-7.269, P=0.044) increased venture of treatment failure in Cox regression and GEE analyses, respectively, compared with the NLC group. As a continuous variable, the restricted cubic spline showed a linear negative correlation between lymphocyte counts and the treatment failure risk (P for overall = 0.026). The multivariate model C (combined lymphocyte count with baseline age, sex, dialysis age, Charlson Comorbidity index (CCI), etiology of kidney failure, hemoglobin, albumin, total bilirubin and infection type) showed an area under the curve of 0.824 (95% CI, 0.767-0.881, P=0.001) for the prediction of treatment failure. Conclusion Lower lymphocyte counts are linked to increased PDAP treatment failure risk. This highlights lymphocyte count's potential as a prognostic indicator for PDAP.
Collapse
Affiliation(s)
- YuJian He
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- Renal Division, PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, People’s Republic of China
| | - XiaoYan Huang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jingwen Zhang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jinlan Liao
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Huie Huang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yan He
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Min Gao
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yumei Liao
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zibo Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
40
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Abdelrahman BA, El-Khatib AS, Attia YM. Insights into the role of vitamin D in targeting the culprits of non-alcoholic fatty liver disease. Life Sci 2023; 332:122124. [PMID: 37742738 DOI: 10.1016/j.lfs.2023.122124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vitamin D (VD) is a secosteroid hormone that is renowned for its crucial role in phospho-calcium homeostasis upon binding to the nuclear vitamin D receptor (VDR). Over and above, the pleiotropic immunomodulatory, anti-inflammatory, and metabolic roles VD plays in different disease settings started to surface in the past few decades. On the other hand, a growing body of evidence suggests a correlation between non-alcoholic fatty liver disease (NAFLD) and its progressive inflammatory form non-alcoholic steatohepatitis (NASH) with vitamin D deficiency (VDD) owing to the former's ingrained link with obesity and metabolic syndrome. Accordingly, a better understanding of the contribution of disrupted VDR signalling to NAFLD incidence and progression would provide further insights into its diagnosis, treatment modalities, and prognosis. This is especially significant as, hitherto, no drug for NAFLD has been approved. This review, therefore, sought to set forth the likely contribution of VDR signalling in NAFLD and how it might influence its multiple drivers.
Collapse
Affiliation(s)
- Basma A Abdelrahman
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yasmeen M Attia
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
42
|
James JP, Nielsen BS, Christensen IJ, Langholz E, Malham M, Poulsen TS, Holmstrøm K, Riis LB, Høgdall E. Mucosal expression of PI3, ANXA1, and VDR discriminates Crohn's disease from ulcerative colitis. Sci Rep 2023; 13:18421. [PMID: 37891214 PMCID: PMC10611705 DOI: 10.1038/s41598-023-45569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Differential diagnosis of inflammatory bowel disease (IBD) to Crohn's disease (CD) or ulcerative colitis (UC) is crucial for treatment decision making. With the aim of generating a clinically applicable molecular-based tool to classify IBD patients, we assessed whole transcriptome analysis on endoscopy samples. A total of 408 patient samples were included covering both internal and external samples cohorts. Whole transcriptome analysis was performed on an internal cohort of FFPE IBD samples (CD, n = 16 and UC, n = 17). The 100 most significantly differentially expressed genes (DEG) were tested in two external cohorts. Ten of the DEG were further processed by functional enrichment analysis from which seven were found to show consistent significant performance in discriminating CD from UC: PI3, ANXA1, VDR, MTCL1, SH3PXD2A-AS1, CLCF1, and CD180. Differential expression of PI3, ANXA1, and VDR was reproduced by RT-qPCR, which was performed on an independent sample cohort of 97 patient samples (CD, n = 44 and UC, n = 53). Gene expression levels of the three-gene profile, resulted in an area under the curve of 0.84 (P = 0.02) in discriminating CD from UC, and therefore appear as an attractive molecular-based diagnostic tool for clinicians to distinguish CD from UC.
