1
|
Koparde SV, Nille OS, Kolekar AG, Bote PP, Gaikwad KV, Anbhule PV, Pawar SP, Kolekar GB. Okra peel-derived nitrogen-doped carbon dots: Eco-friendly synthesis and multi-functional applications in heavy metal ion sensing, nitro compound detection and environmental remediation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124659. [PMID: 38943759 DOI: 10.1016/j.saa.2024.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
The present study explores the kitchen waste okra peels derived synthesis of nitrogen doped carbon dots (N-CDs) via simple carbonization followed by reflux method. The synthesized N-CDs was characterized using, TEM, XPS, FTIR, XRD, Raman, UV-Visible and Fluorescence Spectroscopy. The N-CDs emits bright blue emission at 420 nm with 12 % of quantum yield as well as it follows excitation dependent emission. Further, the N-CDs were employed as a fluorescence sensor for detection of hazardous metal ions and nitro compounds. Among various metal ions and nitro compounds, the N-CDs shows fluorescence quenching response towards Cr6+, and Mn7+ metal ions as well as 4-nitroaniline (4-NA) and picric acid (PA) with significant hypsochromic and bathochromic shift for Mn7+, 4-NA and PA respectively. The developed fluorescent probe shows relatively low limit of detection (LOD) of 1.46 µg/mL, 1.05 µg/mL, 2.1 µg/mL and 2.2 µg/mL for the above analytes respectively. The N-CDs did not show any significant interference with coexisting ions and successfully applied for real water sample analysis. In addition, circular economy approach was employed for adsorption of dyes by reactivating leftover waste carbon residue which was obtained after reflux. Thus, the kitchen waste valorization and circular economy approach based N-CDs have potential applications in the field of detection of emerging pollutants, and environmental remediation.
Collapse
Affiliation(s)
- Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India; Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Prachi P Bote
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Kishor V Gaikwad
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Samadhan P Pawar
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India.
| |
Collapse
|
2
|
Zhuge R, Zhang L, Xue Q, Wang R, Xu J, Wang C, Meng C, Lu R, Yin F, Guo L. Ferritinophagy is involved in hexavalent chromium-induced ferroptosis in Sertoli cells. Toxicol Appl Pharmacol 2024; 492:117139. [PMID: 39486596 DOI: 10.1016/j.taap.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Hexavalent chromium [Cr(VI)] has significant adverse effects on the environment and human health, particularly on the male reproductive system. Previously, we observed ferroptosis and autophagy in rat testicular injury induced by Cr(VI). In the present study, we focused on the association between ferroptosis and autophagy in mouse Sertoli cells (TM4) exposed to concentrations of 2.5 μМ, 5 μМ, and 10 μМ Cr(VI). Cr(VI) exposure altered mitochondrial ultrastructure; increased intracellular iron, malondialdehyde, and reactive oxygen species (ROS) levels; decreased glutathione content; increased TfR1 protein expression; and decreased GPX4, FPN1, and SLC7A11 protein expression, ultimately resulting in ferroptosis. Additionally, we observed ferritinophagy, increased expression of BECLIN1, LC3B, and NCOA4, and decreased expression of FTH1 and P62. Inhibition of autophagy and ferritinophagy via 3-MA and small interfering RNA (siRNA)-mediated silencing of NCOA4 ameliorated changes in ferritinophagy- and ferroptosis-associated protein expression, and reduced ROS levels. Rats exposed to Cr(VI) exhibited atrophy of testicular seminiferous tubules, a reduction in germ and Sertoli cells, and the occurrence of ferritinophagy and ferroptosis in cells of the rat testes. These results indicate that ferroptosis, triggered by NCOA4-mediated ferritinophagy, is one of the mechanisms that contribute to Cr(VI)-induced damage in Sertoli cells.
Collapse
Affiliation(s)
- Ruijian Zhuge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jiayunzhu Xu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
3
|
Chen Q, Chen S, Chen Z, Tang K, Zeng L, Sun W, Wu F, Chen J, Lan J. Nucleic acid-functionalized upconversion luminescence biosensor based on strand displacement-mediated signal amplification for the detection of trivalent chromium ions. Anal Chim Acta 2024; 1328:343161. [PMID: 39266193 DOI: 10.1016/j.aca.2024.343161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Rapid industrial development has generated serious pollution, including the presence of toxic and harmful heavy metal ions. Among them, trivalent chromium ion (Cr3+) is a very important element that poses a threat to life and health in our industrial wastewater pollution. Thus, it is important to develop efficient fluorescence methods for Cr3+ detection. In this study, an upconversion luminescence biosensor for detecting Cr3+ was constructed based on a DNAzyme, strand displacement reaction (SDR), and DNA-functionalized upconversion nanoparticles (UCNPs). RESULTS The sulfonate-rich poly (sodium 4-styrene sulfonate) (PSS) was modified onto the surface of UCNPs, forming UCNPs@PSS. Then, NH2-Capture probe DNA (NH2-Cp) was further modified onto the UCNPs@PSS surface through sulfonylation, resulting in UCNPs@PSS@NH2-Cp. The DNAzyme activated by Cr3+ triggered the release of the primer probe (Pp), which initiated the SDR system cycle, thereby releasing a tetramethylrhodamine (TAMRA)-modified signal probe (TAMRA-Sp). Finally, UCNPs@PSS@NH2-Cp bound to TAMRA-Sp through complementary base pairing, causing UCNPs and TAMRA to approach each other. Because of the luminescence resonance energy transfer (LRET) mechanism, the upconversion luminescence (UCL) signal of the UCNPs was quenched by TAMRA, enabling the detection of Cr3+ by the change of I585/I545 ratio. This biosensor has good stability, selectivity, and sensitivity, with a linear range of 0.5-75 nM and a detection limit of 0.135 nM for Cr3+. SIGNIFICANCE AND NOVELTY Firstly, based on LRET between UCNPs and TAMRA, the quantitative analysis of Cr3+ is achieved through the changes of ratio fluorescence. Secondly, the specificity of the biosensor is improved by utilizing the specific recognition of DNA enzymes. Thirdly, the signal amplification technology of the SDR cycle greatly improves the sensitivity of biosensor. This biosensor will be useful for future environmental safety monitoring and biopsy of biological fluids.
Collapse
Affiliation(s)
- Qiang Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhiwei Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Keren Tang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Fang Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China.
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
4
|
Jolaosho TL, Elegbede IO, Akintola SL, Jimoh AA, Ndimele PE, Mustapha AA, Adukonu JD. Bioaccumulation dynamics, noncarcinogenic and carcinogenic risks of heavy metals in commercially valuable shellfish and finfish species from the world largest floating slum, Makoko, Nigeria. MARINE POLLUTION BULLETIN 2024; 207:116807. [PMID: 39128235 DOI: 10.1016/j.marpolbul.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
This study examined ten heavy metals in five species: Macrobrachium vollenhovenii, Penaeus monodon, P. notialis, Chloroscombrus chrysurus, and Pseudotolithus typus, from Makoko floating slum, Lagos Lagoon to discern their bioaccumulation potentials, sources of origin, and health implications. The concentrations were in this order: Fe (4.172-10.176) > Zn (1.310-5.754) > Mn (0.475-2.330) > Cu (0.238-1.735) > Pb (0.121-0.391) > Cd (0.055-0.283) > Co (0.056-0.144) > Ni (0.039-0.121) > Cr (0.022-0.095) > As (0.003-0.031) mg/kg. The MPDI denotes "low toxicity," and the BAF/BSAF revealed that benthic species had higher bioconcentration potentials. Multivariate analyses revealed that heavy metals exhibited mutual relationships during chemical transport, and their sources were both geogenic and human-induced. The HI values were below 1, and the TCR values were below the threshold of 1 × 10-4. This suggests that the probabilities of noncancer and carcinogenic risks in human populations due to long-term consumption of the evaluated species are unlikely.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria; Spatial Science, Islands and Sustainability, University of Groningen, Netherlands.
| | - Isa Olalekan Elegbede
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.
| | - Shehu Latunji Akintola
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.
| | | | - Prince Emeka Ndimele
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.
| | | | - Joshua Damilola Adukonu
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.
| |
Collapse
|
5
|
Guo Q, Yu D, Yang J, Zhao T, Yu D, Li L, Wang D. A novel sequential extraction method for the measurement of Cr(VI) and Cr(III) species distribution in soil: New insights into the chromium speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135864. [PMID: 39298968 DOI: 10.1016/j.jhazmat.2024.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The distribution characteristics of Cr(VI) species in contaminated soil is crucial for soil remediation; however, there is currently a lack of methods for analysing anionic Cr(VI) species in soil. This study has developed a novel sequential extraction method for speciation of Cr(VI) and Cr(III). Besides extraction experiments, simulated chromium species were prepared to verify the presence of proposed chromium species. The results show that Cr(VI) species in soil can be categorized into water-soluble Cr(VI), electrostatically adsorbed Cr(VI), Cr(VI) specifically adsorbed by minerals containing exchangeable Ca2+, Cr(VI) specifically adsorbed by hydrous metal oxides, calcium chromate Cr(VI) and stable complexed adsorption Cr(VI). These Cr(VI) species can be selectively extracted by specific solutions through ion exchange or weak acid dissolution. The most stable Cr(VI) species is Cr(VI) complexed by hydrous iron oxides through bidentate ligand binding; only by dissolution of hydrous iron oxides can this Cr(VI) species be leached. The distribution of Cr(VI) species is closely linked to particular soil compositions including exchangeable Ca2+ and hydrous iron oxides which determinate the Cr(VI) adsorption in soil. Cr(III) species comprise Fe-Cr coprecipitate hydroxides Cr(III), Fe-Mn oxide-bound Cr(III), organic matter-bound Cr(III) and residual Cr(III). Their distribution depends on the types of reductants present in the soil.
Collapse
Affiliation(s)
- Qian Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dongmei Yu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Yang
- Jiangbei District Ecological Environment Monitoring Station, Chongqing Bureau of Ecology and Environment, Chongqing 400025, PR China
| | - Ting Zhao
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dan Yu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, PR China.
| | - Duanjie Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
6
|
Ma T, He X, Liu X, Qiu XH, Ma JG, Cheng P. Construction of Stable 2D Cationic Breathing Ni-MOF for Cr(VI) Trapping and Electrochemical Sensing. Inorg Chem 2024. [PMID: 39266252 DOI: 10.1021/acs.inorgchem.4c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Pollution of surface water by heavy metal hexavalent chromium ions poses a serious threat to human health; herein, a two-dimensional (2D) cationic breathing Ni-MOF with free nitrate ions between the layers was designed and synthesized according to the characteristics of hexavalent chromium ions, {[Ni(L)2](NO3)2·5H2O}n (L = 1,3,5-tris[4-(imidazol-1-yl)phenyl]benzene). The flexible layer spacing of the 2D breathing Ni-MOF allows the exchange of NO3- by CrO42- without destroying the original structure. Electrostatic and hydrogen bonding interactions between CrO42- and Ni-MOF facilitate its exchange with NO3-. Moreover, CrO42- exhibits a higher binding energy with Ni-MOF compared to NO3-, and the hydrophobic channels of Ni-MOF favor CrO42- trapping due to its lower hydration energy. Consequently, Ni-MOF demonstrates both effective sorption and electrochemical sensing of Cr(VI), achieving a sensitivity of 2.091 μA μM-1 and a detection limit of 0.07 μM.
Collapse
Affiliation(s)
- Teng Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xingyue He
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Hang Qiu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Guo D, Wang X, Fu Q, Li L, Li R, Xu X, An X. Integrated tea polyphenols and polydopamine functionalized graphene anode for improved bioelectricity generation and Cr(VI) reduction in microbial fuel cells. CHEMOSPHERE 2024; 363:142858. [PMID: 39019194 DOI: 10.1016/j.chemosphere.2024.142858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Microbial fuel cells (MFCs) have the dual advantage of mitigating Cr(Ⅵ) wastewater ecological threats while generating electricity. However, the low electron transfer efficiency and the limited enrichment of active electrogens are barriers to MFCs advancement. This study describes the synthesis of the TP-PDA-RGO@CC negative electrode using tea polyphenol as a reducing agent and polydopamine-doped graphene, significantly enhances the roughness and hydrophilicity of the anode. The charge transfer resistance was reduced by 94%, and the peak MFC power was 1375.80 mW m-2. Under acidic conditions, the Cr(Ⅵ) reduction rate reached 92% within 24 h, with a 52% increase in coulombic efficiency. Biodiversity analysis shows that the TP-PDA-RGO@CC anode could enrich electrogens, thereby boosting the electron generation mechanism at the anode and enhancing the reduction efficiency of Cr(Ⅵ) in the cathode chamber. This work emphasizes high-performance anode materials for efficient pollutant removal, energy conversion, and biomass reuse.
Collapse
Affiliation(s)
- Deliang Guo
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Xinru Wang
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Qikai Fu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Ling Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Runze Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China.
| | - Xiongfang An
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
8
|
Gholami MD, Alzubaidi FM, Liu Q, Izake EL, Sonar P. Rapidly and simply detecting Cr (VI) in aqueous media via a diketopyrrolopyrrole-based chemosensor with both high selectivity and low LOD. Anal Chim Acta 2024; 1316:342861. [PMID: 38969410 DOI: 10.1016/j.aca.2024.342861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 μM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Fatimah M Alzubaidi
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Qian Liu
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
9
|
Feng M, Qiao L, Yu Q, Liu M, Zhang J, Wen S, Li X, Teng V, Yan L, Zhang C, Li S, Guo Y, Lu P. Blood chromium and lung function among Chinese young adults: A comprehensive analysis based on epidemiology and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116594. [PMID: 38941662 DOI: 10.1016/j.ecoenv.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Chromium (Cr) exposure is associated with various respiratory system diseases, but there are limited studies investigating its impact on lung function in young adults. The Cr exposure-related metabolomic changes are not well elucidated. This study recruited 608 students from a university in Shandong Province, China in 2019. We used cohort design fitted with linear mixed-effects models to assess the association between blood Cr concentration and lung function. In addition, we performed metabolomic and lipidomic analyses of baseline serum samples (N = 582) using liquid chromatography-mass spectrometry. Two-step statistical analysis (analysis of variance and mixed-linear effect model) was used to evaluate the effect of blood Cr exposure on metabolites. We found that blood Cr was associated with decreased lung function in young adults. Each 2-fold increase in blood Cr concentrations was significantly associated with decreased FEV1 and FVC by 35.26 mL (95 % CI: -60.75, -9.78) and 38.56 mL (95 % CI: -66.60, -10.51), respectively. In the metabolomics analysis, blood Cr exposure was significantly associated with 14 key metabolites. The changed metabolites were mainly enriched in six pathways including lipid metabolism, amino acid metabolism, and cofactor vitamin metabolism. Blood Cr may affect lung function through oxidative stress and inflammation related pathways.
Collapse
Affiliation(s)
- Mingyu Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Lingyan Qiao
- Binzhou Medical University, Yantai, Shandong, China
| | - Qingxia Yu
- Binzhou Medical University, Yantai, Shandong, China
| | - Meiling Liu
- YanTaiShan Hospital, YanTai, Shandong, China
| | - Jia Zhang
- Binzhou Medical University, Yantai, Shandong, China
| | - Shuo Wen
- Binzhou Medical University, Yantai, Shandong, China
| | - Xinyuan Li
- Binzhou Medical University, Yantai, Shandong, China
| | - Victor Teng
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Victoria, Melbourne, Australia
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | | | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Victoria, Melbourne, Australia
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Victoria, Melbourne, Australia.
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
10
|
Prasannakumari ASN, Madhu GDP, Bhuvanendran RK, Bhuvaneshwari S. Development of a continuous electrochemical reactor incorporated with waste-derived activated carbon electrode for the effective removal of hexavalent chromium from industrial effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50297-50315. [PMID: 39093392 DOI: 10.1007/s11356-024-34512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Being a recognized carcinogen, hexavalent chromium is hazardous to both human and environmental health. Thus, it is imperative to regulate and oversee their levels in a variety of industries, including textiles, dyes, pigments, and metal finishing. This study strives to reduce Cr(VI) in wastewater by using capacitive deionization in conjunction with an activated carbon-based electrode and a continuous electrochemical reactor (CER). Activated carbon derived from rubberwood sawdust demonstrated excellent properties, including a high surface area of 1157 m2 g-1. The electrical conductivity and mechanical stability of the electrode were enhanced by the incorporation of synthesized expanded graphite (EG) into the AC. Key parameters were optimized via systematic batch electroreduction experiments with an optimal response surface design. The efficacy of the fabricated CER was proved when it successfully reduced Cr(VI) in a 5 mg L-1 solution within 15 min under optimized conditions, in contrast to the considerably longer durations anticipated by conventional methods. Validation of these findings was done by treating industrial wastewater of 30 mg L-1 in the CER. The electroreduction of Cr(VI) followed the Langmuir isotherm with a maximum capacity of 13.491 mg g-1 and pseudo-second-order kinetics. These results indicate that the combined use of the modified AC electrode and CER holds potential as a sustainable and economical approach to effectively eliminate Cr(VI) from wastewater.
Collapse
Affiliation(s)
| | | | - Rahul Krishna Bhuvanendran
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Soundararajan Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601.
| |
Collapse
|
11
|
Cagnetta G, Yin Z, Qiu W, Vakili M. Mechanochemical Synthesis of Cross-Linked Chitosan and Its Application as Adsorbent for Removal of Per- and Polyfluoroalkyl Substances from Simulated Electroplating Wastewater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3006. [PMID: 38930375 PMCID: PMC11205816 DOI: 10.3390/ma17123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Chitosan is a promising adsorbent for removing a wide range of pollutants from wastewater. However, its practical application is hindered by instability in acidic environments, which significantly impairs its adsorption capacity and limits its utilization in water purification. While cross-linking can enhance the acid stability of chitosan, current solvent-based methods are often costly and environmentally unfriendly. In this study, a solvent-free mechanochemical process was developed using high-energy ball milling to cross-link chitosan with various polyanionic linkers, including dextran sulfate (DS), poly[4-styrenesulfonic acid-co-maleic acid] (PSSM), and tripolyphosphate (TPP). The mechanochemically cross-linked (MCCL) chitosan products exhibited superior adsorption capacity and stability in acidic solutions compared to pristine chitosan. Chitosan cross-linked with DS (Cht-DS) showed the highest Reactive Red 2 (RR2) adsorption capacity, reaching 1559 mg·g-1 at pH 3, followed by Cht-PSSM (1352 mg·g-1) and Cht-TPP (1074 mg·g-1). The stability of MCCL chitosan was visually confirmed by the negligible mass loss of Cht-DS and Cht-PSSM tablets in pH 3 solution, unlike the complete dissolution of the pristine chitosan tablet. The MCCL significantly increased the microhardness of chitosan, with the order Cht-DS > Cht-PSSM > Cht-TPP, consistent with the RR2 adsorption capacity. When tested on simulated rinsing wastewater from chromium electroplating, Cht-DS effectively removed Cr(VI) (98.75% removal) and three per- and polyfluoroalkyl substances (87.40-95.87% removal), following pseudo-second-order adsorption kinetics. This study demonstrates the potential of the cost-effective and scalable MCCL approach to produce chitosan-based adsorbents with enhanced stability, mechanical strength, and adsorption performance for treating highly acidic industrial wastewater containing a mixture of toxic pollutants.
Collapse
Affiliation(s)
- Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | - Zhou Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | - Wen Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | | |
Collapse
|
12
|
Tang W, Zhu X, Chen Y, Yang S, Wu C, Chen D, Xue L, Guo Y, Dai Y, Wei S, Wu M, Wu M, Wang S. Towards prolonging ovarian reproductive life: Insights into trace elements homeostasis. Ageing Res Rev 2024; 97:102311. [PMID: 38636559 DOI: 10.1016/j.arr.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Ovarian aging is marked by a reduction in the quantity and quality of ovarian follicles, leading to a decline in female fertility and ovarian endocrine function. While the biological characteristics of ovarian aging are well-established, the exact mechanisms underlying this process remain elusive. Recent studies underscore the vital role of trace elements (TEs) in maintaining ovarian function. Imbalances in TEs can lead to ovarian aging, characterized by reduced enzyme activity, hormonal imbalances, ovulatory disorders, and decreased fertility. A comprehensive understanding of the relationship between systemic and cellular TEs balance and ovarian aging is critical for developing treatments to delay aging and manage age-related conditions. This review consolidates current insights into TEs homeostasis and its impact on ovarian aging, assesses how altered TEs metabolism affects ovarian aging, and suggests future research directions to prolong ovarian reproductive life. These studies are expected to offer novel approaches for mitigating ovarian aging.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
13
|
Long T, Luo H, Li H, Sun J, Wang Y, Zhou J, Chen Y, Xu D. Fe-doping green fluorescent carbon dots via co-electrolysis of chrysoidine G and potassium ferrocyanide for sensitive Cr(VI) detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124010. [PMID: 38340446 DOI: 10.1016/j.saa.2024.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
In this study, we aimed to synthesis of Fe-doping green fluorescent carbon dots (G-CDs) through the co-electrolysis of chrysoidine G and potassium ferrocyanide for Cr(VI) detection. The use of potassium ferrocyanide improves the quantum yield and sensing performance of G-CDs toward Cr(VI). The G-CDs have a maximum excitation wavelength of 308 nm and an emission wavelength of 510 nm. Comprehensive analyses including Raman, FT-IR, and XPS provided insights into the chemical structure and composition of the G-CDs. Under optimal conditions, G-CDs demonstrated concentration-dependent quenching upon interaction with Cr(VI). A linear relationship within the range of 0.25-100 µM was established with a calibration equation of ΔF/F0 = 0.005 + 0.015CCr(VI), yielding an R2 value of 0.996 and a limit of detection of 0.15 μM. The applicability of the G-CDs method was demonstrated by successful Cr(VI) detection in water samples with recovery rates ranging from 98.8 % to 100.1 % and relative standard deviation within 3.0 %. The fluorescence lifetime and Zeta potential measurements confirmed that the mechanism was via a static quenching process, while redox reaction, nanoparticle aggregation, and surface charge variation also played significant roles.