Collapse
Affiliation(s)
| | | | - Ib Jarle Christensen
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
| | - Ebbe Langholz
- Gastroenheden D, Herlev University Hospital, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mikkel Malham
- The Department of Pediatric and Adolescence Medicine, Copenhagen University Hospital-Amager and Hvidovre, 2650, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Hvidovre Hospital, University of Copenhagen, 2650, Hvidovre, Denmark
| | - Tim Svenstrup Poulsen
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
| | - Kim Holmstrøm
- Bioneer A/S, Hørsholm, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
43
|
Furci F, Cicero N, Allegra A, Gangemi S. Microbiota, Diet and Acute Leukaemia: Tips and Tricks on Their Possible Connections. Nutrients 2023; 15:4253. [PMID: 37836537 PMCID: PMC10574113 DOI: 10.3390/nu15194253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Acute leukaemia is probably one of the most recurrent cancers in children and younger adults, with an incidence of acute lymphoblastic leukaemia in 80% of cases and an incidence of acute myeloid leukaemia in 15% of cases. Yet, while incidence is common in children and adolescents, acute leukaemia is a rare disease whose aetiology still requires further analysis. Many studies have investigated the aetiology of acute leukaemia, reporting that the formation of gut microbiota may be modified by the start and development of many diseases. Considering that in patients affected by acute lymphoblastic leukaemia, there is an inherent disequilibrium in the gut microbiota before treatment compared with healthy patients, increasing evidence shows how dysbiosis of the gut microbiota provokes an inflammatory immune response, contributing to the development of cancer. Our analysis suggeststhe key role of gut microbiota in the modulation of the efficacy of leukaemia treatment as well as in the progress of many cancers, such as acute leukaemia. Therefore, in this paper, we present an examination of information found in literature regarding the role of dietary factors and gut microbiota alterations in the development of leukaemia and suggest possible future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
44
|
Yao C, Gou X, Tian C, Zhou L, Hao R, Wan L, Wang Z, Li M, Tong X. Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites. J Genet Genomics 2023; 50:735-746. [PMID: 36566949 DOI: 10.1016/j.jgg.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interactions between diet and the intestinal microbiome play an important role in human health and disease development. It is well known that such interactions, whether direct or indirect, trigger a series of metabolic reactions in the body. Evidence suggests that intestinal stem cells (ISCs), which are phenotypic precursors of various intestinal epithelial cells, play a significant role in the regulation of intestinal barrier function and homeostasis. The advent and evolution of intestinal organoid culture techniques have presented a key opportunity to study the association between the intestinal microenvironment and ISCs. As a result, the effects exerted by dietary factors, intestinal microbiomes, and their metabolites on the metabolic regulation of ISCs and the potential mechanisms underlying such effects are being gradually revealed. This review summarises the effects of different dietary patterns on the behaviour and functioning of ISCs and focuses on the crosstalk between intestinal microbiota, related metabolites, and ISCs, with the aim of fully understanding the relationship between these three factors and providing further insights into the complex mechanisms associated with ISCs in the human body. Gaining an understanding of these mechanisms may lead to the development of novel dietary interventions or drugs conducive to intestinal health.
Collapse
Affiliation(s)
- Chensi Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaowen Gou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chuanxi Tian
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Rui Hao
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Wan
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
45
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
46
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
47
|
McGuire BD, Dees A, Hao L, Buckendahl P, Ogilvie AR, Sun H, Rezaee T, Barrett LO, Karim L, Dominguez-Bello MG, Bello NT, Shapses SA. A vitamin D deficient diet increases weight gain and compromises bone biomechanical properties without a reduction in BMD in adult female mice. J Steroid Biochem Mol Biol 2023; 231:106314. [PMID: 37088440 DOI: 10.1016/j.jsbmb.2023.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Vitamin D contributes to the development and maintenance of bone. Evidence suggests vitamin D status can also alter energy balance and gut health. In young animals, vitamin D deficiency (VDD) negatively affects bone mineral density (BMD) and bone microarchitecture, and these effects may also occur due to chronic ethanol intake. However, evidence is limited in mature models, and addressing this was a goal of the current study. Seven-month-old female C57BL/6 mice (n = 40) were weight-matched and randomized to one of four ad libitum diets: control, alcohol (Alc), vitamin D deficient (0 IU/d), or Alc+VDD for 8 weeks. A purified (AIN-93) diet was provided with water or alcohol (10 %) ad libitum. Body weight and food intake were recorded weekly, and feces were collected at 0, 4, and 8 weeks. At the age of 9 months, intestinal permeability was assessed by oral gavage of fluorescein isothiocyanate-dextran. Thereafter, bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. The microarchitecture of the distal femur was assessed by micro-computed tomography and biomechanical properties were evaluated by cyclic reference point indentation. VDD did not affect BMD or most bone microarchitecture parameters, however, the polar moment of inertia (p < 0.05) was higher in the VDD groups compared to vitamin D sufficient groups. VDD mice also had lower whole bone water content (p < 0.05) and a greater average unloading slope (p < 0.01), and energy dissipated (p < 0.01), indicating the femur displayed a brittle phenotype. In addition, VDD caused a greater increase in energy intake (p < 0.05), weight gain (p < 0.05), and a trend for higher intestinal permeability (p = 0.08). The gut microbiota of the VDD group had a reduction in alpha diversity (p < 0.05) and a lower abundance of ASVs from Rikenellaceae, Clostridia_UCG-014, Oscillospiraceae, and Lachnospiraceae (p < 0.01). There was little to no effect of alcohol supplementation on outcomes. Overall, these findings suggest that vitamin D deficiency causes excess weight gain and reduces the biomechanical strength of the femur as indicated by the higher average unloading slope and energy dissipated without an effect on BMD in a mature murine model.