Collapse
Affiliation(s)
- Tiantian Long
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, China
| | - Hongmei Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Hongchen Li
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Yang Wang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570000, China
| | - Jiaquan Zhou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570000, China
| | - Yi Chen
- Hunan Intellijoy Biotechnology Co., Ltd., Changsha, Hunan 410125, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China.
| |
Collapse
|
14
|
Mahmudiono T, Mansur Khalaf Al-Khazaleh J, Mohammadi H, Daraei H, Javid A, Sarafraz M, Heidarinejad Z, Fakhri Y, Atamaleki A, Mousavi Khaneghah A. The concentration of Potentially Toxic elements (PTEs) in the muscle of crabs: a global systematic review, meta-analysis, and health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2140-2166. [PMID: 37272268 DOI: 10.1080/09603123.2023.2218294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
The concentration of PTEs in the muscle of crabs, was meta-analyzed using a random-effects model based on countries' subgroups. The non-carcinogenic and carcinogenic risks related to the ingestion of PTEs via the consumption of crab fish were estimated. The meta-analysis included one hundred and eight papers with 109 data reports. The rank order of PTEs based on pooled (mean) concentration in the muscle of crabs was Ni (4.490 mg/kg-ww) > Pb (1.891 mg/kg-ww) >As (1.601 mg/kg-ww) > Cd (1.101 mg/kg-ww). The results showed that adults and children consumers in many countries are at risk of non-carcinogenicity due to ingestion of Ni, Pb, As, and Cd and carcinogenicity risk due to As. Therefore, the bioaccumulation of PTEs in the muscle of crabs can be considered a global health risk. Hence, to decrease the health risk of PTEs in the muscle of crabs, continuous monitoring and reducing the emission of PTEs in aquatic environments are recommended.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | | | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Allahbakhsh Javid
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zoha Heidarinejad
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski -Institute of Agricultural and Food Biotechnology, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
15
|
Qin Y, Xu H, Xi Y, Feng L, Chen J, Xu B, Dong X, Li Y, Jiang Z, Lou J. Effects of the SEMA4B gene on hexavalent chromium [Cr(VI)]-induced malignant transformation of human bronchial epithelial cells. Toxicol Res (Camb) 2024; 13:tfae030. [PMID: 38464415 PMCID: PMC10919774 DOI: 10.1093/toxres/tfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
Our previous study identified the potential of SEMA4B methylation level as a biomarker for hexavalent chromium [Cr(VI)] exposure. This study aimed to investigate the role of the SEMA4B gene in Cr(VI)-mediated malignant transformation of human bronchial epithelial (BEAS-2B) cells. In our population survey of workers, the geometric mean [95% confidence intervals (CIs)] of Cr in blood was 3.80 (0.42, 26.56) μg/L. Following treatment with various doses of Cr(VI), it was found that 0.5 μM had negligible effects on the cell viability of BEAS-2B cells. The expression of SEMA4B was observed to decrease in BEAS-2B cells after 7 days of treatment with 0.5 μM Cr(VI), and this downregulation continued with increasing passages of Cr(VI) treatment. Chronic exposure to 0.5 μM Cr(VI) enhanced the anchorage-independent growth ability of BEAS-2B cells. Furthermore, the use of a methylation inhibitor suppressed the Cr(VI)-mediated anchorage-independent growth in BEAS-2B cells. Considering that Cr levels exceeding 0.5 μM can be found in human blood due to occupational exposure, the results suggested a potential carcinogenic risk associated with occupational Cr(VI) exposure through the promotion of malignant transformation. The in vitro study further demonstrated that Cr(VI) exposure might inhibit the expression of the SEMA4B gene to promote the malignant transformation of BEAS-2B cells.
Collapse
Affiliation(s)
- Yao Qin
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Yongyong Xi
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Biao Xu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, and the First Affiliated Hospital, Huzhou University, No. 158, Square Back Road, Wuxing District, Huzhou, Zhejiang 313000, China
| |
Collapse
|
16
|
Sun H, Jin J, Sun Y, Zuo F, Feng R, Wang F. Preparation of microbial agent immobilized composites for Cr(VI) removal from wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38429873 DOI: 10.1080/09593330.2024.2323030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Because of its extreme toxicity and health risks, hexavalent chromium [Cr(VI)] has been identified as a major environmental contaminant. Bioreduction is considered as one of effective techniques for cleaning up Cr(VI)-contaminated sites, but the remediation efficiency needs to be enhanced. Here, a novel immobilized microbial agent was produced by immobilizing Bacillus cereus ZY-2009 with sodium alginate (SA) using polyvinyl alcohol (PVA) and activated carbon (AC). To evaluate the decrease of Cr(VI) by immobilized bacterial agents, batch tests were conducted with varying immobilization conditions, immobilization carriers, and dosages of medication. The removal of Cr(VI) by the agent prepared by the composite immobilization method was better than that by the adsorption and encapsulation methods. The optimal preparation conditions were the fraction of magnetic PVA was 5.00%, the fraction of SA was 4.00%, the fraction of CaCl2 was 4.00%, and the calcification time was 12 h. The experimental results indicated that PVA/SA/AC agents accelerated the reduction rate of Cr(VI). The removal rate of Cr(VI) by immobilized cells (90.5%) under ideal conditions was substantially higher than that of free cells (11.0%). This novel agent had a large specific surface area and a rich pore structure, accounting for its high reduction rate. The results suggest that the PVA/SA/AC immobilized Bacillus cereus ZY-2009 agent has great potential to remove Cr(VI) from wastewater treatment systems.
Collapse
Affiliation(s)
- Haihan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Jianyong Jin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Fang Zuo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Ruiqing Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|
17
|
Chen Z, Chen Y, Liang J, Sun Z, Zhao H, Huang Y. The Release and Migration of Cr in the Soil under Alternating Wet-Dry Conditions. TOXICS 2024; 12:140. [PMID: 38393235 PMCID: PMC10891877 DOI: 10.3390/toxics12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
In recent decades, chromium contamination in soil has emerged as a serious environmental issue, demanding an exploration of chromium's behavioral patterns in different soil conditions. This study aims to simulate the release, migration, and environmental impact of chromium (Cr) in contaminated soils under natural rainfall conditions (wet-dry cycles). Clean soils sourced from Panzhihua were used to cultivate chromium-containing soils. Simulated rainfall, prepared in the laboratory, was applied to the cultivated chromium-containing soils in indoor simulated leaching experiments. The experiments simulated three years of rainfall in Panzhihua. The results indicate that soils with higher initial Cr contents result in higher Cr concentrations in the leachate, but all soils exhibit a low cumulative Cr release. The leachate shows similar patterns in total organic carbon (TOC), pH, electrical conductivity, and Cr content changes. An analysis of the speciation of Cr in the soil after leaching reveals a significant decrease in the exchangeable fraction for each Cr species, while the residual and oxidizable Cr fractions exhibit notable increases. The wet-dry cycle has the following effects on the soil: it induces internal reduction reactions in the soil, leading to the reduction of Cr(VI) to Cr(III); it alters the binding of Cr ions to the soil, affecting the migration of chromium; and it involves microorganisms in chemical processes that consume organic matter in the soil. After three years of rainwater leaching, chromium-containing soils released a relatively low cumulative amount of total chromium, resulting in a reduced potential risk of groundwater system contamination. Most of the chromium in the chromium-containing soil is fixed within the soil, leading to less biotoxicity.
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
| | - Ying Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
| | - Jing Liang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; (J.L.); (Z.S.)
| | - Zhiyu Sun
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; (J.L.); (Z.S.)
| | - Haoren Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China; (Z.C.); (Y.C.); (H.Z.)
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; (J.L.); (Z.S.)
| |
Collapse
|
18
|
Qian Q, Liang J, Ren Z, Sima J, Xu X, Rinklebe J, Cao X. Digestive fluid components affect speciation and bioaccessibility and the subsequent exposure risk of soil chromium from stomach to intestinal phase in in-vitro gastrointestinal digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132882. [PMID: 37939559 DOI: 10.1016/j.jhazmat.2023.132882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
The simulated in-vitro gastrointestinal method provides a simple way to evaluate the health risk of human body exposed to soil contaminants. Several in-vitro methods have been successfully established for soil As, Pb, and Cd. However, the method development for soil Cr failed up to now, which could be resulted from alteration in the species of Cr (e.g., Cr(VI)/Cr(III)) caused by the gastrointestinal digestion components, ultimately affecting the accessibility of Cr. This study explored the transformation and bioaccessibility of Cr in two Cr-contaminated soils during the physiologically based extraction test. The water-soluble and exchangeable Cr in soil was dissolved in gastrointestinal tract, accompanied with reduction of Cr(VI) into Cr(III), and the reduction occurred after the chemical extraction in two soils rather than during the extraction. Pepsin and organic acids in gastric phase could reduce Cr(VI) into Cr(III) and reduction efficiency were 20.4%- 53.0%, while in intestinal phase, pancreatin and bile salt had little effect on the Cr(VI) reduction, instead, more Cr(VI) was released from soil. In the gastric solution, Cr(VI) was mainly present as HCrO4- and Cr(III) as free Cr3+ ion. In the intestinal phase, Cr(VI) mainly occurred as CrO42- and Cr(III) as Cr(OH)3 (aq). Cr in the soil solid phase was dominated as the precipitates of Cr-Fe oxide, which was hardly extracted. Bioaccessibility of Cr in gastric phase increased as extraction duration increased and decreased in the intestinal phase, the contrary trend was observed for the hazard quotient of Cr in two phases due to Cr(VI)/Cr(III) transformation. This study indicates that the gastrointestinal components could influence the Cr transformation and subsequently affect the Cr bioaccessibility, which would help for a successful establishment of in vitro determination method for soil Cr bioaccessibility.
Collapse
Affiliation(s)
- Quan Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingke Sima
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Wang GH, Tang CH, Cheng CY, Chung YC. Improving the practicality of recombinant Escherichia coli biosensor in detecting trace Cr(VI) by modifying the cryogenic storage conditions of biosensors and applying simple pretreatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1028-1038. [PMID: 38189371 DOI: 10.1080/10934529.2024.2301905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a global environmental pollutant. To reduce the risk caused by Cr(VI), a simple, accurate, reproducible, and inexpensive method for quantifying Cr(VI) in water and soil should be developed. In this study, three types of recombinant Escherichia coli biosensors (namely T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensor) containing promoters (T7, T3, and SP6), chromate-sensing regulator chrB, and the reporter gene luxAB were constructed. This study investigated the effects of cryogenic freezing temperature and time on trace Cr(VI) measurement by using recombinant E. coli biosensors. The results indicated that the activity of thawed frozen SP6-lux-E. coli cells stored at -20 °C for 270 days did not differ from that of freshly prepared cells. Turbidity and conductivity in water samples and organic matter in soil interfered with Cr(VI) measurement using the biosensor. The SP6-lux-E. coli biosensor exhibited a wide measurement range and a low deviation of <5% for measuring Cr(VI) in various Cr(VI)-contaminated water and soil samples and required only a simple pretreatment or extraction process even after 270-day storage at -20 °C. To the best of our knowledge, this is the first study to report the use of recombinant biosensors for accurately measuring Cr(VI) in both water and soil.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, China
| | - Chi-Hsiang Tang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
20
|
Gómez-Álvarez J, Miranda I, Álvarez-Llanas A, Lisón JF, Bosch-Morell F, Doménech J. Influence of Physical Activity and Cup Orientation on Metal Ion Release and Oxidative Stress in Metal-on-Metal and Ceramic-on-Metal Total Hip Arthroplasty. J Clin Med 2024; 13:527. [PMID: 38256664 PMCID: PMC10816639 DOI: 10.3390/jcm13020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Metal-on-metal (M-M) total hip arthroplasty (THA) has shown adverse reactions to metal debris, abnormal soft-tissue reactions, and high blood metal ion levels. This study aims to: (1) assess whether the toxicity of high levels of ions is related to altered oxidative stress and (2) evaluate tribological factors related to increased blood levels of chromium (Cr) and cobalt (Co) ions. METHODS A cross-sectional analytical descriptive study was conducted on 75 patients. A total of 25 underwent M-M THA, 25 ceramic-on-metal (C-M) THA, and 25 were on the THA waiting list. Ion metallic levels in blood, oxidative stress, physical activity, and implant position were compared. RESULTS In the M-M group, Co and Cr levels were significantly higher than those found in the C-M group and the control group (p < 0.01). We found no differences in terms of oxidative stress between the groups. Also, we did not find a correlation between metal blood levels and oxidative stress indicators, the physical activity of the patients or the position of the implants between groups. CONCLUSIONS The use of M-M bearing surfaces in THA raises the levels of metals in the blood without modifying oxidative stress regardless of the physical activity levels of the patients. Therefore, although patients with M-M bearings require close monitoring, it does not seem necessary to recommend the restriction of physical activity in patients with M-M or C-M arthroplasties.
Collapse
Affiliation(s)
- Jorge Gómez-Álvarez
- Department of Orthopedic Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Ignacio Miranda
- Department of Orthopedic Surgery, Hospital Arnau de Vilanova, 46015 Valencia, Spain
- Faculty of Health Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Alejandro Álvarez-Llanas
- Department of Orthopedic Surgery, Hospital Arnau de Vilanova, 46015 Valencia, Spain
- Faculty of Health Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Juan F. Lisón
- Department of Biomedical Sciences, Faculty of Health Sciences, University CEU Cardenal Herrera, 46115 Alfara del Patriarca, Spain; (J.F.L.); (F.B.-M.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, University CEU Cardenal Herrera, 46115 Alfara del Patriarca, Spain; (J.F.L.); (F.B.-M.)
| | - Julio Doménech
- Department of Orthopedic Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
21
|
Xu X, Guo L, Wang S, Ren M, Zhao P, Huang Z, Jia H, Wang J, Lin A. Comprehensive evaluation of the risk system for heavy metals in the rehabilitated saline-alkali land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119117. [PMID: 37806271 DOI: 10.1016/j.jenvman.2023.119117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
A comprehensive assessment of the heavy metal system in the rehabilitated saline-alkali land holds significant importance, as the in-situ remediation process utilizing amendments substantially alters the initial physicochemical properties of the soil, which could lead to the migration or reactivation of previously stabilized heavy metals. In this context, the present study aims to evaluate the heavy metal content and health risk within the improved saline-alkali soil-plant system. Moreover, a comprehensive evaluation based on the TOPSIS-RSR method is carried out to accurately gauge the soil health status. The findings indicate that the modification process has an impact on the concentrations of heavy metals in the soil and crops, causing either an increase or decrease. However, the level of heavy metal pollution in the improved saline-alkali soil and rape remains within safe limits. The results of the migration of heavy metals after amendment application indicated that the migration of heavy metals in the soil was influenced by the properties of the heavy metals, the composition of the amendment, and leaching. Furthermore, the total non-carcinogenic hazard quotients in the soil and rape were within the safe threshold for all populations. The findings provided novel insights into the status and risk assessment of the pollution of improved saline-alkali soil.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ziyi Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
22
|
Salami OS, Adeyemi JA, Olawuyi TS, Barbosa F, Adedire CO. Tissue Distributions and Toxic Effects of Hexavalent Chromium in Laboratory-Exposed Periwinkle ( Littorina littorea Linnaeus). Animals (Basel) 2023; 13:3412. [PMID: 37958167 PMCID: PMC10649957 DOI: 10.3390/ani13213412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The increased use of hexavalent chromium (Cr6+) in various industrial applications has contributed to its elevated levels in the environment, especially the aquatic environment. Thus, there is the potential for accumulation of Cr6+ in the tissues of aquatic organisms and consequent toxic effects. The toxic effects of Cr6+ in aquatic organisms have been widely reported; however, little is known about the patterns of tissue accumulation of Cr6+ and its toxicity in aquatic mollusks. Thus, the present study investigated the effects of Cr6+ exposure on the tissue distribution, proximate composition, and histopathology of an aquatic mollusk, periwinkle (Littorina littorea). The animals were exposed to sublethal concentrations of Cr6+ (0.42, 0.84, and 4.2 mg/L) for 30 days, after which the condition index, tissue accumulation, proximate composition, and histopathological effects were determined. The control animals were maintained in a medium that did not contain Cr6+ (0 mg/L). The condition index did not differ significantly among the groups. The levels of Cr6+ in the tissues differed significantly among the different tissue types while there was no significant effect of the exposure concentration, except in the foot tissue. The proximate parameters (protein, carbohydrates, lipid, crude fiber, and moisture contents) differed significantly among the groups. The protein contents of the exposed animals were significantly lower than those of the control animals and the histological architecture of the major organs was altered in the chromium-exposed animals. The findings from this study indicate a low potential of L. littorea to bioaccumulate Cr6+ in its tissues at the low exposure concentrations tested in this study; as such, its consumption may not pose any serious health risks to humans. However, changes in the proximate composition and histological architecture of the exposed L. littorea show that Cr6+ is potentially toxic to periwinkles.
Collapse
Affiliation(s)
- Olufemi S. Salami
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
| | - Joseph A. Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, Ribeirão Preto 14040-903, Brazil;
| | - Toluwase S. Olawuyi
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria;
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, Ribeirão Preto 14040-903, Brazil;
| | - Chris O. Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
| |
Collapse
|
23
|
Bethencourt-Barbuzano E, González-Weller D, Paz-Montelongo S, Gutiérrez-Fernández ÁJ, Hardisson A, Carrascosa C, Cámara M, Rubio-Armendáriz C. Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization. Nutrients 2023; 15:3543. [PMID: 37630733 PMCID: PMC10458782 DOI: 10.3390/nu15163543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Protein supplements (PS) are trendy foods, especially those made from whey. In addition to providing protein, these products are a source of metals, providing essential elements (Na, K, Mg, Ca, Mo, Mn, Fe, Co, Cu, and Zn) and other potentially toxic elements (Al, B, Sr, V Ba, and Ni). In this study, 47 whey PS samples were analyzed for mineral elements by ICP-OES, and their dietary exposures were assessed for three consumption scenarios. Elements found in higher concentrations were K (4689.10 mg/kg) and Ca (3811.27 mg/kg). The intake of 30 g PS (average recommended amount/day) provides about 20% of the established reference value (NRI) for Cr (18.30% for men and 25.63% for women) and Mo (26.99%). In a high daily consumption scenario (100 g PS/day) and when the maximum concentrations are considered, Cr, Zn, Fe, Mo, and Mg dietary intakes of these metals exceed the daily recommended intakes and could pose a risk. The daily intake of 30, 60, and 100 g of whey PS for 25 years does not pose a health risk since the hazard index (HI) is less than one in these consumption scenarios, and the essential elements contributing most to HI are Co, followed by Mo and Cr. It is recommended to improve the information to the consumers of these new products. Furthermore, to help in the management and prevention of these potential health risks, it would be advisable to improve the regulation of these dietary supplements and their labeling.