Collapse
Affiliation(s)
- Brandon D McGuire
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Azra Dees
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Lihong Hao
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Anna R Ogilvie
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Haipeng Sun
- Department of Microbiology and Biochemistry, New Brunswick, NJ, USA
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Leland O Barrett
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Maria Gloria Dominguez-Bello
- Department of Microbiology and Biochemistry, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Medicine, Rutgers-Robert Wood Johnson Univ. Hospital, New Brunswick, NJ, USA.
| |
Collapse
|
48
|
Luo M, Xu Y, Li J, Luo D, Zhu L, Wu Y, Liu X, Wu P. Vitamin D protects intestines from liver cirrhosis-induced inflammation and oxidative stress by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Open Med (Wars) 2023; 18:20230714. [PMID: 37273916 PMCID: PMC10238812 DOI: 10.1515/med-2023-0714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/14/2023] [Accepted: 04/15/2023] [Indexed: 06/06/2023] Open
Abstract
Liver cirrhosis affects the structures and physiological functions of the intestine. Our previous study revealed that liver injury inhibited 25-hydroxylation of vitamin D (25(OH)-VD). The aim of this study was to investigate the roles and mechanisms of vitamin D in liver cirrhosis-induced intestinal injury. The rat liver cirrhosis model was established through the administration of carbon tetrachloride (CCl4) for 8 weeks. Hematoxylin-eosin staining was performed to unveil the intestinal injury induced by liver cirrhosis. Enzyme-linked immunosorbent and reverse transcription PCR (RT-PCR) analysis were used to determine the levels of 25(OH)-VD, vitamin D receptor, Cytochrome P450 24A1 (CYP24A1), and α-defensin 5 (DEFA5) in rat and human serum of liver cirrhosis. Furthermore, liver cirrhosis rats were treated with low-dose (500 IU/kg) and high-dose (2,000 IU/kg) vitamin D intraperitoneally. The expression levels of TLR4/MyD88/NF-κB signaling pathway were evaluated by RT-PCR and Western blot. In conclusion, we determined the deficiency of vitamin D and down-regulation of DEFA5 and intestinal damage induced by liver cirrhosis. Moreover, vitamin D effectively inhibited liver cirrhosis-induced intestinal inflammation and oxidative stress through the TLR4/MyD88/NF-κB pathway. Vitamin D might be a promising therapeutic strategy for future treatment of liver-induced intestinal injury.
Collapse
Affiliation(s)
- Mei Luo
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Yuanhong Xu
- Clinical Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Jike Li
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Dongxia Luo
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Li Zhu
- Hepatology Clinic, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Yanxi Wu
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Xiaodong Liu
- Clinical Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Pengfei Wu
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| |
Collapse
|
49
|
Yang J, Shi Y. Paneth cell development in the neonatal gut: pathway regulation, development, and relevance to necrotizing enterocolitis. Front Cell Dev Biol 2023; 11:1184159. [PMID: 37266449 PMCID: PMC10231676 DOI: 10.3389/fcell.2023.1184159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Paneth cells (PCs) are intestinal epithelial cells (IECs) that contain eosinophilic granules, which are located in Lieberkühn crypts. An increasing number of animal and human experiments have indicated that PCs are involved in the progression of a variety of intestinal as well as systemic inflammatory responses including necrotizing enterocolitis (NEC). NEC is an enteric acquired disease with high mortality that usually occurs in premature infants and neonates, however the underlying mechanisms remain unclear. In this review, we summarize the features of PCs, including their immune function, association with gut microbiota and intestinal stem cells, and their mechanism of regulating IEC death to explore the possible mechanisms by which PCs affect NEC.
Collapse
|
50
|
Tabassum A, Ali A, Zahedi FD, Ismail NAS. Immunomodulatory Role of Vitamin D on Gut Microbiome in Children. Biomedicines 2023; 11:biomedicines11051441. [PMID: 37239112 DOI: 10.3390/biomedicines11051441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D plays a role in regulating the immune system and can be linked to the alteration of the gut microbiome, which leads to several immunological diseases. This systematic review aims to explore the relationship between Vitamin D and children's gut microbiome, as well as its impact towards the immune system. We have systematically collated relevant studies from different databases concerning changes in the gut microbiome of children from infants to 18 years old associated with Vitamin D and the immunological pathways. The studies utilized 16S rRNA sequencing analysis of fecal matter with or without Vitamin D supplementation and Vitamin D levels. Ten studies were selected for the review, among which eight studies showed significant alterations in the gut microbiome related to Vitamin D supplementation or Vitamin D levels. The taxa of the phylum Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are the most altered in these studies. The alteration of the taxa alters the Th1 and Th2 pathways and changes the immune response. We will discuss how Vitamin D may contribute to the activation of immune pathways via its effects on intestinal barrier function, microbiome composition, and/or direct effects on immune responses. In conclusion, the studies examined in this review have provided evidence that Vitamin D levels may have an impact on the composition of children's gut microbiomes.
Collapse
Affiliation(s)
- Anika Tabassum
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Farah Dayana Zahedi
- Department of Otorhinolaryngology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|