Collapse
Affiliation(s)
- Elena Bethencourt-Barbuzano
- Interuniversity Group of Environmental Toxicology, Food and Drug Safety, University of La Laguna, 38071 La Laguna, Spain; (E.B.-B.); (S.P.-M.); (Á.J.G.-F.); (A.H.); (C.C.)
| | - Dailos González-Weller
- Health Inspection and Laboratory Service, Canary Health Service, 38006 Santa Cruz de Tenerife, Spain;
| | - Soraya Paz-Montelongo
- Interuniversity Group of Environmental Toxicology, Food and Drug Safety, University of La Laguna, 38071 La Laguna, Spain; (E.B.-B.); (S.P.-M.); (Á.J.G.-F.); (A.H.); (C.C.)
| | - Ángel J. Gutiérrez-Fernández
- Interuniversity Group of Environmental Toxicology, Food and Drug Safety, University of La Laguna, 38071 La Laguna, Spain; (E.B.-B.); (S.P.-M.); (Á.J.G.-F.); (A.H.); (C.C.)
| | - Arturo Hardisson
- Interuniversity Group of Environmental Toxicology, Food and Drug Safety, University of La Laguna, 38071 La Laguna, Spain; (E.B.-B.); (S.P.-M.); (Á.J.G.-F.); (A.H.); (C.C.)
| | - Conrado Carrascosa
- Interuniversity Group of Environmental Toxicology, Food and Drug Safety, University of La Laguna, 38071 La Laguna, Spain; (E.B.-B.); (S.P.-M.); (Á.J.G.-F.); (A.H.); (C.C.)
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Montaña Cámara
- Nutrition and Food Science Department, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carmen Rubio-Armendáriz
- Interuniversity Group of Environmental Toxicology, Food and Drug Safety, University of La Laguna, 38071 La Laguna, Spain; (E.B.-B.); (S.P.-M.); (Á.J.G.-F.); (A.H.); (C.C.)
| |
Collapse
|
24
|
Shi L, Chen M, Zhao G, Wang X, Fan M, Liu R, Xie F. Environmental Applications of Electromembrane Extraction: A Review. MEMBRANES 2023; 13:705. [PMID: 37623766 PMCID: PMC10456692 DOI: 10.3390/membranes13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Electromembrane extraction (EME) is a miniaturized extraction technique that has been widely used in recent years for the analysis and removal of pollutants in the environment. It is based on electrokinetic migration across a supported liquid membrane (SLM) under the influence of an external electrical field between two aqueous compartments. Based on the features of the SLM and the electrical field, EME offers quick extraction, effective sample clean-up, and good selectivity, and limits the amount of organic solvent used per sample to a few microliters. In this paper, the basic devices (membrane materials and types of organic solvents) and influencing factors of EME are first introduced, and the applications of EME in the analysis and removal of environmental inorganic ions and organic pollutants are systematically reviewed. An outlook on the future development of EME for environmental applications is also given.
Collapse
Affiliation(s)
- Linping Shi
- College of Chemistry, Zhengzhou University, Science Avenue #100, Zhengzhou 450001, China;
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Mantang Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Meijuan Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Ruihong Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| |
Collapse
|
25
|
Sharma K, Saxena P, Kumari A. Comparative Study of Chromium Phytoremediation by Two Aquatic Macrophytes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:16. [PMID: 37460624 DOI: 10.1007/s00128-023-03773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Chromium (Cr) occurs in several oxidation states from trivalent to hexavalent. However, hexavalent forms are more toxic and mainly produced by anthropogenic activities. A hydroponic experiment was conducted to analyse the comparative remediation of Cr by Marsilea minuta and Pistia stratiotes. Plants were exposed to four concentrations of Cr (0.5, 1.0, 1.5, and 2.0 mM) for 3 days. The highest accumulation of Cr was seen at the 1.5 mM concentration after 3 days in Marsilea (11.96 mg/g) and Pistia (18.78 mg/g). Dry weights decreased and malondialdehyde (MDA) levels increased in response to increasing Cr concentrations. Results indicate that both macrophytes are suitable candidates for Cr phytoremediation. Antioxidant-enzyme activity as a function of metal tolerance is imperative for a coherent understanding of plant physiology under metal stress.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Botany, University of Lucknow, Lucknow, U. P., 226007, India
| | - Priya Saxena
- Department of Botany, University of Lucknow, Lucknow, U. P., 226007, India
- Environmental Monitoring Division, CSIR-Indian Institute of Toxicology Research, Lucknow, U. P., 226001, India
| | - Alka Kumari
- Department of Botany, University of Lucknow, Lucknow, U. P., 226007, India.
| |
Collapse
|
26
|
Gupta S, Gupta SK. Application of Monte Carlo simulation for carcinogenic and non-carcinogenic risks assessment through multi-exposure pathways of heavy metals of river water and sediment, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3465-3486. [PMID: 36346487 DOI: 10.1007/s10653-022-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 06/01/2023]
Abstract
Heavy metal contamination has severe detrimental impacts on the entire river ecosystem's quality and causes potential risks to human health. An integrated approach comprising deterministic and probabilistic (Monte Carlo simulation) models with sensitivity analysis was adopted to determine heavy metals' chronic daily intake (CDI) and their associated health risks from the riverine ecosystem. Both carcinogenic and non-carcinogenic risks of water and sediment were estimated through multi-exposure pathways. The analytical results indicated that the concentration patterns of heavy metals in sediment (Fe > Mn > Sr > Zn > Cr > Cu > Cd) were slightly different and higher than in water (Fe > Zn > Cr > Sr > Mn > Cu > Cd). The potential carcinogenic risks of Cr and Cd in sediment (5.06E-02, 5.98E-04) were significantly (p < 0.05) higher than in water (9.08E-04, 8.97E-05). Moreover, 95th percentile values of total cancer risk (TCR) for sediment (1.80E-02, 3.37E-02) were about 22 and 143 times higher than those of water (8.10E-04, 2.36E-04) for adults and children, respectively. The analysis of non-carcinogenic risk revealed a significantly higher overall hazard index (OHI) for both sediment (adults: 1.26E+02, children: 1.11E+03) and water (adults: 3.26E+00, children: 9.85E+00) than the USEPA guidelines (OHI ≤ 1). The sensitivity analysis identified that the concentration of heavy metals was the most influencing input factor in health risk assessment. Based on the reasonable maximum exposure estimate (RME), the study will be advantageous for researchers, scientists, policymakers, and regulatory authorities to predict and manage human health risks.
Collapse
Affiliation(s)
- Suyog Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
27
|
Hong S, Zhang Y, Hu G, Jia G. Exploration of Whole Blood Chromium as Biomarker of Hexavalent Chromium Exposure: Based on Literature Review and Monte Carlo Simulation. Biol Trace Elem Res 2023; 201:2274-2283. [PMID: 35859210 DOI: 10.1007/s12011-022-03360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Hexavalent chromium (Cr(VI)) is a sort of common industrial poison and environmental pollutant posing great health threat to the population. Appropriate biomarkers are indispensable indicative tools in the biological monitoring and health risk assessment of Cr(VI). In this study, we explored the rationality and feasibility of whole blood Cr serving as the biomarker of internal exposure with corroboration drawn from literature review and Monte Carlo simulation. It was indicated that the whole blood Cr had practical operability in the large-scale population researches and robust biological significance with broad association with various Cr(VI)-related effect indices. The simulated distribution of whole blood Cr concentration in exposed populations was about three times higher than that of the control (13.52 ± 24.99 vs. 4.25 ± 11.37 μg/L, P < 0.05; 6.73 ± 10.92 μg/L vs. 1.96 ± 2.05 μg/L in China, P < 0.05), which suggested a great discriminatory ability that might be supported as evidence for its reasonable application.
Collapse
Affiliation(s)
- Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
28
|
Na J, Li N, Yan L, Schikowski T, Ye R, Krutmann J, Li Z. Skin aging associated with chromium among rural housewives in northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114676. [PMID: 36827897 DOI: 10.1016/j.ecoenv.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have found associations between chromium exposure and skin damage. However, few studies have focused on both chromium and skin aging. This study aimed to assess the degree of skin aging symptoms and estimate the relationship between hair chromium and skin aging among rural housewives. We recruited 405 subjects in Shanxi Province of northern China and analyzed 397 eligible hair samples with inductively coupled plasma-mass spectrometry (ICP-MS). The subjects' skin aging symptoms were assessed with SCINEXA™ (SCore of INtrinsic and EXtrinsic skin Aging). After adjusting for age and other important covariates, the regression results showed more severe skin aging symptoms in women with a higher level of hair chromium and presented an increasing linear trend. Vegetables, fruits, and beans might be a source of chromium exposure. We concluded that skin aging might be positively associated with hair chromium. It is necessary to take measures to reduce chromium exposure to prevent skin aging.
Collapse
Affiliation(s)
- Jigen Na
- Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Institute of Reproductive and Child Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Nan Li
- Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Institute of Reproductive and Child Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, China
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Swiss Tropical Institute of Public Health, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Rongwei Ye
- Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Institute of Reproductive and Child Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Zhiwen Li
- Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Institute of Reproductive and Child Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
29
|
Liang Y, Pan Z, Zhu M, Gao R, Wang Y, Cheng Y, Zhang N. Exposure to essential and non-essential trace elements and risks of congenital heart defects: A narrative review. Front Nutr 2023; 10:1121826. [PMID: 36998909 PMCID: PMC10043220 DOI: 10.3389/fnut.2023.1121826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Congenital heart defects (CHDs) are congenital abnormalities involving the gross structures of the heart and large blood vessels. Environmental factors, genetic factors and their interactions may contribute to the pathogenesis of CHDs. Generally, trace elements can be classified into essential trace elements and non-essential trace elements. Essential trace elements such as copper (Cu), zinc (Zn), iron (Fe), selenium (Se), and manganese (Mn) play important roles in human biological functions such as metabolic function, oxidative stress regulation, and embryonic development. Non-essential trace elements such as cadmium (Cd), arsenic (As), lead (Pb), nickle (Ni), barium (Ba), chromium (Cr) and mercury (Hg) are harmful to health even at low concentrations. Recent studies have revealed the potential involvement of these trace elements in the pathogenesis of CHDs. In this review, we summarized current studies exploring exposure to essential and non-essential trace elements and risks of CHDs, in order to provide further insights for the pathogenesis and prevention of CHDs.
Collapse
Affiliation(s)
- Yipu Liang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zijian Pan
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingzheng Zhu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Gao
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yijue Wang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yijuan Cheng
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Nannan Zhang,
| |
Collapse
|
30
|
Dalla Vecchia F, Nardi S, Santoro V, Pilon-Smits E, Schiavon M. Brassica juncea and the Se-hyperaccumulator Stanleya pinnata exhibit a different pattern of chromium and selenium accumulation and distribution while activating distinct oxidative stress-response signatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121048. [PMID: 36634861 DOI: 10.1016/j.envpol.2023.121048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Soils high in chromium and selenium exist in some countries, like China, India and the US. In the forms of chromate and selenate, these elements can compete during uptake by plants and lead to secondary effects on the absorption of the essential nutrient sulfur. In this study, we evaluated the potential of Brassica juncea and the Se-hyperaccumulator Stanleya pinnata to take-up and store chromium and selenium when applied individually or jointly, the effect on sulfur content, and the plant antioxidant responses. The aim is to advise the best use of these species in phytotechnologies. Plants were grown hydroponically with 50 μM chromate, 50 μM selenate and equimolar concentrations of both elements (50 μM chromate + 50 μM selenate). Our results suggest that B. juncea and S. pinnata possess transport systems with different affinity for chromate and selenate. The joint application of chromate and selenate restricted the accumulation of both elements, but the reduction of selenate uptake by chromate was more evident in B. juncea. On the other hand, selenate decreased chromium accumulation in B. juncea, whereas in S. pinnata such effect was evident only in roots. B. juncea plants stored more chromium and selenium than S. pinnata due to the higher biomass produced, but less selenium when treated with both elements. Chromate and selenate decreased sulfur accumulation in both species, but B. juncea was more sensitive to their toxicity when applied individually, as revealed by increased lipid peroxidation, hydrogen peroxide content in roots and antioxidant enzyme activity. This species can still be efficient for chromium and selenium phytoextraction as these elements in soil are less available than in hydroponics. In soils high in both elements, or low in selenium, S. pinnata is preferred for selenium phytoextraction and the biomass could be used for crop biofortification due its negligible chromium content.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente (DAFNAE), Viale Dell'Università 16, 35020 Legnaro (PD), Italy
| | - Veronica Santoro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Largo Paolo Braccini, 2, 10095, Grugliasco, (TO), Italy.
| | | | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente (DAFNAE), Viale Dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
31
|
Khan AA, Naqvi SR, Ali I, Arshad M, AlMohamadi H, Sikandar U. Algal-derived biochar as an efficient adsorbent for removal of Cr (VI) in textile industry wastewater: Non-linear isotherm, kinetics and ANN studies. CHEMOSPHERE 2023; 316:137826. [PMID: 36640973 DOI: 10.1016/j.chemosphere.2023.137826] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Textile industries release effluent that contains the vast majority of heavy metals in which Cr (VI) is a toxic carcinogenic element that causes an environmental problem. The aim of the work is to synthesize algae-derived biochar derived from algae using slow pyrolysis at an operating temperature of 500 °C, a heating rate of 10 °C/min and a residence time of 60 min and to use it as an adsorbent to remove Cr (VI). The batch experiment was carried out using different concentrations of Cr (VI) (1, 10, 25, 50, 100, 125, 150 and 200 ppm) at different intervals of time (2.5, 5, 10, 15, 30, 60, 120 and 240 min). The maximum removal percentage of Cr (VI) is 97.88% for the metal concentration of 1 ppm exhibiting non-linear adsorption isotherm (Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin models) and kinetic models (pseudo-first order, pseudo-second order, nth order, and intra-particle diffusion) were analyzed using a solver add-in of Microsoft Excel. According to the results, the Langmuir isotherm model (R2 = 0.999) and pseudo-nth order models are suitable to describe monolayer adsorption and the process kinetics, respectively. The maximum adsorption capacity of algal biochar to adsorb is 186.94 mg/g. For the prediction of the optimal removal efficacy, an artificial neural network of the MLP-2-7-1 model was used. The results obtained are useful for future work using algal biochar as an adsorbent of Cr (VI) from textile wastewater to achieve sustainable development goals.
Collapse
Affiliation(s)
- Abdul Ahad Khan
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| | - Salman Raza Naqvi
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan.
| | - Imtiaz Ali
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Muazzam Arshad
- Department of Chemical Engineering, University of Engineering & Technology, KPK, Peshawar, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Umair Sikandar
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| |
Collapse
|
32
|
Jenkins JA, Musgrove M, White SJO. Outlining Potential Biomarkers of Exposure and Effect to Critical Minerals: Nutritionally Essential Trace Elements and the Rare Earth Elements. TOXICS 2023; 11:toxics11020188. [PMID: 36851062 PMCID: PMC9958731 DOI: 10.3390/toxics11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 05/21/2023]
Abstract
Emerging and low-carbon technologies and innovations are driving a need for domestic sources, sustainable use, and availability of critical minerals (CMs)-those vital to the national and economic security of the United States. Understanding the known and potential health effects of exposures to such mineral commodities can inform prudent and environmentally responsible handling and harvesting. We review the occurrence, use, predominant exposure pathways, and adverse outcome pathways (AOP) for human and fish receptors of those CMs that are nutritionally essential trace metals (specifically, cobalt, chromium, manganese, nickel, and zinc), as well as the rare earth elements. Biological responses to some elements having comparable biogeochemistry can sometimes be similar. Candidate quantifiable biomarkers for assessing potential AOP are conveyed.
Collapse
Affiliation(s)
- Jill A. Jenkins
- Wetland and Aquatic Research Center, U.S. Geological Survey, 700 Cajundome Boulevard, Lafayette, LA 70506, USA
- Correspondence:
| | - MaryLynn Musgrove
- Oklahoma-Texas Water Science Center, U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, USA
| | - Sarah Jane O. White
- Geology, Energy & Minerals Science Center, U.S. Geological Survey, 12201 Sunrise Valley Dr., Reston, VA 20192, USA
| |
Collapse
|
33
|
Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int J Mol Sci 2023; 24:ijms24043410. [PMID: 36834821 PMCID: PMC9963995 DOI: 10.3390/ijms24043410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Heavy metals are defined as metals with relatively high density and atomic weight, and their various applications have raised serious concerns about the environmental impacts and potential human health effects. Chromium is an important heavy metal that is involved in biological metabolism, but Cr exposure can induce a severe impact on occupational workers or public health. In this study, we explore the toxic effects of Cr exposure through three exposure routes: dermal contact, inhalation, and ingestion. We propose the underlying toxicity mechanisms of Cr exposure based on transcriptomic data and various bioinformatic tools. Our study provides a comprehensive understanding of the toxicity mechanisms of different Cr exposure routes by diverse bioinformatics analyses.
Collapse
|
34
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
35
|
First Report of Potentially Pathogenic Klebsiella pneumoniae from Serotype K2 in Mollusk Tegillarca granosa and Genetic Diversity of Klebsiella pneumoniae in 14 Species of Edible Aquatic Animals. Foods 2022; 11:foods11244058. [PMID: 36553800 PMCID: PMC9778296 DOI: 10.3390/foods11244058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae can cause serious pneumonitis in humans. The bacterium is also the common causative agent of hospital-acquired multidrug-resistant (MDR) infections. Here we for the first time reported the genetic diversity of K. pneumoniae strains in 14 species of edible aquatic animals sampled in the summer of 2018 and 2019 in Shanghai, China. Virulence-related genes were present in the K. pneumoniae strains (n = 94), including the entB (98.9%), mrkD (85.1%), fimH (50.0%), and ybtA (14.9%) strains. Resistance to sulfamethoxazole-trimethoprim was the most prevalent (52.1%), followed by chloramphenicol (31.9%), and tetracycline (27.7%), among the strains, wherein 34.0% had MDR phenotypes. Meanwhile, most strains were tolerant to heavy metals Cu2+ (96.8%), Cr3+ (96.8%), Zn2+ (91.5%), Pb2+ (89.4%), and Hg2+ (81.9%). Remarkably, a higher abundance of the bacterium was found in bottom-dwelling aquatic animals, among which mollusk Tegillarca granosa contained K. pneumoniae 8-2-5-4 isolate from serotype K2 (ST-2026). Genome features of the potentially pathogenic isolate were characterized. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR)−based genome fingerprinting classified the 94 K. pneumoniae strains into 76 ERIC genotypes with 63 singletons, demonstrating considerable genetic diversity in the strains. The findings of this study fill the gap in the risk assessment of K. pneumoniae in edible aquatic animals.
Collapse
|
36
|
Wang J, Liu C, Zhao Y, Wang J, Li J, Zheng M. Selenium regulates Nrf2 signaling to prevent hepatotoxicity induced by hexavalent chromium in broilers. Poult Sci 2022; 102:102335. [PMID: 36470031 PMCID: PMC9719864 DOI: 10.1016/j.psj.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(Ⅵ)) is considered to be a common environmental pollutant, which widely exists in industrial effluents and wastes and then potentially noxious effects to the health of the poultry. Studies have reported that selenium (Se), which is one of the essential trace elements of the poultry and participates in the oxidative metabolism, can alleviate Cr(Ⅵ)-induced organ damage by inhibiting oxidative stress, but its specific molecular mechanism remains unclear. Herein, animal models of Cr(Ⅵ)- and Se-exposure were constructed using broilers to investigate the antagonistic mechanism of Se to Cr(Ⅵ)-induced hepatotoxicity. In this experiment, the four groups of broiler models were used as the research objects: control, Se, Se plus Cr, and Cr groups. Histopathology and ultrastructure liver changes were observed. Liver-somatic index, serum biochemistry, oxidative stress, Nrf2 pathway related factors, and autophagy-related genes were also determined. Overall, Se was found to ameliorate the disorganized structure, hepatic insufficiency, and oxidative damage caused by Cr(Ⅵ) exposure. Electron microscopy analysis further showed that the number of autophagosomes was obviously decreased after Se treatment compared to Cr group. Furthermore, gene and protein expression analyses illustrated that the levels of Nrf2, glutathione peroxidase 1 (GPx-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and mechanistic target of rapamycin (mTOR) in the Se&Cr group was upregulated, along with decreased expression of Beclin 1, ATG5 and LC3 compared to the Cr group. These suggest that Se can repair the oxidative lesion and autophagy induced by Cr(Ⅵ) exposure in broiler livers by upregulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jingqiu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
- Corresponding authors:
| | - Yanbing Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Jinglu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
- Corresponding authors:
| |
Collapse
|
37
|
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R. Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biol Trace Elem Res 2022; 200:4782-4794. [PMID: 35066750 DOI: 10.1007/s12011-021-03069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023]
Abstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Collapse
Affiliation(s)
- Anfal Fedala
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, University of Batna 2, 5000, Batna, Algeria
| | - Omar Bennoune
- Institute of Veterinary and Agronomic Sciences, Laboratory of Environment, Health and Animal Production (LEHAP), University of Batna 1, Batna, Algeria
| | - Salwa Abid-Essefi
- Laboratory for Research On Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Abdelhamid Foughalia
- Scientific and Technical Research Center On Arid Regions (CRSTRA), University Campus Mohamed Khider, BP 1682 R.P, Biskra-07000, Biskra, Algeria
| | - Rim Timoumi
- Laboratory for Research On Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
38
|
Ndaw S, Leso V, Bousoumah R, Rémy A, Bocca B, Duca RC, Godderis L, Hardy E, Janasik B, van Nieuwenhuyse A, Pinhal H, Poels K, Porras SP, Ruggieri F, Santonen T, Santos SR, Scheepers PTJ, Silva MJ, Verdonck J, Viegas S, Wasowicz W, Iavicoli I. HBM4EU chromates study - Usefulness of measurement of blood chromium levels in the assessment of occupational Cr(VI) exposure. ENVIRONMENTAL RESEARCH 2022; 214:113758. [PMID: 35764127 DOI: 10.1016/j.envres.2022.113758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Occupational exposures to hexavalent Chromium (Cr(VI)) can occur in welding, hot working stainless steel processing, chrome plating, spray painting and coating activities. Recently, within the human biomonitoring for Europe initiative (HBM4EU), a study was performed to assess the suitability of different biomarkers to assess the exposure to Cr(VI) in various job tasks. Blood-based biomarkers may prove useful when more specific information on systemic and intracellular bioavailability is necessary. To this aim, concentrations of Cr in red blood cells (RBC-Cr) and in plasma (P-Cr) were analyzed in 345 Cr(VI) exposed workers and 175 controls to understand how these biomarkers may be affected by variable levels of exposure and job procedures. Compared to controls, significantly higher RBC-Cr levels were observed in bath plating and paint application workers, but not in welders, while all the 3 groups had significantly greater P-Cr concentrations. RBC-Cr and P-Cr in chrome platers showed a high correlation with Cr(VI) in inhalable dust, outside respiratory protective equipment (RPE), while such correlation could not be determined in welders. In platers, the use of RPE had a significant impact on the relationship between blood biomarkers and Cr(VI) in inhalable and respirable dust. Low correlations between P-Cr and RBC-Cr may reflect a difference in kinetics. This study showed that Cr-blood-based biomarkers can provide information on how workplace exposure translates into systemic availability of Cr(III) (extracellular, P-Cr) and Cr(VI) (intracellular, RBC-Cr). Further studies are needed to fully appreciate their use in an occupational health and safety context.
Collapse
Affiliation(s)
- Sophie Ndaw
- French National Research and Safety Institute, Vandoeuvre-les-Nancy, France.
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Radia Bousoumah
- French National Research and Safety Institute, Vandoeuvre-les-Nancy, France
| | - Aurélie Rémy
- French National Research and Safety Institute, Vandoeuvre-les-Nancy, France
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Radu Corneliu Duca
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Emilie Hardy
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, Lodz, Poland
| | - An van Nieuwenhuyse
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Hermínia Pinhal
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and Environmental Health Lisbon, Portugal
| | - Katrien Poels
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sílvia Reis Santos
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and Environmental Health Lisbon, Portugal
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and Environmental Health Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Susana Viegas
- NOVA NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600 560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1169 056, Lisbon, Portugal
| | | | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
39
|
Gaine T, Tudu P, Ghosh S, Mahanty S, Bakshi M, Naskar N, Chakrabarty S, Bhattacharya S, Bhattacharya SG, Bhattacharya K, Chaudhuri P. Differentiating Wild and Apiary Honey by Elemental Profiling: a Case Study from Mangroves of Indian Sundarban. Biol Trace Elem Res 2022; 200:4550-4569. [PMID: 34860329 DOI: 10.1007/s12011-021-03043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/22/2021] [Indexed: 12/07/2022]
Abstract
Honey is a natural substance produced by honeybees from the nectar or secretion of flowering plants. Along with the botanical and geographical origin, several environmental factors also play a major role in determining the characteristics of honey. The aim of this study is to determine and compare the elemental concentration of various macro and trace elements in apiary and wild honeys collected from different parts of Indian Sundarbans. The elemental analysis was performed in inductively coupled plasma optical emission spectroscopy preceded by microwave digestion method. The concentrations of 19 elements (Ag, Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se and Zn) were investigated from thirteen locations of Indian Sundarbans. This comparative study shows in wild honey samples, the concentration of K was highest followed by Ca, Mg and Na and Zn was lowest among all. In contrast, in apiary honey samples, Ca had maximum concentration followed by K, Mg and Na and Ag had minimum among all. The elemental concentration in honey from apiary was either equal or higher than their wild counterpart. The results of the factor analysis of PCA algorithm for wild and apiary honey samples were highly variable which implies that the elements are not coming from the same origin. The concentration of element was found to be highly variable across sites and across sources of honey samples.
Collapse
Affiliation(s)
- Tanushree Gaine
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Department of Environmental Studies, New Alipore College, Kolkata, West Bengal, 700053, India.
| | - Praveen Tudu
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shouvik Mahanty
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Madhurima Bakshi
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
- School of Environmental Studies, Seth Soorajmull Jalan Girls' College, Kolkata, West Bengal, 700073, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Souparna Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Subarna Bhattacharya
- School of Environmental Studies, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, 93/1 Acharya P. C. Road, Kolkata, West Bengal, 700009, India
| | | | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| |
Collapse
|
40
|
Spinazzè A, Spanu D, Della Bella P, Corti C, Borghi F, Fanti G, Cattaneo A, Wise WR, Davis SJ, Cavallo DM, Recchia S. On the Determination of Cr(VI) in Cr(III)-Rich Particulates: From the Failure of Official Methods to the Development of an Alternative Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12111. [PMID: 36231411 PMCID: PMC9564694 DOI: 10.3390/ijerph191912111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The goals of this work are the evaluation of the performances of official methods in the challenging determination of Cr(VI) in Cr(III)-rich particulate matter, and the development of a novel and robust analytical protocol for this issue. A liquid chromatography inductively coupled plasma mass spectrometry apparatus (LC-ICP-MS), together with an isotope-enriched spike addition technique, was used to allow the study of Cr(III)/Cr(VI) interconversions during the extraction step. An original separation strategy based on Cr(OH)3 head-column stacking was developed to tolerate high concentrations of Cr(III) (up to 10 mg/kg, with a Cr(VI) limit of detection of 0.51 µg/kg) without the need of any sample pretreatment. After observing, the official extraction protocols always yield false positive values in the challenging situation of particulate matter of leather industries (where huge amounts of Cr(III) are present), a new extraction strategy was developed. The novel procedure involves a 48-h extraction at room temperature using a pH-8 phosphate buffer, which demonstrated that no Cr(III)/Cr(VI) interconversions occur during this phase. To get rid of any possible interference caused by co-extracted substances, the measurement of the redox potential, together with the addition of a Fe(II)/Fe(III) redox buffer was performed to fix chromium speciation during the overall analytical protocol.
Collapse
Affiliation(s)
- Andrea Spinazzè
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - Davide Spanu
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - Pietro Della Bella
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - Cristina Corti
- Dipartimento di Scienze Teoriche ed Applicate, Università degli Studi dell’Insubria, Via Dunant, 3, 21100 Varese, Italy
| | - Francesca Borghi
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - Giacomo Fanti
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - Andrea Cattaneo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - William Robert Wise
- Institute for Creative Leather Technologies, University of Northampton, University Drive, Northampton NN1 5PH, UK
| | - Stefan John Davis
- Institute for Creative Leather Technologies, University of Northampton, University Drive, Northampton NN1 5PH, UK
| | - Domenico Maria Cavallo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| | - Sandro Recchia
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como, Italy
| |
Collapse
|
41
|
Gösterişli TU, Oflu S, Keyf S, Bakırdere S. Development of a double monitoring system for the determination of Cr(VI) in different water matrices by HPLC-UV and digital image-based colorimetric detection method with the help of a metal sieve-linked double syringe system in complexation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:691. [PMID: 35984528 DOI: 10.1007/s10661-022-10392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This study reports a cheap, efficient, sensitive, and simple double monitoring analytical method for trace determination of Cr(VI), which is toxic and harmful even at very low concentrations. A metal sieve-linked double syringe (MSLDS) system was used to help the formation of chromium complex (Cr-diphenyl carbazide, DPC) subsequently determined by high-performance liquid chromatography-ultraviolet (HPLC-UV) and digital image-based colorimetry (DIC) systems. The metal complex was eluted through a Phenomenex-Aqua C18 with a mobile phase comprising of 50 mM ammonium formate solution (pH 4.0):acetonitrile (78:22, v/v) and detected by the UV detector at the wavelength of 581 nm. Under their optimum conditions, the HPLC-UV and DIC systems exhibited good linearity in ranges of 10-500 µg L-1 and 100-1000 µg L-1, respectively. The percent relative standard deviations (RSD%s) calculated for the lowest concentrations of both systems fell below 10%, and this confirmed good repeatability for replicate measurements. The accuracy of the proposed methods was evaluated by performing spike recovery experiments on wastewater, river water, and tap water samples. The calculated recovery results were in the range of 81.5-105.5% for HPLC-UV system and 93.8-111.1% for the DIC system. These results indicate that the proposed methods are suitable for routine Cr(VI) determination in terms of their rapidness, simplicity, good repeatability, and low cost.
Collapse
Affiliation(s)
| | - Sude Oflu
- Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Türkiye
| | - Seyfullah Keyf
- Department of Chemical Engineering, Yıldız Technical University, 34220, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Ankara, Türkiye.
| |
Collapse
|
42
|
Tavares A, Aimonen K, Ndaw S, Fučić A, Catalán J, Duca RC, Godderis L, Gomes BC, Janasik B, Ladeira C, Louro H, Namorado S, Nieuwenhuyse AV, Norppa H, Scheepers PTJ, Ventura C, Verdonck J, Viegas S, Wasowicz W, Santonen T, Silva MJ. HBM4EU Chromates Study-Genotoxicity and Oxidative Stress Biomarkers in Workers Exposed to Hexavalent Chromium. TOXICS 2022; 10:483. [PMID: 36006162 PMCID: PMC9412464 DOI: 10.3390/toxics10080483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
A study was conducted within the European Human Biomonitoring Initiative (HBM4EU) to characterize occupational exposure to Cr(VI). Herein we present the results of biomarkers of genotoxicity and oxidative stress, including micronucleus analysis in lymphocytes and reticulocytes, the comet assay in whole blood, and malondialdehyde and 8-oxo-2′-deoxyguanosine in urine. Workers from several Cr(VI)-related industrial activities and controls from industrial (within company) and non-industrial (outwith company) environments were included. The significantly increased genotoxicity (p = 0.03 for MN in lymphocytes and reticulocytes; p < 0.001 for comet assay data) and oxidative stress levels (p = 0.007 and p < 0.001 for MDA and 8-OHdG levels in pre-shift urine samples, respectively) that were detected in the exposed workers over the outwith company controls suggest that Cr(VI) exposure might still represent a health risk, particularly, for chrome painters and electrolytic bath platers, despite the low Cr exposure. The within-company controls displayed DNA and chromosomal damage levels that were comparable to those of the exposed group, highlighting the relevance of considering all industry workers as potentially exposed. The use of effect biomarkers proved their capacity to detect the early biological effects from low Cr(VI) exposure, and to contribute to identifying subgroups that are at higher risk. Overall, this study reinforces the need for further re-evaluation of the occupational exposure limit and better application of protection measures. However, it also raised some additional questions and unexplained inconsistencies that need follow-up studies to be clarified.
Collapse
Affiliation(s)
- Ana Tavares
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Sophie Ndaw
- French National Research and Safety Institute, 54500 Vandœuvre-lès-Nancy, France
| | - Aleksandra Fučić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10001 Zagreb, Croatia
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Radu Corneliu Duca
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Bruno C. Gomes
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland
| | - Carina Ladeira
- HTRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1549-020 Lisbon, Portugal
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Sónia Namorado
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Hannu Norppa
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
| | - Susana Viegas
- NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Wojciech Wasowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | | |
Collapse
|
43
|
de Oliveira JPJ, Hiranobe CT, Torres GB, Dos Santos RJ, Paim LL. Determination of Cr(VI) in leather residues using graphite/paraffin composite electrodes modified with reduced graphene oxide nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155318. [PMID: 35452736 DOI: 10.1016/j.scitotenv.2022.155318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, we determined the Cr(VI) in samples of tanned leather residues by differential pulse voltammetry (DPV) using graphite/paraffin composite electrodes modified with reduced graphene oxide nanosheets (referred to as GPEs/nsRGO). After the modification, the composite electrodes were characterized by two electrochemical techniques (i.e., cyclic voltammetry, CV, and electrochemical impedance spectroscopy, EIS), scanning electron microscopy, and Raman spectroscopy. The electroanalytical method was applied using the GPEs/nsRGO. An analytical curve was obtained in a Clark-Lubs buffer solution (pH = 1), with a linear concentration range from 25.0 to 392.0 μmol L-1 and a limit of detection (LOD) of 1.01 μmol L-1. The GPEs/nsRGO showed good reproducibility in their manufacturing process and good response repeatability with an RSD of 4.59% over twelve measurements. These composite electrodes showed excellent selectivity, which was demonstrated by analyses in the presence of metal ions (Ca2+, Zn2+, Mg2+, Fe3+, Co2+, Na+, and Cu2+) that did not interfere in the analysis of Cr(VI). The GPEs/nsRGO were applied to the determination of Cr(VI) in real samples of wet-blue leather and leather ash using DPV. This approach was validated using the sample recovery method, where it presented values from 95.6 to 108.2%. The proposed method showed satisfactory results compared to the literature and can be considered a good alternative for the determination of Cr(VI) in aqueous samples.
Collapse
Affiliation(s)
- João P J de Oliveira
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil; Brazilian Renewable Energies, School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil
| | - Carlos T Hiranobe
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil
| | - Giovanni B Torres
- Instituto Tecnológico Metropolitano, Programa de Ingeniería de Diseño Industrial, Medellín, Antioquia, Colombia
| | - Renivaldo J Dos Santos
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil
| | - Leonardo L Paim
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil.
| |
Collapse
|
44
|
Aziz MY, Hussain SH, Ishak AR, Abdullah MA, Mohamed R, Ruzi II, Yahaya N, Samad NA, Edinur HA. Heavy Metal Concentrations in Malaysian Adults' Hair and Associated Variables in Bukit Mertajam, Penang, Malaysia. Biol Trace Elem Res 2022; 200:3475-3481. [PMID: 34591221 DOI: 10.1007/s12011-021-02942-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
The presence of heavy metals in human hair is being tracked to predict health risk, forensics, and environmental monitoring. Heavy metals are typically non-biodegradable and have a lengthy half-life, allowing them to linger in humans and the environment for many years. Heavy metal exposure in hair has been attributed to multiple sources from the environment and food intake. In this study, copper (Cu), nickel (Ni), zinc (Zn), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd) levels were measured in the scalp hair of 50 individuals in Bukit Mertajam, Penang, Malaysia. In conjunction with sampling, subjects' age, gender, lifestyle, diet, and working environment were also obtained through the questionnaire. The Atomic Absorption Spectrometry (AAS) method was used to extract all the metals in the hair samples. The mean concentrations of heavy metals were found to be in the following order (unit of mg/kg): Cr > Zn > Pb > Ni > Cd > Cu. Manganese was detected below the limit of quantitation among the elements (< LOQ). All elements except Mn were higher and comparable to the previous studies' international limit values. Cadmium prevalence was substantially associated with age, smoking habit, dyed hair, and working environment in Pearson's correlation analysis (p ≤ 0.05). Zinc was also found to be related to the working environment. Some elements were observed to be statistically related between heavy metals, Cd/Zn, Cd/Ni, Cr/Ni, and Pb/Ni, whereas smoking habit/dyed hair and dyed hair/working environment were the associated factors for metal distribution that were statistically correlated (p ≤ 0.05). To recapitulate, this study found that the distribution of heavy metals in hair was influenced by associated factors and between heavy metals. It has been indicated that heavy metal exposure to humans is influenced by factors such as geographical location, lifestyle, and working environment.
Collapse
Affiliation(s)
- Mohd Yusmaidie Aziz
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | | | - Ahmad Razali Ishak
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300, Puncak Alam, Selangor, Malaysia
| | - Muhamad Azwat Abdullah
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, 42300, Puncak Alam, Selangor, Malaysia
| | - Rafeezul Mohamed
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universit Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Iqbal Iman Ruzi
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Hisham Atan Edinur
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
45
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
46
|
Kapoor RT, Bani Mfarrej MF, Alam P, Rinklebe J, Ahmad P. Accumulation of chromium in plants and its repercussion in animals and humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119044. [PMID: 35217142 DOI: 10.1016/j.envpol.2022.119044] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 05/26/2023]
Abstract
The untreated effluents released from industrial operations have adverse impacts on human health, environment and socio-economic aspects. Environmental pollution due to chromium is adversely affecting our natural resources and ecosystem. Chromium is hazardous carcinogenic element released from spontaneous activities and industrial procedures. Chromium toxicity, mobility and bioavailability depend mainly on its speciation. Chromium mainly exists in two forms, first as an immobile, less soluble trivalent chromium [Cr(III)] species under reducing conditions whereas hexavalent chromium [Cr(VI)] as a mobile, toxic and bioavailable species under oxidizing conditions. Hexavalent chromium is more pernicious in comparison to trivalent form. Chromium negatively affects crop growth, total yield and grain quality. Exposure of chromium even at low concentration enhances its accretion in cells of human-beings and animals which may show detrimental health effects. Many techniques have been utilized for the elimination of chromium. The selection of the green and cost-efficient technology for treatment of industrial effluent is an arduous task. The present review highlights the problems associated with chromium pollution and need of its immediate elimination by suitable remediation strategies. Further, investigations are required to fill the gaps to overcome the problem of chromium contamination and implementation of sustainable remediation strategies with their real-time applicability on the contaminated sites.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University, Noida, 201 313, Uttar Pradesh, India
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
47
|
Zhang Y, Su Z, Hu G, Hong S, Long C, Zhang Q, Zheng P, Wang T, Yu S, Yuan F, Zhu X, Jia G. Lung function assessment and its association with blood chromium in a chromate exposed population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151741. [PMID: 34808188 DOI: 10.1016/j.scitotenv.2021.151741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium [Cr(VI)] and its compounds have been associated with various respiratory diseases, while few studies have attempted to determine its adverse effect on lung function. To explore the potential early indicators of health surveillance for respiratory diseases induced by chromate exposure, a longitudinal cohort study including 515 workers with 918 measurements across 2010-2017 was conducted to investigate the impact of individual internal exposure on lung function. Inductively coupled plasma mass spectrometry (ICP-MS) and spirometry were used to measure whole blood chromium (blood Cr) and lung function respectively. In the linear mixed-effects analysis, each 1- unit increase in Ln- transformed blood Cr was significantly associated with estimated effect percentage decreases of 1.80 (0.35, 3.15) % in FEV1, 0.77 (0.10, 1.43) % in FEV1/FVC, 2.78 (0.55, 4.98) % in PEF, and 2.73 (0.59, 4.71) % in FEF25-75% after adjusting for related covariates. Exposure- response curve depicted the reduction of lung function with blood Cr increase, and the reference value of blood Cr was proposed as 6 μg/L considering the lung function as health outcome. Based on the repeated-measure analysis, compared with the low frequency group, subjects with high frequency of high exposure across 2010-2017 had an additional reduction of 5.65 (0, 11.3) % in FVC. Subjects with medium frequency showed more obvious declines of 9.48 (4.16, 14.87) % in FVC, 8.63 (3.49, 13.97) % in FEV1, 12.94 (3.34, 22.53) % in PEF and 10.97 (3.63, 18.30) % in MVV. These findings suggested that short- term high exposure to Cr associated with obstructive ventilatory impairment, and long- term exposure further led to restrictive ventilatory impairment.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China.
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100191, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou City, Henan Province 450052, China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
48
|
Kozłowska L, Santonen T, Duca RC, Godderis L, Jagiello K, Janasik B, Van Nieuwenhuyse A, Poels K, Puzyn T, Scheepers PTJ, Sijko M, Silva MJ, Sosnowska A, Viegas S, Verdonck J, Wąsowicz W. HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites 2022; 12:362. [PMID: 35448548 PMCID: PMC9032989 DOI: 10.3390/metabo12040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland;
| | - Radu Corneliu Duca
- Labotoire National de Santé (LNS), Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, 3555 Dudelange, Luxembourg;
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Karolina Jagiello
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- Laboratoire National de Santé (LNS), Department of Health Protection, 3555 Dudelange, Luxembourg
| | - Katrien Poels
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Tomasz Puzyn
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Monika Sijko
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Dr. Ricardo Jorge (INSA), Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Anita Sosnowska
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisbon, 1600-560 Lisbon, Portugal;
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Wojciech Wąsowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | | | | |
Collapse
|
49
|
Smera R, Roshith M, Ramasubramanian S, Kumar DVR. Dip to Drink: Solar Photocatalytic Reduction of Cr(VI) Using Fibrous Red Phosphorus Immobilized Quartz Sand as “Dip-Catalyst”. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|